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Abstract
In this paper we prove an analogue of the Komlós–Major–Tusnády (KMT) embedding
theorem for random walk bridges. The random bridges we consider are constructed
through random walks with i.i.d jumps that are conditioned on the locations of their
endpoints. We prove that such bridges can be strongly coupled to Brownian bridges
of appropriate variance when the jumps are either continuous or integer valued under
some mild technical assumptions on the jump distributions. Our arguments follow a
similar dyadic scheme toKMT’s original proof, but they requiremore refined estimates
and stronger assumptions necessitated by the endpoint conditioning. In particular, our
result does not follow from the KMT embedding theorem, which we illustrate via a
counterexample.
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650 E. Dimitrov, X. Wu

1 Introduction andmain results

Let X be a random variable with E[X ] = 0 and E[X2] = 1. Suppose that X1, X2, . . .

is an i.i.d sequence of random variables with the same law as X and let Sn = X1+X2+
· · · + Xn for n ≥ 1. A classical problem in probability theory, called the embedding
problem, asks to construct the process {Sm}n

m=1 and a standard Brownian motion
(Bt )t≥0 on the same probability space so that

Δn = max
1≤k≤n

|Sk − Bk | (1)

grows as slowly as possible in n. The first major results about the above embedding
problem, or strong approximation/coupling problem, were obtained in the works of
Skorokhod [38,39] and Strassen [41], who showed that if E[X4] < ∞ then with high
probability

Δn = O(n1/4(log n)1/2(log log n)1/4).

In fact, this rate of growth was shown to be optimal under the fourth moment assump-
tion in [26]. For more than a decade the above rate for strong approximation was the
best available result, and the method of obtaining it is now known as the Skorokhod
embedding. For a more detailed account of the history of the Skorokhod embedding
and its various applications we refer the reader to the comprehensive survey [33] and
the monograph [12].

Nearly fifteen years after Skorokhod’s original work, Komlós, Major and Tusnády
showed using completely different techniques that one can achieveΔn = O(log n) for
the rate of strong coupling, provided that X has a finite moment generating function
in a neighborhood of zero [27,28]. The construction used to achieve this celebrated
result is now referred to as the KMT approximation or coupling. The results in [2],
see [45], show that unless X is normally distributed the log n rate of approximation
is optimal. Since its inception, the KMT coupling has become an invaluable tool in
probability theory and statistics, see e.g. [11,12,37].

In the last fewdecades, theKMTapproximation has been extended inmanydifferent
directions. We discuss a few of them here, remarking that the list is very far from
complete. Amultidimensional version of theKMTcouplingwas proved in [16] and the
best result was later obtained in [43,44]. See [17] formore on the history and references
regarding the KMT approximation for X ∈ R

d . [35] generalized and essentially
sharpened the KMT results in the case of non-identically distributed independent
randomvariables, see also [34,36] and the references therein. Somewhatmore recently,
[7] proposed a new proof of the KMT result for the simple random walk via Stein’s
method. The main motivation of [7], as admitted by the author, was to gain a more
conceptual understanding of the KMT result so that it could be generalized to cases
for sums of dependent random variables. Using different techniques, [4] extended
the KMT coupling for a large class of dependent stationary processes, successfully
breaking away from the independent variables setting.
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KMT coupling for randomwalk bridges 651

In the present paper we consider a different, albeit related problem to the embedding
problem above, which we now describe. Let {S(n,z)

m }n
m=1 denote the random process

with law equal to that of the random walk {Sm}n
m=0 conditioned on Sn = z. In order

for the latter law to be well-defined we assume one of the following situations.

– Continuous jumps There are constants α ∈ [−∞,∞) and β ∈ (α,∞] such that
X is a continuous random variable with density fX (·) such that fX (·) is positive
and continuous on (α, β) and zero outside of this interval. Under this assumption
the process {S(n,z)

m }n
m=1 makes sense for all n ≥ 1 and z ∈ Ln = (nα, nβ).

– Discrete jumps There are constants α ∈ Z ∪ {−∞} and β ∈ ((α,∞] ∩ Z) ∪ {∞}
such that X is an integer-valued random variable with probability mass function
pX (·) such that pX (·) is positive on (α − 1, β + 1) ∩ Z and zero for all other
values. Under this assumption the process {S(n,z)

i }n
i=1 makes sense for all n ≥ 1

and z ∈ Ln = (nα − 1, nβ + 1) ∩ Z.

In the case of continuous jumps we call the process {S(n,z)
m }n

m=1 a continuous random
walk bridge between the points (0, 0) and (n, z). Similarly, in the case of discrete
jumps we call the process {S(n,z)

m }n
m=1 a discrete random walk bridge between the

points (0, 0) and (n, z). As a natural extension we define S(n,z)
t for non-integer t by

linear interpolation, i.e. if t ∈ (m, m + 1) we have

S(n,z)
t = (m + 1 − t) · S(n,z)

m + (t − m) · S(n,z)
m+1 .

Ourmain goal in this paper is to demonstrate that given a reference slope p ∈ (α, β)

and z, which is close to np, we can construct a probability space that supports the
process {S(n,z)

t }t∈[0,n] and a suitable Brownian bridge B(n,z)
t conditioned on B(n,z)

0 = 0

and B(n,z)
n = z such that

sup
0≤t≤n

|S(n,z)
t − B(n,z)

t | = O(log n)

with exponentially high probability. In particular, we are interested in establishing the
above statement under general conditions on the density fX (·) and the probability
mass function pX (·) in the continuous and discrete case respectively.

Somewhat surprisingly, despite its inherent probabilistic interest and its direct con-
nection to the well studied problem of KMT approximations, the problem of finding
strong couplings between random walk bridges and Brownian bridges has received
very little attention. We believe that the present paper is the first one that consid-
ers this problem for general jump distributions. To the authors’ knowledge, the only
case of the above setup that has been previously considered is when X is a Bernoulli
random variable. The latter result can be found in [29, Theorem 6.3] and [7, The-
orem 4.1] for the case p = 1/2 (in both papers the authors consider the case when
P(X = 1) = P(X = −1) = 1/2 and p = 0, but the latter is equivalent to the Bernoulli
case and p = 1/2 after a simple affine transformation). For arbitrary p ∈ (0, 1) the
result was proved in [8, Theorem 8.1].
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652 E. Dimitrov, X. Wu

Beforewe turn to our results, we introduce a bit of notation. If Wt denotes a standard
one-dimensional Brownian motion and σ > 0, then the process

Bσ
t = σ(Wt − tW1), 0 ≤ t ≤ 1,

is called a Brownian bridge (conditioned on B0 = 0, B1 = 0) with variance σ 2. In
the following two statements we present our main results about the random processes
{S(n,z)

m }1≤m≤n when the jump distribution X is continuous and discrete respectively.
We forgo stating the results in their full generality as this requires more notation. We
refer the reader to Theorems 3 and 4 in the main body of text for the more general
formulations as well as to Sect. 8 for the proofs of the two theorems below.

Theorem 1 Suppose that X is a continuous random variable with a density function
fX (·). Suppose that the support of fX is a compact interval [α, β] ⊂ R and that fX is
continuously differentiable and positive on (α, β) with a bounded derivative. Then for
every b > 0 and p ∈ (α, β), there exist constants 0 < C, a, α′ < ∞ (depending on b,
p and the function fX (·)) such that the following holds. For every positive integer n,
there is a probability space on which are defined a Brownian bridge Bσ with variance
σ 2 = σ 2

p that explicitly depends on p and fX (·) and a family of processes S(n,z) for
z ∈ Ln = (nα, nβ) such that

E

[
eaΔ(n,z)

]
≤ Ceα′(log n)eb|z−pn|2/n, (2)

where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ .
Theorem 2 Suppose that X is an integer valued random variable with probability mass
function pX (·). Suppose that α, β ∈ Z with α < β are such that P(X ∈ [α, β]) = 1
and pX (x) > 0 for all x ∈ Z∩[α, β]. Then for every b > 0 and p ∈ (α, β), there exist
constants 0 < C, a, α′ < ∞ (depending on b, p and pX (·)) such that the following
holds. For every positive integer n, there is a probability space on which are defined a
Brownian bridge Bσ with variance σ 2 = σ 2

p that explicitly depends on p and pX (·)
and a family of processes S(n,z) for z ∈ Ln = (nα − 1, nβ + 1) ∩ Z such that

E

[
eaΔ(n,z)

]
≤ Ceα′(log n)eb|z−pn|2/n, (3)

where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ .
Remark 1 From Theorems 1 and 2 applied to b = 1 and Chebyshev’s inequality one
readily observes that there are constants M, K , λ > 0 depending on a, α′ and C such
that if z = np then

P (Δ(n, z) ≥ M log n + x) ≤ K e−λx . (4)

As mentioned before, Theorems 1 and 2 are representative of the more general
Theorems 3 and 4 given in Sects. 2.1 and 2.2 respectively. The latter are formulated for
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KMT coupling for randomwalk bridges 653

random variables X whose density fX satisfies a certain set of Assumptions C1–C6 in
the continuous case, or whose mass function pX satisfies a certain set of Assumptions
D1–D5 in the discrete case. In Sect. 2.3 we give a brief description of the significance
of these assumptions. Our approach for proving Theorems 3 and 4, developed in
Sects. 5 and 6, is inspired by the proof of [29, Theorem 6.3], which is based on
an inductive dyadic construction in the same spirit as KMT’s original work [27,28].
The main technical challenges lie in obtaining detailed asymptotic estimates for the
distributions of Sn and S(n,z)

n/2 , which are presented in Sects. 3 and 4. Since we are
dealing with generic distributions, the asymptotic statements we need are notably
harder to obtain than those in [29], which deals with the Bernoulli case. Furthermore,
in the process of establishing our results we obtain numerous constants that depend on
fX in the continuous and on pX in the discrete case. We quantify the dependence of
these constants on fX and pX through various observables of the latter, which further
complicates our arguments. The purpose of this quantification is for example to show
that the coupling constants C, a, α′ in Theorems 1 and 2 can be chosen uniformly
even if fX or pX are allowed to depend on some external parameter or n, see also
Remark 2. Obtaining such a uniformity is important for some of the applications we
have in mind and a representative example is given in Sect. 8.3.

It is worth noting that the randomwalk bridge is a less well-behaved object than the
random walk itself, because of the possibility of conditioning on an atypical endpoint.
The latter motivates the introduction of the (rather technical) Assumptions C6 and
D5 in Sect. 2, which are novel to our setting and did not appear in KMT’s original
work [27,28]. In Sect. 7.1 we discuss some easy to check conditions, under which
Assumptions C6 andD5would follow.Moreover, in Sect. 7.2 we construct an example
of a discrete randomwalk bridge, such that the jumpdistribution satisfies the conditions
of [27,28] but for which our coupling result fails. This example illustrates that one
necessarily needs to impose stronger assumptions when dealing with random walk
bridges compared to random walks, and in particular shows that our result are not a
consequence of [27,28]. It is quite possible that one can relax or remove some of the
assumptions we make, but one would need to implement different arguments than the
ones we present. We believe that it may be possible to prove the results of the present
paper using Stein’s method, similarly to the proof of [7, Theorem 4.1] in the Bernoulli
case. The immediate obstacle in generalizing the arguments of that paper, which the
author also acknowledges, is the difficulty of finding general smoothening techniques
that automatically generate Stein coefficients. Nevertheless, it would be nice to have
a less technical derivation of our results using such ideas.

We end this section with a brief discussion of the possible applications of our
results, specifically to integrable probability, which goes to our initial motivation for
considering the present problem. There is a large class of stochastic integrable models
that naturally carry the structure of random non-intersecting paths with someGibbsian
resampling invariance. To give a concrete example, one can consider the case of a
random walks with jump size X satisfying P(X = 0) = P(X = 1) = 1/2. If the
walks are started at j − 1, 1 ≤ j ≤ a and conditioned to not intersect in the time
interval [0, b + c], and end at c − b + j − 1 at time b + c then the trajectories of the
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654 E. Dimitrov, X. Wu

Fig. 1 Lozenge tiling of the
hexagon and corresponding
up-right path configuration. The
dots represent the location of the
random walks at time t = 3

t

x

t = 3

walks give rise to a random up-right paths. This model has a natural interpretation as
a uniform random lozenge tiling of the a × b × c hexagon, see Fig. 1.

Let us number the random paths from top to bottom by L1, L2, . . . , La , and denote
the position of the k-th random walk at time t by Lk(t). Then law of {Lm}a

m=1 enjoys
the following Gibbs property. Suppose that we sample {Lm}a

m=1 and fix two times
0 ≤ s < t ≤ b + c and an index k ∈ {1, . . . , a}. We can erase the part of the path Lk

between the points (s, Lk(s)) and (t, Lk(t)) and sample independently a new up right
path between these two points uniformly from the set of all such paths that do not
intersect the lines Lk−1 and Lk+1 with the convention that L0 = ∞ and La+1 = −∞.
In this way we obtain a new random collection of paths {L ′

m}a
m=1 whose law is readily

seen to be the same as that of {Lm}a
m=1.

The above is a simple example of a discrete Gibbsian line ensemble. A (notably
more complex) continuous Gibbsian line ensemble is given by the Airy line ensemble.
The Airy line ensemble was introduced in [9], and following the terminology from
[6] we call its parabolic shift the parabolic Airy line ensemble. The parabolic Airy
line ensemble is a certain collection of countably many random continuous curves
{Lm}∞m=1, such that each Li is a random continuous function on R and for each
i ≥ 1 and x ∈ R one has Li (x) ≥ Li+1(x). The top curve L1 is the parabolic Airy2
process and the ensemble satisfies the following Brownian Gibbs property. Suppose
we sample {Lm}∞m=1 and fix two times s, t ∈ Rwith s < t and an index k ∈ N. We can
erase the part of the path Lk between the points (s,Lk(s)) and (t,Lk(t)) and sample
independently a Brownian bridge between these two points, which is conditioned on
not crossing Lk−1 and Lk+1 with the convention that L0 = ∞. In this way we obtain
a new random collection of paths {L′

m}∞m=1 and the essense of the Brownian Gibbs
property is that this new random line ensemble has the same law as {Lm}∞m=1.

In [9] the authors heavily rely on the Brownian Gibbs property to construct and
establish various properties of the Airy line ensemble. In a remarkable series of recent
papers [19–22] one of the authors of [9] significantly strengthened the arguments from
that paper to obtain a multitude of results about the Airy line ensemble and Brownian
last passage percolation (this is a different random line ensemble that enjoys the same
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KMT coupling for randomwalk bridges 655

Brownian Gibbs property we described above). These results are both qualitative and
quantitative in nature, e.g. estimating the modulus of continuity of the models, estab-
lishing refined regularity properties for them and finding critical exponents; however,
a marked advantage of the arguments in [19–22] is that they depend mostly on tools
from analysis and geometry. The latter is important, as it makes the arguments (for
the most part) free of exact computations and hence more easily extendable to other
settings.

One of the directions we are interested in exploring is bringing some of the ideas
from the continuous Gibbsian line ensemble setting to the discrete one. A particularly
successful instance of the latter is [8], where the authors investigated a discrete Gibb-
sian line ensemble related to the ascending Hall-Littlewood process (a special case of
the Macdonald processes [5]). By developing discrete analogues of the arguments in
[8,9] were successful in establishing the long-predicted 2/3 critical exponent for the
asymmetric simple exclusion process (ASEP). A critical component of the argument
in that paper is the strong coupling of Bernoulli random walk bridges to Brownian
bridges, which enabled the translation of ideas from the continuous to the discrete line
ensemble setting. We believe that the same could be done for other discrete models
in integrable probability, whose line ensemble structure is linked to random walks
with jumps that are not Bernoulli. To give a few examples, through various versions
of the Robinson-Schensted-Knuth (RSK) correspondence, one can link geometric last
passage percolation (LPP) to randomwalk bridges with geometric jumps, exponential
LPP to randomwalk bridges with exponential jumps (see [13,24]) and the log-gamma
polymer model to random walk bridges with log-gamma jumps [10,42].

We hope that many of the ideas in [9] and [19–22] can be adapted to all of the
examples we listed above and more. Achieving this would require strong couplings of
the underlying randomwalk bridges in thesemodels to Brownian bridges, andwe hope
that the results in the present paper will be a valuable tool for obtaining such couplings.
We have attempted to make the statements in this paper as generic as possible with
this goal in mind.

2 General setup

In this sectionwe describe the general setting of a randomwalk bridge that we consider
and the specific assumptions wemake about it. Our discussion naturally splits into two
parts, depending on whether the jump of the random walk is continuous or discrete.
In each case we formulate a precise list of assumptions and present the statements we
can prove for the corresponding randomwalk bridges that satisfy them. In the last part
of this section we give a brief explanation of the significance of our assumptions.

2.1 Continuous randomwalk bridges

We start by fixing some notation. Suppose that X is a continuous random variable
with density fX (·) and Xi are i.i.d. random variables with density fX . For n ∈ N we
define Sn := X1 + · · · + Xn and also let fn(x) be the density of Sn .
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656 E. Dimitrov, X. Wu

For any random variable X and t ∈ R we define

MX (t) := E

[
et X

]
, φX (t) := E

[
eit X

]
, Λ(t) := log MX (t),

Λ∗(t) := sup
x∈R

{t x − Λ(x)}. (5)

Let DΛ := {x : Λ(x) < ∞} and DΛ∗ := {x : Λ∗(x) < ∞}.
We make the following assumptions on the function fX (x).

Assumption C1. We assume that there are α ∈ [−∞,∞) and β ∈ (α,∞] and that
fX (x) is positive and continuous on (α, β) and zero outside this interval. In addition,
we assume that fX (x) has a continuous extension to α if α > −∞ and to β if β < ∞.

Assumption C2. We assume that there is a λ > 0 such that E
[
eλ|X |] < ∞.

For each n ≥ 1 we set Ln = (nα, nβ), where α, β are as in Assumption C1.
For z ∈ Ln we let S(n,z) = {S(n,z)

m }n
m=0 denote the process with the law of {Sm}n

m=0
conditioned so that Sn = z. We call this process a continuous random walk bridge
between the points (0, 0) and (n, z). Notice that this law iswell-defined byAssumption
C1. As a natural extension of this definition we define S(n,z)

t for non-integer t by linear
interpolation. In addition, we will denote the density of S(n,z)

m by fm,n−m(·|z).
If fX satisfies Assumption C2 thenDΛ contains a neighborhood of 0. In addition, it

is easy to see thatDΛ is a connected set and hence an interval.We denote (AΛ, BΛ) the
interior of DΛ where AΛ ∈ [−∞,−λ] and BΛ ∈ [λ,∞]. We isolate some properties
for the functions in (5) under the above assumptions in the following lemma.

Lemma 1 Suppose that X is a random variable with density fX , which satisfies
Assumptions C1 and C2. Then MX (u) has an analytic continuation to the vertical
strip D := {z : AΛ < Re(z) < BΛ}. Moreover, Λ(·) is a smooth function on
(AΛ, BΛ) and Λ′′(x) > 0 for all x ∈ (AΛ, BΛ).

Proof Let [an, bn] be such that an strictly decreases to α and bn strictly increases to β.
For each z ∈ D and x ∈ (α, β) we define F(z, x) = exz fX (x) and note that F(z, x)

is holomorphic in z for each x and continuous on D × [an, bn]. It follows from [40,
Theorem 2.5.4] that the function

gn(z) =
∫ bn

an

F(z, x)dx

is holomorphic on D. If K is a compact subset of D, and z ∈ K we note that

g(z) :=
∫ β

α

exz fX (x)dx

is well defined because

∫ β

α

∣∣exz
∣∣ fX (x)dx =

∫ β

α

ex Re(z) fX (x)dx = MX (Re(z)) < ∞.
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KMT coupling for randomwalk bridges 657

which is true as Re(z) ∈ (AΛ, BΛ).
Note that there is [c, d] ⊂ (AΛ, BΛ) such that if z ∈ K then Re(z) ∈ [c, d]. In

particular, we see that ex Re(z) ≤ ecx + edx and so by the dominated convergence
theorem with dominating function fX (x) · [ecx + edx ] we get that

lim
n→∞ gn(z) = g(z),

where the convergence is uniform over K . It follows from [40, Theorem 2.5.2] that
g(z) is holomorphic in D. Clearly, g(z) = MX (z) when z ∈ (AΛ, BΛ), which proves
the first part of the lemma.

One can use further applications of the dominated convergence theorem to show
that the derivatives of g(z) are given by

g(n)(z) =
∫ β

α

[
dn

dzn
exz

]
fX (x)dx =

∫ β

α

xnexz fX (x)dx,

and the latter integral is absolutely convergent for Re(z) ∈ (AΛ, BΛ). For example,
see [32]. We next observe that for x ∈ (AΛ, BΛ), using the continuity and positivity
of fX , we know that g(x) > 0 and so Λ(x) = log[g(x)] is a smooth function on
(AΛ, BΛ). From the Chain rule, we see that

Λ′′(y) = g′′(y)g(y) − [g′(y)]2
g2(y)

= 1

2g2(y)

∫ β

α

∫ β

α

e(x1+x2)y
[
x21 + x22 − 2x1x2

]
fX (x1) fX (x2)dx1dx2,

which is clearly positive. This suffices for the proof. 
�
If fX satisfies Assumptions C1 and C2 then in view of Lemma 1 we know that

Λ′(x) is a strictly increasing function on (AΛ, BΛ). We let (A∗, B∗) denote the image
of (AΛ, BΛ) under the map Λ′(·). In addition, we write MX (u) for all u ∈ D = {z ∈
C : AΛ < Re(z) < BΛ} to mean the (unique) analytic extension of MX (x) to D
afforded by Lemma 1.

Assumption C3. We assume that the function Λ(·) is lower semi-continuous on R.

Lemma 2 Suppose that X is a random variable with density fX , which satisfies
Assumptions C1–C3. Then (α, β) ⊂ (A∗, B∗) ⊂ DΛ∗ and for all y ∈ (A∗, B∗)
we have Λ∗(y) = ηy − Λ(η), where η = (Λ′)−1(y).

Proof By Lemma 1 we know that Λ′(·) is a strictly increasing smooth function
from (AΛ, BΛ) to (A∗, B∗), which implies that (Λ′)−1(·) is also a smooth increas-
ing function from (A∗, B∗) to (AΛ, BΛ). The statements (A∗, B∗) ⊂ DΛ∗ and
Λ∗(y) = ηy − Λ(η) for all y ∈ (A∗, B∗) follow from [14, Lemma 2.2.5]. In the
remainder we show that (α, β) ⊂ (A∗, B∗).

Let z ∈ (α, β) and suppose that ε > 0 is such that (z − ε, z + ε) ⊂ (α, β). Suppose
first that AΛ > −∞. Then by Assumption C3, we know that lim inf xn→AΛ Λ(xn) =
∞. This implies that
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658 E. Dimitrov, X. Wu

lim
xn→AΛ

zxn − Λ(xn) = −∞.

Conversely, if AΛ = −∞ and xn → AΛ then

lim sup
xn→AΛ

zxn − Λ(xn) = lim sup
xn→AΛ

zxn − log
[
E

[
exn X

]]

≤ lim sup
xn→AΛ

zxn − log
[
exn(z−ε/2) · P(X ∈ [z − ε, z − ε/2])

]

≤ xnε

2
− log(P(X ∈ [z − ε, z − ε/2])) = −∞.

Similar considerations show that limxn→BΛ zxn − Λ(xn) = −∞.
By Lemma 1 zx − Λ(x) is smooth in (AΛ, BΛ) and from the above we conclude

that its maximum is achieved at a point xz ∈ (AΛ, BΛ) with 0 = d
dx [zx − Λ(x)] =

z − Λ′(xz). This shows that z ∈ (A∗, B∗). 
�

Assumption C4. We assume that for every BΛ > t > s > AΛ there exist positive
constants K1(s, t) and p(s, t) > 0 such that |MX (z)| ≤ K1(s,t)

(1+|I m(z)|)p(s,t) , provided
s ≤ Re(z) ≤ t .

Assumption C5.We suppose that there are constants L, D, d > 0 such that fX (x) ≤
L for all x ∈ R and at least one of the following statements holds

1. fX (x) ≤ De−dx2 for all x ≥ 0 or 2. fX (x) ≤ De−dx2 for all x ≤ 0. (6)

Assumption C6.We assume that there are functions Ĉ : R>0 → R>0 and â : R>0 →
R>0 such that the following holds. For all n ≥ 1, z ∈ Ln and b̂ > 0 we have

E

[
exp

(
â(b̂) max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉ(b̂) exp

(
b̂(n + z2/n)

)
. (7)

In Sect. 2.3 we provide some explanation of the significance of Assumptions C1–C6.
In the sequel we denote uz = (Λ′)−1(z), σ 2

z = Λ′′(uz)—these are well defined for
densities fX that satisfy Assumptions C1–C3 as follows from Lemmas 1 and 2. Using
this notation we can formulate the main theorem we prove for continuous random
walk bridges.

