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Abstract

In this paper we prove an analogue of the Komlés—Major—Tusnddy (KMT) embedding
theorem for random walk bridges. The random bridges we consider are constructed
through random walks with i.i.d jumps that are conditioned on the locations of their
endpoints. We prove that such bridges can be strongly coupled to Brownian bridges
of appropriate variance when the jumps are either continuous or integer valued under
some mild technical assumptions on the jump distributions. Our arguments follow a
similar dyadic scheme to KMT’s original proof, but they require more refined estimates
and stronger assumptions necessitated by the endpoint conditioning. In particular, our
result does not follow from the KMT embedding theorem, which we illustrate via a
counterexample.

Mathematics Subject Classification 60J65

Contents

1 Introduction and mainresults . . . . . . . . . ... 650
2 General SEtUP . . . . . . L. 655
3 Midpoint distribution: continuous case . . . . . . .. ..o 663
4 Midpoint distribution: discrete case . . . . . . ... ..o 676
5 Gaussiancoupling . . . . ... 684
6 Strongcoupling . . . ... e 690
7 Assumptions D5and C6 . . . . . . ... 706
8 Examples . . . . . .. 717
References . . . . . . . . 730

B Evgeni Dimitrov
esd2138@columbia.edu

Xuan Wu
xuanw @uchicago.edu

I Columbia University, 2990 Broadway, Rm. 517, New York, NY 10029, USA
2 University of Chicago, 5734 S University Ave, Eckhart Hall, Rm. 319, Chicago, IL 60637, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-021-01030-y&domain=pdf

650 E. Dimitrov, X. Wu

1 Introduction and main results

Let X be a random variable with E[X] = 0 and E[X?] = 1. Suppose that X1, Xo, ...
is ani.i.d sequence of random variables with the same law as X andlet S, = X1+ X, +
-++ 4+ X, forn > 1. A classical problem in probability theory, called the embedding
problem, asks to construct the process {Sy,},_; and a standard Brownian motion
(B:)s>0 on the same probability space so that

A, = max |Sy — By (1)
1<k<n

grows as slowly as possible in n. The first major results about the above embedding
problem, or strong approximation/coupling problem, were obtained in the works of
Skorokhod [38,39] and Strassen [41], who showed that if E[X*] < oo then with high
probability

A, = O(n1/4(logn)1/2(log log n)1/4).

In fact, this rate of growth was shown to be optimal under the fourth moment assump-
tion in [26]. For more than a decade the above rate for strong approximation was the
best available result, and the method of obtaining it is now known as the Skorokhod
embedding. For a more detailed account of the history of the Skorokhod embedding
and its various applications we refer the reader to the comprehensive survey [33] and
the monograph [12].

Nearly fifteen years after Skorokhod’s original work, Komlés, Major and Tusnady
showed using completely different techniques that one can achieve A,, = O (log n) for
the rate of strong coupling, provided that X has a finite moment generating function
in a neighborhood of zero [27,28]. The construction used to achieve this celebrated
result is now referred to as the KMT approximation or coupling. The results in [2],
see [45], show that unless X is normally distributed the logn rate of approximation
is optimal. Since its inception, the KMT coupling has become an invaluable tool in
probability theory and statistics, see e.g. [11,12,37].

In the last few decades, the KMT approximation has been extended in many different
directions. We discuss a few of them here, remarking that the list is very far from
complete. A multidimensional version of the KMT coupling was proved in [16] and the
best result was later obtained in [43,44]. See [17] for more on the history and references
regarding the KMT approximation for X € R?. [35] generalized and essentially
sharpened the KMT results in the case of non-identically distributed independent
random variables, see also [34,36] and the references therein. Somewhat more recently,
[7] proposed a new proof of the KMT result for the simple random walk via Stein’s
method. The main motivation of [7], as admitted by the author, was to gain a more
conceptual understanding of the KMT result so that it could be generalized to cases
for sums of dependent random variables. Using different techniques, [4] extended
the KMT coupling for a large class of dependent stationary processes, successfully
breaking away from the independent variables setting.
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KMT coupling for random walk bridges 651

In the present paper we consider a different, albeit related problem to the embedding
problem above, which we now describe. Let {S,gf ’Z)}lel denote the random process
with law equal to that of the random walk {Smm:o conditioned on §,, = z. In order
for the latter law to be well-defined we assume one of the following situations.

— Continuous jumps There are constants « € [—00, 00) and B € («, oo] such that
X is a continuous random variable with density fx(-) such that fy(-) is positive
and continuous on (&, 8) and zero outside of this interval. Under this assumption
the process {S,(,'f’Z)};,71:1 makes sense foralln > 1 and z € L, = (na, np).

— Discrete jumps There are constants o € Z U {—oo} and S € ((«, oo] N Z) U {00}
such that X is an integer-valued random variable with probability mass function
px (+) such that px(-) is positive on (@« — 1, 8 4+ 1) N Z and zero for all other
values. Under this assumption the process {;S‘l.("’Z)};?:1 makes sense for all n > 1
andze L, = (na—1,nB+1)NZ.

In the case of continuous jumps we call the process {S,Sf 2) }—1 acontinuous random
walk bridge between the points (0, 0) and (n, z). Similarly, in the case of discrete
jumps we call the process {S,(n” ’Z)};z:l a discrete random walk bridge between the

points (0, 0) and (n, z). As a natural extension we define St("’Z) for non-integer ¢ by
linear interpolation, i.e. if € (m, m + 1) we have

SMD = (1= 1) SED + (t —m) - Sy
Our main goal in this paper is to demonstrate that given a reference slope p € (o, )
and z, which is close to np, we can construct a probability space that supports the
process {S,("’Z) }te10.) and a suitable Brownian bridge B;"’Z) conditioned on Bé”’Z) =0
and B\™? = 7 such that

sup |89 — B9 = O(logn)

0<t<n

with exponentially high probability. In particular, we are interested in establishing the
above statement under general conditions on the density fx(-) and the probability
mass function px (-) in the continuous and discrete case respectively.

Somewhat surprisingly, despite its inherent probabilistic interest and its direct con-
nection to the well studied problem of KMT approximations, the problem of finding
strong couplings between random walk bridges and Brownian bridges has received
very little attention. We believe that the present paper is the first one that consid-
ers this problem for general jump distributions. To the authors’ knowledge, the only
case of the above setup that has been previously considered is when X is a Bernoulli
random variable. The latter result can be found in [29, Theorem 6.3] and [7, The-
orem 4.1] for the case p = 1/2 (in both papers the authors consider the case when
P(X =1)=P(X = —1) = 1/2and p = 0, but the latter is equivalent to the Bernoulli
case and p = 1/2 after a simple affine transformation). For arbitrary p € (0, 1) the
result was proved in [8, Theorem 8.1].
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652 E. Dimitrov, X. Wu

Before we turn to our results, we introduce a bit of notation. If W, denotes a standard
one-dimensional Brownian motion and o > 0, then the process

BY = o (W, —tW)), 0<t<l,

is called a Brownian bridge (conditioned on By = 0, By = 0) with variance 2. In
the following two statements we present our main results about the random processes
{S,Sf ’Z)}lfmfn when the jump distribution X is continuous and discrete respectively.
We forgo stating the results in their full generality as this requires more notation. We
refer the reader to Theorems 3 and 4 in the main body of text for the more general
formulations as well as to Sect. 8 for the proofs of the two theorems below.

Theorem 1 Suppose that X is a continuous random variable with a density function
fx (-). Suppose that the support of fx is a compact interval o, B] C R and that fx is
continuously differentiable and positive on («, B) with a bounded derivative. Then for
everyb > Q0and p € (a, B), there exist constants 0 < C, a,a’ < oo (depending on b,
p and the function fx(-)) such that the following holds. For every positive integer n,
there is a probability space on which are defined a Brownian bridge B°® with variance
o2 = OI% that explicitly depends on p and fx(-) and a family of processes S for
z € L, = (na, np) such that

E [eaA(n,z)] < Cea’(logn)eb\z—pnlz/n’ 2)

where A(n, ) = A(n, z, B®, S™?) = supy_, -, [/nBZ, + Lz — 87|

Theorem 2 Suppose that X is an integer valued random variable with probability mass
function px(-). Suppose that a, B € Z with « < B are such that P(X € [«, B]) = 1
and px(x) > Oforallx € ZN[a, B]. Then foreveryb > Q0and p € («, B), there exist
constants 0 < C,a,a’ < oo (depending on b, p and px(-)) such that the following
holds. For every positive integer n, there is a probability space on which are defined a
Brownian bridge B® with variance 6> = U; that explicitly depends on p and px(-)

and a family of processes S"% forz € L, = (na — 1, nf + 1) N Z such that

E [eaA(n,z)] < Cea’(logn)eb\zfpnlz/n’ 3)

where A(n,z) = A(n, z, B, S"9) = supy, ., |/nBg, + Ltz — 87|,

Remark 1 From Theorems 1 and 2 applied to » = 1 and Chebyshev’s inequality one
readily observes that there are constants M, K, » > 0 depending on a, o’ and C such
that if z = np then

P(A(n,z) > Mlogn + x) < Ke ™. 4)

As mentioned before, Theorems 1 and 2 are representative of the more general
Theorems 3 and 4 given in Sects. 2.1 and 2.2 respectively. The latter are formulated for

@ Springer



KMT coupling for random walk bridges 653

random variables X whose density fx satisfies a certain set of Assumptions C1-C6 in
the continuous case, or whose mass function py satisfies a certain set of Assumptions
D1-DS5 in the discrete case. In Sect. 2.3 we give a brief description of the significance
of these assumptions. Our approach for proving Theorems 3 and 4, developed in
Sects. 5 and 6, is inspired by the proof of [29, Theorem 6.3], which is based on
an inductive dyadic construction in the same spirit as KMT’s original work [27,28].
The main technical challenges lie in obtaining detailed asymptotic estimates for the
distributions of S,, and S,(l'}’Z), which are presented in Sects. 3 and 4. Since we are
dealing with generic distributions, the asymptotic statements we need are notably
harder to obtain than those in [29], which deals with the Bernoulli case. Furthermore,
in the process of establishing our results we obtain numerous constants that depend on
fx in the continuous and on py in the discrete case. We quantify the dependence of
these constants on fx and px through various observables of the latter, which further
complicates our arguments. The purpose of this quantification is for example to show
that the coupling constants C, a, «’ in Theorems 1 and 2 can be chosen uniformly
even if fx or px are allowed to depend on some external parameter or n, see also
Remark 2. Obtaining such a uniformity is important for some of the applications we
have in mind and a representative example is given in Sect. 8.3.

It is worth noting that the random walk bridge is a less well-behaved object than the
random walk itself, because of the possibility of conditioning on an atypical endpoint.
The latter motivates the introduction of the (rather technical) Assumptions C6 and
D5 in Sect. 2, which are novel to our setting and did not appear in KMT’s original
work [27,28]. In Sect. 7.1 we discuss some easy to check conditions, under which
Assumptions C6 and D5 would follow. Moreover, in Sect. 7.2 we construct an example
of adiscrete random walk bridge, such that the jump distribution satisfies the conditions
of [27,28] but for which our coupling result fails. This example illustrates that one
necessarily needs to impose stronger assumptions when dealing with random walk
bridges compared to random walks, and in particular shows that our result are not a
consequence of [27,28]. It is quite possible that one can relax or remove some of the
assumptions we make, but one would need to implement different arguments than the
ones we present. We believe that it may be possible to prove the results of the present
paper using Stein’s method, similarly to the proof of [7, Theorem 4.1] in the Bernoulli
case. The immediate obstacle in generalizing the arguments of that paper, which the
author also acknowledges, is the difficulty of finding general smoothening techniques
that automatically generate Stein coefficients. Nevertheless, it would be nice to have
a less technical derivation of our results using such ideas.

We end this section with a brief discussion of the possible applications of our
results, specifically to integrable probability, which goes to our initial motivation for
considering the present problem. There is a large class of stochastic integrable models
that naturally carry the structure of random non-intersecting paths with some Gibbsian
resampling invariance. To give a concrete example, one can consider the case of a
random walks with jump size X satisfying P(X = 0) = P(X = 1) = 1/2. If the
walks are started at j — 1, 1 < j < a and conditioned to not intersect in the time
interval [0, b 4 c],and end at c — b + j — 1 at time b + c¢ then the trajectories of the
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Fig.1 Lozenge tiling of the T
hexagon and corresponding
up-right path configuration. The
dots represent the location of the
random walks at time t = 3

walks give rise to a random up-right paths. This model has a natural interpretation as
a uniform random lozenge tiling of the a x b x ¢ hexagon, see Fig. 1.

Let us number the random paths from top to bottom by Ly, Lo, ..., L,, and denote
the position of the k-th random walk at time ¢ by L (¢). Then law of {L,,}; _, enjoys
the following Gibbs property. Suppose that we sample {L,,}7 _, and fix two times
0<s<t<b+candanindex k € {1, ..., a}. We can erase the part of the path Lj
between the points (s, L (s)) and (¢, L (¢)) and sample independently a new up right
path between these two points uniformly from the set of all such paths that do not
intersect the lines Ly_1 and L1 with the convention that Lo = coand L,y = —00.
In this way we obtain a new random collection of paths {L,,}* _, whose law is readily
seen to be the same as that of {L,,}; _,.

The above is a simple example of a discrete Gibbsian line ensemble. A (notably
more complex) continuous Gibbsian line ensemble is given by the Airy line ensemble.
The Airy line ensemble was introduced in [9], and following the terminology from
[6] we call its parabolic shift the parabolic Airy line ensemble. The parabolic Airy
line ensemble is a certain collection of countably many random continuous curves
{Lm}or_,, such that each £; is a random continuous function on R and for each
i > 1andx € Ronehas £;(x) > L;+1(x). The top curve L is the parabolic Airy;
process and the ensemble satisfies the following Brownian Gibbs property. Suppose
we sample {L,,},"_, and fix two times s, t € R withs < ¢ and an index k € N. We can
erase the part of the path £y between the points (s, L (s)) and (¢, Lx(¢)) and sample
independently a Brownian bridge between these two points, which is conditioned on
not crossing L_1 and L with the convention that £y = oo. In this way we obtain
a new random collection of paths {£],}7° | and the essense of the Brownian Gibbs
property is that this new random line ensemble has the same law as {L,,}>_;.

In [9] the authors heavily rely on the Brownian Gibbs property to construct and
establish various properties of the Airy line ensemble. In a remarkable series of recent
papers [19-22] one of the authors of [9] significantly strengthened the arguments from
that paper to obtain a multitude of results about the Airy line ensemble and Brownian
last passage percolation (this is a different random line ensemble that enjoys the same
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Brownian Gibbs property we described above). These results are both qualitative and
quantitative in nature, e.g. estimating the modulus of continuity of the models, estab-
lishing refined regularity properties for them and finding critical exponents; however,
a marked advantage of the arguments in [19-22] is that they depend mostly on tools
from analysis and geometry. The latter is important, as it makes the arguments (for
the most part) free of exact computations and hence more easily extendable to other
settings.

One of the directions we are interested in exploring is bringing some of the ideas
from the continuous Gibbsian line ensemble setting to the discrete one. A particularly
successful instance of the latter is [8], where the authors investigated a discrete Gibb-
sian line ensemble related to the ascending Hall-Littlewood process (a special case of
the Macdonald processes [5]). By developing discrete analogues of the arguments in
[8,9] were successful in establishing the long-predicted 2/3 critical exponent for the
asymmetric simple exclusion process (ASEP). A critical component of the argument
in that paper is the strong coupling of Bernoulli random walk bridges to Brownian
bridges, which enabled the translation of ideas from the continuous to the discrete line
ensemble setting. We believe that the same could be done for other discrete models
in integrable probability, whose line ensemble structure is linked to random walks
with jumps that are not Bernoulli. To give a few examples, through various versions
of the Robinson-Schensted-Knuth (RSK) correspondence, one can link geometric last
passage percolation (LPP) to random walk bridges with geometric jumps, exponential
LPP to random walk bridges with exponential jumps (see [13,24]) and the log-gamma
polymer model to random walk bridges with log-gamma jumps [10,42].