Theorem 3 Suppose that X is a random variable whose density function fX satisfies
Assumptions C1–C6 and fix p ∈ (α, β). For every b > 0, there exist constants 0 <

C, a, α′ < ∞ (depending on b, p and the function fX (·)) such that for every positive
integer n, there is a probability space on which are defined a Brownian bridge Bσ

with variance σ 2 = σ 2
p and the family of processes S(n,z) for z ∈ Ln such that

E

[
eaΔ(n,z)

]
≤ Ceα′(log n)eb|z−pn|2/n, (8)

where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ .
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Theorem 3 is a special case of Theorem 5, which is stated and proved in Sect. 6. Let
us elaborate on the difference between these two results. In words, Theorem 5 is a
more quantified version of Theorem 3. More specifically, it shows that the coupling
constants C, a, α′ that appear in Theorem 3 depend on the density function fX only
through a list of specific constants related to the support of fX , the complex domain
of Λ(z) = log MX (z) as well as certain bounds on the z-derivatives of the function
Λ(uz) − z · uz , where uz = (Λ′)−1(z). The precise list of constants is given in
Definition 6 and is quite large.

Even though it is possible to get expressions for C, a, α′ in terms of the constants in
Definition 6, we do not attempt to do this in the present paper as the resulting formulas
would be quite involved. While Theorem 5 does not give exact formulas for C, a, α′
it does show that these coupling constants can be chosen uniformly for a family of
densities { f α

X }α∈I as long as all of these densities share the same support and bounds
as reflected by the constants in Definition 6. Our interest in a more quantified version
of Theorem 3 comes from an application we had in mind, in which we want to couple
a one-parameter family of random walk bridges with jump densities { f α

X }α∈I to the
same Brownian bridge. This example is explained in Sect. 8.3 and finds an important
application in [42].

Because of the non-explicit nature of the coupling constants C, a, α′, both Theo-
rems 3 and 5 are similar to KMT’s original work [27,28] in that the theorems establish
the existence of coupling constants. Since the works [27,28] there have been several
results that give explicit formulas for the coupling constants in terms of the distribution
of the jumps in the random walk even when the jumps are not i.i.d., see [35,36]. It
would be nice to obtain similar expressions for the constants in our setup of random
walk bridges; however, we presently do not have a clear idea of how this can be done.

2.2 Discrete randomwalk bridges

We start by fixing some notation. Suppose that X is a random variable such that
P(X ∈ Z) = 1 and let pX (n) = P(X = n) for n ∈ Z denote its probability mass
function.We let Xi be an i.i.d. sequence of random variables with distribution function
pX . For n ∈ N we define Sn = X1 + · · · + Xn and also let pn(·) be the probability
mass function of Sn .

Similarly to Sect. 2.1 we define

MX (t) := E

[
et X

]
, φX (t) := E

[
eit X

]
, Λ(t) := log MX (t)

Λ∗(t) := sup
x∈R

{t x − Λ(x)}. (9)

Let DΛ := {x : Λ(x) < ∞} and DΛ∗ := {x : Λ∗(x) < ∞}.
We make the following assumptions on the function pX (x).

Assumption D1. We assume that pX (x) has a single interval of support, i.e. I =
{x ∈ Z : pX (x) > 0} = (α − 1, β + 1) ∩ Z for some α ∈ Z ∪ {−∞} and β ∈
((α,∞] ∩ Z) ∪ {∞}.
Assumption D2. We assume that there is a λ > 0 such that E

[
eλ|X |] < ∞.
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For each n ≥ 1 we set Ln = (nα−1, nβ +1)∩Z, where α, β are as in Assumption
D1. For z ∈ Ln we let S(n,z) = {S(n,z)

m }n
m=0 denote the process with the law of

{Sm}n
m=0 conditioned so that Sn = z. We call this process a discrete random walk

bridge between the points (0, 0) and (n, z). Notice that this law is well-defined by
Assumption D1. As a natural extension of this definition we define S(n,z)

t for non-
integer t by linear interpolation. In addition, we will denote the distribution function
of S(n,z)

m by pm,n−m(·|z).
If pX satisfies Assumption D2 thenDΛ contains a neighborhood of 0. In addition, it

is easy to see thatDΛ is a connected set and hence an interval.We denote (AΛ, BΛ) the
interior of DΛ where AΛ ∈ [−∞,−λ] and BΛ ∈ [λ,∞]. We isolate some properties
for the functions in (9) under the above assumptions in the following lemma.

Lemma 3 Suppose that X is a random variable whose distribution function pX satisfies
Assumptions D1 and D2. Then MX (u) has an analytic continuation to the vertical strip
D := {z : AΛ < Re(z) < BΛ}. Moreover, Λ(·) is a smooth function on (AΛ, BΛ)

and Λ′′(x) > 0 for all x ∈ (AΛ, BΛ).

Proof The proof is analogous to that of Lemma 1. 
�
If pX satisfies Assumptions D1 and D2 then in view of Lemma 3 we know that

Λ′(x) is a strictly increasing function on (AΛ, BΛ). We let (A∗, B∗) denote the image
of (AΛ, BΛ) under the map Λ′(·). In addition, we write MX (u) for all u ∈ D = {z ∈
C : AΛ < Re(z) < BΛ} to mean the (unique) analytic extension of MX (x) to D
afforded by Lemma 3.
Assumption D3. We assume that the function Λ(·) is lower semi-continuous on R.

Lemma 4 Suppose that X is a random variable whose distribution function pX satisfies
Assumptions D1–D3. Then (α, β) ⊂ (A∗, B∗) ⊂ DΛ∗ and for all y ∈ (A∗, B∗) we
have Λ∗(y) = ηy − Λ(η), where η = (Λ′)−1(y). Furthermore, Λ∗(x) is lower
semi-continuous. If α > −∞ then α ∈ DΛ∗ and Λ∗(α) = − log pX (α). Similarly, if
β < ∞ then β ∈ DΛ∗ and Λ∗(β) = − log pX (β).

Proof By Lemma 3 we know that Λ′(·) is a strictly increasing smooth function from
(AΛ, BΛ) to (A∗, B∗), which implies that (Λ′)−1(·) is also a smooth increasing
function from (A∗, B∗) to (AΛ, BΛ). The statements (A∗, B∗) ⊂ DΛ∗ , Λ∗(y) =
ηy −Λ(η) for all y ∈ (A∗, B∗) and the lower semi-continuity of Λ∗ follow from [14,
Lemma 2.2.5]. We next show that (α, β) ⊂ (A∗, B∗).

Let z ∈ (α, β) and fix k, m ∈ Z such that α ≤ k < z and z > m ≥ β. Suppose first
that AΛ > −∞. Then by Assumption D3, we know that lim inf xn→AΛ Λ(xn) = ∞.
This implies that

lim
xn→AΛ

zxn − Λ(xn) = −∞.

Conversely, if AΛ = −∞ and xn → AΛ then

lim sup
xn→AΛ

zxn − Λ(xn) = lim sup
xn→AΛ

zxn − log
[
E

[
exn X

]]
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≤ lim sup
xn→AΛ

zxn − log
[
exnk · P(X = k)

]
≤ xn(z − k) − log(pX (k)) = −∞.

Similar considerations show that limxn→BΛ zxn − Λ(xn) = −∞.
By Lemma 3 zx − Λ(x) is smooth in (AΛ, BΛ) and from the above we conclude

that its maximum is achieved at a point xz ∈ (AΛ, BΛ) with 0 = d
dx [zx − Λ(x)] =

z − Λ′(xz). This shows that z ∈ (A∗, B∗).
Next suppose that α > −∞. Then we have AΛ = −∞. We have for any x ∈ R

that

αx − Λ(x) ≤ αx − log
[
E

[
ex X

]]
≤ αx − log

[
eαx pX (α)

] ≤ − log pX (α).

Furthermore, we have

lim inf
xn→−∞ αxn − Λ(xn) ≥ lim inf

xn→−∞ αxn − log
[
eαxn pX (α) + e(α+1)xn · (1 − P(X = α))

]

= lim inf
xn→−∞ − log

[
pX (α) + exn · (1 − pX (α))

] = − log pX (α).

Thus α ∈ DΛ∗ and Λ∗(α) = − log pX (α). Analogous arguments prove the statement
for β < ∞. 
�
Assumption D4.We suppose that there are constants D, d > 0 such that at least one
of the following statements holds

1. pX (x) ≤ De−dx2 for all x ≥ 0 or 2. pX (x) ≤ De−dx2 for all x ≤ 0. (10)

Assumption D5.We assume that there are functions Ĉ : R>0 → R>0 and â : R>0 →
R>0 such that the following holds. For all n ≥ 1, z ∈ Ln and b̂ > 0 we have

E

[
exp

(
â(b̂) max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉ(b̂) exp

(
b̂(n + z2/n)

)
. (11)

In Sect. 2.3 we provide some explanation of the significance of Assumptions D1–D5.
In the sequel we denote uz = (Λ′)−1(z), σ 2

z = Λ′′(uz)—these are well defined for
distribution functions pX that satisfy Assumptions D1–D3 as follows from Lemmas 3
and 4 . Using this notation we can formulate the main theorem we prove for discrete
random walk bridges.

Theorem 4 Suppose that X is a random variable whose probability distribution func-
tion pX satisfies Assumptions D1–D5 and fix p ∈ (α, β). For every b > 0, there exist
constants 0 < C, a, α′ < ∞ (depending on b, p and the function pX (·)) such that for
every positive integer n, there is a probability space on which are defined a Brownian
bridge Bσ with variance σ 2 = σ 2

p and the family of processes S(n,z) for z ∈ Ln such
that

E

[
eaΔ(n,z)

]
≤ Ceα′(log n)eb|z−pn|2/n, (12)
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where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ .
Theorem 4 is a special case of Theorem 6, which is stated and proved in Sect. 6.
Theorem 6 is a more quantified version of Theorem 4. More specifically, it shows that
the coupling constants C, a, α′ that appear in Theorem 4 depend on the distribution
function pX only through a list of specific constants related to the support of pX , the
complex domain of Λ(z) = log MX (z) as well as certain bounds on the z-derivatives
of the function Λ(uz) − z · uz , where uz = (Λ′)−1(z). The precise list of constants is
given in Definition 11; however, the dependence of C, a, α′ on these constants is not
simple. We hope to be able to find more explicit formulas for C, a, α′ in the spirit of
[35,36] but we do not pursue this in the present paper.

2.3 Significance of assumptions

Let us explain the role of the different Assumptions C1–C6 and D1–D5 that we made
in the previous sections. Assumption C1 (resp. D1) ensures that the law of the random
walk bridge S(n,z) is well defined. Without the assumption that the support of fX (·)
(resp. pX (·)) is a single interval one runs into the possibility of conditioning on events
of zero probability (in the density sense for the continuous bridges). It is possible to
relax this condition, by requiring that sufficiently many convolutions of fX (·) (resp.
pX ) with itself satisfy this assumption, but we will assume that fX (·) (resp. pX )
satisfies it instead, as this somewhat simplifies our discussion.

Assumptions C2 and C4 (resp. D2) are essentially the same as those used in KMT’s
original work [27,28]. Since our results are analogues of [27, Theorem 1] it is natural
to have these assumptions.

In the process of proving Theorem 3 (resp. Theorem 4) we will require detailed
estimates on the conditional distributions fm,n(·|z) (resp. pm,n(·|z)) for m, n ≥ 1,
which in turn would require estimates on fn+m(z) (resp. pn+m(z)). Consequently, we
will require large deviation estimates for the latter densities, which involve the rate
function Λ. For this reason, it will be convenient for us to assume that Λ is lower
semi-continuous, which is Assumption C3 (resp. D3).

Assumptions C5 andC6 (resp. D4 andD5) aremore technical andmore directly tied
to the particular approach we take to proving Theorem 3 (resp. Theorem 4). It is possi-
ble that one can relax (or entirely remove) some of these assumptions, but one would
need to implement different ideas than the ones we use. Our argument goes through
a comparison of the distribution fn,n(·|z) (resp. pn,n(·|z)) with a suitable Gaussian
density, for which it is useful to know that fn,n(·|z) (resp. pn,n(·|z)) has Gaussian tails
– this is the essence of Assumption C5 (resp. D5). Our proof of Theorems 3 and 4
relies on an inductive argument on n. When we go from n/2 to n, Assumptions C1–C5
(resp. D1–D4) are enough to complete the induction step, provided z is close to the
reference slope pn, but for points that are macroscopically away from this point, we
require the estimates in Assumption C6 (resp. D5). Later in Sect. 7 we provide several
easy to check conditions that imply Assumption C6 (resp. D5).

We want to emphasize that it is not enough to assume Assumptions C1–C5 (resp
D1–D4), and obtain Theorem 3 (resp. Theorem 4) as we demonstrate in Sect. 7.2,
by providing a counterexample. The counterexample is for the discrete setting of
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our problem but can be naturally adapted to the continuous one. This indicates that
one should make additional assumptions on fX (·) (resp. pX (·)) and our choice of
Assumption C6 (resp. D5) is made because it is somewhat natural and satisfied by the
distributions in the particular applications that we have in mind.

We end this section with the following remark.

Remark 2 In the process of establishing the results necessary for the proofs of Theo-
rems 3 and 4 we will obtain numerous constants that depend on the jump distribution
fX in the continuous and pX in the discrete case. Some of the applications we have
in mind are to situations when the jump distribution depends on a parameter that is
allowed to vary in some (possibly infinite) interval. Consequently, we are interested
in quantifying the dependence of our coupling constants on the functions fX and pX ,
through various observables of these distributions. Inwords, we are interested in show-
ing that the coupling constants a, C and α′ in Theorems 3 and 4 can be taken uniformly
even if fX or pX depend on some parameter so long as one has uniform control of
several observables for fX or pX that will be made explicit in later sections. These
more quantified versions of Theorems 3 and 4 can be found in Sect. 6 as Theorems 5
and 6 respectively. We provide an example of the situation described in this remark in
Sect. 8.3.

3 Midpoint distribution: continuous case

We continue with the same notation as in Sect. 2.1. To ease the notation a bit we will
write M, φ and Λ instead of MX , φX and ΛX . Let fn,m(x |y) be the density of Sm

conditioned on Sn+m = y. Our goal in this section is to obtain several asymptotic
statements about the distribution fm,n(·|(m +n)z) and we start by analyzing fN (N z).

3.1 Asymptotics of fN(Nz)

In this section we assume that fX (·) satisfies Assumptions C1–C4. For a fixed z ∈
(A∗, B∗) we define

Gz(u) = Λ(u) − z · u, for u ∈ (AΛ, BΛ). (13)

Definition 1 Suppose that we are given s, t ∈ R such that α < s < t < β, where α, β

are as in Assumption C1. In addition, we denote S = (Λ′)−1(s) and T = (Λ′)−1(t)—
these quantities are well-defined in view of Lemma 2. By Lemma 1 there exist ∞ >

Ms,t ≥ ms,t > 0 such that Ms,t ≥ Λ′′(y) ≥ ms,t for all y ∈ [S, T ]. We can pick
δs,t > 0 sufficiently small (depending on s, t and fX (·)) so that
1. If Dδs,t (S, T ) := {z ∈ C : d(z, [S, T ]) < δs,t } then Dδs,t (S, T ) ⊂ {z ∈ C : AΛ <

Re(z) < BΛ};
2. Re[MX (u)] > 0 for all u ∈ Dδs,t (S, T );
3. δs,t < 1/2;
4. 8δs,t · | log(MX (u))| < ms,t for all u ∈ Dδs,t (S, T ).
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Definition 2 Suppose that we are given s, t ∈ R such that α < s < t < β, where
α, β are as in Assumption C1. In view of Assumption C4 there exists a constant
Ks,t ≥ 1 sufficiently large (depending on s, t and fX (·)) and ps,t > 0 so that for
every uz ∈ [min(us, 0),max(ut , 0)] we have

∣∣∣M(uz + iy) · e−z(uz+iy)e−Gz(uz)
∣∣∣ ≤ Ks,t

(1 + |y|)ps,t
.

Definition 3 Suppose that we are given s, t ∈ R such that α < s < t < β, where
α, β are as in Assumption C1. Suppose that δs,t and Ks,t , ps,t satisfy the conditions
in Definitions 1 and 2 . Denote εs,t = δ4s,t and Rs,t = [4Ks,t ]2/ps,t . Then we can find
qs,t ∈ (0, 1) (depending on s, t, δs,t , Ks,t , ps,t and fX (·))such that for every z ∈ [s, t]
and y ∈ [εs,t , Rs,t ] we have

∣∣∣E
[
e(uz+iy)X

]∣∣∣ e−zuz e−Gz(uz) ≤ qs,t .

To see why the above is true, notice that

∣∣∣E
[
e(uz+iy)X

]∣∣∣ e−zuz e−Gz(uz) < E

[∣∣∣e(uz+iy)X
∣∣∣
]

e−zuz e−Gz(uz) = 1,

where the above inequality is strict for any y �= 0 as the contrary would imply X ∈
2π y−1 · Z almost surely, which is not true. This combined with the continuity of
E

[
e(uz+iy)X

]
in y and z ensures the existence of qs,t with the desired properties.

We are interested in proving the following statement.

Proposition 1 Suppose that fX satisfies Assumptions C1–C4. Fix β > t > s > α and
z ∈ [s, t]. Then there exists N0 ∈ N such that if N ≥ N0 one has

fN (N z) = 1√
2π Nσz

· exp (N Gz(uz) + δ1(z, N )) , where δ1(z, N ) = O(N−1/2).

(14)

The number N0 and the constant in the big O notation depend on fX , s and t only
through the constants in Definitions 1, 2 and 3.

Proof From Definition 2 and [15, Theorem 3.3.5] we know that for N sufficiently
large (specifically it suffices to take N > p−1

s,t ) then

fN (N z) = 1

2π

∫

R

e−iyN z (φ(y))N dy.

Performing the change of variables u = iy we see that

fN (N z) = 1

2π i

∫ i∞

−i∞
M N (u)e−uN zdu. (15)
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Let us shift the u contour in (15) to the vertical contour passing through uz . In
view of Lemma 1, we do not pass any poles in the process of deformation and so by
Cauchy’s theorem the value of the integral remains unchanged. The decay necessary
to deform the contours near ±i∞ comes from Definition 2 and our assumption that
N is sufficiently large. The result is

fN (N z) = eN Gz(uz)

2π i

∫ uz+i∞

uz−i∞
M(u)N e−uN ze−N Gz(uz)du. (16)

For the given s, t as in the statement of the proposition we define δs,t , ms,t ,

Ks,t , εs,t , Rs,t , ps,t and qs,t as in Definitions 1, 2 and 3. To ease notation we will
drop s, t from the notation of these quantities. We will also denote by Cs,t the supre-
mum of | log(M(u))| as u varies over Dδ . Notice that by construction we have

ε < δ/2 and ε · 8Cs,t · δ−3 < m.

From (16) we have fN (N z) = (I ) + (I I ), where

(I ) = eN Gz(uz)

2π i

∫ uz+iε

uz−iε
eN [Gz(u)−Gz(uz)]du, (I I )

= eN Gz(uz)

2π i

∫ uz−iε

uz−i∞

[
M(u)e−uze−Gz(uz)

]N
du

+ eN Gz(uz)

2π i

∫ uz+i∞

uz+iε

[
M(u)e−uze−Gz(uz)

]N
du.

(17)

We will first obtain estimates on (I), which will require analyzing the power series
expansion of Gz(uz + ir) − Gz(uz) around the point uz . Note that by definition

Gz(uz + ir) − Gz(uz) = −r2σ 2
z

2
+

∞∑
n=3

Λ(n)(uz)

n! (ir)n .

From the Cauchy inequalities [40, Corollary 2.4.3] and our choice of ε we conclude
that for |r | ≤ ε

∣∣∣∣∣Gz(uz + ir) − Gz(uz) + r2σ 2
z

2

∣∣∣∣∣ ≤ Cs,t |r |3
∞∑

n=3

|ε|n−3

δn
≤ 2δ−3Cs,t |r |3

=: C(s, t, δ)|r |3. (18)

Changing variables in (17) and using (18) we obtain

eN Gz(uz)

2π
√

N

∫ εN1/2

−εN1/2
exp

[
− x2σ 2

z

2
− C(s, t, δ)√

N
|x |3

]
dx
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≤ (I ) ≤ eN Gz(uz)

2π
√

N

∫ εN1/2

−εN1/2
exp

[
− x2σ 2

z

2
+ C(s, t, δ)√

N
|x |3

]
dx .

Using the inequality |eA − 1| ≤ |A|e|A| for all A ∈ R, we obtain

∣∣∣∣∣(I ) − eN Gz(uz)

2π
√

N

∫ εN1/2

−εN1/2
exp

[
−σ 2

z x2

2

]
dx

∣∣∣∣∣

≤ eN Gz(uz)

2π
√

N

∫ εN1/2

−εN1/2

C(s, t, δ)|x |3√
N

exp

[
−σ 2

z x2

2
+ C(s, t, δ)√

N
|x |3

]
dx .

Notice that by our choice of ε we have for |x | ≤ εN 1/2 that

−σ 2
z x2

2
+ C(s, t, δ)|x |3N−1/2 ≤ −σ 2

z x2

4
,

which implies from above that

∣∣∣∣∣(I ) − eN Gz(uz)

2πσz
√

N
·
(
1 − 2Φ̄

(
ε
√

N
))∣∣∣∣∣

≤ eN Gz(uz)

2π
√

N

∫

R

C(s, t, δ)√
N

|x |3 exp
[
−σ 2

z x2

4

]
dx, (19)

where Φ̄(x) = P(Z > x) with Z being a Gaussian variable with mean zero and
variance 1.

Using a simple change of variables we have

∫

R

|x |3 exp
[
−σ 2

z

4
x2

]
dx = 4

σz

∫ ∞

0
y3e−y2dy = 2

σz
.

Combining the latter with the inequality Φ̄(x) ≤ 2e−x2/2 for all x ≥ 0 and (19) we
get

∣∣∣∣∣(I ) − eN Gz(uz)

2πσz
√

N

∣∣∣∣∣ ≤ eN Gz(uz)

2πσz
√

N
·
(
2C(s, t, δ)√

N
+ 4 exp (−εN/2)

)
(20)

We can now make N0 sufficiently large so that for all z ∈ [s, t] and N ≥ N0

(I ) = eN Gz(uz)

2πσz
√

N

[
1 + O

(
1√
N

)]
. (21)
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We next forcus on estimating (II). We first note by construction we have

∣∣∣M(uz + iy) · e−z(uz+iy)e−Gz(uz)
∣∣∣ ≤ K

(1 + |y|)p
.

The latter implies that if N ≥ N0 > 2/p we have

∫

|y|>R

∣∣∣M(uz + iy) · e−z(uz+iy)e−Gz(uz)
∣∣∣
N

dy

≤ 2K N R1−pN

pN − 1
≤ 2K N R−pN/2 = 2 · 4−N . (22)

Suppose next that y ∈ [ε, R]. Then by definition we have

∫

ε≤|y|≤R

∣∣∣M(uz + iy) · e−z(uz+iy)e−Gz(uz)
∣∣∣
N

dy ≤ 2Rq N . (23)

Combining (22) and (23) we get

|(I I )| ≤ eN Gz(uz)

2π
· [2Rq N + 2 · 4−N ] ≤ eN Gz(uz)

2πσz N
, (24)

where the last inequality holds provided N0 is sufficiently large and N ≥ N0. Com-
bining (21) and (24) yields (14). 
�

3.2 Asymptotics of fn,m(·|(m+ n)z)

We start with a useful definition.

Definition 4 Suppose that fX (·) satisfiesAssumptions C1–C4 and thatβ > t > s > α

are given. Then in view of Lemmas 1 and 2 we know that F(z) := Gz(uz) is smooth
on (α, β) and so for each k ≥ 0 exists M (k)

s,t > 0 such that |F (k)(z)| ≤ M (k)
s,t for all

z ∈ [s, t].

We have the following asymptotic estimate for fn,m(·|(m + n)z).

Proposition 2 Suppose that fX satisfies Assumptions C1–C4. Fix s, t such that β >

t > s > α and let N0 be as in the statement of Proposition 1. Then there exists M > 0
such that the following holds. Suppose that m, n ≥ N0 are such that |m − n| ≤ 1 and
denote N = n + m. In addition, let z, x be such that x N/n, (z − x)N/m, z ∈ [s, t].
Then we have

fn,m(N x |N z) = 2√
2π Nσz

· exp
(

−N · 4

2σ 2
z

[
x − z

2

]2 + δ2(N , x, z)

)
, (25)
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where

|δ2(N , x, z)| ≤ M ·
(

1√
N

+ N
∣∣∣x − z

2

∣∣∣
3
)

. (26)

The constant M depends on s, t and also on fX (·), where the dependence on the
latter is only through the constants in Definitions 1, 2 and 3 as well as M (3)

s,t , M (4)
s,t in

Definition 4.

Proof Set φ = m
n and ψ = n

m . From Proposition 1 we know that for m, n ≥ N0 we
have

fn,m(N x |N z) = fn(N x) fm(N (z − x))

fN (N z)
= fn(n[x N/n]) fm(m[(z − x)N/m])

fN (N z)

= e
N

(
F[x(1+φ)]

1+φ
+ F[(z−x)(1+ψ)]

1+ψ
−F(z)

)
·

2σz√
2π Nσx(1+φ) · σ(z−x)(1+ψ)

·

exp

[
O

(
1√
N

)]
,

(27)

where the constant in the big O notation depends on s, t and the constants in the
statement of Proposition 1.

Notice that F ′(z) = ∂z[Λ(z) − zuz] = −uz , where the last equality used that
Λ′(uz) = z. In addition, differentiating the last expression shows that ∂zuz = 1

Λ′′(uz)
=

1
σ 2

z
. This means that F ′′(z) = − 1

σ 2
z
and F ′(z) = −uz . This shows that F is a strictly

concave function in z and its second derivative is bounded from above by −1/Ms,t as
in Definition 1.

Let us write x = z
1+φ

+ r and denote

h(r) := F(z + (1 + φ)r)

1 + φ
+ F(z − r(1 + ψ))

1 + ψ
− F(z).

Then h(0) = h′(0) = 0 and

h′′(r) = (1 + φ)F ′′(z + (1 + φ)r) + (1 + ψ)F ′′(z + (1 + ψ)r), hence h′′(0)

= −2 + φ + ψ

σ 2
z

.

Next we have

h′′′(r) = (1 + φ)2F ′′′(z + (1 + φ)r) + (1 + ψ)2F ′′′(z + (1 + ψ)r),
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In view of Definition 4 there exists a constant K depending only on M (3)
s,t such that∣∣h(3)(r)

∣∣ ≤ K , provided z + (1 + φ)r , z + (1 + ψ)r ∈ [s, t]. Then we see that

e
N

(
F[x(1+φ)]

1+φ
+ F[(z−x)(1+ψ)]

1+ψ
−F(z)

)
= exp

(
Nh

(
x − z

1 + φ

))

= exp

(
−N

2 + φ + ψ

2σ 2
z

[
x − z

1 + φ

]2
+ O

(
N

∣∣∣∣x − z

1 + φ

∣∣∣∣
3
))

,

(28)

where the constant in the big O notation is just K .
We claim that

σ 2
z

σx(1+φ) · σ(z−x)(1+ψ)

= exp

[
O

(
1√
N

+ N

∣∣∣∣x − z

1 + φ

∣∣∣∣
3
)]

. (29)

Combining (27), (28) and (29) gives (25). In the remainder we establish (29).
Squaring the left side of (29) and taking logarithm gives

log[−F ′′(x(1 + φ))] + log[−F ′′((z − x)(1 + ψ))] − 2 log[−F ′′(z)].

Let us set x = z
1+φ

+ r and denote

g(r) = log[−F ′′(z + r(1 + φ))] + log[−F ′′(z − r(1 + ψ))] − 2 log[−F ′′(z)].

Then g(0) = 0 and

g′(r) = − (1 + φ)F ′′′(z + r(1 + φ))

F ′′(z + r(1 + φ))
+ (1 + ψ)F ′′′(z − r(1 + ψ))

F ′′(z + r(1 + ψ))
.

This implies that

g′(0) = (ψ − φ)
F

′′′
(z)

F ′′(z)
.

As discussed before |F ′′(z)| ≥ 1/Ms,t for all z ∈ [s, t] and so we conclude that
|g′(0)| ≤ K2

N for some constant K2 that depends on s, t, Ms,t and M (3)
s,t . On the

other hand, it is easy to see that |g′′(r)| ≤ K3 for some constant that depends on
s, t, Ms,t , M (3)

s,t and M (4)
s,t . This implies

|g(r)| ≤ r · K2

N
+ r2K3,

which implies that

σ 2
z

σx(1+φ) · σ(z−x)(1+ψ)

= exp

[
O

(
1

N

∣∣∣∣x − z

1 + φ

∣∣∣∣ +
∣∣∣∣x − z

1 + φ

∣∣∣∣
2
)]

.
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The latter inequality implies (29) and concludes the proof of the proposition. 
�

3.3 Tails of fn,m(·|(m+ n)z)

In this section we will further assume that fX (·) satisfies Assumption C5 and use that
to deduce tail estimates for fn,m(·|(m + n)z). We start with a couple of lemmas.

Lemma 5 Suppose that fX satisfies Assumption C5. Then for all N ≥ 1

fN (x) ≤
{

W N e−d N−1x2 for all x ≥ 0 if C5.1 holds and

W N e−d N−1x2 for all x ≤ 0 if C5.2 holds,
(30)

where W = D
√

π√
d

+ 1 + D.

Proof By symmetry it is clearly enough to consider the case when C5.A.1 holds.
Suppose that C1, C2, c1, c2 > 0 and h1, h2 are probability density functions such that

hi (x) ≤ Ci e
−ci x2 for all x ≥ 0 and i = 1, 2.

In addition, set g(y) = ∫
R

h1(y − x)h2(x)dx and h1
i (x) = hi (x) · 1x≥0 and h2

i =
hi (x) · 1x<0 for i = 1, 2. We thus obtain for y ≥ 0

g(y) =
∫ ∞

0
h1
1(y − x)h1

2(x)dx +
∫ ∞

0
h2
1(y − x)h1

2(x)dx +
∫ ∞

0
h1
1(x)h2

2(y − x)dx

≤ C1C2

∫ y

0
e−c1(y−x)2e−c2x2dx + C2

∫ ∞

y
h2
1(y − x)e−c2x2dx

+ C1

∫ ∞

y
e−c1x2h2

2(y − x)dx .

Using that hi are probability density functions we get

∫ ∞

y
e−ci x2h2

j (y − x)dx ≤ e−ci y2 .

Using that the convolution of two Gaussian densities is again a Gaussian density we
get

∫ y

0
e−c1(y−x)2e−c2x2dx ≤

∫

R

e−c1(y−x)2e−c2x2dx

=
√

π√
c1 + c2

exp

(
− y2c1c2

c1 + c2

)
. (31)
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Combining all of the above we get

g(y) ≤ C1C2

√
π√

c1 + c2
exp

(
− y2c1c2

c1 + c2

)
+ C2e−c2 y2 + C1e−c1y2 . (32)

We now proceed to prove (30) by induction on N with base case N = 1, being
true by assumption. Suppose the result holds true for N . Setting h1(x) = fX (x) and
h2(x) = fN (x) and applying (32) we obtain for any y ≥ 0 that

fN+1(y) ≤ DW N √
π√

d + d/N
exp

(
− y2d(d/N )

d + d/N

)
+ W N e−(d/N )y2 + De−dy2

≤ W N
[

D

√
π√
d

+ 1 + D

]
e−d(N+1)−1y2 = W N+1e−d(N+1)−1y2 .

This proves (30) for the case N + 1 and the general result proceeds by induction on
N . 
�
Lemma 6 Suppose that fX satisfies Assumption C5 and α > −∞ or β < ∞ or both.
Then for all N ≥ 1

fN (x) ≤
{

L N

(N−1)! (x − Nα)N−1 for all x > Nα if α > −∞
L N

(N−1)! (Nβ − x)N−1 for all x < Nβ if β < ∞.

Proof By symmetry it is clearly enough to consider the case α > −∞ and prove the
first statement of the lemma. By shifting X by −α we may assume that α = 0. We
proceed by induction on N with base case N = 1 being true by assumption. We now
suppose that the result holds true for N and let y > 0. Then

fN+1(y) =
∫ y

0
fN (x) f1(y − x) ≤

∫ y

0

L N

(N − 1)! x N−1 · Ldx = L N+1

N ! yN .

This proves the induction step and the general result follows by induction. 
�
We next summarize a couple of parameter choices for future use.

Definition 5 Suppose that fX (·) satisfies Assumptions C1–C5. Fix t, s such that β >

t > s > α. Then in view of Proposition 1 we can find C1 > 1 sufficiently large
depending on the constants in Definitions 1, 2 and 3 and M (0)

s,t in Definition 4 so that

C−N
1 ≤ fN (N z)

for all z ∈ [s, t] and N ≥ N0 (where N0 is as in the statement of Proposition 1).
We can also find ε1 > 0 sufficiently small so that 48C2

1 L · ε1 ≤ 1, s ≥ α + 3ε1 and
t ≤ β − 3ε1, where L is as in Assumption C5.
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We can also find R1 > 1 sufficiently large so that

[s, t] ⊂ [−R1, R1] and WC1e−d R2
1/2 ≤ 1,

where W = D
√

π√
d

+ 1 + D with D, d as in Assumption C5.

Finally, given the above choice of ε1 and R1 we can define the variables ŝ, t̂ as
follows:

– ŝ = α + ε1 and t̂ = β − ε1 if α > −∞ and β < ∞;
– ŝ = α + ε1 and t̂ = 3max(t, 0) − α − ε1 if α > −∞ and β = ∞;
– ŝ = 3min(0, s) − β + ε1 and t̂ = β − ε1 if α = −∞ and β < ∞;
– ŝ = −6R1 and t̂ = 6R1 if α = −∞ and β = ∞.

Definition 6 Suppose that fX (·) satisfies Assumptions C1–C5. Fix t, s such that β >

t > s > α and let C1, ε1, R1, ŝ and t̂ be as in Definition 5. For future reference we
summarize the following list of constants:

1. the constants in Assumptions C1 and C5;
2. C1, ε1, R1, t̂, ŝ as in Definition 5;
3. Mŝ,t̂ , mŝ,t̂ , δŝ,t̂ as in Definition 1;
4. Kŝ,t̂ , pŝ,t̂ as in Definition 2;
5. qŝ,t̂ as in Definition 3;

6. M (0)
ŝ,t̂

, M (1)
ŝ,t̂

, M (2)
ŝ,t̂

, M (3)
ŝ,t̂

, M (4)
ŝ,t̂

from Definition 4.

We can now prove the following complement to Proposition 2, which establishes
tail estimates for the midpoint density of a continuous random walk bridge.

Proposition 3 Suppose that fX (·) satisfies Assumptions C1–C5. Fix s, t such that
β > t > s > α. There exist constants A, a > 0 and N1 ∈ N, such that the following
holds. Suppose that m, n ≥ N1 are such that |m − n| ≤ 1 and denote N = n + m. In
addition, let z ∈ [s, t]. Then we have for any x ∈ R

fn,m(N x |N z) ≤ A · exp
(

−aN
[
x − z

2

]2)
. (33)

The constants a, A and N1 depend on the values s, t and the function fX (·), where
the dependence on the latter is through the constants in Definition 6.

Proof Denote φ = m
n andψ = n

m . For clarity we will split the proof into several cases.
Case 1. Suppose first that α > −∞. From the first line of (27) we know that

fn,m(N x |N z) = fn(N x) · fm(N (z − x))

fN (N z)
, (34)

and the latter expression is zero unless N x ≥ nα and N (z −x) ≥ mα. We will assume
that x satisfies these inequalities as otherwise (33) trivially holds for any A, a > 0.
From Definition 5 we know that for all N ≥ N0 we have

fn,m(N x |N z) ≤ C N
1 fn(N x) · fm(N (z − x)). (35)
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In particular, since fn and fm are uniformly bounded by a constant (namely L), we
see that we can make (33) true for all small N ≥ N0 by choosing A sufficiently large
and a ≤ 1. We will thus focus on showing (33) for sufficiently large N ≥ N0.

Suppose that N x ≤ nα + nε1, where ε1 is as in Definition 5. From Lemma 6 and
the inequality

1

(N − 1)! = 1

Γ (N )
≤ eN−1

N N−1 , (36)

which can be found in [30] we conclude that

fn(N x) ≤ L

(
Lenε1

n

)n−1

≤ L (Lε1e)n−1 .

The above, combined with the definition of ε1 and (35) imply

fn,m(N x |N z) ≤ C N
1 · L (Lε1e)n−1 · L ≤ 16C4

1 L22−N ,

while for N ≥ N1 with N1 sufficiently large depending on α we have

A · exp
(

−aN
[
x − z

2

]2) ≥ A · exp
(

−aN
ε21

4

)
.

It follows from the above inequalities that (33) holds provided we take A ≥ 16C4
1 L2,

a sufficiently small and N x ∈ [nα, nα + nε1]. Analogous arguments applied to z − x
in place of x show that for the same A and a we have (33) provided that N (z − x) ∈
[mα, mα+mε1].Wemay thus assume that N x ≥ nα+nε1 and N (z−x) ≥ mα+mε1.

We next consider the cases β = ∞ and β < ∞ separately starting with the former.

Case 1.A. Ifβ = ∞ thenwe let N1 be sufficiently large so that N1 ≥ N0,where N0 is as
in the statement of Proposition 1 for the values ŝ = α+ε1 and t̂ = 3max(t, 0)−α−ε1.

Then from Proposition 1 [see also Eq. (27)] we know that we have for m, n ≥ N1
and N x ≥ nα + nε1 and N (z − x) ≥ mα + mε1 that

fn,m(N x |N z) ≤ C2 exp

[
N

(
F(x(1 + φ))

1 + φ
+ F((z − x)(1 + ψ))

1 + ψ
− F(z)

)]
,

(37)

where the constant C2 depends on mŝ,t̂ and Mŝ,t̂ as in Definition 1 for the values
ŝ = α + ε1 and t̂ = 3max(t, 0) − α − ε1. As in the proof of Proposition 2 we write
x = z

1+φ
+ r and denote

h(r) = F[z + (1 + φ)r ]
1 + φ

+ F[z − r(1 + ψ)]
1 + ψ

− F(z).
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Then h(0) = h′(0) = 0 and

h′′(r) = (1 + φ)F ′′(z + (1 + φ)r) + (1 + ψ)F ′′(z + (1 + ψ)r)

= −
[

1 + φ

σ 2
z+(1+φ)r

+ 1 + ψ

σ 2
z+(1+ψ)r

]
.

The above shows that h(r) is strictly concave and its second derivative is less than−d2
for some d2 > 0 (depending on Mŝ,t̂ alone) on the interval z+(1+φ)r , z+(1+ψ)r ∈
[ŝ, t̂]. Putting this in (37) we conclude

fn,m(N x |N z) ≤ C2 exp

(
−d2

2
· N ·

[
x − z

1 + φ

]2)
,

which implies (33) in this case.

Case 1.B. We suppose that β < ∞. As before we know that (33) holds for any
A, a > 0 if N x > nβ or N (z − x) > mβ and so we may assume that N x ≤ nβ and
N (z − x) ≤ mβ.

Suppose that N x ≥ nβ − nε1. Then from Lemma 6, (35) and (36) we know that

fn,m(N x |N z) ≤ C N
1 · L (Leε2)

n−1 · L ≤ 16C4L22−N ,

while for N ≥ N1 with N1 sufficiently large depending on β we have

A · exp
(

−aN
[
x − z

2

]2) ≥ A exp

(
−aN

ε21

4

)
.

It follows from the above inequalities that (33) holds provided we take A ≥ 16C4L2,
a sufficiently small and N x ∈ [nβ − nε1, nβ]. Analogous arguments applied to
z − x in place of x show that for the same A and a we have (33) provided that
N (z − x) ∈ [mβ − mε1, mβ]. We may thus assume that N x ∈ [nα + nε1, nβ − nε1]
and N (z − x) ∈ [mα + mε1, mβ − mε1].

We let N1 be sufficiently large so that N1 ≥ N0, where N0 is as in the statement of
Proposition 1 for the values ŝ = α + ε1 and t̂ = β − ε1.

Then from Proposition 1 [see also Eq. (27)] we know that for m, n ≥ N1 and
N x ∈ [nα + nε1, nβ − nε1] and N (z − x) ∈ [mα + mε1, mβ − mε1] that

fn,m(N x |N z) ≤ C2 exp

[
N

(
F(x(1 + φ))

1 + φ
+ F((z − x)(1 + ψ))

1 + ψ
− F(z)

)]
, (38)

where the constant C2 depends on mŝ,t̂ and Mŝ,t̂ as in Definition 1 for the values
ŝ = α + ε1 and t̂ = β − ε1.
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Repeating the same arguments that follow (37) and using the strict negativity of
F ′′(z) for z ∈ [ŝ, t̂] we conclude that

fn,m(N x |N z) ≤ C2 exp

(
−d2

2
· N ·

[
x − z

1 + φ

]2)
,

which implies (33) in this case. Overall, we conclude (33) under the condition that
α > −∞.

Case 2. Suppose now that α = −∞.

Case 2.A. If β < ∞ then we can conclude (33) by the same arguments as those in
Case 1.A.
Case 2.B. Suppose that β = ∞. By symmetry it suffices to consider the case when
Assumption C5.1 holds. Let R1 be as in Definition 5. Then from Lemma 5 and (35)
we know that for x ≥ R1 and N ≥ N0

fn,m(N x |N z) ≤ C N
1 · W ne−d N x2 · L ≤ L · e−d N x2/2,

while

A · exp
(

−aN
[
x − z

2

]2) ≥ A exp
(
−aN [x + R1/2]2

)
.

It follows from the above inequalities that (33) holds provided we take A ≥ L , a
sufficiently small (say a ≤ d/8) and x ≥ R1. Analogous arguments applied to z − x
in place of x show that for the same A and a we have (33) provided that z − x ≥ R1.
We may thus assume that x, z − x ∈ [−2R1, 2R1].

We let N1 be sufficiently large so that N1 ≥ N0, where N0 is as in the statement of
Proposition 1 for the values ŝ = −6R1 and t̂ = 6R1. Then from Proposition 1 [see
also Eq. (27)] we know that for m, n ≥ N1 and x ∈ [−2R1, 2R1]

fn,m(N x |N z) ≤ C2 exp

[
N

(
F(x(1 + φ))

1 + φ
+ F((z − x)(1 + ψ))

1 + ψ
− F(z)

)]
, (39)

where the constant C2 depends on mŝ,t̂ and Mŝ,t̂ as in Definition 1 for the values
ŝ = −6R1 and t̂ = 6R1. Repeating the same arguments that follow (37) and using the
strict negativity of F ′′(z) for z ∈ [ŝ, t̂] we conclude that

fn,m(N x |N z) ≤ C exp

(
−d2

2
· N ·

[
x − z

1 + φ

]2)
,

which implies (33) in this case. Overall, we conclude (33) when α = −∞ and β = ∞.

�
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4 Midpoint distribution: discrete case

We continue with the same notation as in Sect. 2.2. To ease the notation a bit we will
write M, φ and Λ instead of MX , φX and ΛX . Let pn,m(·|l) be the distribution of
Sm conditioned on Sn+m = l. Our goal in this section is to obtain several asymptotic
statements about the distribution pm,n(·|l) and we start by analyzing pN (l).

4.1 Asymptotics of pN(l)

In this section we assume that pX (·) satisfies Assumptions D1–D3. For a fixed z ∈
(A∗, B∗) we define

Gz(u) = Λ(u) − z · u, for u ∈ (AΛ, BΛ). (40)

Definition 7 Suppose that we are given s, t ∈ R such that α < s < t < β, where α, β

are as in Assumption D1. In addition, we denote S = (Λ′)−1(s) and T = (Λ′)−1(t)—
these quantities are well-defined in view of Lemma 4. By Lemma 3 there exist ∞ >

Ms,t ≥ ms,t > 0 such that Ms,t ≥ Λ′′(y) ≥ ms,t for all y ∈ [S, T ]. We can pick
δs,t > 0 sufficiently small (depending on s, t and pX (·)) so that
1. If Dδs,t (S, T ) := {z ∈ C : d(z, [S, T ]) < δs,t } then Dδs,t (S, T ) ⊂ {z ∈ C : AΛ <

Re(z) < BΛ};
2. Re[MX (u)] > 0 for all u ∈ Dδs,t (S, T );
3. δs,t < 1/2;
4. 8δs,t · | log(MX (u))| ≤ ms,t for all u ∈ Dδs,t (S, T ).

Definition 8 Suppose that we are given s, t ∈ R such that α < s < t < β, where α, β

are as in Assumption D1. Suppose that δs,t satisfies the conditions in Definitions 7 and
let εs,t = δ4s,t . Then we can find qs,t ∈ (0, 1) (depending on s, t, δs,t and fX (·))such
that for every z ∈ [s, t] and y ∈ [εs,t , π ] we have

∣∣∣E
[
e(uz+iy)X

]∣∣∣ e−zuz eGz(uz) ≤ qs,t .

To see why the above is true, notice that

∣∣∣E
[
e(uz+iy)X

]∣∣∣ e−zuz eGz(uz) < E

[∣∣∣e(uz+iy)X
∣∣∣
]

e−zuz eGz(uz) = 1,

where the above inequality is strict for any y �= 0 as the contrary would imply X ∈
2π y−1 · Z almost surely, which is not true. This combined with the continuity of
E

[
e(uz+iy)X

]
in y and z ensures the existence of qs,t with the desired properties.

We are interested in proving the following statement.

Proposition 4 Suppose that pX satisfies Assumptions D1–D3. Fix β > t > s > α.
Then there exists N0 such that if N ≥ N0, l ∈ Z and z = l/N ∈ [s, t] one has
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pN (l) = 1√
2π Nσz

· exp (N Gz(uz) + δ1(z, N )) , where δ1(z, N ) = O(N−1/2).

(41)

The number N0 and the constant in the big O notation depend on fX , s and t only
through the constants δs,t , ms,t and qs,t as in Definitions 7 and 8.

Proof To simplify the notation, we drop the dependence on X . For any l ∈ Z and
N ≥ 1 we have

pN (l) = 1

2π

∫ π

−π

e−i tl · (φ(t))N dt .

Performing the change of variables u = i t we see that

pN (l) = 1

2π i

∫ iπ

−iπ
M N (u)e−uldu. (42)

Consider the rectangular contour R consisting of straight segments connecting−iπ
to uz − iπ , to uz + iπ , to iπ back to −iπ with a positive orientation. It follows by
Lemma 3 that M N (u)e−ul is analytic in a neighborhood enclosing that rectangle and
so by Cauchy’s theorem the integral over R vanishes. In addition, the integral over the
top segment and the bottom segment are equal and hence their sum vanishes (as they
have opposite orientation). The conclusion is

pN (l) = eN Gz(uz)

2π i

∫ uz+iπ

uz−iπ
M(u)N e−uN ze−N Gz(uz)du. (43)

For the given s, t as in the statement of the proposition we define δs,t , ms,t , εs,t and
qs,t as in Definitions 7 and 8. To ease notation we will drop s, t from the notation for
these quantities. We will also denote by Cs,t the supremum of | log(M(u))| as u varies
over Dδ . Notice that by construction we have

ε < δ/2 and ε · 8Cs,t · δ−3 < m.

From (43) we have pN (l) = (I ) + (I I ), where

(I ) = eN Gz(uz)

2π i

∫ uz+iε

uz−iε
eN [Gz(u)−Gz(uz)]du, (I I )

= eN Gz(uz)

2π i

∫ uz−iε

uz−iπ

[
M(u)e−uze−Gz(uz)

]N
du

+ eN Gz(uz)

2π i

∫ uz+iπ

uz+iε

[
M(u)e−uze−Gz(uz)

]N
du.

(44)
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Arguing as in the proof of Proposition 1, we have for N0 sufficiently large and
N ≥ N0

(I ) = eN Gz(uz)

2πσz
√

N

[
1 + O

(
1√
N

)]
, (45)

where the constant in the big O notation depends on the constants in this proposition.
We next forcus on estimating (II). Suppose that ±y ∈ [ε, π ]. Then by definition

we have
∣∣∣M(uz + iy)e−z(uz+iy)eGz(uz)

∣∣∣ ≤ q.

The above implies that

|(I I )| ≤ eN Gz(uz)

2π
· 2πq N ≤ eN Gz(uz)

2πσz N
, (46)

where the last inequality holds provided N0 is sufficiently large and N ≥ N0. Com-
bining (45) and (46) yields (41). 
�

4.2 Asymptotics of pn,m(·|l)

We start with a useful definition.

Definition 9 Suppose that pX (·) satisfiesAssumptionsD1–D3and thatβ > t > s > α

are given. Then in view of Lemmas 3 and 4 we know that F(z) := Gz(uz) is smooth
on (α, β) and so for each k ≥ 0 exists M (k)

s,t > 0 such that |F (k)(z)| ≤ M (k)
s,t for all

z ∈ [s, t].
We have the following asymptotic estimate for pn,m(·|l).