We hope that many of the ideas in [9] and [19-22] can be adapted to all of the
examples we listed above and more. Achieving this would require strong couplings of
the underlying random walk bridges in these models to Brownian bridges, and we hope
that the results in the present paper will be a valuable tool for obtaining such couplings.
We have attempted to make the statements in this paper as generic as possible with
this goal in mind.

2 General setup

In this section we describe the general setting of a random walk bridge that we consider
and the specific assumptions we make about it. Our discussion naturally splits into two
parts, depending on whether the jump of the random walk is continuous or discrete.
In each case we formulate a precise list of assumptions and present the statements we
can prove for the corresponding random walk bridges that satisfy them. In the last part
of this section we give a brief explanation of the significance of our assumptions.

2.1 Continuous random walk bridges
We start by fixing some notation. Suppose that X is a continuous random variable

with density fx(-) and X; are i.i.d. random variables with density fx. Forn € N we
define S, := X + --- 4+ X,, and also let f;,(x) be the density of S,,.
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656 E. Dimitrov, X. Wu

For any random variable X and ¢t € R we define

My (1) :=E[e”‘], dx (1) :=]E[e”x], At) == log Mx (1),

A*(t) := sup{tx — A(x)}. ©)
xeR

LetDy :={x: A(x) < oo} and Dyx := {x : A*(x) < o0}.
We make the following assumptions on the function fx (x).

Assumption C1. We assume that there are @ € [—00, 00) and 8 € («, oo] and that
fx (x) is positive and continuous on («, ) and zero outside this interval. In addition,
we assume that fx (x) has a continuous extension to o if « > —oo and to g if B < oo.

Assumption C2. We assume that there is a A > 0 such that E [¢**]] < co.

For each n > 1 we set L, = (na,np), where «, B are as in Assumption CI1.
For z € L, we let $73 = {S,,(f’Z)}:’n:O denote the process with the law of {S,,} _,
conditioned so that S, = z. We call this process a continuous random walk bridge
between the points (0, 0) and (n, z). Notice that this law is well-defined by Assumption
C1. As a natural extension of this definition we define S, ,("’Z) for non-integer ¢ by linear
interpolation. In addition, we will denote the density of S,sf 2) by fm.n—m(:|2).

If fx satisfies Assumption C2 then D 4 contains a neighborhood of 0. In addition, it
is easy to see that D 4 is a connected set and hence an interval. We denote (A 4, B4) the
interior of D4 where A4 € [—o00, —A] and B4 € [A, oo]. We isolate some properties
for the functions in (5) under the above assumptions in the following lemma.

Lemma 1 Suppose that X is a random variable with density fx, which satisfies
Assumptions Cl and C2. Then My (u) has an analytic continuation to the vertical
strip D := {z : Ap < Re(z) < Ba}. Moreover, A(-) is a smooth function on
(A, Bp) and A”(x) > O forall x € (Ay, By).

Proof Let [ay,, b,] be such that a, strictly decreases to « and b, strictly increases to .
For each z € D and x € («, ) we define F(z, x) = ¢** fx(x) and note that F(z, x)
is holomorphic in z for each x and continuous on D X [a,, b,]. It follows from [40,
Theorem 2.5.4] that the function

b)l
o= [ Fends
[
is holomorphic on D. If K is a compact subset of D, and z € K we note that

B
8(2) ;:f e fx (x)dx

is well defined because

B B
/ le*?| fx(x)dx = / e Re@ £y (x)dx = Mx(Re(z2)) < oc.

o
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which is true as Re(z) € (A4, By).

Note that there is [c,d] C (Aa, Ba) such that if z € K then Re(z) € [c¢,d]. In
particular, we see that e8¢ < ¢ 4 9% and so by the dominated convergence
theorem with dominating function fx (x) - [e* 4 ¢?*] we get that

lim g,(z) = g(2),
n—oo

where the convergence is uniform over K. It follows from [40, Theorem 2.5.2] that
g(z) is holomorphic in D. Clearly, g(z) = Mx(z) when z € (A 4, B4), which proves
the first part of the lemma.

One can use further applications of the dominated convergence theorem to show
that the derivatives of g(z) are given by

BT an B
g(n)(z) :/ |:dz” exZi| fx(x)dx 2/ x"e* fy(x)dx,

and the latter integral is absolutely convergent for Re(z) € (A4, B4). For example,
see [32]. We next observe that for x € (A4, Ba), using the continuity and positivity
of fx, we know that g(x) > 0 and so A(x) = log[g(x)] is a smooth function on
(A A, BA). From the Chain rule, we see that

g (Mg(y) — g M7

A(y) =
g2y
_1 PP (x14+x2)y | .2 2
=542 / / ety [xl +x3 = 2xucz] Fx (1) fx (xa)dxiduxa,
28°(Y) Ja Ja
which is clearly positive. This suffices for the proof. O

If fx satisfies Assumptions C1 and C2 then in view of Lemma 1 we know that
A’(x) is a strictly increasing function on (A 4, B4). We let (A*, B*) denote the image
of (A4, B4) under the map A’(-). In addition, we write Mx (u) forallu € D = {z €
C : Ajp < Re(z) < Bj} to mean the (unique) analytic extension of My (x) to D
afforded by Lemma 1.

Assumption C3. We assume that the function A(-) is lower semi-continuous on R.

Lemma 2 Suppose that X is a random variable with density fx, which satisfies
Assumptions C1-C3. Then (a, B) C (A*, B*) C D+ and for all y € (A*, B¥)
we have A*(y) = ny — A(n), where n = (A’)’l(y).

Proof By Lemma 1 we know that A’(-) is a strictly increasing smooth function
from (A4, By) to (A*, B*), which implies that (A)~1() is also a smooth increas-
ing function from (A*, B*) to (A4, Ba). The statements (A*, B*) C D+ and
A*(y) = ny — A(n) for all y € (A*, B*) follow from [14, Lemma 2.2.5]. In the
remainder we show that («, 8) C (A*, B*).

Let z € (o, B) and suppose that € > 0 is such that (z — €, z+¢€) C («, B). Suppose
first that A4, > —oo. Then by Assumption C3, we know that liminf,, 4, A(x,) =
oo. This implies that
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lim zx, — A(x,) = —o0.
xn—>AA
Conversely, if Ay = —oo and x,, — A 4 then

lim sup zx, — A(,xn) = lim sup zx, — log I:E I:eXnX:I]

Xp—>Ap Xp—~>Ap
< lim sup zx, — log [ew*/” P(X elz—€z— e/z])]
xn—>AA

< )%6 —log(P(X € [z — €,z — €/2])) = —o0.

Similar considerations show that lim,, _, g, zx, — A(x,) = —oo.

By Lemma 1 zx — A(x) is smooth in (A 4, B4) and from the above we conclude
that its maximum is achieved at a point x, € (A4, B4) with 0 = %[zx —Ax)] =
7z — A’(x;). This shows that z € (A*, B*). O

Assumption C4. We assume that for every By > t > s > A4 there exist positive
Ki(s.t) ;

constants K (s, t) and p(s,t) > 0 such that |Mx(z)| < T TIm() 7D provided

s < Re(z) <t.

Assumption CS. We suppose that there are constants L, D, d > 0 such that fx(x) <
L for all x € R and at least one of the following statements holds

1. fx(x) < De=* for all x >0or2. fy(x) < De=4* for all x <0. 6)

Assumption C6. We assume that there are functions C: R-o - R.panda : Rog —
R ¢ such that the following holds. Foralln > 1,z € L, and b > 0 we have

E |:exp (&(13) max |Sk|>
1<k<n

In Sect. 2.3 we provide some explanation of the significance of Assumptions C1-C6.

In the sequel we denote u, = (A") 7 (z), UZZ = A”(u,)—these are well defined for
densities fy that satisfy Assumptions C1-C3 as follows from Lemmas 1 and 2. Using
this notation we can formulate the main theorem we prove for continuous random
walk bridges.

Sp = Z:| < é(l;) exp (l;(n + zz/n)) . @)

Theorem 3 Suppose that X is a random variable whose density function fx satisfies
Assumptions C1-C6 and fix p € (a, B). For every b > 0, there exist constants 0 <
C,a,d < oo (depending on b, p and the function fx(-)) such that for every positive
integer n, there is a probability space on which are defined a Brownian bridge B°
with variance 0% = G[% and the family of processes S for z € L, such that

E [eaA(n,z)] < Ce®/logm ghlz—pnl*/n 8)
where A(n,z) = A(n, z, B, S"9) = supy, ., |/nBg, + Ltz — 87|,
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Theorem 3 is a special case of Theorem 5, which is stated and proved in Sect. 6. Let
us elaborate on the difference between these two results. In words, Theorem 5 is a
more quantified version of Theorem 3. More specifically, it shows that the coupling
constants C, a, &’ that appear in Theorem 3 depend on the density function fx only
through a list of specific constants related to the support of fy, the complex domain
of A(z) = log Mx(z) as well as certain bounds on the z-derivatives of the function
A(uy) — z - uy, where u, = (A’)~!(z). The precise list of constants is given in
Definition 6 and is quite large.

Even though it is possible to get expressions for C, a, ’ in terms of the constants in
Definition 6, we do not attempt to do this in the present paper as the resulting formulas
would be quite involved. While Theorem 5 does not give exact formulas for C, a, o’
it does show that these coupling constants can be chosen uniformly for a family of
densities { /¥ }oes as long as all of these densities share the same support and bounds
as reflected by the constants in Definition 6. Our interest in a more quantified version
of Theorem 3 comes from an application we had in mind, in which we want to couple
a one-parameter family of random walk bridges with jump densities { /¥ }4e; to the
same Brownian bridge. This example is explained in Sect. 8.3 and finds an important
application in [42].

Because of the non-explicit nature of the coupling constants C, a, «’, both Theo-
rems 3 and 5 are similar to KMT’s original work [27,28] in that the theorems establish
the existence of coupling constants. Since the works [27,28] there have been several
results that give explicit formulas for the coupling constants in terms of the distribution
of the jumps in the random walk even when the jumps are not i.i.d., see [35,36]. It
would be nice to obtain similar expressions for the constants in our setup of random
walk bridges; however, we presently do not have a clear idea of how this can be done.

2.2 Discrete random walk bridges

We start by fixing some notation. Suppose that X is a random variable such that
P(X € Z) = 1 and let px(n) = P(X = n) for n € Z denote its probability mass
function. We let X; be ani.i.d. sequence of random variables with distribution function
px. For n € N we define S, = X| + --- + X,, and also let p,(-) be the probability
mass function of S,,.

Similarly to Sect. 2.1 we define

Mx (1) :=]E[efx], bx(0) :=IE[e”X], A(t) = log Mx (1)

A*(t) := sup{rx — A(x)}. 9
xeR

Let Dy :={x: A(x) < oo} and D+ := {x : A*(x) < oo}

We make the following assumptions on the function py (x).
Assumption D1. We assume that px(x) has a single interval of support, i.e. I =
(x €eZ:px(x) >0 =(@—1,4+1)NZfor some ¢ € Z U {—oc} and B €
((a, 0] N Z) U {o0}.
Assumption D2. We assume that there is a A > 0 such that E [¢**1] < co.
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Foreachn > 1weset L, = (nae—1,nB+1)NZ, where «, B are as in Assumption
Dl1. For z € L, we let §"? = {S,(,f‘Z)}Z:O denote the process with the law of
{Sm}::mo conditioned so that S, = z. We call this process a discrete random walk
bridge between the points (0, 0) and (n, z). Notice that this law is well-defined by
Assumption D1. As a natural extension of this definition we define St("’z) for non-
integer ¢ by linear interpolation. In addition, we will denote the distribution function
of S5 bY ponn—m (-12).

If px satisfies Assumption D2 then D 4 contains a neighborhood of 0. In addition, it
is easy to see that D 4 is a connected set and hence an interval. We denote (A 4, B 4) the
interior of D4 where A4 € [—o00, —A] and B4 € [A, oo]. We isolate some properties
for the functions in (9) under the above assumptions in the following lemma.

Lemma 3 Suppose that X is a random variable whose distribution function px satisfies
Assumptions D1 and D2. Then M x (1) has an analytic continuation to the vertical strip
D :={z: Ajp < Re(2) < Bp}. Moreover, A(:) is a smooth function on (A, B)
and A" (x) > 0 forall x € (Ay, By).

Proof The proof is analogous to that of Lemma 1. O

If px satisfies Assumptions D1 and D2 then in view of Lemma 3 we know that
A’(x) is a strictly increasing function on (A 4, B4). We let (A*, B*) denote the image
of (A4, B4) under the map A’(-). In addition, we write Mx (u) forallu € D = {z €
C: Ajp < Re(z) < Ba} to mean the (unique) analytic extension of My (x) to D
afforded by Lemma 3.

Assumption D3. We assume that the function A(-) is lower semi-continuous on R.

Lemma4 Supposethat X is a random variable whose distribution function px satisfies
Assumptions DI-D3. Then («, B) C (A*, B*) C D+ and for all y € (A*, B*) we
have A*(y) = ny — A(n), where n = (A')~Y(y). Furthermore, A*(x) is lower
semi-continuous. If « > —oo then a € D+ and A*(x) = — log px («). Similarly, if
B < oo then B € D and A*(B) = —log px(B).

Proof By Lemma 3 we know that A’(-) is a strictly increasing smooth function from
(A4, By) to (A*, B*), which implies that (A’)~!(-) is also a smooth increasing
function from (A*, B*) to (A, Ba). The statements (A*, B*) C D+, A*(y) =
ny — A(n) forall y € (A*, B*) and the lower semi-continuity of A* follow from [14,
Lemma 2.2.5]. We next show that («, 8) C (A*, B¥).

Letz € (o, B) and fix k, m € Z suchthatoe < k < zand z > m > B. Suppose first
that Ay > —oo. Then by Assumption D3, we know that liminf, 4, A(x,) = oo.
This implies that

lim zx, — A(x,) = —o0.
X,ZHAA
Conversely, if Ay = —oo and x,, > A 4 then

lim sup zx, — A()Cn) = lim sup zx, — log [E I:e)CnX:I]

Xp—>Ap Xn—>Ax
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< lim sup zx, — log [ex"k P(X = k)] < xp(z — k) —log(px(k)) = —o0.

)C,L*)AA

Similar considerations show that lim,, _, g, zx, — A(x,) = —oo.

By Lemma 3 zx — A(x) is smooth in (A 4, B4) and from the above we conclude
that its maximum is achieved at a point x, € (A4, B4) with 0 = %[zx — Ax)] =
7z — A’(x;). This shows that z € (A*, B*).

Next suppose that « > —oo. Then we have A4 = —oo. We have for any x € R
that

ax — A(x) < ax — log [E [e"x]] <ax —log[e* px(a)] < —log px(a).
Furthermore, we have

liminf ax, — A(x,) > liminf ax, — log [e‘”” px(@) +e@Du (1 Zp(x = oz))]
Xp——00

Xp—>—00
= liminf —log [px(c) + €™ - (1 = px(@))] = —log px (@)

Thus o € Dy+ and A* (o) = — log px (). Analogous arguments prove the statement

for B < oo. O

Assumption D4. We suppose that there are constants D, d > 0 such that at least one
of the following statements holds

1. px(x) < De~% forall x > 0 or 2. px(x) < De~% forallx <0. (10)

Assumption D5. We assume that there are functions C: R<o - Roganda : R.g —
R- ¢ such that the following holds. For alln > 1,z € L, and b > 0 we have

E [exp <&<13) max |Sk|> Sp = z] < C(b)exp (13<n + zz/n)) : (11)
n
In Sect. 2.3 we provide some explanation of the significance of Assumptions D1-D5.
In the sequel we denote u, = (A")~!(2), UZZ = A”(u,)—these are well defined for
distribution functions py that satisfy Assumptions D1-D3 as follows from Lemmas 3
and 4 . Using this notation we can formulate the main theorem we prove for discrete
random walk bridges.

Theorem 4 Suppose that X is a random variable whose probability distribution func-
tion px satisfies Assumptions DI-D5 and fix p € («, B). For every b > 0, there exist
constants 0 < C, a, o’ < oo (depending on b, p and the function px (-)) such that for
every positive integer n, there is a probability space on which are defined a Brownian
bridge B® with variance 6> = 05 and the family of processes S"2 for z € L, such
that

E I:eaA(n,z)] < Cea’(logn)eb\z—pnlz/n’ (12)
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where A(n,2) = A(n, z, B, S"9) = supy,, | VB, + Lz — 57

Theorem 4 is a special case of Theorem 6, which is stated and proved in Sect. 6.
Theorem 6 is a more quantified version of Theorem 4. More specifically, it shows that
the coupling constants C, a, &’ that appear in Theorem 4 depend on the distribution
function px only through a list of specific constants related to the support of py, the
complex domain of A(z) = log Mx(z) as well as certain bounds on the z-derivatives
of the function A(u;) — z - u;, where u, = (A)~Y(z). The precise list of constants is
given in Definition 11; however, the dependence of C, a, o’ on these constants is not
simple. We hope to be able to find more explicit formulas for C, a, &’ in the spirit of
[35,36] but we do not pursue this in the present paper.

2.3 Significance of assumptions

Let us explain the role of the different Assumptions C1-C6 and D1-D5 that we made
in the previous sections. Assumption C1 (resp. D1) ensures that the law of the random
walk bridge S? is well defined. Without the assumption that the support of fx (-)
(resp. px(+)) is a single interval one runs into the possibility of conditioning on events
of zero probability (in the density sense for the continuous bridges). It is possible to
relax this condition, by requiring that sufficiently many convolutions of fx () (resp.
px) with itself satisfy this assumption, but we will assume that fx(-) (resp. px)
satisfies it instead, as this somewhat simplifies our discussion.

Assumptions C2 and C4 (resp. D2) are essentially the same as those used in KMT’s
original work [27,28]. Since our results are analogues of [27, Theorem 1] it is natural
to have these assumptions.

In the process of proving Theorem 3 (resp. Theorem 4) we will require detailed
estimates on the conditional distributions fi, ,(-|z) (resp. pm.n(-|2)) for m,n > 1,
which in turn would require estimates on f, 4, (z) (resp. pn+m (z)). Consequently, we
will require large deviation estimates for the latter densities, which involve the rate
function A. For this reason, it will be convenient for us to assume that A is lower
semi-continuous, which is Assumption C3 (resp. D3).

Assumptions C5 and C6 (resp. D4 and D5) are more technical and more directly tied
to the particular approach we take to proving Theorem 3 (resp. Theorem 4). It is possi-
ble that one can relax (or entirely remove) some of these assumptions, but one would
need to implement different ideas than the ones we use. Our argument goes through
a comparison of the distribution f, ,(-|z) (resp. p,.,(-|z)) with a suitable Gaussian
density, for which it is useful to know that f;, ,,(-|z) (resp. pn.»(-|z)) has Gaussian tails
— this is the essence of Assumption C5 (resp. D5). Our proof of Theorems 3 and 4
relies on an inductive argument on 7. When we go from n/2 to n, Assumptions C1-C5
(resp. D1-D4) are enough to complete the induction step, provided z is close to the
reference slope pn, but for points that are macroscopically away from this point, we
require the estimates in Assumption C6 (resp. D5). Later in Sect. 7 we provide several
easy to check conditions that imply Assumption C6 (resp. D5).

We want to emphasize that it is not enough to assume Assumptions C1-C5 (resp
D1-D4), and obtain Theorem 3 (resp. Theorem 4) as we demonstrate in Sect. 7.2,
by providing a counterexample. The counterexample is for the discrete setting of
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our problem but can be naturally adapted to the continuous one. This indicates that
one should make additional assumptions on fx(-) (resp. px(-)) and our choice of
Assumption C6 (resp. D5) is made because it is somewhat natural and satisfied by the
distributions in the particular applications that we have in mind.

We end this section with the following remark.

Remark 2 In the process of establishing the results necessary for the proofs of Theo-
rems 3 and 4 we will obtain numerous constants that depend on the jump distribution
fx in the continuous and py in the discrete case. Some of the applications we have
in mind are to situations when the jump distribution depends on a parameter that is
allowed to vary in some (possibly infinite) interval. Consequently, we are interested
in quantifying the dependence of our coupling constants on the functions fx and py,
through various observables of these distributions. In words, we are interested in show-
ing that the coupling constants a, C and o’ in Theorems 3 and 4 can be taken uniformly
even if fy or px depend on some parameter so long as one has uniform control of
several observables for fx or px that will be made explicit in later sections. These
more quantified versions of Theorems 3 and 4 can be found in Sect. 6 as Theorems 5
and 6 respectively. We provide an example of the situation described in this remark in
Sect. 8.3.

3 Midpoint distribution: continuous case

We continue with the same notation as in Sect. 2.1. To ease the notation a bit we will
write M, ¢ and A instead of My, ¢x and Ax. Let f, »(x|y) be the density of S,
conditioned on S,4,, = y. Our goal in this section is to obtain several asymptotic
statements about the distribution f,, ,(-|(m 4 n)z) and we start by analyzing fy(Nz).

3.1 Asymptotics of fy(Nz)

In this section we assume that fx(-) satisfies Assumptions C1-C4. For a fixed z €
(A*, B*) we define

G,(u) = A(u) —z-u, foru € (Ag, Ba). (13)

Definition 1 Suppose that we are given s, r € Rsuchthate < s <t < 8, where «,
are as in Assumption C1. In addition, we denote S = (A")~!(s)and T = (A") "' (1) —
these quantities are well-defined in view of Lemma 2. By Lemma 1 there exist co >
M;,; > mg, > 0 such that M, > A”(y) > my, forall y € [S, T]. We can pick
8s.+ > 0 sufficiently small (depending on s, ¢ and fx(-)) so that

1. If Ds, (S, T) :={z € C:d(z,[S,T]) < J,} then 55&,(5, TYc{zeC:A <
Re(z) < Ba}; -

2. Re[Mx(u)] > Oforallu € Ds_ (S, T);

3. 8 < 1/2;

4. 88s; - |log(Mx(u))| < ms, forallu € ng(S, T).
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Definition 2 Suppose that we are given s, € Rsuchthatae < s <t < 8, where
o, B are as in Assumption CI1. In view of Assumption C4 there exists a constant
K, > 1 sufficiently large (depending on s, t and fx(:)) and ps; > 0 so that for
every u; € [min(ug, 0), max(u;, 0)] we have

M(u; + iy) - e Watin) o=Galua) | < L
T (1 |y)psr

Definition 3 Suppose that we are given s,¢ € R such that @ < s < < B, where
a, B are as in Assumption C1. Suppose that d, ; and K ;, ps. satisfy the conditions
in Definitions 1 and 2 . Denote € ; = 5?,: and Ry ; = [4KSJ]2/”J‘J. Then we can find
gs.t € (0, 1) (depending on s, t, &5 ¢, K+, ps.r and fx(-))such that for every z € [s, 7]
and y € [€;, Rs ;] we have

‘E [e(”Z‘Hy)X] ‘ e M= Galua) < s,z
To see why the above is true, notice that

)]E I:e(uz—&-iy)XiH o~ p=G:) _ [

e(uz.+iy)XH o= Galuz) |

where the above inequality is strict for any y # 0 as the contrary would imply X €
2y~ ! - Z almost surely, which is not true. This combined with the continuity of
E [e®“:+")X] in y and z ensures the existence of g,,, with the desired properties.

We are interested in proving the following statement.

Proposition 1 Suppose that fx satisfies Assumptions CI-C4. Fix f >t > s > « and
z € [s, t]. Then there exists Ny € N such that if N > Ny one has

fn(Nz) = ﬁ -exp (NG, (u;) + 81(z, N)), where 8;(z, N) = O(N~'/%).
(14)

The number Ng and the constant in the big O notation depend on fx,s and t only
through the constants in Definitions 1, 2 and 3.

Proof From Definition 2 and [15, Theorem 3.3.5] we know that for N sufficiently
large (specifically it suffices to take N > p;}) then

1 N
In(N2) = f e N (o (N dy.
T JR

Performing the change of variables u = iy we see that
ioco

fn(Nz) = i MY (e Negy. (15)

270 oo
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Let us shift the u contour in (15) to the vertical contour passing through u,. In
view of Lemma 1, we do not pass any poles in the process of deformation and so by
Cauchy’s theorem the value of the integral remains unchanged. The decay necessary
to deform the contours near £ioco comes from Definition 2 and our assumption that
N is sufficiently large. The result is

eNGz(uz) Uz;+ioo
fN(ND) = ——— f MV Ve NG gy, (16)
U;—100

For the given s, ¢ as in the statement of the proposition we define &, my ,
Ks i, €515 Ry 1, ps.r and gs; as in Definitions 1, 2 and 3. To ease notation we will
drop s, ¢ from the notation of these quantities. We will also denote by Cy ; the supre-
mum of |log(M (u))| as u varies over Ds. Notice that by construction we have

€ <dé/2ande - 8Cs; 83 <m

From (16) we have fxy(Nz) = (I) + (I1), where

eNGz(“z) uz+ie
(I = : / eN[GZ(M)_GZ(uZ)]dM, (I
2mi uy—ie

eNGZ(uZ) u;—ie N
= / [M(u)e_uze_GZ(uf)] du (17)
2mi u;—ioco

eNGz(uz) Uz +ioo N
+ — / [M(u)e_“e_Gz(“z)] du.
2mi u +ie

We will first obtain estimates on (I), which will require analyzing the power series
expansion of G;(u; + ir) — G, (u;) around the point u,. Note that by definition

r’o MAW(Q

Gy (uz +ir) — G (uy) = —(@n".

n=3

From the Cauchy inequalities [40, Corollary 2.4.3] and our choice of € we conclude
that for |r| < e
20_12 | |n -3

.
G (u; +ir) — G, (u;) + <2873C,Ir|?

<qgw§:

=: C(s,t,8)|r|3. (18)

Changing variables in (17) and using (18) we obtain

NG.(u;) reN'/? 2.2
e" Vil x<o C(s,t, 6
exp | ——= — ( )|x|3 dx

27N Joenie 2 IN
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=)=

oNG-(u) eN'’? x20?  C(s,1,8), 4
p|— [x]” | dx.

ex 4
27N J_enii2 2 VN

Using the inequality [e4 — 1| < |Ale!4! for all A € R, we obtain

o eNG:(u) eNl/2 Gzzxz .
_ €X — X
2nA/N J_enN1/2 P 2

NG, (u;) peN'/? Cls.t.8)x? 2,2 C(s.1.8
5—6 Cls, 1, Ixl” exp %t + (5.8, )|x|3 dx.
2N J_enii2 VN 2 VN

Notice that by our choice of € we have for |x| < e N!/? that

o2x2 2,2

o
__= C ,l,3 3N_1/2 < _Z_’
5T (s,1,08)|x| =-—7

which implies from above that

NG ) )
H——— (1-20(evN
D e (29 (W)
NGz () C(s,t,8), s o2x?
< —|x|Pexp | == dx, (19)
VN o IN P17

where @(x) = P(Z > x) with Z being a Gaussian variable with mean zero and
variance 1.
Using a simple change of variables we have

2 00
o 4 X 2
/ IxPexp | ——=x? | dx = —/ y3e_}2dy = —.
R 4 0z Jo Oz

Combining the latter with the inequality @ (x) < 2¢=**/2 for all x > 0 and (19) we
get

eNGZ (”z)

ZﬂGZ\/N

NG (uz) (2c(s, 1,8)

4exp(—€N/2 20

‘(1)—

We can now make Ny sufficiently large so that for all z € [s,¢] and N > Ny

eNGZ(uz) 1 1 21
/)= ——— O — .
D zmﬁ[ * (ﬁ)] @D
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We next forcus on estimating (II). We first note by construction we have

K
<

M(u; +iy) - e 2t =G| < )
‘ ’ (1 +yh?

The latter implies that if N > Ng > 2/p we have

N

/ ‘M(uz +iy) - 2z tiy) , =Gz (uz) dy
lyl>R
1-pN
<2kV <2KNR™PNIZ=2.47V, (22)
pN —1
Suppose next that y € [e, R]. Then by definition we have
N —uetiy) ~Gaun) |V N
’M(uZ +iy) - e FWeTV eI gy < 2Rg"™. (23)
e<|y|=R
Combining (22) and (23) we get
eNGZ(uz) N N eNGz(uz)
Il < —— 2R 247 < ———, 24
[ID)] < o [2Rq™ + ]_ZnozN (24

where the last inequality holds provided N is sufficiently large and N > Ny. Com-
bining (21) and (24) yields (14). m]

3.2 Asymptotics of fy (| (m + n)2)
We start with a useful definition.

Definition 4 Suppose that fx (-) satisfies Assumptions C1-C4 andthat8 >t > s > «
are given. Then in view of Lemmas 1 and 2 we know that F(z) := G;(u;) is smooth
on («, B) and so for each k > 0 exists Ms(f(t) > 0 such that |[F®(z)| < Ms(f‘t) for all
z €[s,t].

We have the following asymptotic estimate for f;, ,, (-|(m + n)z).

Proposition 2 Suppose that fx satisfies Assumptions CI1-C4. Fix s, t such that 8 >
t > s > «a and let Ny be as in the statement of Proposition 1. Then there exists M > 0
such that the following holds. Suppose that m,n > Ny are such that |m —n| < 1 and
denote N = n + m. In addition, let z, x be such that xN /n, (z — x)N/m, z € [s, t].
Then we have

Nx|Nz) = N2 1L sy 25
fn,m( x| Z)_ 'exp<_ EI:X_E:I + 2( ’xvz)>v ( )

2
V2n No,
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where

1 713
|52(N,x,Z)|SM'<ﬁ+N‘X—E)). (26)

The constant M depends on s,t and also on fx(-), where the dependence on the

latter is only through the constants in Definitions 1, 2 and 3 as well as M S) M fﬁ) in
Definition 4.

Proof Set ¢ = ° and ¥ = ;. From Proposition 1 we know that for m,n > Ny we
have

So(NX) fn(N(z = X)) _ fulxN/n]) fu(ml(z = x)N /m])
fn(N2) fn(N2)
_ eN(le](lgdm+F1<z—],2£/,1+¢)J_F(Z)).

20, @7
V2T NOy(14¢) - Oz—x)(1+v)

fo()]:

where the constant in the big O notation depends on s, ¢ and the constants in the
statement of Proposition 1.

Notice that F'(z) = 9,[A(z) — zu;] = —u;, where the last equality used that
A’(u;) = z.Inaddition, differentiating the last expression shows that 9, u, = m =

01—2. This means that F”(z) = —GLZ and F’(z) = —u,. This shows that F is a strictly

concave function in z and its second derivative is bounded from above by —1/M; ; as
in Definition 1.
Let us write x = ﬁ + r and denote

fn,m(Nx|NZ) =

_ Fz+0+¢)r) Fz—r+¥)

hr): 1+o 1+

- F(2).

Then 7(0) = h'(0) = 0 and

R'(r)y =+ ¢ F"(z+ (1 +¢)r) + (1 +¥)F"(z+ (1 + ¢)r), hence 1" (0)
_2Fo+v

2
UZ

Next we have

')y =1+ @) F"(z+ A +¢)r) + A +v)2F"(z + (1 +9)r),
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In view of Definition 4 there exists a constant K depending only on Mft) such that
|h(3)(r)| < K, provided z + (1 + ¢)r, z + (1 + ¢¥)r € [s, t]. Then we see that

Flx(14+)] | Fle=x)(1+)]
o) oyl
I1+¢ 28)
5 2 3
=exp|—N +¢;_w|:x— < i|+0 N‘x—L ,
20 1+¢ 1+¢
We claim that
o? 1 3
z =exp| O —+N'x— . (29)
Ox(1+¢) - T-x)(1+¥) (x/ﬁ

Combining (27), (28) and (29) gives (25). In the remainder we establish (29).
Squaring the left side of (29) and taking logarithm gives

where the constant in the big O notation is just K.

1+¢

log[—F" (x(1 + ¢p)] + log[—F"((z — x)(1 + ¥))] — 21log[—F" (2)].
Let us set x = ﬁ 4+ r and denote
g(r)y =log[—F"(z+r(1+ o)1+ 1log[—F"(z — r(1 + ¢))] — 21log[— F"(2)].