Proposition 5 Suppose that pX satisfies Assumptions D1–D3. Fix s, t such that β >

t > s > α and let N0 be as in the statement of Proposition 4. Then there exists M > 0
such that the following holds. Suppose that m, n ≥ N0 are such that |m − n| ≤ 1 and
denote N = n + m. In addition, let k, l ∈ Z be such that if z := l/N and x := k/N,
then z, x N/n and (z − x)N/m ∈ [s, t]. Then

pn,m(k|l) = 2√
2π Nσz

· exp
(

−N · 4

2σ 2
z

[
x − z

2

]2 + δ2(N , x, z)

)
, (47)

where

|δ2(N , x, z)| ≤ M ·
(

1√
N

+ N
∣∣∣x − z

2

∣∣∣
3
)

. (48)

The constant M depends on s, t and also on pX (·), where the dependence on the
latter is only through the constants in the statement of Proposition 4 and M (3)

s,t , M (4)
s,t

in Definition 9.
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Proof Set φ = m
n and ψ = n

m . From Proposition 4 we know that for m, n ≥ N0 we
have

pn,m(k|l) = pn(k)pm(l − k)

pN (l)

= e
N

(
F[x(1+φ)]

1+φ
+ F[(z−x)(1+ψ)]

1+ψ
−F(z)

)
· 2σz√

2π Nσx(1+φ) · σ(z−x)(1+ψ)

· exp
[

O

(
1√
N

)]
,

(49)

where the constant in the big O notation depends on s, t and the constants in the
statement of Proposition 4. From here the proof of the proposition follows the same
arguments as in the proof of Proposition 2. 
�

4.3 Tails of pn,m(·|l)

In this section we will further assume that pX (·) satisfies Assumption D4 and use that
to deduce tail estimates for pn,m(·|l). We start with a couple of lemmas.

Lemma 7 Suppose that pX satisfies Assumption D4. Then for all N ≥ 1 and x ∈ Z

pN (x) ≤
{

W N e−d N−1x2 for all x ≥ 0 if D4.1 holds and

W N e−d N−1x2 for all x ≤ 0 if D4.2 holds,

where W = D
√

π√
d

+ 1 + 2D.

Proof By symmetry it is clearly enough to consider the case when Assumption D4.1
holds. We proceed by induction on N with base case N = 1 being true by assumption.
Suppose the result holds true for N and let y ≥ 0. Then we have

pN+1(y) =
y∑

x=0

pN (x)p1(y − x) +
∞∑

x=y

pN (x)p1(y − x) +
∞∑

x=y

pN (y − x)p1(x).

By induction hypothesis and Assumption D4.1 we have

∞∑
x=y

pN (x)p1(y − x) ≤ W N e−d N−1y2 and
∞∑

x=y

pN (y − x)p1(x) ≤ De−dy2 .

Denote f (x) = e−d N−1x2e−d(x−y)2 and note that the function has a unique maximum
on [0, y], given by xmax = N y

N+1 , and f (xmax) = e−d(N+1)−1y2 . We thus have

y∑
x=0

f (x) ≤
∫ y

0
f (u)du + e−d(N+1)−1y2 ≤

( √
π√

d + d/N
+ 1

)
· e−d(N+1)−1y2 ,
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where in the last inequality we used (31). The latter implies that

y∑
x=0

pN (x)p1(y − x) ≤ W N D

( √
π√

d + d/N
+ 1

)
· e−d(N+1)−1y2 .

Combining all of the above we see that

pN+1(y) ≤ W N e−d(N+1)−1y2
[
1 + DW −N + D

( √
π√

d + d/N
+ 1

)]

≤ W N+1e−d(N+1)−1y2 .

This proves the case N + 1 and the general result follows by induction. 
�
We next summarize a couple of parameter choices for future use.

Definition 10 Suppose that pX (·) satisfies Assumptions D1–D4. Fix t, s such that
β > t > s > α. Then in view of Proposition 4 we can find C1 > 1 sufficiently large
depending on the constants in that proposition and M (0)

s,t in Definition 9 so that

C−N
1 ≤ pN (z)

for all z ∈ [s, t] ∩ Z and N ≥ N0 (where N0 is as in the statement of Proposition 4).
We can also find ε1 > 0 sufficiently small so that s ≥ α + 3ε1 and t ≤ β − 3ε1.
We can also find R1 > 1 sufficiently large so that

[s, t] ⊂ [−R1, R1] and WC1e−d R2
1/2 ≤ 1,

where W = D
√

π√
d

+ 1 + 2D with D, d as in Assumption D4.

Finally, given the above choice of ε1 and R1 we can define the variables ŝ, t̂ as
follows:

– ŝ = α + ε1 and t̂ = β − ε1 if α > −∞ and β < ∞;
– ŝ = α + ε1 and t̂ = 3max(t, 0) − α − ε1 if α > −∞ and β = ∞;
– ŝ = 3min(0, s) − β + ε1 and t̂ = β − ε1 if α = −∞ and β < ∞;
– ŝ = −6R1 and t̂ = 6R1 if α = −∞ and β = ∞.

Definition 11 Suppose that pX (·) satisfies Assumptions D1–D4. Fix t, s such that
β > t > s > α and let C1, ε1, R1, ŝ and t̂ be as in Definition 10. For future reference
we summarize the following list of constants:

1. the constants in Assumptions D1 and D4;
2. C1, ε1, R1, t̂, ŝ as in Definition 10;
3. Mŝ,t̂ , mŝ,t̂ , δŝ,t̂ as in Definition 7;
4. qŝ,t̂ as in Definition 8;

5. M (0)
ŝ,t̂

, M (1)
ŝ,t̂

, M (2)
ŝ,t̂

, M (3)
ŝ,t̂

, M (4)
ŝ,t̂

from Definition 9.
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We can now prove the following complement to Proposition 5, which establishes
tail estimates for the midpoint density of a discrete random walk bridge.

Proposition 6 Suppose that pX satisfies Assumptions D1–D4. Fix s, t such that β >

t > s > α. There exist constants A, a and N1 ∈ N such that the following holds.
Suppose that m, n ≥ 1 are such that |m −n| ≤ 1 and denote N = n +m,. In addition,
let l ∈ Z be such that z := l/N ∈ [s, t]. Then for any k ∈ Z and x = k/N we have

pn,m(k|l) ≤ A · exp
(

−aN
[
x − z

2

]2)
. (50)

The constants a, A and N1 depend on the values s, t and the function pX (·), where
the dependence on the latter is through the constants in Definition 11.

Proof Denote φ = m
n and ψ = n

m . For clarity we split the proof into several cases.
Case 1. Suppose first that α > −∞. From the first line of (49) we know that

pn,m(k|l) = pn(k) · pm(l − k)

pN (l)
, (51)

and the latter expression is zero unless k ≥ nα and l − k ≥ mα. We will assume that
k satisfies these inequalities as otherwise (50) trivially holds for any A, a > 0. From
Definition 10 we know that for all N ≥ N0 we have

pn,m(k|l) ≤ C N
1 pn(k) · pm(l) ≤ C N

1 . (52)

The latter implies that (50) is true for all small N ≥ N0 by choosing A sufficiently
large and a ≤ 1. We will thus focus on showing (50) for sufficiently large N ≥ N0.

Recall that F(z) = Gz(uz) = −Λ∗
X (z) is defined for z ∈ (α, β) but by Lemma 4

we can continuously extend it to α (and to β provided β < ∞) by setting F(α) =
log pX (α) (and F(β) = log pX (β) if β < ∞). We next observe that for any m, n ≥ 1,
nβ ≥ k ≥ nα and mβ ≥ l − k ≥ mα

pn(k) ≤ enF(k/n) and pm(l − k) ≤ em F((k−l)/m). (53)

Indeed, focusing on the first inequality, the statement is true for k �= αn and k �= βn
from (42) and the fact that the integrand in that equation is bounded in absolute value
by 1 as shown in Definition 8. The statement is also true for k = αn and k = βn by
our extension of F above.

Suppose that N x ≤ nα + nε1, where ε1 is as in Definition 10. From (53) and
Proposition 4 we know that there is a C > 0, depending on mŝ,t̂ , such that for m, n ≥
N0

pn,m(k|l) ≤ C
√

N · exp
[

N

(
F[x(1 + φ)]

1 + φ
+ F[(z − x)(1 + ψ)]

1 + ψ
− F(z)

)]
.

(54)

123



682 E. Dimitrov, X. Wu

Similarly to the proof of Proposition 2 we write x = z
1+φ

+ rx and denote

h(r) = F[z + (1 + φ)r ]
1 + φ

+ F[z − r(1 + ψ)]
1 + ψ

− F(z).

Notice that since k ≤ nα + nε1 we have that rx ≥ 2ε1
1+φ

≥ 2ε1
3 . In addition, we have

h′′(r) = (1 + φ)F ′′(z + (1 + φ)r) + (1 + ψ)F ′′(z + (1 + ψ)r) ≤ 0

for all r ∈ [0, rx ] and so by the continuity of F and its smoothness on (α, β) we
conclude

F[x(1 + φ)]
1 + φ

+ F[(z − x)(1 + ψ)]
1 + ψ

− F(z)

=
∫ rx

0

∫ y

0
h′′(r)drdy ≤

∫ ε1/3

0

∫ y

0
h′′(r)drdy

≤
∫ ε1/3

0

∫ y

0

[
− 2

Mŝ,t̂

]
drdy = − ε21

9Mŝ,t̂
.

Applying the above in (54) we conclude

pn,m(k|l) ≤ C
√

N · exp
(

− ε21 N

9Mŝ,t̂

)
. (55)

On the other hand, for N1 sufficiently large depending on α and N ≥ N1 we have

A · exp
(

−aN
[
x − z

2

]2) ≥ A · exp
(

−aN
ε21

4

)
.

It follows from the above inequalities that (50) holds provided we take A = 1, a
sufficiently small, N1 sufficiently large and N x ∈ [nα, nα + nε1] for m, n ≥ N1.
Analogous arguments applied to z − x in place of x show that for the same A and a
we have (50) provided that N (z − x) ∈ [mα, mα + mε1]. We may thus assume that
N x ≥ nα + nε1 and N (z − x) ≥ mα + mε1.

We next consider the cases β = ∞ and β < ∞ separately starting with the former.

Case 1.A. Ifβ = ∞ thenwe let N1 be sufficiently large so that N1 ≥ N0,where N0 is as
in the statement of Proposition 4 for the values ŝ = α+ε1 and t̂ = 3max(t, 0)−α−ε1.

Then from Proposition 4 (see also equation (49)) we know that we have for m, n ≥
N1 and N x ≥ nα + nε1 and N (z − x) ≥ mα + mε1 that

pn,m(k|l) ≤ C2 exp

[
N

(
F(x(1 + φ))

1 + φ
+ F((z − x)(1 + ψ))

1 + ψ
− F(z)

)]
, (56)
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where the constant C2 depends on mŝ,t̂ and Mŝ,t̂ as in Definition 7 for the values
ŝ = α + ε1 and t̂ = 3max(t, 0) − α − ε1. From here the proof continues as that of
Case 1.A. in Proposition 3.

Case 1.B. We suppose that β < ∞. As before we know that (50) holds for any
A, a > 0 if N x > nβ or N (z − x) > mβ and so we may assume that N x ≤ nβ and
N (z − x) ≤ mβ.

Suppose N x ≥ nβ − nε1. We can repeat our arguments from before and see that
(55) holds in this case as well. On the other hand, for N ≥ N1 with N1 sufficiently
large depending on β we have

A · exp
(

−aN
[
x − z

2

]2) ≥ A exp

(
−aN

ε21

4

)
.

It follows from the above inequalities that (50) holds provided we take A = 1, a
sufficiently small, N1 sufficiently large and N x ∈ [mβ, mβ − mε1] for m, n ≥ N1.
Analogous arguments applied to z − x in place of x show that for the same A and a
we have (50) provided that N (z − x) ∈ [mβ − mε1, mβ]. We may thus assume that
N x ∈ [nα + nε1, nβ − nε1] and N (z − x) ∈ [mα + mε1, mβ − mε1].

We let N1 be sufficiently large so that N1 ≥ N0, where N0 is as in the statement of
Proposition 4 for the values ŝ = α + ε1 and t̂ = β − ε1.

Then from Proposition 4 (see also equation (49) ) we know that for m, n ≥ N1 and
N x ∈ [nα + nε1, nβ − nε1] and N (z − x) ∈ [mα + mε1, mβ − mε1] that

pn,m(k|l) ≤ C2 exp

[
N

(
F(x(1 + φ))

1 + φ
+ F((z − x)(1 + ψ))

1 + ψ
− F(z)

)]
, (57)

where the constant C2 depends on mŝ,t̂ and Mŝ,t̂ as in Definition 7 for the values
ŝ = α + ε1 and t̂ = β − ε1. From here the proof continues as that of Case 1.B. in
Proposition 3. Overall, we conclude (50) under the condition that α > −∞.

Case 2. Suppose now that α = −∞.

Case 2.A. If β < ∞ then we can conclude (50) by the same arguments as those in
Case 1.A.

Case 2.B. Suppose that β = ∞. By symmetry it suffices to consider the case when
Assumption D4.1 holds. Let R1 be as in Definition 10. Then from Lemma 7 and (52)
we know that for x ≥ R1 and N ≥ N0

pn,m(k|l) ≤ C N
1 · W ne−d N x2 ≤ e−d N x2/2,

while

A · exp
(

−aN
[
x − z

2

]2) ≥ A exp
(
−aN [x + R1/2]2

)
.
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It follows from the above inequalities that (50) holds provided we take A = 1, a
sufficiently small (say a ≤ d/8) and x ≥ R1. Analogous arguments applied to z − x
in place of x show that for the same A and a we have (50) provided that z − x ≥ R1.
We may thus assume that x, z − x ∈ [−2R1, 2R1].

We let N1 be sufficiently large so that N1 ≥ N0, where N0 is as in the statement of
Proposition 4 for the values ŝ = −6R1 and t̂ = 6R1. Then from Proposition 4 (see
also equation (49)) we know that for m, n ≥ N1 and x ∈ [−2R1, 2R1]

pn,m(k|l) ≤ C2 exp

[
N

(
F(x(1 + φ))

1 + φ
+ F((z − x)(1 + ψ))

1 + ψ
− F(z)

)]
,

where the constant C2 depends on mŝ,t̂ and Mŝ,t̂ as in Definition 7 for the values
ŝ = −6R1 and t̂ = 6R1. From here the proof proceeds as that of Case 2.B. in
Proposition 3. 
�

5 Gaussian coupling

In this section we isolate some results about the quantile coupling of random variables
with certain estimates on their probabilities to Gaussian random variables. We start
by isolating some results about Gaussian random variables. We denote by Φ(x) and
φ(x) the cumulative distribution function and density of a standard normal random
variable. The following two lemmas can be found in [31, Section 4.2].

Lemma 8 There is a constant c > 1 such that for all x ≥ 0 we have

1

c(1 + x)
≤ 1 − Φ(x)

φ(x)
≤ c

1 + x
, (58)

Lemma 9 For all A > 0, n ≥ 64A2 and 0 ≤ x ≤ 1
8A we have

log

(
Φ(−√

nx + u)

Φ(−√
nx)

)
= log

(
1 − Φ(

√
nx − u)

1 − Φ(
√

nx)

)
≥ A(nx3 + n−1/2) (59)

and

log

(
Φ(−√

nx − u)

Φ(−√
nx)

)
= log

(
1 − Φ(

√
nx + u)

1 − Φ(
√

nx)

)
≤ −A(nx3 + n−1/2), (60)

where u = 2A(
√

nx2 + n−1/2).

From Rolle’s theorem one deduces the following simple result.

Lemma 10 Let R > 0 be given. There exists a positive constant c1 such that for
x, y ∈ [−R, R]

|Φ(x) − Φ(y)| ≤ c1|x − y|. (61)
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The following is an analogue of [29, Lemma 6.9]. We include it here for the sake
of completeness.

Lemma 11 Let M0 > 0, ε0 > 0, c̃ ∈ (0, 1), b′ > 0 and c′ > 0 be given. Then we
can find constants c2, ε2 > 0, N2 ∈ N such that the following holds for every positive
integer n ≥ N2 and every σ 2 ∈ [c̃, c̃−1]. Suppose that X is an integer random variable
and for all x ∈ {y : y ∈ Z, |y| ≤ nε0}

P(X = x) = 1√
2πσ 2n

exp

(
− x2

2nσ 2 + δ(x)

)
, (62)

where

|δ(x)| ≤ M0

[
1√
n

+ |x |3
n2

]
. (63)

Assume additionally that for any m ∈ Z

P(X = m) ≤ c′e−b′m2/n . (64)

Then for any |x | ≤ ε2n we have

F

(
x − c2

(
1 + x2

n

))
≤ P(X ≤ x − 1) ≤ P(X ≤ x + 1)

≤ F

(
x + c2

(
1 + x2

n

))
, (65)

where F(x) is the cumulative distribution function of a N (0, σ 2n) random variable.

Proof For convenience we denote G(x) = P(X ≤ x), F̄(x) = 1 − F(x), f (x) =
F ′(x) = e−x2/(2σ2n)√

2πnσ 2
and Ḡ(x) = 1 − G(x). Throughout C, c will stand for generic

constants that depend on M0, c̃, ε0, b′, c′ unless otherwise specified.
By symmetry we can assume x ≥ 0. It suffices to prove (65) only for integer values

of x and for n sufficiently large. In particular, we assume that N2 is sufficiently large
so that ε0n ≥ n5/8 ≥ √

3c̃ · n1/2 ≥ 1 for all n ≥ N2. We prove (65) in three cases
depending on the size of |x |.
We first consider the case x ≤ √

3c̃ · n1/2. We then have

F̄(x) =
∑
j>x

f ( j) +
∑
j>x

[P(X = j) − f ( j)]

=
∫ ∞

x
f (x)dx +

∑
j>x

[P(X = j) − f ( j)] + O

(
1√
n

)
, (66)

where in the last equality we used that f (x) is decreasing for x ≥ 0 and its integral
over any unit interval is at most 1√

2πnσ 2
. Using that f (x) is decreasing for all x ≥ 0

we get
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∑
j>x

|P(X = j) − f ( j)| ≤
�n2/3�∑
j=x+1

e
− j2

2nσ2√
2πσ 2n

|eδ( j) − 1|

+P(X ≥ n2/3) +
∫ ∞

n2/3−1
f (x)dx (67)

We next increase N2 so that N−1/3
2 M0 ≤ c̃

4 ≤ 1
4σ 2 and use the inequality |ex − 1| ≤

|x |e|x | to estimate

�n2/3�∑
j=x+1

e
− j2

2nσ2√
2πσ 2n

|eδ( j) − 1| ≤
�n2/3�∑
j=x+1

e
− j2

2nσ2√
2πσ 2n

|δ( j)|e|δ( j)|

≤
�n2/3�∑
j=x+1

e
− j2

4nσ2
+ M0√

n

√
2πσ 2n

[
M0√

n
+ M0| j |3

n2

]
. (68)

Since f (x) is decreasing for all x ≥ 0

�n2/3�∑
j=x+1

e
− j2

4nσ2√
2πσ 2n

[
M0√

n

]
≤

√
2M0√

n
·
∫ ∞

0

e
− u2

4nσ2√
4πσ 2n

du = M0√
2n

. (69)

Analogously, by using that x3e−x2/2 is decreasing for all x ≥ √
3 we have

�n2/3�∑
j=x+1

e
− j2

4nσ2√
2πσ 2n

[
M0| j |3

n2

]
=

�√3c̃nε+1�∑
j=x+1

e
− j2

4nσ2√
2πσ 2n

[
M0| j |3

n2

]

+
�n2/3�∑

j=�√3c̃n�+2

e
− j2

4nσ2√
2πσ 2n

[
M0| j |3

n2

]

≤ M0[2
√
3c̃ε]3√

2n
+ M0

n2

∫ ∞

0

u3e
− u2

4nσ2√
2πσ 2n

du

= M0[2
√
3c̃ε]3√

2n
+ 2(

√
2σ 2n)3M0√

πn2
.

(70)

Finally, we have that by taking N2 larger we can ensure using (58) and (64) that

P(X ≥ n2/3) ≤ c′e−b′�n2/3�2/n

1 − e−b′�n2/3�/n
≤ Ce−cn1/3 ,

∫ ∞

n2/3−1
f (x)dx = 1 − Φ

(
n2/3 − 1

σ 2
√

n

)
≤ Ce−cn1/3 . (71)
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Combining (66), (67), (68), (69), (70) and (71) we conclude for |x | ≤ √
3c̃n1/2 and n

large

|G(x) − F(x)| = ∣∣Ḡ(x) − F̄(x)
∣∣ ≤ C√

n
,

which implies (65) in view of Lemma 10.

Next we consider the case n5/8 ≥ x ≥ √
3c̃ · n1/2. In this case we have

Ḡ(x) =
∑
j>x

f ( j) +
∑
j>x

[P(X = j) − f ( j)] = F̄(x) +
∑
j>x

[P(X = j) − f ( j)]

+O

⎛
⎝ e

− x2

2nσ2√
2πσ 2n

⎞
⎠ , (72)

where in the last equality we used that f (y) is decreasing on [x,∞) and its integral

over any unit interval is at most e
− x2

2nσ2√
2πσ 2n

. Notice that for x + 1 ≤ j ≤ n2/3 we

have |δ( j)| ≤ C | j |3/n2 ≤ C , where C = M0 · [1 + (3c̃)−3/2]. This means that∣∣eδ( j) − 1
∣∣ ≤ eC |δ( j)| ≤ C | j |3/n2 and so

�n2/3�∑
j=x+1

e
− j2

2nσ2√
2πσ 2n

|eδ( j) − 1| ≤ C
�n2/3�∑
j=x+1

e
− j2

2nσ2√
2πσ 2n

[
j3

n2

]

≤ C

n2

∫ ∞

x

u3e
− u2

2nσ2√
2πσ 2n

du ≤ Cx2

n3/2 e
− x2

2nσ2 . (73)

From (71) we know that by possibly making N2 larger we can ensure

P(X ≥ n2/3) ≤ Ce−cn1/3 ≤ 1√
n

· e
− x2

2nσ2 and
∫ ∞

n2/3−1
f (x)dx ≤ Ce−cn1/3

≤ 1√
n

· e
− x2

2nσ2 . (74)

Combining (72), (67), (73) and (74) we conclude for n5/8 ≥ x ≥ √
3c̃ · n1/2 and all

large n

|G(x) − F(x)| = ∣∣Ḡ(x) − F̄(x)
∣∣ ≤ C

[
1 + x2

n3/2

]
· e

− x2

2nσ2√
2πσ 2n

≤ C · x3

n2 · F̄(x),

where in the last inequality we used (58). The above inequality implies that for all
large n
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Ḡ(x) ≤
[
1 + C

x3

n2

]
F̄(x) ≤ eCx3/n2 F̄(x) ≤ F̄

(
x − C

[
1 + x2

n

])

Ḡ(x) ≥
[
1 − C

x3

n2

]
F̄(x) ≥ e−Cx3/n2 F̄(x) ≥ F̄

(
x + C

[
1 + x2

n

])
,

(75)

where the right most inequalities used Lemma 9. From (75) we conclude (65) for some
large c0 and all n5/8 ≥ x ≥ √

3c̃ · n1/2 provided n is large enough.
We finally consider the case nε2 ≥ x ≥ n5/8, where ε2 is to be chosen sufficiently

small as follows. Consider the functions h±(z) = − z2

2σ 2 ± 2M0
z3√

n
. Then

h′±(z) = − z

σ 2 ± 6M0
z2√

n
≤ −c̃z ± 6M0

z2√
n

≤ z

[
±6M0

z√
n

− c̃

]

and we can choose ε1 ≤ min(ε0, 1) sufficiently small (depending on M0 and c̃) such
that the functions h±(z) are decreasing and moreover − 3z2

2σ 2 ≤ h−(z) ≤ h+(z) ≤
− z2

4σ 2 for 0 < z ≤ ε1
√

n. We next pick ε2 > 0 (depending on c̃, M0, b′ and c′) so that
ε2 ≤ ε1/2 and for all n ≥ ε−6

2

P(X ≥ nε1) ≤ c′e−b′�nε1�2/n

1 − e−b′�nε1�/n
≤ eh+(

√
nε2)

√
2πσ 2n

≤ eh+(x/
√

n)

√
2πσ 2n

. (76)

Using the inequality eδ( j) ≤ exp
(
2M0

j3

n2

)
for x + 1 ≤ j ≤ ε1n and the fact that

h+(z) is decreasing on 0 < z ≤ ε1
√

n by our choice of ε1 we see that

Ḡ(x) =
�nε1�∑

j=x+1

f ( j)eδ( j) + P(X ≥ nε1) ≤
∫ √

nε1

x/
√

n

eh+(u)du√
2πσ 2

+ P(X ≥ nε1)

≤
∫ √

nε1

x−1/
√

n

eh+(u)du√
2πσ 2

,

(77)

where in the last inequality we used (76). Using that 2x ≤ 2ε2n ≤ ε1n we have

∫ √
nε1

x−1/
√

n

eh+(u)du√
2πσ 2

=
∫ 2x/

√
n

(x−2)/
√

n

eh+(u)du√
2πσ 2

+
∫ √

nε1

2x/
√

n

eh+(u)du√
2πσ 2

−
∫ x−1/

√
n

(x−2)/
√

n

eh+(u)du√
2πσ 2

≤
∫ 2x/

√
n

(x−2)/
√

n

eh+(u)du√
2πσ 2

+
∫ √

nε1

2x/
√

n

e−u2/4σ 2
du√

2πσ 2

−
∫ x−1/

√
n

(x−2)/
√

n

e−u2/2σ 2
du√

2πσ 2
≤

∫ 2x/
√

n

(x−2)/
√

n

eh+(u)du√
2πσ 2

,
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where the last inequality holds provided n is sufficiently large in view of (58). Com-
bining the above with Lemma 9 we see that by possibly making ε2 smaller and N2
larger we can ensure that

Ḡ(x) ≤
∫ 2x/

√
n

(x−2)/
√

n

eh+(u)du√
2πσ 2

≤ e16M0x3/n2 · F̄(x − 2) ≤ F̄

(
x − C

[
1 + x2

n

])
.