Then g(0) = 0 and

A+ F"z+r(14+¢) A+ PYF"@—r(+¢))

g/(r) = F// 1
(z+r(l+9¢)) F'(z+r(1+v))
This implies that
) B - F/// (Z)
g0 =W —9¢) )’

As discussed before |F”(z)| > 1/My, for all z € [s,¢] and so we conclude that

g’ (0)] < % for some constant K, that depends on s, ¢, M ; and MS(?,). On the
other hand, it is easy to see that |g”(r)] < K3 for some constant that depends on

5,1, My, ME) and M. This implies

lg(rl =r-—=+r°Ks,

which implies that

o2

Z il
=exp|O|—=|x——|+|x — ——
Ox(14¢) * T(z—x)(1+V) N l+¢ 1+¢

)}
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The latter inequality implies (29) and concludes the proof of the proposition. O

3.3 Tails of f, m (-|(m + n)2)

In this section we will further assume that fy (-) satisfies Assumption C5 and use that
to deduce tail estimates for fy , (:|(m + n)z). We start with a couple of lemmas.

Lemma5 Suppose that fx satisfies Assumption C5. Then for all N > 1

WNe=dN"'5 for all x > 0 if C5.1 holds and

x) < _
INCO =N N N2 o i < 04 €5.2 holds,

(30)

_ piE
whereW—Dﬁ+1+D.

Proof By symmetry it is clearly enough to consider the case when C5.A.1 holds.
Suppose that C1, Ca, c1, ¢2 > 0and hy, hy are probability density functions such that

hi(x) < Cie_"”‘z forallx >0andi =1, 2.

In addition, set g(y) = thl(y — x)ha(x)dx and hil(x) = hi(x) - 1,50 and hl2 =
hi(x)-1,-9 fori = 1, 2. We thus obtain for y > 0

oo oo

o0

g(y) = fo hi(y = X)hy(x)dx + fo hi(y = X)h (x)dx + /O ()3 (y = x)dx
y o2 2 5 2

< C1C2/ e C1—x)% j—cax dx+C2f h3(y — x)e 2 dx
0 y

o0 2
+C1/ e ¥ h%(y —x)dx.
)7
Using that h; are probability density functions we get
© x2,2 v2
/ e ¥ h5(y — x)dx < e Y,
y

Using that the convolution of two Gaussian densities is again a Gaussian density we
get

Y 2 2 2 2
f e C1O=X)" j—cax” gy < / e C1O=X)" p—c2x” gy
0 R

2
EVE . (—y “”). 31)

c1+c c1+c
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Combining all of the above we get

2
_yaca

VT (
————exp
NI c1+a

We now proceed to prove (30) by induction on N with base case N = 1, being
true by assumption. Suppose the result holds true for N. Setting 41(x) = fx(x) and
ha(x) = fn(x) and applying (32) we obtain for any y > 0 that

g(y) =1

) +Ce Y 4 Crem Y. (32)

pw" 2d(d/N
fN+1(y) =< —ﬁex —w + WNE_(d/N)y2 + De_dyZ
Jd+d/N d+d/N
<wh [D—V” +1+ D:| e dINHDTY? N+ —d(N+D) 71y
- Vd
This proves (30) for the case N + 1 and the general result proceeds by induction on
N. O

Lemma 6 Suppose that fx satisfies Assumption C5 and a > —o0 or B < 00 or both.
Then for all N > 1

N .
P < (NLTNI)' (x = Nao)V ! forallx > Na ifa > —c0
T AL (NB =)V forallx < NBif B < oo.

N-D!
Proof By symmetry it is clearly enough to consider the case « > —oo and prove the
first statement of the lemma. By shifting X by —« we may assume that « = 0. We
proceed by induction on N with base case N = 1 being true by assumption. We now
suppose that the result holds true for N and let y > 0. Then

y y LN N1 LN+1 v
= —x) = ———x"7 - Ldx = .
In+1(y) /0 SN fily —x) < /0 N x )
This proves the induction step and the general result follows by induction. O

We next summarize a couple of parameter choices for future use.

Definition 5 Suppose that fx (-) satisfies Assumptions C1-C5. Fix ¢, s such that 8 >
t > s > «. Then in view of Proposition 1 we can find C; > 1 sufficiently large

depending on the constants in Definitions 1, 2 and 3 and M S(OZ) in Definition 4 so that

eV < fv(N2)
forall z € [s, ] and N > Ny (where N is as in the statement of Proposition 1).
We can also find €] > 0 sufficiently small so that 48CfL -1 <1,s > a+3¢ and

t < B — 3e€1, where L is as in Assumption C5.
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We can also find R; > 1 sufficiently large so that
[s, 1] C [=R), Ri]and WCje 9R1/% < 1,

where W = D‘/Tj + 1+ D with D, d as in Assumption C5.

Finally, given the above choice of €; and R; we can define the variables §, 7 as
follows:

A

=+ € andf:ﬂ—el ifa > —oco0and f < o0;

=a+e andf =3max(t,0) —a — € ifa > —oco and B = o0;
=3min(0,s) — B +e€jandf = B — € ifa = —ooand B < o0;
= —6Rjandf = 6R| ifa = —oc and 8 = oco.

Ly Ly Loy U

Definition 6 Suppose that fx (-) satisfies Assumptions C1-C5. Fix ¢, s such that 8 >
t > s > aand let Cy, €1, Ry, § and 7 be as in Definition 5. For future reference we
summarize the following list of constants:

. the constants in Assumptions C1 and CS5;
. C1, €1, Ry, 1,5 as in Definition 5;

M; ;. mg ;, 8; ; as in Definition 1;

K&;, Ds.fas in Definition 2;

- ¢ ; as in Definition 3;

M , MY , M@ , M® , M from Definition 4.
5.1 5.t 5.1 5.t 5.1

S N

We can now prove the following complement to Proposition 2, which establishes
tail estimates for the midpoint density of a continuous random walk bridge.

Proposition 3 Suppose that fx(-) satisfies Assumptions C1-C5. Fix s,t such that
B >t >s > «a. There exist constants A,a > 0 and N1 € N, such that the following
holds. Suppose that m,n > N are such that |m —n| < 1 and denote N = n +m. In
addition, let 7 € [s, t]. Then we have for any x € R

fum(NX|NZ) < A - exp (—aN [x — §]2> . (33)

The constants a, A and Ny depend on the values s, t and the function fx(-), where
the dependence on the latter is through the constants in Definition 6.

Proof Denote ¢ = = and ¢y = -~ For clarity we will split the proof into several cases.
Case 1. Suppose first that « > —o0. From the first line of (27) we know that

Jn(Nx) - fn(N(z — x))

fn,m(leNZ) = fN(NZ)

. (34)

and the latter expression is zero unless Nx > no and N(z —x) > ma. We will assume
that x satisfies these inequalities as otherwise (33) trivially holds for any A,a > 0.
From Definition 5 we know that for all N > Ny we have

Fum(NxIN2) < CY fy(Nx) - fn(N(z = x)). (35)
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In particular, since f, and f, are uniformly bounded by a constant (namely L), we
see that we can make (33) true for all small N > Ny by choosing A sufficiently large
and a < 1. We will thus focus on showing (33) for sufficiently large N > Nj.

Suppose that Nx < no + nep, where €] is as in Definition 5. From Lemma 6 and
the inequality

1 1 eVl

= <
(N—1)!  T(N) ~ NN-D’

(36)

which can be found in [30] we conclude that

Leneq

n—1
fan(Nx) < L < ) < L(Lere)" L.

The above, combined with the definition of €; and (35) imply
Fam(Nx|Nz) < CV - L (Lere)"™ - L < 16CFL*27V,

while for N > N; with N sufficiently large depending on o we have

772 e
A~exp(—aN[x—§])zA~exp —aNZ .

It follows from the above inequalities that (33) holds provided we take A > 16Ci‘L2,
a sufficiently small and Nx € [no, no + nep]. Analogous arguments applied to z — x
in place of x show that for the same A and a we have (33) provided that N(z — x) €
[mo, mo+mer]. We may thus assume that Nx > na+nep and N(z—x) > ma+me;.

We next consider the cases § = oo and 8 < 0o separately starting with the former.

Case 1.A.If B = oo then we let N be sufficiently large so that Ny > Ny, where Ny is as
in the statement of Proposition 1 for the values § = a+¢ and 7 = 3 max(t, 0) —o —e;.

Then from Proposition 1 [see also Eq. (27)] we know that we have for m,n > N;
and Nx > na +nep and N(z — x) > mo + me; that

Fum(NXINZ) < Croxp [N (F(x(l +9)  Fle-0d+y) F(z))} ,

1+¢ 1+
(37

where the constant C, depends on m; ; and M; ; as in Definition 1 for the values
§=a+e and 7 = 3max(r,0) — o — €1. As in the proof of Proposition 2 we write
X = ﬁ + r and denote

_Flz++¢)r] | Flz—r(1+9)]
N 1+¢ 1+

h(r) — F(2).
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Then 7(0) = h'(0) = 0 and
W' ar)y=QA4+¢F ' @+A+)r)+ AL +y)F '+ A +v)r)
1+ 1+
St
Or(+¢)r  Oz+(+y)r

The above shows that 4 (r) is strictly concave and its second derivative is less than —d»
for some d, > 0 (depending on M ; alone) on the interval z+(14+¢)r, z4+(1+9)r €
[§, f]. Putting this in (37) we conclude

d 2
Jnm(Nx|Nz) < Crexp (—72 "N - [x - } ) ,

which implies (33) in this case.

Case 1.B. We suppose that § < o0o. As before we know that (33) holds for any
A,a > 0if Nx > nf or N(z — x) > mp and so we may assume that Nx < nf and
N(z —x) <m§.

Suppose that Nx > nf — ne;. Then from Lemma 6, (35) and (36) we know that

fum(Nx|Nz) < CN - L (Lee)"™' - L < 16C*L*27V,

while for N > N; with N sufficiently large depending on 8 we have

z7? et
A-exp(—aN[x—§]>2Aexp _GNI .

It follows from the above inequalities that (33) holds provided we take A > 16C*L2,
a sufficiently small and Nx € [nf — ner, nf]. Analogous arguments applied to
z — x in place of x show that for the same A and a we have (33) provided that
N(z —x) € [mB — mey, mB]. We may thus assume that Nx € [no + ney, nff — neq]
and N(z — x) € [ma + me;, mpB — mey].

We let N be sufficiently large so that N1 > Ny, where Ny is as in the statement of
Proposition 1 for the values § = o + ¢ and f = 8 — €.

Then from Proposition 1 [see also Eq. (27)] we know that for m,n > N; and
Nx € [ne + nep,nB —ney] and N(z — x) € [ma + mey, mpB — meq] that

Fom(NXIN2) < Caexp [N (F(x(l +9) | Fe=nd+y) _ F(z))] .(38)

1+¢ 1+

where the constant C, depends on m; ; and M; ; as in Definition 1 for the values
S=a+eandf=p—e.
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Repeating the same arguments that follow (37) and using the strict negativity of
F"(z) for z € [§, f] we conclude that

2
Sam(Nx|Nz) < Caexp (_%2 N . |:x _ 1j_¢:| >’

which implies (33) in this case. Overall, we conclude (33) under the condition that
a > —00.

Case 2. Suppose now that « = —o0.

Case 2.A. If B < oo then we can conclude (33) by the same arguments as those in
Case 1.A.

Case 2.B. Suppose that 8 = co. By symmetry it suffices to consider the case when
Assumption C5.1 holds. Let R be as in Definition 5. Then from Lemma 5 and (35)
we know that forx > R;and N > N

Fam(Nx|Nz) < CN . Wne=dN< [ < [ o=dN2/2

while
A-exp (—aN [x . %]2) > Aexp (—aN[x + R1/2]2> .

It follows from the above inequalities that (33) holds provided we take A > L, a
sufficiently small (say a < d/8) and x > R;. Analogous arguments applied to z — x
in place of x show that for the same A and a we have (33) provided that z — x > Rj.
We may thus assume that x, z —x € [-2Ry, 2R1].

We let N be sufficiently large so that N1 > Ny, where Ny is as in the statement of
Proposition 1 for the values § = —6R; and f = 6R;. Then from Proposition 1 [see
also Eq. (27)] we know that for m,n > Ny and x € [-2R1, 2R{]

Fom(NXIN2) < Caexp [N (F(x(l o) e 0d+y) F(z))} .(39)

1+¢ 1+

where the constant C; depends on m; ; and M; ; as in Definition 1 for the values
§ = —6R| and f = 6R;. Repeating the same arguments that follow (37) and using the
strict negativity of F”'(z) for z € [§, f] we conclude that

2
Sam(Nx|Nz) < Cexp (-%2.1\7. |:x _ 1j¢i| >’

which implies (33) in this case. Overall, we conclude (33) when o« = —oo and 8 = oo.
O
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4 Midpoint distribution: discrete case

We continue with the same notation as in Sect. 2.2. To ease the notation a bit we will
write M, ¢ and A instead of Mx, ¢x and Ax. Let p, ,(-|l) be the distribution of
S, conditioned on S+, = [. Our goal in this section is to obtain several asymptotic
statements about the distribution p,, ,(-|l) and we start by analyzing py (/).

4.1 Asymptotics of py (/)

In this section we assume that px(-) satisfies Assumptions D1-D3. For a fixed z €
(A*, B*) we define

G.(u) = A(u) —z - u, foru € (Aa, By). (40)

Definition 7 Suppose that we are given s, t € Rsuchthate < s <t < 8, where a,
are as in Assumption D1. In addition, we denote S = (A")"!(s)and T = (A") "' (1) —
these quantities are well-defined in view of Lemma 4. By Lemma 3 there exist co >
M;; > mgs; > 0 such that M, > A”(y) > my, for all y € [S, T]. We can pick
85,1 > 0O sufficiently small (depending on s, ¢ and px(-)) so that

1. If Dy, (S, T) :={z € C:d(z,[S,T]) < &} then D5 (S, T) C{z € C: Ay <
Re(z) < Balk

2. Re[Mx(u)] > Oforallu € Ds, (S, T);

3. 80 < 1/2;

4. 88, - |log(Mx (u))| < my, forallu € Ds (S, T).

Definition 8 Suppose that we are given s, r € Rsuchthate < s <t < 8, where «,
are as in Assumption D1. Suppose that d, ; satisfies the conditions in Definitions 7 and
leteg, = 8;‘,,. Then we can find g5 ; € (0, 1) (depending on s, ¢, §; and fx(-))such
that for every z € [s,t] and y € [e5,, w] we have

‘]E I:e(uz‘H)’)X]

e ‘Uz er (uz) < Gs.t-

To see why the above is true, notice that

‘E [e<uz+ty)X] ’ o~z oG ) _ | [

e(uz+iy>xu oWz g0) — 1

where the above inequality is strict for any y # 0 as the contrary would imply X €
27y~! . Z almost surely, which is not true. This combined with the continuity of
E [e(“3+’5’)x ] in y and z ensures the existence of g, ; with the desired properties.

We are interested in proving the following statement.

Proposition 4 Suppose that px satisfies Assumptions DI-D3. Fix f >t > s > a.
Then there exists No such that if N > No,l € Zand z =1/N € [s, t] one has
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pn() = ﬁ -exp (NG (uz) + 81(z, N)), where 81(z, N) = O(N~'/?).
(41)

The number Ng and the constant in the big O notation depend on fx,s and t only
through the constants 8 ¢, ms ; and qs ; as in Definitions 7 and 8.

Proof To simplify the notation, we drop the dependence on X. For any / € Z and
N > 1 we have

|
pn() = 2—/ e p )N dr.
T J -

Performing the change of variables u = it we see that

1 i
pn() = — MY wye " du. (42)
2mi i

Consider the rectangular contour R consisting of straight segments connecting —i
tou, —im,tou; +im, to i back to —im with a positive orientation. It follows by
Lemma 3 that MV (u)e™* is analytic in a neighborhood enclosing that rectangle and
so by Cauchy’s theorem the integral over R vanishes. In addition, the integral over the
top segment and the bottom segment are equal and hence their sum vanishes (as they
have opposite orientation). The conclusion is

eNGZ(uZ) uz+imw
pyl) = ——— / Mu)N e Nee=NGl) gy, (43)
Tl

u;—Iimw

For the given s, ¢ as in the statement of the proposition we define §; ;, m; ;, €5, and
gs.: as in Definitions 7 and 8. To ease notation we will drop s, ¢ from the notation for
these quantities. We will also denote by C; ; the supremum of | log(M («))| as u varies
over Djs. Notice that by construction we have

€ <dé/2ande - 8Cs; 873 <m.