(78)

To get the lower bound notice that 2x ≤ 2ε2n ≤ ε1n and so

Ḡ(x) ≥
�nε1�∑

j=x+1

f ( j)eδ( j) ≥
∫ 2x√

n

x+1√
n

eh−(u)du√
2πσ 2

≥ e−16M0x3/n2 · F̄(x + 1)

≥ F̄

(
x + C

[
1 + x2

n

])
.

(79)

From (78) and (79) we conclude (65) for some large c2 and all ε2n ≥ x ≥ n5/8

provided n ≥ N2 with N2 large enough and ε2 small enough. This suffices for the
proof. 
�

As an immediate corollary to the above lemma we have the following statement.

Corollary 1 Let M0 > 0, ε0 > 0, c̃ ∈ (0, 1), b′ > 0 and c′ > 0 be given. Then we
can find constants c2, ε2 > 0, N2 ∈ N such that the following holds for every positive
integer n ≥ N2 and every σ 2 ∈ [c̃, c̃−1]. Suppose that X is a continuous random
variable with density g and for all x ∈ {y : y ∈ R, |y| ≤ nε0}

g(x) = 1√
2πσ 2n

exp

(
− x2

2nσ 2 + δ(x)

)
, (80)

where

|δ(x)| ≤ M0

[
1√
n

+ |x |3
n2

]
. (81)

Assume additionally that for any x ∈ R

g(x) ≤ c′e−b′x2/n . (82)

Then for any |x | ≤ ε2n we have

F

(
x − c2

(
1 + x2

n

))
≤ P(X ≤ x) ≤ F

(
x + c2

(
1 + x2

n

))
, (83)

where F(x) is the cumulative distribution function of a N (0, σ 2n) random variable.
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Proof By our assumptions we know that W = �X� is an integer valued random
variable that satisfies the conditions of Lemma 11. The result now follows from (65)
and the fact that P(W ≤ x − 1) ≤ P(X ≤ x) ≤ P(W ≤ x + 1). 
�

6 Strong coupling

We formulate quantified refinements of Theorems 3 and 4 as Theorems 5 and 6,
respectively, below and present their proof. As usual we split our discussion depending
on whether our random walk bridge has continuous or discrete jumps.

6.1 Continuous case

We use the same notation as in Sects. 2.1 and 3.

Lemma 12 Suppose that fX satisfies Assumptions C1–C5 and fix p ∈ (α, β). Let
s = p − ε′ and t = p + ε′, where ε′ > 0 is sufficiently small so that α < s < t < β.
Then there exists ε3 ∈ (0, ε′) and N3 ∈ N such that for every b1 > 0 there exist
constants 0 < c1, a1 < ∞ such that the following holds. Suppose that m, n are
integers such that m, n ≥ N3 with |m − n| ≤ 1, set N = m + n. We can define a
probability space on which are defined a standard normal random variable ξ and a
collection of random variables W = W (m,n,z) for all z ∈ {x ∈ L N : |x − pN | ≤ ε3N }
such that the law of W (m,n,z) is the same as that of S(N ,z)

n and such that we have almost
surely

E

[
ea1|Z−W |

∣∣∣W
]

≤ c1 · exp
(

b1
(W − pn)2 + (z − pN )2

N

)
, (84)

where

Z = Z (m,n,z) = z

2
+

√
Nσp

2
· ξ, so that Z ∼ N

(
z

2
,
σ 2

p N

4

)
.

The constants ε3 and N3 depend on the values p, s, t and the function fX (·), where
the dependence on the latter is through the constants in Definition 6.

Proof Notice that we only need to prove the lemma for N sufficiently large. In order
to simplify the notation we will assume that n = m = N/2 (the other cases can be
handled similarly).

We apply Propositions 2 and 3 for the variables s and t . This implies that provided
N3 ≥ max(N0, N1) as in the statements of those propositions and n ≥ N3 we have that
the random variable S(N ,z)

n − z/2 satisfies the conditions of Corollary 1 for M0 = M
as in Proposition 2, ε0 = ε′ as in the statement of this proposition, c̃ = (1/2) ·
min(mŝ,t̂ , M−1

ŝ,t̂
) as in Definition 1 for the variables ŝ, t̂ as in Definition 5, b′ = a and

c′ = A as in the statement of Proposition 3. We consequently, let c2, N2, ε2 be as in
the statement of that corollary for the above constants.
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In what follows we fix ε3 ≤ 4−1 min(ε2, ε′) sufficiently small so that ε3M ≤
1/Mŝ,t̂ where M is as in the statement of Proposition 2 and Mŝ,t̂ is as in Definition 1
for the variables ŝ, t̂ as in Definition 5. Observe that the choice of ε3 implies that
ε3M ≤ 1/σ 2

z/N for all |z − pN | ≤ Nε3. We also set N3 = max(N0, N1, N2).
We denote by Φ the cumulative distribution function of a normal random variable

with mean 0 and variance 1. Let Gn,m,z denote the cumulative distribution function of
S(N ,z)

n . In addition, letGε3,+
n,m,z andGε3,−

n,m,z denote the cumulative distribution function of
S(N ,z)

n conditioned on {S(N ,z)
n > z/2+ 2ε3n} and {S(N ,z)

n < z/2− 2ε3n} respectively.
For convenience we let A < B be the unique real numbers such that

1 − Φ(B) = P(S(N ,z)
n > z/2 + 2ε3n), Φ(A) = P(S(N ,z)

n < z/2 + 2ε3n).

We now turn to defining our probability space. We let U1, U2, U3 be three inde-
pendent uniform (0, 1) random variables and set ξ = Φ−1(U1). In addition, we set

W+ =
(

Gε3,+
n,m,z

)−1
(U2) and W− =

(
Gε3,−

n,m,z

)−1
(U3). Given a realization of ξ, W−

and W+ we define a random variable W as follows

– if A ≤ ξ ≤ B we set W = (
Gn,m,z

)−1
(U1);

– if ξ > B we set W = W+;
– if ξ < A we set W = W−.

It is easy to see that as defined W indeed has the same distribution as S(N ,z)
n . In words,

W is quantile coupled to ξ near 0 and independent from it for large values.
We denote

Z = Zn,z = z/2 + σp
√

N

2
· ξ, Ẑ = Ẑn,z = z/2 + σz/N

√
N

2
· ξ.

and write F = Fn,z for the cumulative distribution function of Ẑ . It is easy to check
that our construction satisfies the following property. If y ∈ [z/2− 2nε3, z/2+ 2nε3]
and x > 0 is fixed and

F(y − x) ≤ Gn,m,z(y) ≤ F(y + x),

then

|Ẑ − W | ≤ x on the event A ≤ ξ ≤ B. (85)

By our choice of ε3, N3 and c2 and Corollary 1 applied to S(N ,z)
n − z/2 we have that

for all y ∈ [z/2 − 2nε3, z/2 + 2nε3]

F

(
y − c2

[
1 + (y − z/2)2

n

])
≤ Gn,m,z(y) ≤ F

(
y + c2

[
1 + (y − z/2)2

n

])
.

(86)
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Combining (85) and (86) we get

|Ẑ − W | ≤ c2

[
1 + (W − z/2)2

n

]
almost surely on the event A ≤ ξ ≤ B, (87)

for all n ≥ N3, provided that |z − pN | ≤ ε3N , |W − z/2| ≤ 2ε3n.
We next claim that |A| = O(

√
N ) and |B| = O(

√
N ). To see the latter notice that

P(ξ ≥ B) = P(W ≥ z/2 + 2nε3) = 1 − P(W − z/2 ≤ 2nε3)

≥ 1 − P

(
Ẑ − z

2
≤ 2nε3 + c2

(
1 + 4n2(ε3)

2

n

))

= P

(
σz/N

√
N

2
· ξ ≥ 2nε3 + c2[1 + 4n(ε3)

2]
)

≥ P(ξ ≥ C̃
√

N ),

for some positive constant C̃ . The inequality in the first line follows from Corollary 1
applied to W − z/2. The above implies that B ≤ C̃

√
N and an anologous argument

shows that A ≥ −C̃
√

N for some possibly larger C̃ . We conclude that there is a
constant C̃ > 0 such that |ξ | ≤ C̃

√
N on the event A ≤ ξ ≤ B.

The latter implies that almost surely on the event A ≤ ξ ≤ B we have

E

[
e|Z−Ẑ |

∣∣∣W
]

≤ E

[
e|ξ ||σp−σz/N |

∣∣∣W
]

≤ E

[
eC̃

√
N |σp−σz/N |

∣∣∣W
]
.

From Lemma 1 we know that we can find a constant cp > 0, that depends on mŝ,t̂

and Mŝ,t̂ as in Definition 1 as well as M (3)
ŝ,t̂

as in Definition 4 for the variables ŝ, t̂ as in

Definition5, such that |σp−σz/N |2 ≤ cp|p−z/N |2 for all |z−pN | ≤ ε3N . Combining
the latter with the Cauchy–Schwarz inequality, (87) and the triangle inequality we
conclude that there are constants C, c > 0 such that if |W − z/2| ≤ 2ε3n and
|z − pN | ≤ ε3N then

E

[
e|W−Z |

∣∣∣W
]

≤ E

[
e|W−Ẑ |+|Z−Z |

∣∣∣W
]

≤ C exp

(
cp(z − pN )2

N
+ c(W − z/2)2

n

)
.

Applying Jensen’s inequality to the above we have for any v ∈ N that

E

[
e(1/v)|W−Z |

∣∣∣W
]

≤ E

[
e|W−Z |

∣∣∣W
]1/v ≤ C1/v exp

(
cp(z − pN )2

Nv
+ c(W − z/2)2

nv

)
,

and if we further use that (x + y)2 ≤ 2x2 + 2y2 above we see that

E

[
e(1/v)|W−Z |

∣∣∣W
]

≤ C1/v · exp
( [cp + c](z − pN )2

Nv
+ 4c(W − pn)2

Nv

)
, (88)

provided n ≥ N3, |w − z/2| ≤ 2ε3n and |z − pN | ≤ ε3N .
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Suppose now that b1 is given, and let v be sufficiently large so that

cp + c

v
≤ b1 and

4c

v
≤ b1.

If a1 ≤ 1/v we see from (88) that

E

[
ea1|W−Z |

∣∣∣W
]

≤ C · exp
(

b1(z − pN )2

N
+ b1(w − pn)2

N

)
, (89)

provided n ≥ N3, |w − z/2| ≤ 2ε3n and |z − pN | ≤ ε3N .
Suppose now that |W − z/2| > 2ε3n and suppose for concreteness that W − z/2 ≥

2ε3n. On the event {W > z/2+ 2ε3n} we have that W and Z are independent with Z

having the distribution of a normal random variable with mean z/2 and variance
σ 2

p N
4

conditioned on being larger than s := z/2 + σp
√

N
2 · B. It follows that almost surely

on {W > z/2 + 2ε3n}

E

[
e|W−Z |

∣∣∣W
]

≤ e|W−z/2| ·
∫ ∞

B

e
σp

√
N

2 |y|e−y2/2

√
2π

· (1 − Φ(B))−1 .

From our earlier work we know that B ≤ C̃
√

N for some C̃ > 0. This implies that

1 − Φ(B) ≥ e−cNε23 ,

for some sufficiently large c > 0. Combining the last two inequalities gives for some
new c > 0

E

[
e|W−Z |

∣∣∣W
]

≤ exp (cN + |W − z/2|)

≤ exp

(
(c + 5/4)N + (z − pN )2

N
+ (W − pn)2

N

)
,

where the last inequality uses the triangle inequality and the fact that
√

ab ≤ a + b
for a, b ≥ 0. Applying Jensen’s inequality to the above we have for any v ∈ N that

E

[
e(1/v)|W−Z |

∣∣∣W
]

≤ E

[
e|W−Z |

∣∣∣W
]1/v

≤ exp

(
(c + 5/4)N

v
+ (z − pN )2

vN
+ (W − pn)2

vN

)
.

In particular, suppose that v is sufficiently large so that

1

v
≤ b1

2
and

c + 5/4

v
≤ b1ε23

8
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and a1 ≤ 1/v. We then have from the above inequality that

E

[
ea1|W−Z |

∣∣∣W
]

≤ exp

(
b1ε23
16

N + b1(z − pN )2

2N
+ b1(W − pn)2

2N

)

≤ exp

(
b1(z − pN )2

N
+ b1(W − pn)2

N

)
,

where in the last inequality we used that |W − z/2| ≥ 2ε3n and |z/2 − pn| ≤ ε3n.
We conclude that (89) holds even when W − z/2 > 2ε3n. An analogous argument
shows that (89) also holds when W − z/2 < −2ε3n, and so almost surely for all W .
This suffices for the proof. 
�

We also isolate for future use the following statement.

Lemma 13 Assume the same notation as in Lemma 12. There exist positive constants
b2, c2, N4 such that for every integers m, n ≥ N4, N = m + n such that |m − n| ≤ 1,
every z such that |z − pN | ≤ ε′N and w ∈ R,

fm,n(w|z) ≤ c2N−1/2 exp

(
−b2

(w − (z/2))2

N

)
.

The constants b2, c2, N4 depend on s, t, p and the constants in Definition 6.

Proof This is an immediate corollary of Propositions 2 and 3. 
�
We now turn to the main theorem of this section.

Theorem 5 Suppose that fX satisfies Assumptions C1–C6 and fix p ∈ (α, β). Let
s = p − ε′ and t = p + ε′, where ε′ > 0 is sufficiently small so that α < s < t < β.
For every b > 0, there exist constants 0 < C, a, α′ < ∞ such that for every positive
integer n, there is a probability space on which are defined a Brownian bridge Bσ

with variance σ 2 = σ 2
p and the family of processes S(n,z) for z ∈ Ln such that

E

[
eaΔ(n,z)

]
≤ Ceα′(log n)eb|z−pn|2/n, (90)

where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ . The con-

stants C, a, α′ depend on b as well as s, t, p and fX through the constants in
Definition 6 and the functions in Assumption C6.

Proof It suffices to prove the theorem when b is sufficiently small. For the remainder
we fix b > 0 such that b < b2/37, where b2 is the constant from Lemma 13. Let
ε3 and N3 be as in Lemma 12 and N4 as in Lemma 13 for our choice of s, t and put
N5 = max(N3, N4).

In this proof, by an n-coupling we will mean a probability space on which are
defined a Brownian bridge Bσ and the family of processes {S(n,z) : z ∈ Ln}. Notice
that for any n-coupling if z ∈ Ln , St = S(n,z)

t then
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Δ(n, z) = sup
0≤t≤n

∣∣∣∣
√

nBσ
t/n + t

n
z − S(n,z)

t

∣∣∣∣ ≤ |z| + max
0≤k≤n

|S(n,z)
k | + sup

0≤t≤n
|√nBσ

t/n|

which implies

E

[
eaΔ(n,z)

]
≤ E

[
exp

(
3a sup

0≤t≤1

√
n|Bσ

t |
)]

+ exp(3a|z|)

+E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
.

Note that if |z − pn| ≥ ε3n we have

b|z − pn|2/n ≥ bε23n

2
+ b|z − pn|2

2n
≥ bε23n

2
+ bκ

z2

n
,

where κ is sufficiently small so that

κ < 1/2,
p

1 − 2κ
∈ [p − ε3, p + ε3], and ε3/2 − κ(±ε3 + p)2 > 0.

In view of the above and Assumption C6 there exists â small enough and Ĉ large
enough depending on b such that if a < â we can ensure that

exp(3a|z|) + E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉeb|z−pn|2/n,

provided that |z − pn| ≥ ε3n.
Further we know that there exist positive constants c̃ and u such that E[

exp
(
sup0≤t≤1 y|Bσ

t |)] ≤ c̃euy2 for any y > 0 (see e.g. (6.5) in [29]). Clearly, there
exists â2 (depending on b) such that if 0 < a < â2 then 18ua2 ≤ bε23 . This implies
that if a < a0 := min(â, â2) then

E

[
exp

(
3a sup

0≤t≤1

√
n|Bσ

t |
)]

+ exp(3a|z|)

+E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ [Ĉ + c̃]eb|z−pn|2/n,

provided that |z − pn| ≥ ε3n.
The latter has the following implication. Firstly, (90) will hold for any n-coupling

with C = Ĉ1 := c̃ + Ĉ , α′ = 0 and a ∈ (0, a0) if z ∈ Ln satisfies |z − pn| ≥ ε3n.
Moreover, we can find a constant Ĉ2 > 1 such that if a < a0, |z − pn| ≤ ε3n and
n ≤ 4N5 then

E

[
exp

(
3a sup

0≤t≤1

√
n|Bσ

t |
)]

+ exp(3a|z|) + E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉ2.
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For the remainder of the proof we take b1 = b/20 and let a1, c1 be as in Lemma 12
for this value of b1. We will take a = (1/2) · min(a0, a1) and C = max(Ĉ1, Ĉ2) as
above and show how to construct the n-coupling so that (90) holds for some α′.

We will show that for every positive integer s, there exist n-couplings for all n ≤ 2s

such that

E

[
eaΔ(n,z)

]
e−b|z−pn|2/n ≤ As−1 · C, ∀z ∈ Ln, (91)

where A = 1 + 2c1(1 + 8c2b−1/2). The theorem clearly follows from this claim.
We proceed by induction on s with base case s = 1 being true by our choice of C

above. We suppose our claim is true for s and let 2s < n ≤ 2s+1. We will show how
to construct a probability space on which we have a Brownian bridge and a family
of processes {S(n,z) : |z − pn| ≤ ε3n}, which satisfy (91). Afterwards we can adjoin
(after possibly enlarging the probability space) the processes for |z| > nε3. Since
C ≥ Ĉ1 and a < a0 we know that (91) will continue to hold for these processes as
well. Hence, we assume that |z − pn| ≤ ε3n.

If 2s+1 ≤ 4N5 then by our choice of C ≥ Ĉ2 and the fact that A > 1 we will have
that (91) holds for any coupling provided |z − pn| ≤ ε3n. We may thus assume that
2s > 2N5. For simplicity we assume that n = 2k, where k ≥ N5 is an integer such
that 2s−1 < k ≤ 2s (if n is odd we write n = k + (k + 1) and do a similar argument).

We define the n-coupling as follows:

• Choose two independent k-couplings

(
{S1(k,z))}z∈Lk , B1

)
,

(
{S2(k,z))}z∈Lk , B2

)
, satisfying (91).

Such a choice is possible by the induction hypothesis.

• We let W z and ξ be as in the statement of Lemma 12, and set Z z = z
2 +

√
nσp
2 · ξ .

Assume, as we may, that all of these random variables are independent of the two
k-couplings chosen above. Observe that by our choice of a and k ≥ N5 we have
that

E

[
ea|Z z−W z |

∣∣∣W z
]

≤ c1 · exp
(

b

20
· (W z − kp)2 + (z − np)2

n

)
. (92)

• Let

Bt =
{
2−1/2B1

2t + t
√

p(1 − p)ξ 0 ≤ t ≤ 1/2,

2−1/2B2
2(t−1/2) + (1 − t)

√
p(1 − p)ξ 1/2 ≤ t ≤ 1.

(93)

By Lemma 6.5 in [29], Bt is a Brownian bridge with variance σ 2.
• Let S(n,z)

k = W z , and

S(n,z)
m =

{
S1(k,W z)

m 0 ≤ m ≤ k,

W z + S2(k,z−W z)
m−k , k ≤ m ≤ n.
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What we have done is that we first chose the value of S(n,z)
k from the conditional

distribution of Sk , given Sn = z. Conditioned on the midpoint S(n,z)
k = W z the

two halves of the random walk bridge are independent and upto a trivial shift we
can use S1(k,W z) and S2(k,z−W z) to build them.

The above defines our coupling and what remains to be seen is that it satisfies (91)
with s + 1.

Note that

Δ(n, z, S(n,z), B) ≤ |Z z − W z |
+max

(
Δ(k, W z, S1(k,W z), B1),Δ(k, z − W z, S2(k,z−W z), B2)

)

and therefore almost surely

E

[
eaΔ(n,z)

∣∣∣W z
]

≤ E

[
ea|Z z−W z |

∣∣∣W z
]

× C As−1
(

eb|W z−kp|2/k + eb|z−W z−kp|2/k
)

.

In deriving the last expression we used that our two k-couplings satisfy (91) and the
simple inequalityE[emax(Z1,Z2)] ≤ E[eZ1 ]+E[eZ2 ]. Taking expectation on both sides
above we see that

E

[
eaΔ(n,z)

]
≤ C · (2c1) · As−1

E

[
exp

(
9

4
· bmax(|W z − kp|2, |z − W z − kp|2)

n

)]
.

(94)

In deriving the last expression we used (92) and the simple inequality x2 + y2 ≤
5max(x2, (x − y)2) as well as that k = n/2.

We finally estimate the expectation in (94) by splitting it over W z such that |W z −
z/2| > |z − pn|/6 and |W z − z/2| ≤ |z − pn|/6; we call the latter events E1 and E2
respectively. Notice that if |W z − z/2| ≤ |z − pn|/6 we have max(|W z − pk|2, |z −
W z − pk|2) ≤ (2|z − pn|/3)2; hence

E

[
exp

(
9

4
· max(|W z − kp|2, |z − W z − kp|2)

n

)
· 1{E2}

]
≤ exp

( |z − pn|2
n

)
.

(95)

To handle the case |W z − z/2| > |z − pn|/6 we use Lemma 13, from which we
know that

fm,n(Wz |z) ≤ c2n−1/2 exp

(
−b2

(W z − (z/2))2

n

)
.
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Using the latter together with the fact that for |W z − z/2| > |z − pn|/6 we have that
(W z − z/2)2 > 1

16 max
(
(W z − kp)2, |z − W z − kp|2) we see that

E

[
exp

(
9

4
· bmax(|W z − kp|2, |z − W z − kp|2)

n

)
· 1{E1}

]

≤ c2n−1/2
∫

R

exp

(
− b

16
· (y − kp)2

n

)
dy = c2n−1/24

π1/2n1/2

b1/2
≤ 8c2b−1/2.

(96)

Combining the above estimates we see that

E

[
eaΔ(n,z)

]
≤ C · (2c1) · As−1

[
exp

( |z − pn|2
n

)
+ 8c2b−1/2

]

≤ C · As exp

( |z − pn|2
n

)
.

The above concludes the proof. 
�

6.2 Discrete case

We use the same notation as in Sects. 2.2 and 4.

Lemma 14 Suppose that pX satisfies Assumptions D1–D4 and fix p ∈ (α, β). Let
s = p − ε′ and t = p + ε′, where ε′ > 0 is sufficiently small so that α < s < t < β.
Then there exists ε3 ∈ (0, ε′) and N3 ∈ N such that for every b1 > 0 there exist
constants 0 < c1, a1 < ∞ such that the following holds. Suppose that m, n are
integers such that m, n ≥ N3 with |m − n| ≤ 1, set N = m + n. We can define a
probability space on which are defined a standard normal random variable ξ and a
collection of random variables W = W (m,n,z) for all z ∈ {x ∈ L N : |x − pN | ≤ ε3N }
such that the law of W (m,n,z) is given by pn,m(·|z) and such that we have almost surely

E

[
ea1|Z−W |

∣∣∣W
]

≤ c1 · exp
(

b1
(W − pn)2 + (z − pN )2

N

)
, (97)

where

Z = Z (m,n,z) = z

2
+

√
Nσp

2
· ξ, so that Z ∼ N

(
z

2
,
σ 2

p N

4

)
.

The constants ε3 and N3 depend on the values p, s, t and the function pX (·), where
the dependence on the latter is through the constants in Definition 11.

Proof Notice that we only need to prove the lemma for N sufficiently large. In order
to simplify the notation we will assume that n = m = N/2 (the other cases can be
handled similarly).
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We apply Propositions 5 and 6 for the variables s and t . This implies that provided
N3 ≥ max(N0, N1) as in the statements of those propositions and n ≥ N3 we have that
the random variable S(N ,z)

n − z/2 satisfies the conditions of Lemma 11 for M0 = M
as in Proposition 5, ε0 = ε′ as in the statement of this proposition, c̃ = (1/2) ·
min(mŝ,t̂ , M−1

ŝ,t̂
) as in Definition 7 for the variables ŝ, t̂ as in Definition 10, b′ = a

and c′ = A as in the statement of Proposition 6. We consequently, let c2, N2, ε2 be as
in the statement of that corollary for the above constants.

In what follows we fix ε3 ≤ 4−1 min(ε2, ε′) sufficiently small so that ε3M ≤
1/Mŝ,t̂ where M is as in the statement of Proposition 5 and Mŝ,t̂ is as in Definition 7
for the variables ŝ, t̂ as in Definition 10. Observe that the choice of ε3 implies that
ε3M ≤ 1/σ 2

z/N for all |z − pN | ≤ Nε3. We also set N3 = max(N0, N1, N2).

Let Â = {x ∈ Z : x ∈ [z/2− 2ε3n, z/2+ 2ε3n]} and let â1, . . . , âk be an enumer-
ation of the elements in Â in increasing order. Let G = Gn,z denote the cumulative
distribution function of S(N ,z)

n . In addition, we let Φ denote the cumulative distribu-
tion function of a standard normal random variable. Since Φ is strictly increasing and
pn,m(â|z) > 0 for all â ∈ Â we can define the unique real numbers r j− and r j for
j = 1, . . . , k that satisfy

Φ(r j−) = G(â j−), Φ(r j ) = G(â j ).

Suppose that we have a probability space that supports three independent variables
W−, W+ and ξ , where ξ is a standard normal random variable, W− has the distribution
of S(N ,z)

n conditioned on being less than â1 and W+ has the distribution of S(N ,z)
n

conditioned on being larger than âk . Set

Z = Zn,z = z/2 + σp
√

N

2
· ξ, Ẑ = Ẑn,z = z/2 + σz/N

√
N

2
· ξ.

Given a realization of ξ , W− and W+ we define a random variable W as follows.

– if r j− < ξ ≤ r j we set W = â j ;
– if ξ ≤ r1− we set W = W−;
– if ξ ≥ rk we set W = W+.

It is easy to see that as defined W indeed has the same distribution as S(N ,z)
n . In words,

W is quantile coupled to ξ near 0 and independent from it for large values.
We denote

Z = Zn,z = z/2 + σp
√

N

2
· ξ, Ẑ = Ẑn,z = z/2 + σz/N

√
N

2
· ξ.

and write F = Fn,z for the distribution function of Ẑ . It is easy to check that our
construction satisfies the following property. If j = 1, . . . , k and

F(â j − x) ≤ G(â j−) < G(â j ) ≤ F(â j + x),
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700 E. Dimitrov, X. Wu

then

|Ẑ − W | = |Ẑ − â j | ≤ x on the event {W = â j } for j = 1, . . . , k. (98)

By our choice of ε3, N3 and c2 and Lemma 11 we have that for all j = 1, . . . , k and
n ≥ N3

F

(
â j − c2

[
1 + (â j − z/2)2

n

])
≤ G(â j ) ≤ F

(
â j + c2

[
1 + (â j − z/2)2

n

])
.

(99)

Combining (98) and (99) we get

|Ẑ − W | ≤ c2

[
1 + (W − z/2)2

n

]
on the event W ∈ Â, (100)

for all n ≥ N3, provided that |z − pN | ≤ ε3N , |W − z/2| ≤ 2ε3n.
We next claim that |r1−| = O(

√
N ) and |rk | = O(

√
N ). To see the latter notice

that

P(ξ ≥ rk) = P(W ≥ z/2 + 2nε3) = 1 − P(W − z/2 ≤ 2nε3)

≥ 1 − P

(
Ẑ − z

2
≤ 2nε3 + c2

(
1 + 4n2(ε3)

2

n

))

= P

(
σz/N

√
N

2
· ξ ≥ 2nε3 + c2[1 + 4n(ε3)

2]
)

≥ P(ξ ≥ C̃
√

N ),

for some positive constant C̃ . The inequality in the first line follows from Lemma 11
applied to W − z/2. The above implies that rk ≤ C̃

√
N and an anologous argument

shows that r1− ≥ −C̃
√

N for some possibly larger C̃ . We conclude that there is a
constant C̃ > 0 such that |ξ | ≤ C̃

√
N on the event W ∈ Â.

The latter implies that almost surely on the event W ∈ Â we have

E

[
e|Z−Ẑ |

∣∣∣W
]

≤ E

[
e|ξ ||σp−σz/N |

∣∣∣W
]

≤ E

[
eC̃

√
N |σp−σz/N |

∣∣∣W
]
.

From Lemma 3 we know that we can find a constant cp > 0, that depends on mŝ,t̂

and Mŝ,t̂ as in Definition 7 as well as M (3)
ŝ,t̂

as in Definition 9 for the variables ŝ, t̂ as

in Definition 10, such that |σp − σz/N |2 ≤ cp|p − z/N |2 for all |z − pN | ≤ ε3N .
Combining the latter with the Cauchy–Schwarz inequality, (100) and the triangle
inequality we conclude that there are constantsC, c > 0 such that if |W −z/2| ≤ 2ε3n
and |z − pN | ≤ ε3N then

E

[
e|W−Z |

∣∣∣W
]

≤ E

[
e|W−Ẑ |+|Z−Z |

∣∣∣W
]

≤ C exp

(
cp(z − pN )2

N
+ c(W − z/2)2

n

)
.
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Applying Jensen’s inequality to the above we have for any v ∈ N that

E

[
e(1/v)|W−Z |

∣∣∣W
]

≤ E

[
e|W−Z |

∣∣∣W
]1/v ≤ C1/v exp

(
cp(z − pN )2

Nv
+ c(W − z/2)2

nv

)
,

and if we further use that (x + y)2 ≤ 2x2 + 2y2 above we see that

E

[
e(1/v)|W−Z |

∣∣∣W
]

≤ C1/v · exp
( [cp + c](z − pN )2

Nv
+ 4c(W − pn)2

Nv

)
,(101)

provided n ≥ N3, |w − z/2| ≤ 2ε3n and |z − pN | ≤ ε3N .
Suppose now that b1 is given, and let v be sufficiently large so that

cp + c

v
≤ b1 and

4c

v
≤ b1.

If a1 ≤ 1/v we see from (101) that

E

[
ea1|W−Z |

∣∣∣W
]

≤ C · exp
(

b1(z − pN )2

N
+ b1(w − pn)2

N

)
, (102)

provided n ≥ N3, |w − z/2| ≤ 2ε3n and |z − pN | ≤ ε3N .
Suppose now that |W − z/2| > 2ε3n and suppose for concreteness that W − z/2 ≥

2ε3n. On the event {W > z/2+ 2ε3n} we have that W and Z are independent with Z

having the distribution of a normal random variable with mean z/2 and variance
σ 2

p N
4

conditioned on being larger than s := z/2 + σp
√

N
2 · rk . It follows that almost surely

on {W > z/2 + 2ε3n}

E

[
e|W−Z |

∣∣∣W
]

≤ e|W−z/2| ·
∫ ∞

rk

e
σp

√
N

2 |y|e−y2/2

√
2π

· (1 − Φ(rk))
−1 .

From our earlier work we know that rk ≤ C̃
√

N for some C̃ > 0. This implies that

1 − Φ(rk) ≥ e−cNε23 ,

for some sufficiently large c > 0. Combining the last two inequalities gives for some
new c > 0

E

[
e|W−Z |

∣∣∣W
]

≤ exp (cN + |W − z/2|)

≤ exp

(
(c + 5/4)N + (z − pN )2

N
+ (W − pn)2

N

)
,
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where the last inequality uses the triangle inequality and the fact that
√

ab ≤ a + b
for a, b ≥ 0. Applying Jensen’s inequality to the above we have for any v ∈ N that

E

[
e(1/v)|W−Z |

∣∣∣W
]

≤ E

[
e|W−Z |

∣∣∣W
]1/v

≤ exp

(
(c + 5/4)N

v
+ (z − pN )2

vN
+ (W − pn)2

vN

)
.

In particular, suppose that v is sufficiently large so that

1

v
≤ b1

2
and

c + 5/4

v
≤ b1ε23

8

and a1 ≤ 1/v. We then have from the above inequality that

E

[
ea1|W−Z |

∣∣∣W
]

≤ exp

(
b1ε23
16

N + b1(z − pN )2

2N
+ b1(W − pn)2

2N

)

≤ exp

(
b1(z − pN )2

N
+ b1(W − pn)2

N

)
,

where in the last inequality we used that |W − z/2| ≥ 2ε3n and |z/2 − pn| ≤ ε3n.
We conclude that (102) holds even when W − z/2 > 2ε3n . An analogous argument
shows that (102) also holds when W − z/2 < −2ε3n, and so almost surely for all W .
This suffices for the proof. 
�

We also isolate for future use the following statement.

Lemma 15 Assume the same notation as in Lemma 14. There exist positive constants
b2, c2, N4 such that for every integers m, n ≥ N4, N = m + n such that |m − n| ≤ 1,
every z ∈ {x ∈ L N : |x − pN | ≤ ε3N } and w ∈ Z,

pm,n(w|z) ≤ c2N−1/2 exp

(
−b2

(w − (z/2))2

N

)
.

The constants b2, c2, N4 depend on s, t, p and the constants in Definition 11.

Proof This is an immediate corollary of Propositions 5 and 6. 
�
We now turn to the main theorem of this section.

Theorem 6 Suppose that pX satisfies Assumptions D1–D5 and fix p ∈ (α, β). Let
s = p − ε′ and t = p + ε′, where ε′ > 0 is sufficiently small so that α < s < t < β.
For every b > 0, there exist constants 0 < C, a, α′ < ∞ such that for every positive
integer n, there is a probability space on which are defined a Brownian bridge Bσ

with variance σ 2 = σ 2
p and the family of processes S(n,z) for z ∈ Ln such that

E

[
eaΔ(n,z)

]
≤ Ceα′(log n)eb|z−pn|2/n, (103)
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where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ . The con-

stants C, a, α′ depend on b as well as s, t, p and pX through the constants in Definition
11 and the functions in Assumption D5.

Proof It suffices to prove the theorem when b is sufficiently small. For the remainder
we fix b > 0 such that b < b2/37, where b2 is the constant from Lemma 15. Let
ε3 and N3 be as in Lemma 14 and N4 as in Lemma 15 for our choice of s, t and put
N5 = max(N3, N4).

In this proof, by an n-coupling we will mean a probability space on which are
defined a Brownian bridge Bσ and the family of processes {S(n,z) : z ∈ Ln}. Notice
that for any n-coupling if z ∈ Ln , St = S(n,z)

t then

Δ(n, z) = sup
0≤t≤n

∣∣∣∣
√

nBσ
t/n + t

n
z − S(n,z)

t

∣∣∣∣ ≤ |z| + max
0≤k≤n

|S(n,z)
k | + sup

0≤t≤n
|√nBσ

t/n|

which implies

E

[
eaΔ(n,z)

]
≤ E

[
exp

(
3a sup

0≤t≤1

√
n|Bσ

t |
)]

+ exp(3a|z|)

+E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
.

Note that if |z − pn| ≥ ε3n we have

b|z − pn|2/n ≥ bε23n

2
+ b|z − pn|2

2n
≥ bε23n

2
+ bκ

z2

n
,

where κ is sufficiently small so that

κ < 1/2,
p

1 − 2κ
∈ [p − ε3, p + ε3], and ε3/2 − κ(±ε3 + p)2 > 0.

In view of the above and Assumption D5 there exists â small enough and Ĉ large
enough depending on b such that if a < â we can ensure that

exp(3a|z|) + E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉeb|z−pn|2/n,

provided that |z − pn| ≥ ε3n.
Further we know that there exist positive constants c̃ and u such that E[

exp
(
sup0≤t≤1 y|Bσ

t |)] ≤ c̃euy2 for any y > 0 (see e.g. (6.5) in [29]). Clearly, there
exists â2 (depending on b) such that if 0 < a < â2 then 18ua2 ≤ bε23 . This implies
that if a < a0 := min(â, â2) then

E

[
exp

(
3a sup

0≤t≤1

√
n|Bσ

t |
)]

+ exp(3a|z|) + E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]

≤ [Ĉ + c̃]eb|z−pn|2/n,
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provided that |z − pn| ≥ ε3n.
The latter has the following implication. Firstly, (103) will hold for any n-coupling

with C = Ĉ1 := c̃ + Ĉ , α′ = 0 and a ∈ (0, a0) if z ∈ Ln satisfies |z − pn| ≥ ε3n.
Moreover, we can find a constant Ĉ2 > 1 such that if a < a0, |z − pn| ≤ ε3n and
n ≤ 4N5 then

E

[
exp

(
3a sup

0≤t≤1

√
n|Bσ

t |
)]

+ exp(3a|z|) + E

[
exp

(
3a max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉ2.

For the remainder of the proof we take b1 = b/20 and let a1, c1 be as in Lemma 14
for this value of b1. We will take a = (1/2) · min(a0, a1) and C = max(Ĉ1, Ĉ2) as
above and show how to construct the n-coupling so that (103) holds for some α′.

We will show that for every positive integer s, there exist n-couplings for all n ≤ 2s

such that

E

[
eaΔ(n,z)

]
e−b|z−pn|2/n ≤ As−1 · C, ∀z ∈ Ln, (104)

where A = 1+2c1(1+c2(8b−1/2+2)). The theorem clearly follows from this claim.
We proceed by induction on s with base case s = 1 being true by our choice of C

above. We suppose our claim is true for s and let 2s < n ≤ 2s+1. We will show how
to construct a probability space on which we have a Brownian bridge and a family of
processes {S(n,z) : |z − pn| ≤ ε3n}, which satisfy (104). Afterwards we can adjoin
(after possibly enlarging the probability space) the processes for |z| > nε3. Since
C ≥ Ĉ1 and a < a0 we know that (104) will continue to hold for these processes as
well. Hence, we assume that |z − pn| ≤ ε3n.

If 2s+1 ≤ 4N5 then by our choice of C ≥ Ĉ2 and the fact that A > 1 we will have
that (104) holds for any coupling provided |z − pn| ≤ ε3n. We may thus assume that
2s > 2N5. For simplicity we assume that n = 2k, where k ≥ N5 is an integer such
that 2s−1 < k ≤ 2s (if n is odd we write n = k + (k + 1) and do a similar argument).

We define the n-coupling as follows:

– Choose two independent k-couplings

(
{S1(k,z))}z∈Lk , B1

)
,

(
{S2(k,z))}z∈Lk , B2

)
, satisfying (91).

Such a choice is possible by the induction hypothesis.

– We let W z and ξ be as in the statement of Lemma 14, and set Z z = z
2 +

√
nσp
2 · ξ .

Assume, as we may, that all of these random variables are independent of the two
k-couplings chosen above. Observe that by our choice of a and k ≥ N5 we have
that

E

[
ea|Z z−W z |

∣∣∣W z
]

≤ c1 · exp
(

b

20
· (W z − kp)2 + (z − np)2

n

)
. (105)
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– Let

Bt =
{
2−1/2B1

2t + t
√

p(1 − p)ξ 0 ≤ t ≤ 1/2,

2−1/2B2
2(t−1/2) + (1 − t)

√
p(1 − p)ξ 1/2 ≤ t ≤ 1.

(106)

By Lemma 6.5 in [29], Bt is a Brownian bridge with variance σ 2.
– Let S(n,z)

k = W z , and

S(n,z)
m =

{
S1(k,W z)

m 0 ≤ m ≤ k,

W z + S2(k,z−W z)
m−k , k ≤ m ≤ n.

What we have done is that we first chose the value of S(n,z)
k from the conditional

distribution of Sk , given Sn = z. Conditioned on the midpoint S(n,z)
k = W z the

two halves of the random walk bridge are independent and upto a trivial shift we
can use S1(k,W z) and S2(k,z−W z) to build them.

The above defines our coupling and what remains to be seen is that it satisfies (104)
with s + 1.

Note that

Δ(n, z, S(n,z), B) ≤ |Z z − W z |
+max

(
Δ(k, W z, S1(k,W z), B1),Δ(k, z − W z, S2(k,z−W z), B2)

)

and therefore almost surely

E

[
eaΔ(n,z)

∣∣∣W z
]

≤ E

[
ea|Z z−W z |

∣∣∣W z
]

× C As−1
(

eb|W z−kp|2/k + eb|z−W z−kp|2/k
)

.

In deriving the last expression we used that our two k-couplings satisfy (104) and the
simple inequalityE[emax(Z1,Z2)] ≤ E[eZ1 ]+E[eZ2 ]. Taking expectation on both sides
above we see that

E

[
eaΔ(n,z)

]
≤ C · (2c1) · As−1

E

[
exp

(
9

4
· bmax(|W z − kp|2, |z − W z − kp|2)

n

)]
.

(107)

In deriving the last expression we used (105) and the simple inequality x2 + y2 ≤
5max(x2, (x − y)2) as well as that k = n/2.

We finally estimate the expectation in (107) by splitting it over W z such that |W z −
z/2| > |z − pn|/6 and |W z − z/2| ≤ |z − pn|/6; we call the latter events E1 and E2
respectively. Notice that if |W z − z/2| ≤ |z − pn|/6 we have max(|W z − pk|2, |z −
W z − pk|2) ≤ (2|z − pn|/3)2; hence
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E

[
exp

(
9

4
· max(|W z − kp|2, |z − W z − kp|2)

n

)
· 1{E2}

]
≤ exp

( |z − pn|2
n

)
.

(108)

To handle the case |W z − z/2| > |z − pn|/6 we use Lemma 15, from which we
know that

pm,n(W z |z) ≤ c2n−1/2 exp

(
−b2

(W z − (z/2))2

n

)
.

Using the latter together with the fact that for |W z − z/2| > |z − pn|/6 we have that
(W z − z/2)2 > 1

16 max
(
(W z − kp)2, |z − W z − kp|2) we see that

E

[
exp

(
9

4
· bmax(|W z − kp|2, |z − W z − kp|2)

n

)
· 1{E1}

]

≤ c2n−1/2
∑
y∈Z

exp

(
− b

16
· (y − kp)2

n

)
≤ c2n−1/2

[
2 + 4

π1/2n1/2

b1/2

]

≤ c2(8b−1/2 + 2).

(109)

Combining the above estimates we see that

E

[
eaΔ(n,z)

]
≤ C · (2c1) · As−1

[
exp

( |z − pn|2
n

)
+ c2(8b−1/2 + 2)

]

≤ C · As exp

( |z − pn|2
n

)
.

The above concludes the proof. 
�

7 Assumptions D5 and C6

7.1 Strongly unimodal distributions

In this section we give sufficient conditions for the technical Assumptions D5 and C6
to hold.

7.1.1 Continuous case

The goal of this section is to give general conditions under which a distribution satis-
fying Assumptions C1–C5 will also satisfy Assumption C6. We use the same notation
as in Sects. 2.1 and 3.

Let us introduce some useful notation. Let f be a continuous probability density
function on R. We say that f is unimodal if there exists at least one real number M
such that
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f (x) ≤ f (y) for all x ≤ y ≤ M, and f (x) ≤ f (y) for all x ≥ y ≥ M .

We further say that f (·) is strongly unimodal if the convolution of f (·) with any
unimodal distribution function h(·) onR is again unimodal. In [23], the author proved
that f (·) is strongly unimodal if and only if it is log-concave, i.e. log f is concave.

Definition 12 Suppose that fX satisfies Assumptions C1–C5 and α = −∞, β = ∞.
It follows from Assumption C2 that X has all finite moments and we let μ = E[X ]. In
addition, we have Λ′(0) = M ′

X (0)
MX (0) = μ and so uμ = (Λ′)−1(μ) = 0 and Gμ(uμ) =

Λ(uμ)− uμ ·μ = 0. The latter and Proposition 1 imply that there is a constant Δ > 0
such that for all n ≥ 1 we have

inf
x∈[−1,1] fn(nμ + x) ≥ n−1/2Δ.

Indeed, the latter is obvious from (14) for all large n and for small n we can deduce
it from the continuity and positivity of fn(nμ + x) on the interval [−1, 1] from
Assumption C1. The above implies that we can find a constant R > 0 such that
R > |μ| + 1 + Δ−1.

In view of Proposition 1 applied to s = −2R and t = 2R we also deduce that there
are positive constants CR and cR such that for all n ≥ 1 and z ∈ [−2R, 2R]

fn(nz) ≥ CRn−1/2e−cRn .

As before the above follows from Proposition 1 provided n is sufficiently large, while
for small n it follows from the continuity and positivity of fn(nz) on [−2R, 2R].

Finally, given the above constants, λ as in Assumption C2 and L as in Assumption
C5, we can find constants ĈR and ĉR such that for all n ≥ 1 we have

E[eλ|X |]n
[
4n3/2

Δ
+ LC−1

R

√
necRn

]
≤ ĈR · eĉRn .

The main result of the section is as follows.

Lemma 16 Suppose that fX satisfies Assumptions C1–C5. Then it will also satisfy
Assumption C6 if any of the following hold

– α > −∞;
– β < ∞;
– α = −∞, β = ∞ and the density function f (x) of X is a strongly unimodal

function.

Moreover, if α > −∞ then we can take â(b̂) = b̂
1+b̂+|α| and Ĉ(b̂) = 1; if β < ∞

then we can take â(b̂) = b̂
1+b̂+|β| and Ĉ(b̂) = 1. If α = −∞ and β = ∞ then we can

choose â(b̂) = λv−1 and Ĉ(b̂) = Ĉ1/v
R , where v is a large enough integer such that

cRv−1 ≤ b̂/2 and λv−1 ≤ b̂/2 with cR, ĈR as in Definition 12 and λ as in Assumption
C2.
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Proof Assume first that α > −∞. Then we have for any k ∈ {1, . . . , n} and z ∈ Ln

that

Sk ≥ −kα and Sn − Sk ≥ −(n − k)α almost surely.

The latter implies that

|z| + n|α| ≥ |Sk |,

which means using the ineqiality |xy| ≤ x2 + y2 that

E

[
exp

(
â max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]
≤ exp

(
â|z| + â|α|n) ≤ exp

(
â|z|2/n + ân + â|α|n)

.

Thus if we choose Ĉ = 1 and â = b̂
1+b̂+|α| we would obtain (7). An analogous

argument establishes (7) when β < ∞.
In the remainder we focus on the last case. Notice that by assumption fm(x) are

unimodal functions for any m ≥ 1. For future use we call μ = E[X ] and for |t | ≤ λ

as in Assumption C2 we set M|X |(t) = E
[
et |X |]. We also let Δ, R, CR , cR , ĈR and

ĉR be as in Definition 12.
By definition we have for m ≥ 1 that

inf
x∈[−1,1] fm (mμ + x) ≥ m−1/2 · Δ,

The latter implies that if Mm is any real number such that fm(x) ≤ fm(y) for all
x ≤ y ≤ Mm and fm(x) ≤ fm(y) for all x ≥ y ≥ Mm , we then have |Mm | ≤
Rm. Indeed, if we suppose for example that Mm > Rm then this would mean that
fm(t + mμ) ≥ fm(mμ) for all t ∈ [0, (1 + Δ−1)m], so

∫ (1+Δ−1)m

0
fm(t + mμ) ≥ (

(1 + Δ−1)m + 1
) · fm(mμ) ≥ (1 + Δ−1)m1/2 · Δ > 1,

which is impossible. One rules out the case Mm < −Rm in a similar fashion.

Let us now fix n ≥ 1, 1 ≤ m < n, |z| > 2Rn and λ > 0 as in Assumption C2. We
then have that

E

[
eλ|Sm |

∣∣∣Sn = z
]

= (I ) + (I I ) + (I I I ), where (I )

=
∫
|t |≤|z|+Rn fm(t) fn−m(z − t)eλ|t |dt∫

R
fm(t) fn−m(z − t)dt

, (110)

(I I ) =
∫

t>|z|+Rn fm(t)pn−m(z − t)eλ|t |dt∫
R

fm(t) fn−m(z − t)dt
, (I I I )

=
∫

t<−|z|−Rn fm(t) fn−m(z − t)eλ|t |dt∫
R

fm(t) fn−m(z − t)dt
.
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Firstly, we have the trivial bound

(I ) ≤ eλRn+λ|z|. (111)

In addition, if z < −2Rn then by the unimodality of the density function fn−m(·) we
get

(I I ) ≤
∫

t>|z|+Rn fm(t) fn−m(z − t)eλ|t |dt
∫ mμ+1

mμ
fm(t) fn−m(z − t)dt

≤
√

n

c
·
∫

t>|z|+Rn
fm(t)eλ|t |dt

≤
√

n

Δ
E

[
eλ|Sm |] ≤

√
n

Δ
M|X |(λ)n .

On the other hand, if z > 2Rn we have by the unimodality of fm(·) that

(I I ) ≤
∫

t>Rn+|z| fm(t) fn−m(z − t)eλ|t |dt
∫ μ(n−m)+1
μ(n−m)

fm(z − t) fn−m(t)dt

≤
√

n

Δ
·
∫

t>Rn+|z|
fn−m(z − t)eλ|t |dt ≤

√
n

Δ
eλz M|X |(λ)n .