From (43) we have py () = (I) + (I1), where

eNGZ(uZ) uz+ie
=" / MGG gy, (1)
2mi u,—ie

NG (uz) u;—ie N
=< / [M(u)e_uze_Gz(”Z)] du (44)

21 u,—im

eNGZ(uZ) uz+im G N
+—,[ [M(u)e_'“e_ Z("Z)] du.
27Tl u +ie
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Arguing as in the proof of Proposition 1, we have for Ny sufficiently large and
N > Ny

eNG:(uz) 1
(I):—[1+O<—)] (45)
27101\/N \/ﬁ
where the constant in the big O notation depends on the constants in this proposition.
We next forcus on estimating (II). Suppose that £y € [e, 7]. Then by definition
we have

M(“Z +iy)e_2(uz+i,\’)er(“z) <gq.

The above implies that

NG (uz) eNGz(uz)

e
INI<— .27 N ~ _ 46
(ID] = 2 7 = 2no,N (46)

where the last inequality holds provided Ny is sufficiently large and N > Nj. Com-
bining (45) and (46) yields (41). O

4.2 Asymptotics of pp,m (-|/)

We start with a useful definition.

Definition 9 Suppose that px () satisfies Assumptions D1-D3andthat8 >t > s > «
are given. Then in view of Lemmas 3 and 4 we know that F'(z) := G;(u;) is smooth
on (o, B) and so for each k > 0 exists Ms(ﬁ) > 0 such that |[F® ()| < Ms(f(t) for all

z € s, t].
We have the following asymptotic estimate for p, , (:|1).

Proposition 5 Suppose that px satisfies Assumptions DI-D3. Fix s, t such that § >
t > s > «a and let Ny be as in the statement of Proposition 4. Then there exists M > 0
such that the following holds. Suppose that m,n > Ng are such that |m —n| < 1 and
denote N = n + m. In addition, let k,l € 7 be such that if z := /N and x := k/N,
then z, x N /n and (z — x)N/m € [s, t]. Then

2 4 2
M= ——cexp (=N — [x =2 +0ov.x.2)), @7
Pranll) = e exp( 207 |75 e xz)) 47
where
163(N.x.2)| < M - L+N‘x—5)3 (48)
2 Xy, 2)| = \/ﬁ 2 .

The constant M depends on s,t and also on px(-), where the dependence on the

latter is only through the constants in the statement of Proposition 4 and M s(?,), M S(ft,)
in Definition 9.
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Proof Set ¢ = % and Y = % From Proposition 4 we know that for m, n > Ny we
have

Pu(K)pm(l — k)
pn()

Flx(+¢)] | Flz—x)(1+y)]
N (Eistpl 4 P9l _p(r)) 20,

V2T NOx(14¢) - O(z—x)(1+v)

pn,m(k|l) =

=e

afol)]

where the constant in the big O notation depends on s, ¢t and the constants in the
statement of Proposition 4. From here the proof of the proposition follows the same
arguments as in the proof of Proposition 2. O

(49)

4.3 Tails of pp m (+|1)

In this section we will further assume that py (-) satisfies Assumption D4 and use that
to deduce tail estimates for p, , (-|/). We start with a couple of lemmas.

Lemma 7 Suppose that px satisfies Assumption D4. Then for all N > 1 and x € Z

WNe=dNT'? forall x > 0 if D4.1 holds and

x) < _
PN () = {WNe—dN 52 for all x < 0 if D4.2 holds,

_piE
whereW—Dﬂ+l+2D.

Proof By symmetry it is clearly enough to consider the case when Assumption D4.1
holds. We proceed by induction on N with base case N = 1 being true by assumption.
Suppose the result holds true for N and let y > 0. Then we have

y 00 00
PN1) =Y pNOpi(y —x) + Y pN@p1(y —x) + Y pa(y — ) p1(x).
x=0 x=y x=y
By induction hypothesis and Assumption D4.1 we have
> 1,2 > 2
Y o pn@piy—x) < W™V and ) " py(y — x)pi(x) < De” "

X=y x=y

—1.2 2 . . .
Denote f(x) = e 4N %" ¢=dx=Y)" and note that the function has a unique maximum
. Ny _ —1,,2
on [0, y], given by xpax = N—jl and f (xmax) = e 4N+D7Y" We thus have

- ’ —1y? N “1,2
fx) =< / fu)du + e 4N+ < (— + 1) e dWED Ty
2Im=], Ve
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where in the last inequality we used (31). The latter implies that

y
JT ) _d —1,2
—0<wVp| XX +1). (N+D™y7
XEZOPN(X)Pl(y x) < ( I e

Combining all of the above we see that

< WNe—dW+D71y? [1 +pwN4Dp (i + 1)}
PN+1(Y) < e TrdN

—1.2
< WN+le—d(N+l) e

This proves the case N + 1 and the general result follows by induction. O
We next summarize a couple of parameter choices for future use.

Definition 10 Suppose that px(-) satisfies Assumptions D1-D4. Fix ¢, s such that
B >t > s > «. Then in view of Proposition 4 we can find C; > 1 sufficiently large

depending on the constants in that proposition and M, Y(f)t) in Definition 9 so that

N < pnv@

forall z € [s,t]NZ and N > Ny (where Ny is as in the statement of Proposition 4).
We can also find €; > 0 sufficiently small so that s > o + 3¢; and t < 8 — 3€].
We can also find Ry > 1 sufficiently large so that

[s.71] C [—Ry. Ry] and WCje 9RI/2 <1,

where W = D% + 142D with D, d as in Assumption D4.

Finally, given the above choice of €] and R; we can define the variables &, f as
follows:

—S§=a+eandf=p8—¢ ifa > —o0oand B < o0;
=a+e andf =3max(t,0) —o — € ifa > —co and B = o0;
=3min(0,s) —B+ejandf =B — €] ifa = —oo and B < o0;

—6R;andf = 6R; ifa = —oco and B = 0.

Ly Ly L U

Definition 11 Suppose that px(-) satisfies Assumptions D1-D4. Fix ¢, s such that
B >1t>s>aandlet Cy,e€, Ry, § and 7 be as in Definition 10. For future reference
we summarize the following list of constants:

. the constants in Assumptions D1 and D4;
. C1, €1, Ry, 1,5 as in Definition 10;

. M; i, mg ;, 8; ¢ as in Definition 7;

. g;.; as in Definition &;

MO MY M2 MDD MP from Definition 9.
§,1 §,t $,t §,1 §,t

S A NS S e
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We can now prove the following complement to Proposition 5, which establishes
tail estimates for the midpoint density of a discrete random walk bridge.

Proposition 6 Suppose that px satisfies Assumptions DI-D4. Fix s, t such that § >
t > s > «. There exist constants A,a and N1 € N such that the following holds.
Suppose thatm,n > 1 are such that |m —n| < 1 and denote N = n+m,. In addition,
letl € Z be such that z := /N € [s,t]. Then for any k € Z and x = k/N we have

Z 2
Pum(kll) < A - exp (—aN [x _ E] ) . (50)

The constants a, A and N1 depend on the values s, t and the function px(-), where
the dependence on the latter is through the constants in Definition 11.

Proof Denote ¢ = “ and ¥y = ;. For clarity we split the proof into several cases.
Case 1. Suppose first that « > —o0. From the first line of (49) we know that

Pn(k) - pu( — k)

nmkl: s
Pn,m (k) on (D)

&1Y)

and the latter expression is zero unless k > no and [ — k > mo. We will assume that
k satisfies these inequalities as otherwise (50) trivially holds for any A, a > 0. From
Definition 10 we know that for all N > Ng we have

Pum k|l < CY pu(k) - pm(l) < CY. (52)

The latter implies that (50) is true for all small N > Ny by choosing A sufficiently
large and a < 1. We will thus focus on showing (50) for sufficiently large N > Nj.

Recall that F(z) = G, (u;) = —A%(2) is defined for z € («, B) but by Lemma 4
we can continuously extend it to « (and to B provided 8 < o0) by setting F(«) =
log px () (and F(B) = log px(B) if B < 00). We next observe that forany m, n > 1,
np>k>naexandmp >1—k > moa

pu(k) < &"FEM and p,, (1 — k) < emF&=D/m). (53)

Indeed, focusing on the first inequality, the statement is true for k # an and k # Bn
from (42) and the fact that the integrand in that equation is bounded in absolute value
by 1 as shown in Definition 8. The statement is also true for k = an and kK = Bn by
our extension of F above.

Suppose that Nx < na + ney, where € is as in Definition 10. From (53) and
Proposition 4 we know that there is a C > 0, depending on mg ;s such that for m, n >
No

pum(klD) < CV/N - exp [N<F[X(1+¢)] n Flz =) +9)] —F(z)ﬂ.

1+¢ 1+
(54)
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Similarly to the proof of Proposition 2 we write x = ﬁ + r, and denote

_Flz+(+@)r] | Flz—r(+ )]
h(r) = T+ o + . — F(2).

Notice that since k < na + ne; we have that r, > 12%) > 26' . In addition, we have

')y =0+ F ' z+A+@)r)+ A +y)F'z+ A +y)r) <0

for all r € [0, r,] and so by the continuity of F and its smoothness on («, ) we
conclude

Flx(1+¢)] Flz—x)A+9)]
1+ ¢ 1+

€1/3 ry
/ / h’ (r)drdy </ / ' (r)drdy
/61/3/ 61
drdy = — .
M; ; IM; ;

Applying the above in (54) we conclude

— F(2)

612N
Pum(kll) < CV/N -exp [ — . (55)
9M§,f

On the other hand, for N sufficiently large depending on o and N > N; we have

772 et
A~exp<—aN[x—§])zA~exp —aNZ .

It follows from the above inequalities that (50) holds provided we take A = 1, a
sufficiently small, N sufficiently large and Nx € [na, na + ney] for m,n > Nj.
Analogous arguments applied to z — x in place of x show that for the same A and a
we have (50) provided that N(z — x) € [ma, ma + me]. We may thus assume that
Nx > na +nep and N(z — x) > ma + mej.

We next consider the cases B = oo and B < oo separately starting with the former.

Case 1.A.If B = oo then we let N be sufficiently large so that Ny > Ny, where Ny is as
in the statement of Proposition 4 for the values § = «+¢; and f =3 max(t,0)—a—e.

Then from Proposition 4 (see also equation (49)) we know that we have for m, n >
Niand Nx > na + nej and N(z — x) > ma + me; that

pum(klD) < Caexp [N <F(X(1 +¢) n F(z=x)0+y) F(z))], (56)

1+ ¢ 1+ v
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where the constant C, depends on m; ; and M; ; as in Definition 7 for the values
§ =a+ e and f = 3max(t, 0) — a — €. From here the proof continues as that of
Case 1.A. in Proposition 3.

Case 1.B. We suppose that § < oo. As before we know that (50) holds for any
A,a > 0if Nx > nf or N(z — x) > mp and so we may assume that Nx < nf and
N(z —x) <mp.

Suppose Nx > nf — nej. We can repeat our arguments from before and see that
(55) holds in this case as well. On the other hand, for N > N; with N; sufficiently
large depending on  we have

z7? et
A-exp(—aN[x—§]>2Aexp —aNZ .

It follows from the above inequalities that (50) holds provided we take A = 1, a
sufficiently small, N sufficiently large and Nx € [mB, mB — me;] for m,n > Nj.
Analogous arguments applied to z — x in place of x show that for the same A and a
we have (50) provided that N(z — x) € [mB — me|, mB]. We may thus assume that
Nx € [no + nep,nf —ney] and N(z — x) € [ma + mey, mp — meq].

We let N; be sufficiently large so that Ny > Ny, where Ny is as in the statement of
Proposition 4 for the values § = o + ¢ and f = 8 — €.

Then from Proposition 4 (see also equation (49) ) we know that for m, n > N and
Nx € [na +ney,nB —ney]and N(z — x) € [ma + me, mB — me] that

Fx(I1+¢))  F({z—x)1+1v))
1+¢ 1+y

Pn,m (k| < C2 exp |:N < - F(Z))] , (57

where the constant C; depends on m; ; and M; ; as in Definition 7 for the values
§ =a+e€andf = B — €. From here the proof continues as that of Case 1.B. in
Proposition 3. Overall, we conclude (50) under the condition that « > —o0.

Case 2. Suppose now that ¢ = —o0.

Case 2.A. If B < oo then we can conclude (50) by the same arguments as those in
Case 1.A.

Case 2.B. Suppose that B = oco. By symmetry it suffices to consider the case when
Assumption D4.1 holds. Let R; be as in Definition 10. Then from Lemma 7 and (52)
we know that for x > Ry and N > Ny

Pum(kll) < CN . Wne=dN<* < p=dNx?/2
while

A-exp (—aN [x . %]2) > Aexp (—aN[x + R1/2]2) .
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It follows from the above inequalities that (50) holds provided we take A = 1, a
sufficiently small (say a < d/8) and x > R;. Analogous arguments applied to z — x
in place of x show that for the same A and a we have (50) provided that z — x > Rj.
We may thus assume that x, z —x € [-2R;, 2R;].

We let N be sufficiently large so that Ni > Ny, where Ny is as in the statement of
Proposition 4 for the values § = —6R and / = 6R;. Then from Proposition 4 (see
also equation (49)) we know that for m,n > Ny and x € [-2R}, 2R;]

WMWDSCwm{N<”“1+@) ”@_”“+w”—F@O}

1+ ¢ 1+

where the constant C, depends on m; ; and M; ; as in Definition 7 for the values
§ = —6R; and f = 6R;. From here the proof proceeds as that of Case 2.B. in
Proposition 3. O

5 Gaussian coupling

In this section we isolate some results about the quantile coupling of random variables
with certain estimates on their probabilities to Gaussian random variables. We start
by isolating some results about Gaussian random variables. We denote by @ (x) and
¢ (x) the cumulative distribution function and density of a standard normal random
variable. The following two lemmas can be found in [31, Section 4.2].

Lemma 8 There is a constant ¢ > 1 such that for all x > 0 we have

1 1— &) c
< < ,
cl4+x)~ o¢(x) ~— 14+x

(58)

Lemma9 Forall A>0,n > 64A%2and0 < x < ﬁ we have

log(é(—ﬁx —i—u)) ~ log (1 — @ (/nx —u)

3, 12
@ (—/mo) ot ) 2 Ae 69

and

o <¢(—ﬁx —u)) 1 (1 — @ (Vnx +u)
oy )T U T e

where u = 2A(/nx* +n=1/?).

) < —Amx> +n71?), (60)

From Rolle’s theorem one deduces the following simple result.

Lemma 10 Let R > 0 be given. There exists a positive constant ¢ such that for
X,y € [_Ra R]

|P(x) — @] =< c1lx — yl. (61)
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The following is an analogue of [29, Lemma 6.9]. We include it here for the sake
of completeness.

Lemma 11 Ler My > 0, ¢y > 0,¢ € (0,1), b’ > 0 and ¢’ > 0 be given. Then we
can find constants ¢y, €3 > 0, Ny € N such that the following holds for every positive
integern > Ny and every o® € [¢, ¢~ V). Suppose that X is an integer random variable
andforallx e {y :y € Z, |y| < negp}

1 2
To’n
where
1 |x|?
[8(x)] < Mo ﬁ—l—? . (63)
Assume additionally that for any m € 7
P(X = m) < /e bm*/n, (64)

Then for any |x| < exn we have

2
F(x—c2<1+x—>>SP(XSX—USP(XSX"‘I)
n

2
§F<x+cz(l+7>>, (65)

where F(x) is the cumulative distribution function of a N (0, o->n) random variable.
Proof For convenience we denote G(x) = P(X < x), F(x) = 1 — F(x), f(x) =

7x2/(262n)
F'(x) = &——
( ) V2mno?

constants that depend on My, ¢, €y, b’, ¢’ unless otherwise specified.

By symmetry we can assume x > 0. It suffices to prove (65) only for integer values
of x and for n sufficiently large. In particular, we assume that N, is sufficiently large
so that egn > n/8 > /3¢-nl2 > 1foralln > N;. We prove (65) in three cases
depending on the size of |x]|.

We first consider the case x < /3¢ - n'/2, We then have

and G(x) = 1 — G(x). Throughout C, ¢ will stand for generic

Fx) =Y f(+ D PX =j)— f()]

Jj>x Jj>x

> o 1
= / Fdx + Y [PX = j) = f()]+ 0 (W) . (66)

j>x

where in the last equality we used that f(x) is decreasing for x > 0 and its integral

over any unit interval is at most leﬁ Using that f(x) is decreasing for all x > 0
Tno

we get
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2

R -
. . e no .
DIBX =)~ fDl= Y ===l 1]
i f— 2wo“n
o
PRz [ pear 6D
n</>—1
We next increase N, so that Nz_ 1/ 3M() < g < ﬁ and use the inequality |e¥ — 1| <
|x|e™*! to estimate
2 2
% B a0y Lnfj T e
eV —1| < Jle
jo V2mo?n jo V2mo?n
2/3 _ /2 +m .
<L"ZJ ¢t [@ M0|]|3] 68)
ST N2man N n’
Since f(x) is decreasing for all x > 0
3 P2 o
popicani LY BEEL Ny TR
_ . u = .
o V2mo?n NG Vi Jo Varoln V2n
Analogously, by using that x3e 2 s decreasing for all x > /3 we have
3 Q% /3en _ 2
e [MOUP] ! 3“2’“:*” [Mo|j|3}
jo1 V2mo?n n? i1 Y2motn n’
23 it
E A
2 2
j=1/3en)+2 2xonl 7 (70)
ll2
- Mo[2V/3E€] My foo u%‘md
<— 4+ — —du
\2n n? Jo V2mon
_ Mo[2v/3¢e)? N 2(v262n)3 M,
B \2n Jmn? .

Finally, we have that by taking N, larger we can ensure using (58) and (64) that

1,—b'n*3 2 /n
2/3 ce —cnl/3
P(X > n“°) < PRy < Ce ,

0 n?3 —1 1/3
mfl(x)dx =1-@ (W) < Ce_C" . (71)
n2/3_—
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Combining (66), (67), (68), (69), (70) and (71) we conclude for |x| < +/3¢n'/2 and n
large

G() — F)l = |G ) — Fo)| < %

which implies (65) in view of Lemma 10.

Next we consider the case n°/8 > x > /3¢ - n'/2. In this case we have

Ge)=Y_f()+ Y [PX=j)— f(DI=F&) + Y [PX = j)— f(j)]

Jj>x Jj>x Jj>x
X2
0 e_ 2no2 72
+ Worend & (72)

where in the last equality we used that f(y) is decreasing on [x, co) and its integral
2

_ X
e 2no2

. . 2/3
NWorosnt Notice that for x + 1 < j < n we

have |8(j)| < C|j|*/n* < C, where C = My - [1 4 (3¢)~/2]. This means that
€20 — 1| < €€18(j)| < CjI*/n* and s0

over any unit interval is at most

i2 i2

2P =555 Py

. e 2n02 13
I IET o ]
joi1 V2mo®n jo V2mo?n Ln

2
C °°u3e 2'102 sz _a%
<
n? J, «/27[0 n n3/2

From (71) we know that by possibly making N, larger we can ensure

¥2 00
P(X > n2/3) =< Ceicnl o — . ¢ 02 and / f(x)dx < Cefcnl/3
\/_ n2/3-1
1 2
Jn

X

- e 2n02 . (74)

=

Combining (72), (67), (73) and (74) we conclude for /8 > x > /3¢ - n'/? and all
large n

2

- - x2 672;:7 X3 .
|G(x)—F(x)|=|G(x)—F(x)| Sc[l+m]'mfc'n—2'f?(ﬂ,

where in the last inequality we used (58). The above inequality implies that for all
large n
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3

2
G(x) < [1 + c;“—z} Fx) <M F(x) < F <x -C [1 + %D

, (75)

2
G(x) = [1 - cz—z} Fx)> e M F(x) > F (x e [1 + %D :

where the right most inequalities used Lemma 9. From (75) we conclude (65) for some
large co and all n38 > x > /3¢ nl/2 provided n is large enough.

We finally consider the case ney > x > n/8 where ¢, is to be chosen sufficiently
small as follows. Consider the functions A (z) = —210—22 + ZMOf/_Sﬁ‘ Then

L) = L oMy < ok oMy < 2 [ oMy —
YT IV O O n
and we can choose €; < min(e, 1) sufficiently small (depending on M( and ¢) such
that the functions sy (z) are decreasing and moreover —237222 < h_(z) < hy(2) <
—% for 0 < z < €14/n. We next pick €5 > 0 (depending on ¢, My, b’ and ¢’) so that

€y <¢€1/2 and for all n > 656

oo~ ner)?/n eh+(Wne)  Ghy(x/yn)

< < )
1 —et'lreldin = Jono2n = 2moln

P(X > ne;y) < (76)

. i3
Using the inequality ¢’ < exp (ZMO 17) for x + 1 < j < €1n and the fact that

h.(z) is decreasing on 0 < z < €14/n by our choice of €] we see that

) Lne1] ' Vel phi () gy,
Ge= Y f(E 4P znen = [T B = ne
jextl x/yn N2mo a7
/«/ﬁel e+ gy,
< -
x—1/yn A 2mwo?

where in the last inequality we used (76). Using that 2x < 2epn < €1n we have

/‘ﬁﬂ e+ gy, 2x/yn ghy () gy Vel ghi () gy,
X

—_— = — + [
—1/Jn V2mo? (x=2)/Jn V2mo? 2/ N 2mo?
/x—l/ﬁ pOY

(x=2)/Jn N 2mwo?
/ZX/W e+ gy Vel p—u?f4o? g,
<

J— _l’_ J—
(x=2)/n N 2mwo? 2/ yn A 2mo?
/x—l/ﬁ e—uz/Zdzdu 2/n ghy ) gy

- < R
a-2)//n N2mo? T Ja—2vm V2mo?
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where the last inequality holds provided # is sufficiently large in view of (58). Com-
bining the above with Lemma 9 we see that by possibly making e€; smaller and N,
larger we can ensure that

_ 2x/yn phy(u) ~ _ 2
G(X)S/ M5616"”0)“3/”2-F(x—2)SF<)C—C|:1+X—D.
(x=2)//n V2mo n

(78)
To get the lower bound notice that 2x < 2exn < €1n and so
|ney ' 2x h_ (i)
Gz Y. f(e = [TE S e )
j=xt1 Ui Vimo (79)

zﬁ<x+c[1+’;—2]).

From (78) and (79) we conclude (65) for some large ¢; and all en > x > n
provided n > N, with N; large enough and e; small enough. This suffices for the
proof. O

5/8

As an immediate corollary to the above lemma we have the following statement.

Corollary 1 Let My > 0, €9 > 0, ¢ € (0,1), b’ > 0 and ¢’ > 0 be given. Then we
can find constants c3, €3 > 0, N € N such that the following holds for every positive
integer n > N> and every o* € [¢, ™). Suppose that X is a continuous random
variable with density g and forall x € {y : y € R, |y| < nep}

( ) ! > < 2x ( )) ( )
gx) = exp 3 +8(x , 80
where
| ( )| = ! | |3 ( 1)
S(x My «/_ + > |- 8

Assume additionally that for any x € R
g(x) = eV, (82)

Then for any |x| < ean we have

x2 x?
F(x_cz<1+7)) §]P’(X§x)§F(x+cz<1+7>>, (83)

where F(x) is the cumulative distribution function of a N (0, o->n) random variable.
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Proof By our assumptions we know that W = | X is an integer valued random
variable that satisfies the conditions of Lemma 11. The result now follows from (65)
and the fact that P(W <x — 1) <P(X <x) <P(W <x +1). O

6 Strong coupling

We formulate quantified refinements of Theorems 3 and 4 as Theorems 5 and 6,
respectively, below and present their proof. As usual we split our discussion depending
on whether our random walk bridge has continuous or discrete jumps.

6.1 Continuous case

We use the same notation as in Sects. 2.1 and 3.

Lemma 12 Suppose that fx satisfies Assumptions C1-C5 and fix p € («, ). Let
s=p—¢€ andt = p+¢€, where €’ > 0 is sufficiently small so thata < s <t < .
Then there exists €3 € (0,€') and N3 € N such that for every by > 0 there exist
constants 0 < c1,a; < 00 such that the following holds. Suppose that m,n are
integers such that m,n > N3 with |m — n| < 1, set N = m + n. We can define a
probability space on which are defined a standard normal random variable & and a
collection of random variables W = W3 forallz € {x € Ly : |x —pN| < e3N}
such that the law of W ™3 is the same as that of S,SN’Z) and such that we have almost
surely

Y e
E[em\z—wxlw] <1 -exp (bl (W — pn) 1—\01-(2 pN) ) 84)

where

7 — zmnz) _

<
2 4

2
v No o:N
+ p~$, sothat Z ~ N E,p— .
2 2
The constants €3 and N3 depend on the values p, s, t and the function fx(-), where
the dependence on the latter is through the constants in Definition 6.

Proof Notice that we only need to prove the lemma for N sufficiently large. In order
to simplify the notation we will assume that n = m = N /2 (the other cases can be
handled similarly).

We apply Propositions 2 and 3 for the variables s and ¢. This implies that provided
N3 > max(Ng, N1) as in the statements of those propositions and n > N3 we have that
the random variable S,(,N’Z) — z/2 satisfies the conditions of Corollary 1 for My = M
as in Proposition 2, ¢g = ¢’ as in the statement of this proposition, ¢ = (1/2) -
min(m_ej, Mgfl) as in Definition 1 for the variables §, ¢ as in Definition 5, ' = a and
¢’ = A as in the statement of Proposition 3. We consequently, let ¢, N2, €3 be as in
the statement of that corollary for the above constants.
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In what follows we fix €3 < 4-1 min(ey, €') sufficiently small so that esM <
1/M; ; where M is as in the statement of Proposition 2 and M; ; is as in Definition 1
for the variables §, 7 as in Definition 5. Observe that the choice of €3 implies that
eaM < l/of/N forall |z — pN| < Ne3. We also set N3 = max(Ny, N1, Na).

We denote by @ the cumulative distribution function of a normal random variable

with mean O and variance 1. Let G, ;, ; denote the cumulative distribution function of

SN 1n addition, let G- and G, denote the cumulative distribution function of

SV conditioned on {SS"'? > z/2 4+ 2e3n} and {SIV¥ < z/2 — 2e3n} respectively.
For convenience we let A < B be the unique real numbers such that

1—@(B) =P(S™ND > 7/2 4 2e3n), @ (A) =P(SV? < /2 + 2e3n).

We now turn to defining our probability space. We let Uy, U,, U3 be three inde-
pendent uniform (0, 1) random variables and set & = ®~1(U)). In addition, we set
—1 —1
Wi = <G23m+z) (Up) and W_ = (fom_z> (U3). Given a realization of &, W_
and W, we define a random variable W as follows

—ifA<E<Bweset W= (Gum.) (U1
—if§ > Bweset W = W,;
—if§ <Aweset W =W_.

It is easy to see that as defined W indeed has the same distribution as S,EN’Z). In words,
W is quantile coupled to & near 0 and independent from it for large values.
We denote

oy /N

.. o, /v N
Z=2:=2/2+ " & Z=Zn,z=z/2+%~é.

and write F' = F), ; for the cumulative distribution function of Z. Itis easy to check
that our construction satisfies the following property. If y € [z/2 — 2ne3, 7/2 + 2nes]
and x > 0 is fixed and

F(y—x) £ Gum(y) < F(y +x),
then
|Z -Wl<x ontheevent A <& < B. (85)

By our choice of €3, N3 and ¢ and Corollary 1 applied to S,EN’Z) — z/2 we have that
forall y € [z/2 — 2nes3, 7/2 + 2nes]

_ 2 _ 2
F (y —o [1 + %D < Gum:(0) <F (y +e [1 + MD .

n
(86)
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Combining (85) and (86) we get

(W —z/2)°

n

|2 —Wi<c [1 + ] almost surely on the event A < & < B, (87)

for all n > N3, provided that |z — pN| < e3N, |W — z/2| < 2e3n.
We next claim that |A| = O(+/N) and |B| = O(+/N). To see the latter notice that

Pt > B) = P(W > 7/2 + 2ne3) = | — P(W — 2/2 < 2ne3)
. 4n?(e3)>
Zl—P(Z—%onQ—{—cz(l—l—ﬂ))

n
=P (GZ/N\/_ £ > 2ne3 + ca[1 + 4n(ez) ]) =P = CYN),

for some positive constant C.The inequality in the first line follows from Corollary 1
applied to W — z/2. The above implies that B < C+/N and an anologous argument
shows that A > —C+/N for some possibly larger C. We conclude that there is a
constant C > 0 such that &) < C‘\/N ontheevent A < & < B.

The latter implies that almost surely on the event A < & < B we have

E [e|2—2|‘w] <E [emnop—oz/m W] <E [eéﬁwp— z/Nl‘W]_

From Lemma 1 we know that we can find a constant ¢, > 0, that depends on m; ;
and M; ; ias in Definition 1 as well as M (3) as in Definition 4 for the variables §, { as in

Definition 5, suchthat|op—aZ/N| < cplp —z/N|*forall |z—pN| < &3N. Combining
the latter with the Cauchy—Schwarz inequality, (87) and the triangle inequality we
conclude that there are constants C,c > 0 such that if |W — z/2| < 2e3n and
|z — pN| < €3N then

E I:e|W—Z|‘W] <E |:6|W—Z|+|Z—Z|’W] < Cexp <Cp(Z ;VPN)Z N c(W 22/2)2> |

Applying Jensen’s inequality to the above we have for any v € N that

2 2
El:e(l/v)\szl‘W] <E[e‘W*Z“W]1/U <Cl/”exp(cp(z_pN) n c(W —1z/2) )
- - Nv nv ’

and if we further use that (x + y)? < 2x? + 2y? above we see that

2 2
E I:e(l/v)lw_z“W] <l . exp ([Cp + C]](VZ — pN) n 4C(WN— pn) ) . (88)
v v

provided n > N3, |lw — z/2| < 2e3n and |z — pN| < e3N.
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Suppose now that b; is given, and let v be sufficiently large so that

Cp+C

4c
< by and — < b;.
v

If a; < 1/v we see from (88) that

bi(z— pN)*  bi(w — pn)?
E[eaIW—Z’W]SC.eXp< 1(z NP "L 1(wan) > (89)

provided n > N3, |lw — z/2| < 2e3n and |z — pN| < e3N.
Suppose now that |W — z/2| > 2e3n and suppose for concreteness that W —z/2 >

2e3n. On the event {W > z/2 + 2e3n} we have that W and Z are independent with Z
2

having the distribution of a normal random variable with mean z/2 and variance U"T

conditioned on being larger than s := z/2 + %ﬁ - B. It follows that almost surely

on {W > z/2 + 2e3n}

Up\/ﬁ 2
00 ¥ Iyl =3 /2

E[e'W*Z'(W] < (W= fB 0 ®(B))~" .

From our earlier work we know that B < C+/N for some C > 0. This implies that
1—&(B) = e NS,

for some sufficiently large ¢ > 0. Combining the last two inequalities gives for some
new ¢ > 0

E [elw—zl(w] < exp(cN +|W —z/2))

— 2 B 2
Se>ﬁp((c+5/4)1\7+(Z PN) +(W pn)>’

N N

where the last inequality uses the triangle inequality and the fact that vab < a + b
fora, b > 0. Applying Jensen’s inequality to the above we have for any v € N that

E [e“/“)'W*Z"W] <E [e|WfZ|‘W]””

2 2
§exp((c+5/4)N+(Z_pN) Jr(W—Pn) )

v vN vN

In particular, suppose that v is sufficiently large so that
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and a; < 1/v. We then have from the above inequality that
E [ W2 ] < ex hel y 4 e PNt bW = pn)?
=P\ 6 2N 2N

bi(z— pN)*>  bi(W — pn)?
<
< exp < N + N s

where in the last inequality we used that |W — z/2| > 2e3n and |z/2 — pn| < e3n.
We conclude that (89) holds even when W — z/2 > 2e3n. An analogous argument
shows that (89) also holds when W — z/2 < —2e3n, and so almost surely for all W.
This suffices for the proof. O

We also isolate for future use the following statement.