Applying the same arguments to (I I I ) and combining the cases z > 2Rn and z <

−2Rn we conclude that if |z| > 2Rn we have

(I I ) + (I I I ) ≤ 4
√

n

Δ
eλ|z|M|X |(λ)n (112)

Combining (111) and (112) and the inequality

E

[
exp

(
λ max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]
≤

n∑
m=1

E

[
eλ|Sm |

∣∣∣Sn = z
]
,

we conclude that if |z| > 2Rn then

E

[
exp

(
λ max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]
≤ 4n3/2

Δ
eλ|z|M|X |(λ)n . (113)

Suppose now that |z| ≤ 2Rn. Then by definition we have

E

[
eλ|Sm |

∣∣∣Sn = z
]

=
∫
R

fm(t) fn−m(z − t)eλ|t |dt

fn(z)

≤ C−1
R

√
necRn

∫

R

fm(t) fn−m(z − t)eλ|t |dt

≤ LC−1
R

√
necRn

∫

R

fm(t)eλ|t |dt ≤ LC−1
R

√
necRn M|X |(λ)n,
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where L is as in Assumption C5.
Combining the latter with (113) we conclude that for any z ∈ R we have

E

[
exp

(
λ max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]

≤
[
4n3/2

Δ
+ LC−1

R

√
necRn

]
· M|X |(λ)n · eλ|z| ≤ ĈR · eĉRn+λ|z|. (114)

From Jensen’s inequality and (114) we know that for any v ∈ N

E

[
exp

(
λv−1 max

1≤k≤n
|Sk |

) ∣∣∣Sn = z

]
≤ Ĉ1/v

R · ev−1ĉRn+v−1λ|z|. (115)

Suppose now that b̂ > 0 is given. Then we can choose v sufficiently large so that
λ/v ≤ b̂/2 and cR/v ≤ b̂/2. Consequently, if we set â = λv−1 and Ĉ = Ĉ1/v

R we
would have in view of (115)

E

[
exp

(
â max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]
≤ Ĉ · e(b̂/2)(|z|+n) ≤ Ĉ · eb̂(n+z2/n),

where we used that |z|/2 ≤ z2/n +n/2 as follows by the Cauchy–Schwarz inequality.

�

7.1.2 Discrete case

In this section we give general conditions under which a distribution satisfying
Assumptions D1–D4 will also satisfy Assumption D5. We use the same notation
as in Sects. 2.2 and 4.

We first introduce some useful notation. Let p(n) be a probability mass function
on Z. We say that p is unimodal if there exists at least one integer M such that

p(n) ≥ p(n − 1) for all n ≤ M, and p(n + 1) ≤ p(n) for all n ≥ M .

We further say that p(·) is strongly unimodal if the convolution of p(·) with any uni-
modal distribution function h(·) on Z is again unimodal. In [25, Theorem 3], inspired
by the classical work of [23], the authors proved that p(·) is strongly unimodal if and
only if

p(n)2 ≥ p(n − 1)p(n + 1) for all n ∈ Z. (116)

Definition 13 Suppose that pX satisfies Assumptions D1–D4 and α = −∞, β = ∞.
It follows from Assumption D2 that X has all finite moments and we let μ = E[X ]. In
addition, we have Λ′(0) = M ′

X (0)
MX (0) = μ and so uμ = (Λ′)−1(μ) = 0 and Gμ(uμ) =
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Λ(uμ)− uμ ·μ = 0. The latter and Proposition 4 imply that there is a constant Δ > 0
such that for all n ≥ 1 we have

pn(�μm�) ≥ n−1/2Δ.

Indeed, the latter is obvious from (41) for all large n and for small n we can deduce it
from the positivity of pn(�μn�) from Assumption C1. The above implies that we can
find a constant R > 0 such that R > |μ| + 1 + Δ−1.

In view of Proposition 4 applied to s = −2R and t = 2R we also deduce that there
are positive constants CR and cR such that for all n ≥ 1 and z ∈ [−2R, 2R] ∩ Ln

pn(z) ≥ CRn−1/2e−cRn .

As before the above follows from Proposition 4 provided n is sufficiently large, while
for small n it follows from the positivity of pn(z) on [−2R, 2R] ∩ Ln .

Finally, given the above constants, we can find constants ĈR and ĉR such that for
all n ≥ 1 we have

E[eλ|X |]n
[
4n3/2

Δ
+ LC−1

R

√
necRn

]
≤ ĈR · eĉRn .

The main result of the section is as follows.

Lemma 17 Suppose that pX satisfies Assumptions D1–D4. Then it will also satisfy
Assumption D5 if any of the following hold

– α > −∞;
– β < ∞;
– α = −∞, β = ∞ and pX (n) is a strongly unimodal function.

Moreover, if α > −∞ then we can take â(b̂) = b̂
1+b̂+|α| and Ĉ(b̂) = 1; if β < ∞

then we can take â(b̂) = b̂
1+b̂+|β| and Ĉ(b̂) = 1. If α = −∞ and β = ∞ then we can

choose â(b̂) = λv−1 and Ĉ(b̂) = Ĉ1/v
R , where v is a large enough integer such that

cRv−1 ≤ b̂/2 and λv−1 ≤ b̂/2 with cR, ĈR as in Definition 13 and λ as in Assumption
D2.

Proof The cases α > −∞ and β < ∞ can be handled exactly the same as in the proof
of Lemma 16. We focus on the case α = −∞ and β = ∞ in the remainder.

Notice that by assumption pm(n) are unimodal functions for any m ≥ 1. For future
use we callμ = E[X ] and for |t | ≤ λ as in AssumptionD2we set M|X |(t) = E

[
et |X |].

By definition we have for m ≥ 1 that

pm (�mμ�) ≥ m−1/2 · Δ,

The latter implies that if Mm is any integer such that pm(x) ≤ pm(y) for all x ≤ y ≤
Mm and pm(x) ≤ pm(y) for all x ≥ y ≥ Mm , we then have |Mm | ≤ Rm. Indeed,
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if we suppose for example that Mm > Rm then pm(n + �mμ�) ≥ pm(�mμ�) for all
n = 0, . . . , �(1 + Δ−1)m� and so

�(1+Δ−1)m�∑
n=0

pm(n + �mμ�) ≥ (�(1 + Δ−1)m� + 1) · pm(�mμ�) ≥ (1 + Δ−1)m
Δ√
m

> 1,

which is impossible. One rules out the case Mm < −Rm in a similar fashion.
Let us now fix n ≥ 1, 1 ≤ m < n, |z| > 2Rn and λ > 0 as in Assumption D2. We

then have that

E

[
eλ|Sm |

∣∣∣Sn = z
]

= (I ) + (I I ) + (I I I ), where (I ) =
∑

|k|≤|z|+Rn pm(k)pn−m(z − k)eλ|k|
∑

k∈Z pm(k)pn−m(z − k)
,

(I I ) =
∑

k>|z|+Rn pm(k)pn−m(z − k)eλ|k|
∑

k∈Z pm(k)pn−m(z − k)
, (I I I )

=
∑

k<−|z|−Rn pm(k)pn−m(z − k)eλ|k|
∑

k∈Z pm(k)pn−m(z − k)
.

(117)

Firstly, we have the trivial bound

(I ) ≤ eλRn+λ|z|. (118)

In addition,we have that if z < −2Rn then by the unimodality of the sequence pn−m(·)
we get

(I I ) ≤
∑

k>Rn+|z| pm(k)pn−m(z − k)eλ|k|

pm(Mm)pn−m(z − Mm)

≤
√

n

c
·

∑
k>Rn+|z|

pm(k)eλ|k| ≤
√

n

c
E

[
eλ|Sm |] ≤

√
n

c
M|X |(λ)n .

On the other hand, if z > 2Rn we have by the unimodality of pm(·) that

(I I ) ≤
∑

k>Rn+|z| pm(k)pn−m(z − k)eλ|k|

pm(z − Mn−m)pn−m(Mn−m)

≤
√

n

c
·

∑
k>Rn+|z|

pn−m(z − k)eλ|k| ≤
√

n

c
eλz M|X |(λ)n .

Applying the same arguments to (I I I ) and combining the cases z > 2Rn and z <

−2Rn we conclude that if |z| > 2Rn we have

(I I ) + (I I I ) ≤ 4
√

n

c
eλ|z|M|X |(λ)n (119)
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Combining (118) and (119) and the inequality

E

[
exp

(
λ max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]
≤

n∑
m=1

E

[
eλ|Sm |

∣∣∣Sn = z
]
, (120)

we conclude that if |z| > 2Rn then

E

[
exp

(
λ max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]
≤ 4n3/2

c
eλ|z|M|X |(λ)n · eλRn, (121)

where we apply inequality ex + ey ≤ ex+y for x, y ≥ 1.
Suppose now that |z| ≤ 2Rn. Then by definition we have

E

[
eλ|Sm |

∣∣∣Sn = z
]

=
∑

k∈Z pm(k)pn−m(z − k)eλ|k|

pn(z)

≤ C−1
R

√
necRn

∑
k∈Z

pm(k)pn−m(z − k)eλ|k|

≤ C−1
R

√
necRn

∑
k∈Z

pm(k)eλ|k| = C−1
R

√
necRn M|X |(λ)n .

Combining the latter with (121) we conclude that for any z ∈ R we have

E

[
exp

(
λ max
1≤k≤n

|Sk |
) ∣∣∣Sn = z

]

≤
[
4n3/2

Δ
+ C−1

R

√
necRn

]
· M|X |(λ)n · eλ|z| ≤ ĈR · eĉRn+λ|z|. (122)

From here the proof proceeds as that of Lemma 16. 
�

7.2 Insufficiency of Assumptions D1–D4

In this section we construct a probability distribution pX , which satisfies Assumptions
D1–D4, but for which the statement of Theorem 4 does not hold. The example illus-
trates that in general one needs further assumptions on pX in order to ensure the strong
coupling of random walk bridges with step distribution pX and Brownian bridges of
fixed variance.

We will use the same notation as in Sect. 2.1. Suppose that A = {x ∈ Z : x = 3n +
n for some n ∈ N} and B = {x ∈ Z : x = −3n for some n ∈ N}. For convenience we
denote an = 3n + n and bn = −3n for n ≥ 1 and note that these are distinct integers.
We define a weight function w as follows

w(x) =
{
exp(−x2) if x ∈ A ∪ B,

exp(−g(x)) if /∈ A ∪ B, where g(x) = 1010
|x | (123)
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Observe that w(x) > 0 for all x ∈ Z and w(x) ≤ e−x2 for all x ∈ Z. This means that
Z := ∑

x∈Z w(x) < ∞ and the function

pX (x) := w(x) · Z−1 (124)

defines a probability mass function on Z. We note that pX satisfies Assumption D1,
with α = −∞ and β = ∞; Assumption D2 with any λ > 0, in particular we have
DΛ = R and so by Lemma 3 we know thatΛX is continuous onR so that Assumption
D3 is also satisfied. Finally, by definition pX (x) ≤ Z−1e−x2 and so Assumption D4
is satisfied with D = Z−1 and d = 1. Overall, we see that pX satisfies Assumptions
D1–D4.

Suppose now that S(n,z) is a random walk bridge whose steps size is pX . We want
to show that for any a, c, C > 0 and σ > 0 and any coupling of S(2,z) with a Brownian
bridge Bσ of variance σ 2 there exists a z ∈ Z such that

E

[
eaΔ(2,z)

]
≥ Cec|z|2 , (125)

where Δ(n, z) = Δ(n, z, Bσ , S(n,z)) = sup0≤t≤n

∣∣∣√nBσ
t/n + t

n z − S(n,z)
t

∣∣∣ . The latter
statement implies that we cannot couple the bridge of size two to any fixed variance
Brownian bridge uniformly in the endpoint z, which means that Theorem 4 fails to
hold for this bridge.

Remark 3 Let us heuristically explain why the above example breaks the coupling.
The distribution in (124) satisfies the condition that it has spikes at the points in A
and B and is extremely small away from those sets. The latter means that for certain
large enough z, we will have that conditional on X1 + X2 = z, with overwhelming
probability X1 = 3z + z and X2 = −3z or X1 = −3z and X2 = 3z + z. The latter
implies that the midpoint of the bridge is essentially a Bernoulli variable that takes
the values 3z + z and −3z with equal probability. This makes its variance increase as
we increase z, which makes a close coupling to a Brownian bridge of fixed variance
impossible.

The main take-away point is that while pX may be an extremely well-behaved
distribution, the conditional distribution of the midpoint of a Bridge with step size
pX can become quite singular in the presence of spikes in pX . This means that one
needs better control of the conditional distribution, and one way to achieve this is to
assume pX has no spikes. This is one reason behind our introduction of the strongly
log-concave distributions in Sect. 7.1 above.

In the remainder we prove (125). We will prove that there are large enough z such
that

E

[
ea|S(2,z)

1 −√
2Bσ

1/2−z/2|
]

≥ Cec|z|2 ,
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which certainly implies (125). Using that ea|x−y| ≥ ea|x |−a|y| ≥ e(a/2)|x | − ea|y| we
see that

E

[
ea|S(2,z)

1 −√
2Bσ

1/2−z/2|
]

≥ E

[
e(a/2)|S(2,z)

1 |] + E

[
ea|√2Bσ

1/2|+|az/2|]

= E

[
e(a/2)|S(2,z)

1 |] − E

[
ea|√2Bσ

1/2|+|az/2|]
.

Furthermore we have

E

[
ea|√2Bσ

1/2|+|az/2|] ≤ e|az|/2 ·
[
E

[
exp

(
a
√
2Bσ

1/2

)]
+ E

[
exp

(
−a

√
2Bσ

1/2

)]]

= 2e|az|/2+a2σ 2/4.

Combining the above statements we see that to prove (125) it is enough to show that
for any fixed a, c, C > 0 we can find large enough z so that

E

[
ea|S(2,z)

1 |] ≥ Cec|z|2 . (126)

This is the statement we will establish.
We claim that if z = 2 · 3m with m sufficiently large we have

3p1(az)p1(bz) ≥ p2(z). (127)

If true the above would imply

E

[
ea|S(2,z)

1 |] =
∑
k∈Z

p1(k)p1(z − k)eak

p2(z)
≥ p1(az)p1(bz)eaaz

p2(z)
≥ 1

3
· ea(3z+z),

which certainly implies (126). We thus focus on (127).
We have for all m ≥ 2 that

p2(z) ≤ (I ) + (I I ), where (I ) = 2
∞∑

r=1

1{k /∈ A, z − k /∈ A}p1(k)p1(z − k),

(I I ) = 2
∞∑

r=1

p1(ar )p1(z − ar ).

(128)

If r ≤ m then we have 4 ≤ ar ≤ 3m +m and so 3m+1 +m ≥ 2 ·3m −4 ≥ z −ar ≥
2 · 3m − 3m − m ≥ 3m−1 + m. This means that z − ar /∈ A ∪ B and so

m∑
r=1

p1(ar )p1(z − ar ) ≤
m∑

r=1

p1(z − ar ) ≤ Z−1 · m · exp
(
−g(3m−1 + m)

)
.

(129)

123



716 E. Dimitrov, X. Wu

If m < r < 2 · 3m then we have z − ar = 2 · 3m − 3r − r and so

−3r−1 > z − ar > −3r .

This means that z − ar /∈ A ∪ B and so

z−1∑
r=m+1

p1(ar )p1(z − ar ) ≤
z−1∑

r=m+1

p1(z − ar ) ≤ Z−1 · (z − m) · exp (−g(3m)
)
.

(130)

If 2 · 3m < r then

−3r > z − ar = 2 · 3m − 3r − r > −3r+1.

This means that z − ar /∈ A ∪ B and so

∞∑
r=z+1

p1(ar )p1(z − ar ) ≤
∞∑

r=z+1

p1(z − ar ) ≤ Z−1 ·
∞∑

r=z+1

exp
(−g(3r )

)
. (131)

Combining (129), (130) and (131) we have

(I I ) − 2p1(az) · p1(z − az) ≤ Z−1 ·
∞∑

r=z+1

exp
(−g(3r )

)

+ Z−1 · z · exp(−g(z/6)) ≤ e−g(z/10), (132)

where the last inequality holds provided m (and hence z) is sufficiently large. On the
other hand,

p1(az) · p1(z − az) = exp(−a2
z ) · exp(−b2z )

= exp
(
−(3z + z)2 − 32z

)
≥ 10 · e−g(z/10),

for all large enough m and so we conclude that for all large m and z = 2 · 3m we have

(I I ) ≤ (2.2) · p1(az) · p1(z − az). (133)

We next focus on (I ). Notice that if k ≤ 3m then z − k ≥ 3m and so

z/2∑
r=1

1{k /∈ A, z − k /∈ A}p1(k)p1(z − k) ≤
z/2∑
r=1

1{k /∈ A, z − k /∈ A}p1(z − k)

≤ (z/2) · exp(−g(z/2)).
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In addition, we have

∞∑
r=z/2+1

1{k /∈ A, z − k /∈ A}p1(k)p1(z − k)

≤
∞∑

r=z/2+1

1{k /∈ A, z − k /∈ A}p1(k) ≤
∞∑

r=z/2+1

exp(−g(r)) ≤ exp(−g(z/3)),

where the last inequality holds for all large enough m. Combining the latter we get for
all large m

(I ) ≤ z · exp(−g(z/2)) + 2 · exp(−g(z/3))

≤ exp(−g(z/10)) ≤ (0.1) · p1(az) · p1(z − az). (134)

Combining (133) and (134) we conclude (127), which concludes our proof.

8 Examples

In this section we present several examples of distributions that satisfy Assumptions
C1–C6 in Sect. 8.1 and Assumptions D1–D5 in Sect. 8.2. The goal is to illustrate
how to verify that a given distribution satisfies the assumptions and in particular
prove Theorems 1 and 2. In Sect. 8.3 we discuss an example with the log-gamma
distribution with parameter γ > 0. The log-gamma distribution is of interest to us due
to connections to integrable probability and the example we consider is the principal
one that motivated our quantified Theorem 5. This example benefits the work in [42].

8.1 Examples: continuous jumps

We continue with the notation from Sect. 2.1.

Example 1.We consider the distributions in Theorem 1. By assumption we know that
X is a continuous random variable with density fX (·), which has a compact interval
of support [α, β] and which is continuously differentiable and positive on (α, β) with
a bounded derivative. Since the derivative of fX is bounded and continuous on (α, β)

we conclude that fX can be continuously extended to [α, β] and so Assumption C1
is satisfied. In addition, since X is uniformly bounded, we see that Assumption C2 is
satisfied for any λ > 0 and so DΛ = R. The latter and Lemma 1 imply that Λ(·) is
continuous on R and so Assumption C3 holds.

We next observe using integration by parts that if z ∈ C and z �= 0 we have

∫ β

α

fX (x)exzdx = fX (β) · eβz

z
− fX (α) · eαz

z
−

∫ β

α

f ′
X (x) · exz

z
dx .
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Let us fix s, t ∈ R with α < s < t < β and suppose that z = u + iv with u ∈ [s, t].
Then the boundedness of fX (·) and f ′

X (·) and the above equation imply that

∣∣∣∣
∫ β

α

fX (x)exzdx

∣∣∣∣ ≤ K1(s, t)

1 + |v| ,

for some sufficiently large constant K1(s, t) and so Assumption C4 holds with
p(s, t) = 1.

As fX (·) has compact support and is bounded, Assumption C5 holds as well. In
view of Lemma 16 Assumption C6 also holds. Overall, we conclude that fX satisfies
Assumptions C1–C6 and so by Theorem 3 we conclude Theorem 1.

The above example illustrates that our strong coupling result holds for essentially
any compactly supported density with a bounded continuous derivative. We next illus-
trate a case when the support is not compact using the usual exponential distribution.

Example 2. Suppose that X has exponential distribution with parameter μ > 0, i.e.
fX (x) = 1{x > 0} ·μe−μx . In this case Assumption C1 holds trivially with α = 0 and
β = ∞. In addition, we have MX (t) = μ

μ−t and so Assumption C2 holds with any
0 < λ < μ. Next, we have thatΛ(x) = log(μ)− log(μ− t) is lower semi-continuous
on Dλ = (−∞, μ) and Assumption C3 holds.

Let us fix s, t ∈ Rwith 0 < s < t < ∞ and suppose that z = u+iv with u ∈ [s, t].
Then we have

|MX (z)| =
∣∣∣∣

μ

μ − z

∣∣∣∣ ≤ K1(s, t)

1 + |v|
for some sufficiently large constant K1(s, t) and so Assumption C4 holds with
p(s, t) = 1.AssumptionC5holds trivially as fX (x) = 0 for x ≤ 0 andAssumptionC6
is satisfied in view of Lemma 16. Overall, we conclude that fX satisfies Assumptions
C1–C6 and so Theorem 3 holds for random walk bridges with exponential jumps.

8.2 Examples: discrete jumps

We continue with the notation from Sect. 2.2.

Example 1. We consider the distributions in Theorem 2. By assumption we know
that X is an integer valued random variable with probability mass function pX (·)
such that pX (x) > 0 for all x ∈ Z ∩ [α, β] and P(X ∈ [α, β]) = 1. The latter
iplies that pX satisfies Assumption D1. In addition, since X is uniformly bounded,
we see that Assumption D2 is satisfied for any λ > 0 and so DΛ = R. The latter and
Lemma 3 imply thatΛ(·) is continuous onR and so Assumption D3 holds. As pX (·) is
compactly supported and bounded,AssumptionD4holds aswell. In viewofLemma17
AssumptionD5 also holds.Overall, we conclude that pX satisfiesAssumptionsD1–D5
and so by Theorem 4 we conclude Theorem 2.

The above example illustrates that our strong coupling result holds for essentially
any integer valued variable with a single compact (integer) interval of support.We next
illustrate a casewhen the support is not compact using the usual geometric distribution.
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Example 2. Suppose that X has geometric distribution with parameter q ∈ (0, 1), i.e.
pX (n) = q · (1−q)n for n ≥ 0. In this case Assumption D1 holds trivially with α = 0
and β = ∞. In addition, we have MX (t) = q

1−(1−q)et and so Assumption D2 holds

with any 0 < λ < − log(1−q). Next, we have thatΛ(x) = log(q)−log(1−(1−q)et )

is lower semi-continuous on Dλ = (−∞,− log(1 − q)) and Assumption D3 holds.
Assumption D4 holds trivially as pX (x) = 0 for x < 0 and Assumption D5 is

satisfied in view of Lemma 17. Overall, we conclude that pX satisfies Assumptions
D1–D5 and so Theorem 4 holds for random walk bridges with geometric jumps.

8.3 Example: log-gamma distribution

The log-gamma density function with parameter γ > 0 is given by

fγ (x) = 1

Γ (γ )
exp

(
γ x − ex) for x ∈ R. (135)

If ξ is a random variable with density fγ one readily observes that

Mξ (t) = Γ (γ + t)

Γ (γ )
, and so Mξ (t) < ∞ for t > −γ. (136)

The above formula also implies that

E[ξ ] = mγ = ψ(0)(γ ) and V ar(ξ) = σ 2
γ = ψ(1)(γ ), (137)

where ψ(k) denote the polygamma functions given by

ψ(−1)(z) = logΓ (z) and ψ(k)(z) = dk+1

dzk+1ψ(−1)(z), for k ≥ 0. (138)

We consider in this section random walk bridges as in the setup of Sect. 2.1, whose
jump has distribution X = ξ−mγ

σγ
. To indicate the dependence of the bridges on γ we

write S(n,z)
γ to denote a process whose law is given by that of a random walk bridge

with step distribution X and which is condititioned to end at z after n steps. The main
result we wish to establish is the following.

Corollary 2 For any b > 0 and γ0 > 0 there exist constants 0 < C, a, α′ < ∞ such
that for every positive integer n and γ ≥ γ0, there is a probability space on which are
defined a Brownian bridge Bσ with σ = 1 and a family of processes S(n,z)

γ for z ∈ R

such that

E[eaΔ(n,z)] ≤ Ceα′(log n)ebz2/n, (139)

where Δ(n, z) = sup0≤t≤n |√nBt/n + t
n z − S(n,z)

γ,t |.
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In the remainder of this section we provide the proof of Corollary 2. The goal is to
show that the density

fX (x) = σγ

Γ (γ )
exp

(
γ (σγ x + mγ ) − eσγ x+mγ

)
(140)

satisfies Assumptions C1–C6 and that the constants in Definition 6 and the functions
in Assumption 6 can be chosen uniformly in γ ≥ γ0. If true then Corollary 2 will
follow from Theorem 5 applied to p = 0 and ε′ = 1. For clarity we split the proof
into several steps and use the same notation as in Sect. 2.1.

Step 1. In this step we summarize several statements that we will need throughout the
proof.

From (136) we have

MX (t) = e−mγ t/σγ
Γ (γ + t/σγ )

Γ (γ )
and Λ(t) = log[MX (t)]

= ψ(−1)
(

γ + t

σγ

)
− ψ(−1)(γ ) − mγ t

σγ

, (141)

Using (140) we have

d

dx
log fX (x) = σγ

(
γ − eσγ x+mγ

)
and

d2

dx2
log fX (x) = −σ 2

γ emγ · eσγ x . (142)

From [18, Lemma 3] we have for x > 0

log(x) − 1

x
≤ψ(0)(x) ≤ log(x) − 1

2x
(k − 1)!

xk
+ k!

2xk+1 ≤ψ(k)(x) ≤ (k − 1)!
xk

+ k!
xk+1 for k ∈ N.

(143)

Using (143) and [1, (6.3.18)] we know that

σγ = γ −1/2 + O(γ −1) and mγ = log γ − 1

2γ
+ O(γ −2) as γ → ∞. (144)

We have the following series representation for ψ(0)(z) for z �= 0,−1,−2, . . . , see
e.g. [1, 6.3.16],

ψ(0)(z) = −γE +
∞∑

n=0

[
1

n + 1
− 1

n + z

]
, (145)

where γE is the Euler constant.

Step 2. In this step we demonstrate that fX (·) satisfies Assumptions C1–C5.
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From (140) we know that Assumption C1 holds with α = −∞ and β = ∞. In
addition, from (141) we know that Assumption C2 holds for any 0 < λ < σγ · γ , in
particular it holds when λ = 2−1 · σγ · γ . We have DΛ = (−γ σγ ,∞) and Λ(·) is
lower semi-continuous on R. This verifies Assumption C3.

We isolate the verification of Assumption C4 in the following lemma.

Lemma 18 For any γ > 0 and −σγ · γ < S < T < ∞ there is a K1(S, T , γ ) > 0
such that

|MX (z)| ≤ K1

1 + |v| , where z = u + iv with s ≤ u ≤ t . (146)

Proof From (145) we have

|MX (z)| = |MX (u)| ·
∣∣∣∣

MX (z)

MX (u)

∣∣∣∣

= |MX (u)| exp
(∫ v

0

∞∑
n=0

Re

[
i

n + 1
− i

n + γ + (u + iy)/σγ

]
dy

)
.

We observe that

Re

[
i

n + 1
− i

n + γ + (u + iy)/σγ

]
= −y

(n + γ + u/σγ )2 + y2
.

Combining the last two statements we see

|MX (z)| ≤ |MX (u)| · exp
(∫ v

0

−y · dy

[a2 + y2]
)

= |MX (u)|√
v2 + a2

, (147)

where a = γ + u/σγ . The last line proves (146). 
�
In view of (146) we conclude that fX satisfies Assumption C4. We next verify

Assumption C5.

Lemma 19 For any γ0 > 0 there exist constants L, D, d > 0 such that

fX (x) ≤ L for all x ∈ R and fX (x) ≤ De−dx2 for all x ≥ 0. (148)

Proof From (142) we know that fX is log-concave and has a unique maximum when
x = xc = σ−1

γ · [log(γ ) − mγ ]. In particular, this implies that

fX (x) ≤ fX (xc) = σγ

Γ (γ )
exp (γ log(γ ) − γ ) .

The right side above is uniformly bounded on [γ0, M] for any finite M , and as γ → ∞
we have by Stirling’s approximation formula (see e.g. [1, 6.1.37]) and (144) that

σγ

Γ (γ )
exp (γ log(γ ) − γ ) ∼ 1√

2π
as γ → ∞.
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Overall we conclude that we can find L sufficiently large depending on γ0 alone so
that the left inequality in (148) holds.

We next fix x ≥ 0. We have

fX (x)

fX (0)
= exp

(
γ σγ x − eσγ x+mγ + emγ

) ≤ exp

(
−emγ σ 2

γ

2
x2

)
,

where in the last inequality we used that ea ≥ 1 + a + a2
2 for a ≥ 0. We observe by

(143) that

emγ σ 2
γ

2
≥ 1

2
e−1/γ ,

and so we conclude that

fX (x) ≤ fX (0) · exp
(
−e−1/γ0 · x2/2

)
.

This proves the right inequality in (148) with D = L and d = e−1/γ0/2. 
�
Step 3. In what follows we fix −∞ < s < t < ∞ and set Sγ = us = (Λ′)−1(s) and
Tγ = ut = (Λ′)−1(t). We write below C(γ0, s, t) to mean a generic positive constant
that depend on s, t and γ0, whose value may change from line to line. The goal of this
step is to show

γ + Sγ σ−1
γ ≥ C(s, t, γ0) · γ and γ + Tγ σ−1

γ ≤ C(s, t, γ0) · γ. (149)

From (141) we know that

Λ′(Sγ ) = ψ(0)(γ + Sγ σ−1
γ ) − ψ(0)(γ )

σγ

= s and Λ′(Tγ )

= ψ(0)(γ + Tγ σ−1
γ ) − ψ(0)(γ )

σγ

= t . (150)

Combining (150) and (143) we conclude that

log
[
γ + Sγ σ−1

γ

]
− log[γ ] − 1

2(γ + Sγ σ−1
γ )

+ 1

γ
≥ σγ · s

log
[
γ + Tγ σ−1

γ

]
− log[γ ] − 1

γ + Tγ σ−1
γ

+ 1

2γ
≤ σγ · t .

(151)

From the first line in (151) we see that

log
[
γ + Sγ σ−1

γ

]
≥ log[γ ] + σγ · s − 1

γ0
.
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Exponentiating both sides above and using (144) we get the left part of (149).
On the other hand, from the second line in (151) we have

log
[
γ + Tγ σ−1

γ

]
≤ log[γ ] + σγ · t + 1

γ + Tγ σ−1
γ

.

Using the left part of (149) we have γ + Tγ σ−1
γ ≥ γ + Sγ σ−1

γ ≥ C(s, t, γ0) · γ and
so if we exponentiate both sides of the above equation we conclude the right side of
(149).

Step 4. In this step we show that we can find ∞ > Ms,t > ms,t > 0 that depend on
s, t and γ0 alone such that if γ ≥ γ0 and x ∈ [Sγ , Tγ ] we have

Ms,t ≥ Λ′′(x) ≥ ms,t . (152)

From (143) we have that for x ∈ [Sγ , Tγ ]

1

σ 2
γ

·
[

1

γ + Sγ σ−1
γ

+ 1

(γ + Sγ σ−1
γ )2

]
≥ Λ′′(Sγ ) ≥ Λ′′(x) = 1

σ 2
γ

· ψ(1)
(
γ + xσ−1

γ

)

≥ Λ′′(Tγ ) ≥ 1

σ 2
γ

·
[

1

γ + Tγ σ−1
γ

+ 1

2(γ + Tγ σ−1
γ )2

]
.

The above inequalities together with (149) and (144) imply (152).

Step 5. We have from (144) and (149) that there is δ1s,t ∈ (0, 1) sufficiently small
depending on s, t and γ0 such that

γ + min(Sγ , 0) · σ−1
γ ≥ 2δ1s,t · σ−1

γ . (153)

We fix such a δ1s,t and denote S′
γ = Sγ − δ1s,t , and T ′

γ = Tγ + δ1s,t . Notice that if

Dδ1s,t
(min(0, Sγ ),max(Tγ , 0)) is as in Definition 1 then Dδ1s,t

⊂ {z ∈ C : −γ · σγ <

Re(z) < ∞}. In this step we show that we can find M̂(s, t, γ0) > 0, depending on
s, t and γ0, such that

|Λ(z)| ≤ M̂0(s, t, γ0) for all z ∈ Dδ1s,t
(min(0, Sγ ),max(Tγ , 0)). (154)

From (141) and (145) we have for x ∈ (−γ · σγ ,∞) that

Λ′(x) = 1

σγ

·
[
ψ(0)(γ + xσ−1

γ ) − ψ(0)(γ )
]
and Λ′′(x) = 1

σ 2
γ

·
∞∑

n=0

1

(n + γ + xσ−1
γ )2

> 0,

which implies that x = 0 is the unique minimizer of Λ(x) and the maximum of this
function on [S′

γ , T ′
γ ] is obtained either when x = S′

γ or x = T ′
γ . Furthermore, it
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follows from (144), (149) and (151) that there is a sufficiently large positive constant
Ĉ(s, t, γ0) > 0 such that

Ĉ(s, t, γ0) ≥ T ′
γ > S′

γ ≥ −Ĉ(s, t, γ0). (155)

Combining (155) with (153) and (143) we conclude that there is a sufficiently large
positive constant M̂1(s, t, γ0) > 0 such that for x ∈ [min(0, S′

γ ),max(T ′
γ , 0)] we

have

∣∣Λ′(x)
∣∣ ≤ M̂1(s, t, γ0). (156)

Combining (155) and (156) with the fact that Λ(0) = 0 we conclude that there is a
sufficiently large constant M̂0(s, t, γ0) > 0 such that for x ∈ [min(0, S′

γ ),max(T ′
γ , 0)]

we have

|Λ(x)| ≤ M̂0(s, t, γ0). (157)

Now we suppose that x ∈ [min(0, S′
γ ),max(T ′

γ , 0)] and note that

Λ′(x + iy) = 1

σ 2
γ

·
∞∑

n=0

σ−1
γ y2 + x(n + γ + xσ−1

γ )

(n + γ )[(n + γ + xσ−1
γ )2 + σ−2

γ y2]

+ i

σ 2
γ

∞∑
n=0

y

(n + γ + xσ−1
γ )2 + σ−2

γ y2
. (158)

where we used (145). In particular, we see that

1

σ 2
γ

·
∞∑

n=0

σ−1
γ y2 + |x |(n + γ + xσ−1

γ )

(n + γ )[(n + γ + xσ−1
γ )2 + σ−2

γ y2] ≤ 1

σ 3
γ · γ

·
∞∑

n=0

y2

(n + γ + σ−1
γ x)2

+ 1

σ 2
γ

·
∞∑

n=0

|x |
(n + γ + xσ−1

γ )2
+ x2

σ 3
γ · γ

·
∞∑

n=0

1

(n + γ + σ−1
γ x)2

and also

1

σ 2
γ

∞∑
n=0

|y|
(n + γ + xσ−1

γ )2 + y2
≤ 1

σ 2
γ

∞∑
n=0

|y|
(n + γ + xσ−1

γ )2
.

We use that

∞∑
n=0

1

(n + γ + xσ−1
γ )2

≤ 1

(γ + xσ−1
γ )2

+
∫ ∞

0

1

(γ + xσ−1
γ + u)2

du

= 1

(γ + xσ−1
γ )2

+ 1

γ + xσ−1
γ

.
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Substituting the above inequalities into (158)we get for x ∈ [min(0, S′
γ ),max(T ′

γ , 0)]

|Λ′(x + iy)| ≤
[

1

(γ + xσ−1
γ )2

+ 1

γ + xσ−1
γ

]
·
[

y2

σ 3
γ · γ

+ |x |
σ 2

γ

+ x2

σ 3
γ · γ

+ |y|
σ 2

γ

]
.

From (149) we have γ + S′
γ σ−1

γ ≥ C(s, t, γ0) ·γ and so the above inequality implies

|Λ′(x + iy)| ≤ C(s, t, γ0)

γ
·
[

y2

σ 3
γ · γ

+ |x |
σ 2

γ

+ x2

σ 3
γ · γ

+ |y|
σ 2

γ

]
.

If we finally combine the latter with (155) and (143) we see that

|Λ′(x + iy)| ≤ C(s, t, γ0) · [1 + y2]. (159)

In view of (157) and (159) we know that by possibly making M̂0(s, t, γ0) larger we
can ensure that (154) holds.

Step 6. In this step we show that we can choose the constants in Definitions 1 and 2
uniformly in γ ≥ γ0. We fix ms,t and Ms,t as in (152) above. From (154) and the fact
that x = 0 is the unique minimizer of Λ(x) on [min(0, S′

γ ),max(T ′
γ , 0)] we get

eM̂0(s,t,γ0) ≥ MX (x) ≥ 1. (160)

Also we have

|MX (x) − MX (x + iy)| = MX (x) ·
∣∣∣∣1 − exp

(∫ y

0
iΛ′(x + iu)du

)∣∣∣∣ ≤ C(s, t, γ0) · |y|.

The latter implies that we can pick 0 < δs,t ≤ δ1s,t sufficiently small depending on s, t
and γ0 so that

8δs,t · M̂0(s, t, γ0) < ms,t and |MX (x) − MX (x + iy)| < 1/2. (161)

In particular, the latter together with (154) and (160) imply that for z ∈ Dδs,t (Sγ , Tγ )

we have Re[MX (z)] ≥ 1/2 and 8δs,t · |Λ(z)| < ms,t . Thus δs,t satisfies the conditions
in Definition 1.

Note that by (147) we have

|MX (x + iy)| ≤ |MX (x)| · exp
(∫ v

0

−u · du

[a2 + u2]
)

= |MX (x)|√
y2 + a2

, (162)

where a = γ + x · σ−1
γ . Combining the latter with (149) we conclude that there is

Ks,t depending on s, t and γ0 such that for all x ∈ [min(0, S′
γ ),max(T ′

γ , 0)] we have
∣∣∣M(x + iy) · e−Λ′(x)·(x+iy)e−Λ(x)+xΛ′(x)

∣∣∣ ≤ 1√
y2 + (γ + min(0, S′

γ ) · σ−1
γ )2

≤ Ks,t

1 + |y| .
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This fixes Ks,t in Definition 2 and ps,t = 1.

Step 7. In this step we show that we can choose qs,t in Definition 3 uniformly in
γ ≥ γ0.

Let εs,t and Rs,t be as in the statement of Definition 3 for the constants δs,t and
Ks,t in Step 6. In view of (158) we have for any x ∈ [Sγ , Tγ ] that

d

dy
Re[Λ(x + iy)] = 1

σ 2
γ

∞∑
n=0

−y

(n + γ + xσ−1
γ )2 + σ−2

γ y2
, (163)

which implies that Re[Λ(x + iy)] is decreasing in y on [0,∞) and increasing in y on
(−∞, 0). Let us first consider the case y ≥ εs,t . The above inequality implies that

Re[Λ(x + iy)] − Λ(x) ≤ Re[Λ(x + iεs,t )] − Λ(x) ≤
∫ εs,t

0

∞∑
n=0

−uσ−2
γ du

(γ + Sγ σ−1
γ + n)2

= − ε2s,t

2σ 2
γ

∞∑
n=0

1

(γ + Sγ σ−1
γ + n)2

≤ − ε2s,t

2σ 2
γ

·
∫ ∞

1

dv

(γ + Sγ σ−1
γ + v)2

= −ε2s,t

2σ 2
γ (γ + Sγ σ−1

γ + 1)
.

Combining the latter with (144) and (149) we conclude that there is qs,t ∈ (0, 1) that
depends on s, t and γ0 such that

Re[Λ(x + iy)] − Λ(x) ≤ log[qs,t ],
In particular, exponentiating both sides we see that for x ∈ [Sγ , Tγ ] and y ≥ εs,t we
have

∣∣∣∣
MX (x + iy)

MX (x)

∣∣∣∣ ≤ qs,t . (164)

Since |MX (x + iy)| = |MX (x − iy)| we conclude that (164) holds for |y| ≥ εs,t ,
which verifies that qs,t satisfies the conditions in Definition 3.

Step 8. In this step we show that we can choose the constants in Definition 4 uniformly
in γ ≥ γ0. We first show that we can find constants M̂k(s, t, γ0) > 0 for k =
0, 1, 2, 3, 4 such that

|Λ(k)(x)| ≤ M̂k(s, t, γ0) for all x ∈ [Sγ , Tγ ]. (165)

Indeed for k = 0, k = 1 and k = 2 this follows from (157), (156) and (152) respec-
tively. Next we have for k = 3, 4 that

|Λ(k)(x)| = 1

σ k
γ

∣∣∣ψ(k−1)(γ + Sγ σ−1
γ )

∣∣∣ ≤ 1

σ k
γ

·
[

(k − 2)!
[γ + xσ−1

γ ]k−1
+ (k − 1)!

[γ + Sγ σ−1
γ ]k

]
,
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where in the last inequalitly we used (143). Using (149) and (144) we conclude (165)
for k = 3 and k = 4 as well.

Next we recall that F(z) = Gz(uz) = Λ(uz) − uz · z. We claim that for k =
0, 1, 2, 3, 4 we can find constants M (k)

s,t that depend on s, t and γ0 such that if z ∈ [s, t]
we have

|F (k)(x)| ≤ M (k)
s,t for all x ∈ [Sγ , Tγ ]. (166)

If z ∈ [s, t] then uz ∈ [Sγ , Tγ ] and then in view of (154) and (155) we can find M (0)
s,t

satisfying (166). We next use that uz = (Λ′)−1(z) to get

F ′(z) = −uz, F ′′(z) = − 1

Λ′′(uz)
F (3)(z) = Λ(3)(uz)

[Λ′′(uz)]3 F (4)(z)

= Λ(4)(uz) · Λ′′(uz) − 3Λ(3)(uz)

[Λ′′(uz)]5 .

The latter equalities together with (165) and (152) prove (166). The constants in (166)
satisfy the conditions in Definition 4.

Step 9. In this step we show that we can choose the constants in Definitions 5 and 6
uniformly in γ ≥ γ0. Observe that by Steps 6. and 7. we can choose the constant N0
in Proposition 1 depending on s, t and γ0 alone and the same is true for the constant
C1. Since D, d and L in Assumption C5 were chosen uniformly in Lemma 19 in Step
2. we conclude that we can pick R1 in Definition 5 depending on s, t and γ0 alone.
We now let ŝ = −6R1 and t̂ = 6R1. Then from Steps 6. and 7. we can pick all the
remaining constants in Definition 6 uniformly in γ ≥ γ0.

Step 10. In this step we show that for any r > 0 there is a constant Δ0 > 0 that
depends on r and γ0 alone such that

inf
x∈[−r ,r ] fX (x) ≥ Δ0. (167)

We begin by proving a useful lemma.

Lemma 20 The function fγ (x) converges uniformly over compact sets to φ(x) =
e−x2/2√

2π
as γ → ∞.

Proof Let us fix R > 0 and assume x ∈ [−R, R]. The functional equation Γ (z +1) =
zΓ (z) and [3, Theorem 1.6] give

Fγ (x) · γ −γ+1/2eγ

√
2π

·
√

γ√
γ + 1

≤ fγ (x) ≤ Fγ (x) · γ −γ+1/2eγ

√
2π

,
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where Fγ (x) = σγ · exp(γ (σγ x + mγ ) − eσγ x+mγ ). In addition, we have from (143)
that

γ (σγ x + mγ ) − eσγ x+mγ = − x2

2
− emγ + γ mγ + O(γ −1/2),

where the constant in the big O notation depends on R. Combining the latter with
(144) we see that we can find a constant C > 0 depending on R such that

e−x2/2−Cγ −1/2 · σγ γ 1/2

√
2π

·
√

γ√
γ + 1

≤ fγ (x) ≤ e−x2/2+Cγ −1/2 · σγ γ 1/2

√
2π

,

from which we conclude the statement of the lemma after applying (144). 
�
Let us fix r > 0. By Lemma 20 we know that there is γ1 ≥ γ0, depending on r ,

such that if γ ≥ γ1 then

inf
x∈[−r ,r ] fX (x) ≥ 1

2
√
2π

· e−r2/2.

Then since fX (x) is jointly continuous in x and γ and positive on [−r , r ] × [γ0, γ1]
there exists a positive constant Δ1 depending on γ0 and r such that

inf
x∈[−r ,r ] f γ

1 (x) ≥ Δ1, (168)

for all γ ∈ [γ0, γ1]. In particular, we deduce that (167) holds with Δ0 =
min

(
Δ1,

1
2
√
2π

· e−r2/2
)

.

Step 11.Let us denote f γ
n (·) the density of Sn = X1+· · ·+ Xn where Xi are i.i.d. with

distribution fX . In this step we show that there is a positive constant Δ that depends
on γ0 such that

inf
x∈[−1,1] f γ

n (x) ≥ Δ · n−1/2. (169)

We apply Proposition 1 to the distribution fX and for the values s = −1 and t = 1.
From our work in Steps 6. and 7. we know that we can find N0 and C0 > 0 depending
on γ0 such that for N ≥ N0 we have

f γ

N (N z) ≥ C0√
2π NΛ′′(uz)

· exp (N Gz(uz)) .

In particular, using (152), the fact that Gz(u0) = 0 and (166) we conclude that there
is a constant Δ′ > 0 depending on γ0 such that

inf
x∈[−1,1] f γ

N (x) ≥ Δ′ · N−1/2 for γ ≥ γ0 and N ≥ N0. (170)
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Next, we let Δ0 ∈ (0, 1) be sufficiently small so that (167) holds with r = N0.
Then we have for 1 ≤ n ≤ N0 and x ∈ [−1, 1] that

f γ
n (x) =

∫

R

· · ·
∫

R

fX (x1) · · · fX (xn−1) · fX (x − x1 − · · · − xn−1)dx1 · · · dxn

≥
∫ 1

0
· · ·

∫ 1

0
fX (x1)· · · fX (xn−1)· fX (x − x1 − · · · − xn−1)dx1 · · · dxn ≥ (Δ0)

n,

In particular, we conclude from the latter and (170) that (169) holds for all n ≥ 1 with
Δ = min(ΔN0

0 ,Δ′).

Step 12. In this and the next step we show that we can choose the constants in Def-
inition 12 uniformly in γ ≥ γ0. From (169) we can choose Δ > 0 depending on γ0
alone so that it satisfies the conditions of that definition. We also set R = 2 + Δ−1 in
that definition. We may now apply Proposition 1 to the distribution fX for the values
s = −2R and t = 2R. From our work in Steps 6. and 7. we know that we can find
N0(R) and C0(R) > 0 depending on γ0 such that for N ≥ N0(R) we have

fN (N z) ≥ C0(R)√
2π NΛ′′(uz)

· exp (N Gz(uz)) .

In particular, using (152) and (166) we conclude there are positive constants CR and
cR such that

f γ

N (N z) ≥ CR · N−1/2e−cR N for γ ≥ γ0, z ∈ [−2R, 2R] and N ≥ N0(R). (171)

Furthermore, we can apply (167) to r = 2R + N0(R) to obtain the existence of a
positive constant Δ0(R) ∈ (0, 1) such that

inf
x∈[−r ,r ] f γ

1 (x) ≥ Δ0(R).

Consequently, we have for z ∈ [−2R, 2R] and 1 ≤ n ≤ N0(R) that

f γ
n (nz) =

∫

R

· · ·
∫

R

fX (x1) · · · fX (xn−1) · fX (nx − x1 − · · · − xn−1)dx1 · · · dxn

≥
∫ 1

0
· · ·

∫ 1

0
fX (x1) · · · fX (xn−1) · fX (nx − x1 − · · · − xn−1)dx1 · · · dxn ≥ (Δ0(R))n .

The latter implies that (171) continues to hold for 1 ≤ N ≤ N0(R) as well provided
we make CR small enough (and positive) depending on γ0. This fixes the chooice of
Δ, CR and cR .

Step 13. As we mentioned in Step 2. Assumption C2 holds for any λ ∈ (0, γ σ−1
γ ).

Consequently, by (144) we can find λ0 > 0 depending on γ0 such that fX satisfies
Assumption C2 for λ = λ0 and γ · σγ > 2λ0. We fix this choice for λ. Notice that by
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(141) and (143) we have for x ∈ [−λ, λ] that |Λ′(x)| ≤ C(γ0) for some C(γ0) > 0.
The latter and Λ(0) = 0 imply that for x ∈ [−λ, λ] we have

|Λ(x)| ≤ C(γ0) (172)

for some possibly different C(γ0) > 0.
Finally, given λ and Δ, cR , CR as in Step 12. and L as in Lemma 19 we can find

positive constants ĈR and ĉR that depend on γ0 alone such that for all n ≥ 1

E[eλ|X |]n
[
4n3/2

Δ
+ LC−1

R

√
necRn

]
≤ ĈR · eĉRn .

In deriving the last expression we used (172) and the simple inequality E[eλ|X |] ≤
eΛ(λ) + eΛ(−λ).

From the proof of Lemma 19 we know that fX (x) is log-concave and so Lemma 16
is applicable. From that lemma we conclude that we can find functions â and Ĉ that
satisfy the conditions of Assumption C6. Moreover, from the fact that λ, ĈR and ĉR

are all independent of γ provided γ ≥ γ0, the lemma implies that the same is true for
â and Ĉ .

Summarizing all of our work in this section, we see that fX satisfies Assumptions
C1–C6and sowe can applyTheorem5 to it. Since the constantsC, a, α′ in that theorem
depend only on the parameters in Definition 6 and the functions in Assumption 6, and
the latter can be chosen uniformly in γ ≥ γ0 this implies that the same is true for
C, a, α′. We conclude that Theorem 5 implies Corollary 2. This suffices for the proof.
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