Lemma 13 Assume the same notation as in Lemma 12. There exist positive constants
by, ¢, N4 such that for every integers m,n > N4, N = m + n such that \m —n| < 1,
every z such that |z — pN| < €’N and w € R,

(w— (z/2>)2)

fn(wlz) < caN~2exp <—b2 N

The constants by, ¢3, N4 depend on s, 7, p and the constants in Definition 6.
Proof This is an immediate corollary of Propositions 2 and 3. O
We now turn to the main theorem of this section.

Theorem 5 Suppose that fx satisfies Assumptions C1-C6 and fix p € («, B). Let
s=p—¢€andt = p+ €, where €’ > 0 is sufficiently small so thata < s <t < B.
For every b > 0, there exist constants 0 < C, a, o' < 0o such that for every positive
integer n, there is a probability space on which are defined a Brownian bridge B°
with variance 0> = U; and the family of processes S™? for z € L, such that

E [eaA(n,z)] < Cea’(logn)eb\zfpnlz/n’ (90)

where A(n,z) = A(n, z, B®, S™9) = SUP<; < ﬁBf/n + %z — S,("‘Z)‘ . The con-

stants C,a,a’ depend on b as well as s,t, p and fx through the constants in
Definition 6 and the functions in Assumption C6.

Proof 1t suffices to prove the theorem when b is sufficiently small. For the remainder
we fix b > 0 such that b < by /37, where b is the constant from Lemma 13. Let
€3 and N3 be as in Lemma 12 and N4 as in Lemma 13 for our choice of s, ¢ and put
N5 = max(N3, Ny).

In this proof, by an n-coupling we will mean a probability space on which are
defined a Brownian bridge B® and the family of processes {S"? : z € L,}. Notice
that for any n-coupling if z € L,, S; = S then
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KMT coupling for random walk bridges 695

1
A(n, z) = sup ﬁB;n + ~z - Sz(n’Z)

0<t<n

(n,2) o
<
<zl +01§1?§n|s" | + sup |ﬁBt/n|

0<t<n
which implies
E [eaA(”’Z)] <E |:exp <3a sup ﬁ|Bf|>:| + exp(3alzl)

0<t<l
+E [exp (361 max ISkI) Sp = zi| .
1<k<n

Note that if |z — pn| > €3n we have

bein  blz — pn?  bein 2
blz — pn|*/n > —— + 2= pnl”  besn L 2
2n 2 n

where « is sufficiently small so that

Kk <1/2, elp—e3, p+esl, ande3/2—/c(:l:e3+p)2>0.

1 -2«

In view of the above and Assumption C6 there exists @ small enough and c large
enough depending on b such that if @ < a we can ensure that

exp(3alz)) + E [exp <3a max |Sk|> Sy = zi| < Eebl=pnl/n,
1<k=<n

provided that |z — pn| > e3n.
Further we know that there exist positive constants ¢ and u such that E
[exp (supoitfl le,"l)] < ée** for any y > 0 (see e.g. (6.5) in [29]). Clearly, there

exists ap (depending on b) such that if 0 < a < a5 then 18ua? < be%. This implies
that if ¢ < ag := min(a, a») then

0<r<l
+E |:exp <3a max |Sk|)
1<k<n

provided that |z — pn| > e3n.

The latter has the following implication. Firstly, (90) will hold for any n-coupling
withC=C,:=¢+C,a’ =0anda € (0, a) if z € L, satisfies |z — pn| > e3n.
Moreover, we can find a constant 6’2 > 1 such thatif a < agp, |z — pn| < e3n and
n < 4Ns then

E |:exp (3a sup ﬁlB,"I)] + exp(3alz|)

Sy = z] < [C + &)eblz—rnl/n,

Sn ZZ] < éz.

0<r<1

E [exp <3a sup ﬁle|>:| +exp(3alz]) + E [exp (3a [max |Sk|>
<k<n
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696 E. Dimitrov, X. Wu

For the remainder of the proof we take b; = b/20 and let aj, c; be as in Lemma 12
for this value of b;. We will take a = (1/2) - min(agp, a) and C = max(él, (:’2) as
above and show how to construct the n-coupling so that (90) holds for some «'.

We will show that for every positive integer s, there exist n-couplings foralln < 2°
such that

E I:eaA(n,z):I e*blzfpnlz/n < As71 .C, Vze L, 1)

where A =1+ 2¢1(1 + 8¢2b~1/2). The theorem clearly follows from this claim.

We proceed by induction on s with base case s = 1 being true by our choice of C
above. We suppose our claim is true for s and let 2° < n < 2**!. We will show how
to construct a probability space on which we have a Brownian bridge and a family
of processes {S™ : |z — pn| < e3n}, which satisfy (91). Afterwards we can adjoin
(after possibly enlarging the probability space) the processes for |z| > ne3. Since
C > C 1 and a < ap we know that (91) will continue to hold for these processes as
well. Hence, we assume that |z — pn| < e3n.

If 25t < 4 N5 then by our choice of C > C » and the fact that A > 1 we will have
that (91) holds for any coupling provided |z — pn| < e3n. We may thus assume that
2¥ > 2Njs. For simplicity we assume that n = 2k, where k > Njs is an integer such
that 2°~! < k < 2% (if n is odd we write n = k + (k + 1) and do a similar argument).

We define the n-coupling as follows:

e Choose two independent k-couplings

({ sy Bl) , ({52<k»z>>}zdk, 32), satisfying (91).

Such a choice is possible by the induction hypothesis.
l’lO’p

e Welet W* and & be as in the statement of Lemma 12, and set Z* = 5 + ~5- - £.
Assume, as we may, that all of these random variables are independent of the two
k-couplings chosen above. Observe that by our choice of a and kK > N5 we have
that

z 4 b W2 —k 2 - 2
E I:ea|Z — Wz WZ] <cp - exp | — - ( P) + (Z np) ) (92)
20 n
o Let
5 _ |2 2By + /(T =pE 0=r=1/2, (93)
2By + (U= OVPT = pE 1/2<1 <1,

By Lemma 6.5 in [29], B, is a Brownian bridge with variance o2,

o Let S = W, and

S(n,z) _ SV%l(k,WZ) 0 S m S kv
" W<+ Srzn(f’szwé), k<m<n.
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What we have done is that we first chose the value of S,E”’Z) from the conditional

distribution of S, given §,, = z. Conditioned on the midpoint S,E"’Z) = W? the
two halves of the random walk bridge are independent and upto a trivial shift we
can use S'®W9 and §2,:2=W9) o build them.

The above defines our coupling and what remains to be seen is that it satisfies (91)
with s + 1.
Note that

An,z, 89, B) < |Z* — W¥|
+ max (A(k, W, SIEWD By Ak, 7 — we, §2ka=WO), BZ))

and therefore almost surely

E I:eaA(n,Z)

Wﬂ]SE[ﬂﬂwaWﬂ]XCA%IGNWL@FM+6W%WL@FM)

In deriving the last expression we used that our two k-couplings satisfy (91) and the
simple inequality E[e™2x(Z1.22)] < E[eZ1 ]+ E[e?2]. Taking expectation on both sides
above we see that

9 b W? —kpl?, |z — W* — kp|?
E I:eaA(n,z):I <C-Qc)- AR |:exp (Z . max(| ple, 1z Pl ))] .
n

(94)

In deriving the last expression we used (92) and the simple inequality x> + y> <
5max(x2, (x — y)?) as well as that k = n/2.

We finally estimate the expectation in (94) by splitting it over W* such that |W* —
z/2| > |z — pn|/6 and |[W* — z/2| < |z — pn|/6; we call the latter events E| and E3
respectively. Notice that if |W? — z/2| < |z — pn|/6 we have max(|W?* — pk|%, |z —
W? — pk|?) < (2|z — pn|/3); hence

9 Wz —k 2’ —Wi—k 2 _ 2
£ [exp (2. M2 Pl Iz PO ] < exp (Z22EY
4 n n

95)

To handle the case |W? — z/2| > |z — pn|/6 we use Lemma 13, from which we
know that

n

z 2
Fn(Wel2) < con™ 2 exp <—b2w) )
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698 E. Dimitrov, X. Wu

Using the latter together with the fact that for |W* — z/2| > |z — pn|/6 we have that
(W7 —2/2)? > & max (W — kp)?, |z — W* — kp|?) we see that

9 b W2 —kp|?, |z — W& — kp/?
E[exp<z' max (| pln |z p”)&{m}}

- b (y— kp)2 _ xl2p1/2 _
< 1/2/ 2 N dy = 1227 = < 8ep™1/2,
con Rexp( T " y=ocn o172 1)

(96)

Combining the above estimates we see that
o2
]E[eaA<n,z)] < C-Q2cp) . A [exp (|Z pn ) " 8czb]/2i|
n

Y
§C-Asexp<w).

n

The above concludes the proof. O

6.2 Discrete case

We use the same notation as in Sects. 2.2 and 4.

Lemma 14 Suppose that px satisfies Assumptions DI-D4 and fix p € («, B). Let
s=p—¢€ andt = p+ €, where € > 0 is sufficiently small so thata <s <t < f.
Then there exists €3 € (0,€') and N3 € N such that for every by > 0 there exist
constants 0 < c1,a; < oo such that the following holds. Suppose that m,n are
integers such that m,n > N3 with |m —n| < 1, set N = m + n. We can define a
probability space on which are defined a standard normal random variable & and a
collection of random variables W = W3 forallz € {x € Ly : |x —pN| < e3N}
such that the law of W "™"3) is given by py m (-|2) and such that we have almost surely

97

W — pn)? — pN)?
E[eal\ZfW\‘W:I SQ'CXP(bl( pn) ]‘\i]‘(z PN) )’

where

2
VN osN
Z=zmnd =2y YOO sothatZ~N<Z ” )

z z

2 2 27 4

The constants €3 and N3 depend on the values p, s, t and the function px(-), where
the dependence on the latter is through the constants in Definition 11.

Proof Notice that we only need to prove the lemma for N sufficiently large. In order
to simplify the notation we will assume that n = m = N /2 (the other cases can be
handled similarly).
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KMT coupling for random walk bridges 699

We apply Propositions 5 and 6 for the variables s and ¢. This implies that provided
N3 > max(Ny, N1) as in the statements of those propositions and n > N3 we have that
the random variable S,EN’Z) — z/2 satisfies the conditions of Lemma 11 for My = M
as in Proposition 5, €g = ¢’ as in the statement of this proposition, ¢ = (1/2) -
min(mf’;, Mg;) as in Definition 7 for the variables §, 7 as in Definition 10, b’ = a
and ¢’ = A as in the statement of Proposition 6. We consequently, let ¢3, N2, €; be as
in the statement of that corollary for the above constants.

In what follows we fix ez < 47! min(ey, €') sufficiently small so that esM <
1/M; ; where M is as in the statement of Proposition 5 and M; ; is as in Definition 7
for the variables §, f as in Definition 10. Observe that the choice of €3 implies that
M < l/ozz/N for all |z — pN| < Ne3. We also set N3 = max(Ny, Ny, Na).

Let A = {x €Z:x €[z/2 —2e3n,z/2+2e3n]} and let ay, . . ., d; be an enumer-
ation of the elements in A in increasing order. Let G = G, ; denote the cumulative
distribution function of S,(,N’Z) . In addition, we let @ denote the cumulative distribu-
tion function of a standard normal random variable. Since @ is strictly increasing and
Pum(alz) > 0foralla € A we can define the unique real numbers r j— and r; for
j =1,..., k that satisfy

Suppose that we have a probability space that supports three independent variables
W_, W, and &, where £ is a standard normal random variable, W_ has the distribution
of S,(lN’Z) conditioned on being less than a; and W, has the distribution of S,SN’Z)

conditioned on being larger than dy. Set

op/'N IR 0. NV N
D=t Z=Zwi=z2+ 0k

Z=Zyp;=2z/2+

Given a realization of £, W_ and W, we define a random variable W as follows.
—ifrj- <& <rjweset W =aj;
—ifé <rj_weset W =W_;
—ifé>rpweset W=W,.

It is easy to see that as defined W indeed has the same distribution as S,(lN’Z). In words,

W is quantile coupled to & near 0 and independent from it for large values.
We denote

oo /N
2

M.g
5 .

Z="Zn.=2/2+ & Z=Zn.=27/2+

and write F = F,, ; for the distribution function of Z. Itis easy to check that our
construction satisfies the following property. If j = 1, ..., k and

F(aj—x) <G@aj—) <G(aj) < F@aj +x),
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then
|Z—W|=|Z—a;]<x ontheevent (W =a;}forj=1,....k. (98)
By our choice of €3, N3 and ¢» and Lemma 11 we have that forall j =1, ...,k and
n> N3
b — 7/2)2 G — 7/2)2
F(&j—cz[l-l-—(a] e ]) 56(&,-)5F(&,-+CZ[1+—(”J /2 D
n n
99)
Combining (98) and (99) we get
. (W —z/2)% .
|Z—-—W|<cy|1l+ ————| ontheevent W € A, (100)
n

for all n > N3, provided that |z — pN| < e3N, |W — z/2| < 2e3n.
We next claim that |[ri_| = O(v/N) and |r¢| = O(v/N). To see the latter notice
that

P& >ry) =P(W > z/2 4 2ne3) =1 —P(W — z/2 < 2ne3)
. 4n?(€3)>
21—P<Z—§§2n63+C2<1+M>>

<Gz/N\/_

=P £ > 2nes + ca[1 + 4n(es) ]) > P& > CV/N),

for some positive constant C. The inequality in the first line follows from Lemma 11
applied to W — z/2. The above implies that r; < C \/ﬁ and an anologous argument
shows that ri_ > —C+/N for some possibly larger C. We conclude that there is a
constant C > 0 such that |€| < C+/N on the event W € A.

The latter implies that almost surely on the event W € A we have

E [elz—fl‘w] <E [e|5||o,,—oz/m

W] < 6o

w].
From Lemma 3 we know that we can find a constant ¢, > 0, that depends on m; ;

and M; ; as in Definition 7 as well as Mf(? as in Definition 9 for the variables §, 7 as

in Definition 10, such that o), — O’Z/le < cplp — z/N|? for all |z — pN| < e3N.
Combining the latter with the Cauchy—Schwarz inequality, (100) and the triangle
inequality we conclude that there are constants C, ¢ > O such thatif |W —z/2| < 2e3n
and |z — pN| < e3N then

E [elwle‘W] <E [e'W*2|+|Z*Z|‘W] < Cexp <c,,(z — pN)? . c(W — z/2)2) |

N n
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Applying Jensen’s inequality to the above we have for any v € N that

2 2
E [ea/u)\wfm‘w] <E [e\wfzx ‘W]l/” < exp (Cp(Z — PN W —2/2) )
- - Nv nv ’

and if we further use that (x + y)? < 2x2 + 2y? above we see that

2 2
E [e(l/v)IWfZ\‘W] < exp <[C” el pN)” | 4eW — pn) ) ,(101)
Nv Nv

provided n > N3, |lw — z/2| < 2e3n and [z — pN| < e3N.
Suppose now that b; is given, and let v be sufficiently large so that

CI,+C

4
< by and -< < b,.
v

If a; < 1/v we see from (101) that

bi(z— pN)?>  bi(w — pn)?
E[eaIWZ‘W]SC.eXp< 1(z NP ) n 1(wan) ) (102)

provided n > N3, |lw — z/2| < 2e3n and |z — pN| < e3N.
Suppose now that |W — z/2| > 2e3n and suppose for concreteness that W —z/2 >

2e3n. On the event {W > z/2 + 2e3n} we have that W and Z are independent with Z
2
having the distribution of a normal random variable with mean z/2 and variance #

oy /N

conditioned on being larger than s := z/2 + —55— - r¢. It follows that almost surely
on {W > z/2 + 2e3n}

opVN 2
0 =7Vl p=y7/2

_ (1 -9 -1
; Nor ( (re))

E [ewv—zw‘w] < W22l

From our earlier work we know that r; < C+/N for some C > 0. This implies that
1= () = e NG,

for some sufficiently large ¢ > 0. Combining the last two inequalities gives for some
new ¢ > 0
E [e‘W_Z|’W] <exp(eN + W — z/2))

_ 2 . 2
Se>ﬁ1><(c+5/4)1v+(Z ;N) LW an) )
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where the last inequality uses the triangle inequality and the fact that v/ab < a + b
for a, b > 0. Applying Jensen’s inequality to the above we have for any v € N that

E [e(‘/"”W*Z"W] <E [e|wa|‘W]””

_ 2 _ 2
<exp<(0+5/4)N+(Z pN) 4 Pn)>.

v vN + vN

In particular, suppose that v is sufficiently large so that

and a; < 1/v. We then have from the above inequality that

2 _ 2 _ 2
B[env=71|] < exp (bi? o HE PN | Y — p) )

bi(z — pN)*>  bi(W — pn)?
<
= exp ( N + N s

where in the last inequality we used that |W — z/2| > 2e3n and |z/2 — pn| < e3n.
We conclude that (102) holds even when W — z/2 > 2e3n . An analogous argument
shows that (102) also holds when W — z/2 < —2e3n, and so almost surely for all W.
This suffices for the proof. O

We also isolate for future use the following statement.

Lemma 15 Assume the same notation as in Lemma 14. There exist positive constants
by, c2, Ny such that for every integers m,n > N4, N = m + n such that |m —n| < 1,
everyzef{xelLy:|x—pN|<eN}andw € Z,

by (w— (z/2>)2) .
N

Pman(w|z) < caN~12exp (—

The constants by, ¢3, N4 depend on s, 7, p and the constants in Definition 11.
Proof This is an immediate corollary of Propositions 5 and 6. O
We now turn to the main theorem of this section.

Theorem 6 Suppose that px satisfies Assumptions DI-D5 and fix p € («, B). Let
s=p—¢€andt = p+ ¢, where e’ > 0 is sufficiently small so thata < s <1t < B.
For every b > 0, there exist constants 0 < C, a, o' < 00 such that for every positive
integer n, there is a probability space on which are defined a Brownian bridge B°
with variance 0% = 01% and the family of processes S for z € L, such that

E I:eaA(n,z)] < Cea’(logn)eb\z—pnlz/n’ (103)
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where A(n, z) = A(n, z, B®, S™9) = SUPg<;<p ﬁBZn + %z — Sl("’Z) . The con-

stants C, a, o' dependonb aswellas s, t, p and px through the constants in Definition
11 and the functions in Assumption D5.

Proof 1t suffices to prove the theorem when b is sufficiently small. For the remainder
we fix b > 0 such that b < by /37, where b is the constant from Lemma 15. Let
€3 and N3 be as in Lemma 14 and N4 as in Lemma 15 for our choice of s, t and put
N5 = max(N3, N4).

In this proof, by an n-coupling we will mean a probability space on which are
defined a Brownian bridge B® and the family of processes {S"? : z € L,}. Notice
that for any n-coupling if z € L,, S; = Sl("’Z) then

A(n,z) = sup

0<t<n

t
VnBg, + ~z - s

(n,2) o
<
= Izl + max |57 + sup |VnB,|

0<t<n

which implies
E [e“A("’Z)] <E |:exp <3a sup ﬁlB,"l)] + exp(alz))

0<r<l
+E [exp <3a max |Sk|> Sy = zi| .
1<k<n
2 2
besn N blz — pn|? _ begn

Note that if |z — pn| > e3n we have
2n -

2

blz—pn|2/nz +bKZ—,
n

where « is sufficiently small so that

Kk <1/2, elp—es, p+el, and €3/2 — k(€3 + p)? > 0.

1 -2«

In view of the above and Assumption D5 there exists @ small enough and c large
enough depending on b such that if @ < a we can ensure that

exp3alz|]) + E |:exp <3a max |Sk|)
1<k<n

Sy = Zj| < Geblimpnl/n

provided that |z — pn| > e3n.

Further we know that there exist positive constants ¢ and u such that E
[exp (SUP05151 lefl)] < ée"” for any y > 0 (see e.g. (6.5) in [29]). Clearly, there
exists d» (depending on b) such that if 0 < a < @, then 18ua® < be%. This implies
that if a < ag := min(a, a,) then

S, = z]
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provided that |z — pn| > e3n.

The latter has the following implication. Firstly, (103) will hold for any n-coupling
withC =C; :=¢+C,a’ =0anda € (0, ap) if z € L, satisfies |z — pn| > e3n.
Moreover, we can find a constant 6‘2 > 1 such thatif a < agp, |z — pn| < e3n and
n < 4Ns then

E [exp <3a sup ﬁle|>:| +exp3alz]) + E [exp <3a Im}flx |Sk|>
<k=<n

Sy = Z] < éz.
0<t<1
For the remainder of the proof we take b; = b/20 and let a1, c; be as in Lemma 14
for this value of ;. We will take @ = (1/2) - min(agp, a;) and C = max(él, é‘z) as
above and show how to construct the n-coupling so that (103) holds for some «o’.
We will show that for every positive integer s, there exist n-couplings foralln < 2¢
such that

E[ed0d | bemmPin < pmtoc, vze L, (104)

where A = 14+2¢1(14¢2(8b~1/% +2)). The theorem clearly follows from this claim.

We proceed by induction on s with base case s = 1 being true by our choice of C
above. We suppose our claim is true for s and let 2° < n < 2*+!. We will show how
to construct a probability space on which we have a Brownian bridge and a family of
processes {S"?) : |z — pn| < e3n}, which satisfy (104). Afterwards we can adjoin
(after possibly enlarging the probability space) the processes for |z| > ne3. Since
C>Cianda < ap we know that (104) will continue to hold for these processes as
well. Hence, we assume that [z — pn| < e3n.

If 25+ < 4 Ns then by our choice of C > 6‘2 and the fact that A > 1 we will have
that (104) holds for any coupling provided |z — pn| < e3n. We may thus assume that
2% > 2Njs. For simplicity we assume that n = 2k, where k > Njs is an integer such
that 2°~! < k < 2* (if n is odd we write n = k + (k + 1) and do a similar argument).

We define the n-coupling as follows:

— Choose two independent k-couplings

({Sl(k’z))}zeLkv Bl) i ({Sz(ka))}ZeLk, B2) , satisfying (91).

Such a choice is possible by the induction hypothesis.

— We let W* and & be as in the statement of Lemma 14, and set Z* = 5 + ‘/ﬁ;p - €.

Assume, as we may, that all of these random variables are independent of the two
k-couplings chosen above. Observe that by our choice of a and kK > N5 we have
that

e b (W?—kp)®+ (z—np)?
E [e“'z -w “WZ] <cp-exp| =—- ( P+ @=np) . (105)
20 n
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— Let

5 _ 12 2B+ /(T =pE O=r=1/2"" 14
2By + A== p)E 1/2<t <1

By Lemma 6.5 in [29], B, is a Brownian bridge with variance o2

— Let S,E”’Z) = W%, and

S(n,z) _ Sl’lﬂ(k,WZ) 0 S m S kv
" W<+ S,Zn(f’szwﬁ, k<m<n.

What we have done is that we first chose the value of S ,E"’Z) from the conditional

distribution of Sy, given S, = z. Conditioned on the midpoint S = W< the
two halves of the random walk bridge are independent and upto a trivial shift we
can use §1®W9) and §2*:2=W*) 16 build them.

The above defines our coupling and what remains to be seen is that it satisfies (104)
with s + 1.
Note that

A(n,z, 8™, B) < |27 = W¥|
o+ max (A, WS, 81V BY, Ak, z - e 26TV, )

and therefore almost surely

E I:eaA(n,Z)

Wz] <E I:ealzz—Wz\‘Wz] % CAS—! (eb|WZ—kp|2/k T eb|z—Wl—kp\2/k)_

In deriving the last expression we used that our two k-couplings satisfy (104) and the
simple inequality E[eM*(Z1.22)] < E[eZ1]+E[eZ2]. Taking expectation on both sides
above we see that

9 b W? —kpl?, |z — W* — kp|?
B[00 < C,(ZCI),AHE[exp (Z' max((W* — kpl, |z P ))]
n

(107)

In deriving the last expression we used (105) and the simple inequality x? + y? <
5max(x2, (x — y)?) as well as that k = n/2.

We finally estimate the expectation in (107) by splitting it over W< such that | W? —
z/2| > |z — pnl|/6 and |W? — z/2| < |z — pn|/6; we call the latter events E| and E»
respectively. Notice that if |[W? — z/2| < |z — pn|/6 we have max(|W? — pk|?, |z —
W2 — pk|?) < 2|z — pn|/3)?; hence
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9 W? —k 2’ —W?—k 2 _ 2
E |:exp <4_1 . max(| | nlz i )> ~1{E2}} < exp (—'Z npn| )

(108)

To handle the case |W? — z/2| > |z — pn|/6 we use Lemma 15, from which we
know that

we — (2/2))2>

Pm,n(Wz|Z) < Czn_l/2 exp <_b2 p

Using the latter together with the fact that for |W* — z/2| > |z — pn|/6 we have that
(W7 —2/2)? > & max (W — kp)?, |z — W* — kp|?) we see that

9 b W2 —kp|?, |z — W* —kp/|?
Elexp (2. 2m2ax( Pl Iz PN (e
P\

n

- b (y—kp)? - 712,172
<on 1/2Zexp <—1—6~—y np <cn 172 24—4—171/2 (109)
YEZ
<c(8p 12 4 2).

Combining the above estimates we see that
o2
E [e“A(”’Z)] <C-Qcp) - A |:exp <M> o8 4 2)}
n

_ 2
SCASCXP<M>
n

The above concludes the proof. O

7 Assumptions D5 and C6
7.1 Strongly unimodal distributions

In this section we give sufficient conditions for the technical Assumptions D5 and C6
to hold.

7.1.1 Continuous case

The goal of this section is to give general conditions under which a distribution satis-
fying Assumptions C1-C5 will also satisfy Assumption C6. We use the same notation
as in Sects. 2.1 and 3.

Let us introduce some useful notation. Let f be a continuous probability density
function on R. We say that f is unimodal if there exists at least one real number M
such that
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f(x) < f(y)forallx <y <M, and f(x) < f(y) forallx >y > M.

We further say that f(-) is strongly unimodal if the convolution of f(-) with any
unimodal distribution function %(-) on R is again unimodal. In [23], the author proved
that f(-) is strongly unimodal if and only if it is log-concave, i.e. log f is concave.

Definition 12 Suppose that fx satisfies Assumptions C1-C5 and « = —o0, 8 = oo.

It follows from Assumption C2 that X has all finite moments and we let © = E[X]. In

addition, we have A’(0) = % Eg; =pandsou, = (A/)_I(M) =0and G, (uy) =

A(uy) —uy -0 =0.The latter and Proposition 1 imply that there is a constant A > 0
such that for all » > 1 we have

inf  fu(npu +2x)>n"12A.
el—1,1]

Indeed, the latter is obvious from (14) for all large n and for small n we can deduce
it from the continuity and positivity of f,(nu + x) on the interval [—1, 1] from
Assumption C1. The above implies that we can find a constant R > 0 such that
R>|ul+1+4"L

In view of Proposition 1 applied to s = —2R and ¢t = 2R we also deduce that there
are positive constants Cg and cg such that foralln > 1 and z € [-2R, 2R]

fu(nz) = Crn~'2eCr,

As before the above follows from Proposition 1 provided » is sufficiently large, while
for small n it follows from the continuity and positivity of f,(nz) on [-2R, 2R].

Finally, given the above constants, A as in Assumption C2 and L as in Assumption
C5, we can find constants C g and cg such that for all n > 1 we have

4n 3/2
E[ MX‘] |: +LC ]feCRn:| <CR e

The main result of the section is as follows.

Lemma 16 Suppose that fx satisfies Assumptions CI-C5. Then it will also satisfy
Assumption C6 if any of the following hold

- a > —00;

- B < ooy

— o = —00, B = o0 and the density function f(x) of X is a strongly unimodal
function.

Moreover, if « > —oo then we can take fl(l;) and C(b) =1ifB <o

X 1+b+\ |
b S (b)) = = — =

’ l+5-t|ﬁ| and C(b) = 1. Ifa = —o0 and B = oo then we can
choose a(b) = av™" and C(b) = Cl]e/v, where v is a large enough integer such that
crv ! < 13/2 and 2w < 13/2 with cg, éR as in Definition 12 and A as in Assumption

C2.

then we can take a(b) =
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708 E. Dimitrov, X. Wu

Proof Assume first that @ > —oo. Then we have for any k € {1,...,n}andz € L,
that

Sy > —ka and S, — Sy > —(n — k)« almost surely.
The latter implies that
lz| + nlal =[Skl

which means using the ineqiality |xy| < x? + y? that

E |:exp (& max |Sk|>
1<k<n

Thus if we choose C = 1 and 4 =

S, = z] < exp (&Izl + dlaln) < exp (&|z|2/n +an +[1|cx|n).

b
1+b+||
argument establishes (7) when < oo.

In the remainder we focus on the last case. Notice that by assumption f;, (x) are
unimodal functions for any m > 1. For future use we call © = E[X] and for |¢] < A
as in Assumption C2 we set M|x|(t) = E ['XI]. We also let A, R, Ck, cg, Cg and
Cr be as in Definition 12.

By definition we have for m > 1 that

we would obtain (7). An analogous

inf  f, (mp+x)>m?. A,
xe[—1,1]

The latter implies that if M, is any real number such that f,,(x) < f,,(y) for all
x <y <M, and f,x) < fu(y) forallx > y > M,,, we then have |M,,| <
Rm. Indeed, if we suppose for example that M,, > Rm then this would mean that
fm@ +mp) > fr(mp) forallt € [0, (1 + A Ym], so

(1+A"Nm
/ Fut+mp) = (A + A Dm 1) - fulmp) = A+ A7Hm'2 - A > 1,
0
which is impossible. One rules out the case M,, < —Rm in a similar fashion.

Letusnow fixn > 1,1 <m < n, |z| > 2Rn and A > 0 as in Assumption C2. We
then have that

E[ekls’"‘ S, = z] — () + () + (I1]), where (I)

. f|t\§|z|+Rn S () fo—m(z — t)e‘)‘llldl‘ o)

- S fn(©) fo—m(z — t)dt ’

-[t>\z|+Rn Fn @) pu—m(z — t)e*dt
Sz fn @) fa—m(z — t)dt

_ ft<—|z|—Rn Fn @) fom(z — DM dt

Jg fn (@) fa—m(z — t)dt

an = , (1)
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Firstly, we have the trivial bound
(I) < MRzl (111)

In addition, if z < —2 Rn then by the unimodality of the density function f;,,—,, (-) we
get

ft>\z|+Rn fl’rl(t)fn—m(z — t)eMtldl‘
S fon () faem (2 — 1t
< L2 [5] < Loho

n =

<V f fun(D)eMdi
c t>|z|+Rn

On the other hand, if z > 2Rn we have by the unimodality of f,,(-) that

ft>Rn+\Z| fm(t)fn—m(z _ t)e)‘ltld[

fi(;n:$)+l fm(Z - t)fn—m(t)dt

an =

n n
- Jn / Fom(z — Dyl < £e)‘ZM\X\()~)"'
A t>Rn+|z| A

Applying the same arguments to (/1) and combining the cases z > 2Rn and z <
—2Rn we conclude that if |z] > 2Rn we have

(ID+ I < %e’\mMm()\)" (112)

Combining (111) and (112) and the inequality

n
— Al S| —
E[exp (A 1111]?§n|5k|) S, —Z] < ZE[e Sn —Z],
- m=1
we conclude that if |z| > 2Rn then
4p3/2 5
E |:exp (A max |Sk|> S, = zi| < MMy (0™ (113)

Suppose now that |z| < 2Rn. Then by definition we have

E I:EMS’Wl‘Sn — Z] — fR fm(t)ﬁl}m((zz)— [)e)‘ltldt

< G Vet [ ) fuom(z = e
R

< Lc,;lﬁeCR"/ Fu®eMdr < LCR ' ne ™ Mix ()",
R
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where L is as in Assumption C5.
Combining the latter with (113) we conclude that for any z € R we have

E |:exp (A max |Sk|> Sy = z]
1<k<n

a2 ‘ L
<[ nA +LCR‘~/56‘R"]'M|X|(A)"~e“'scR~eCR"“'Z'. (114)

From Jensen’s inequality and (114) we know that for any v € N

. [exp (”_1 o |Skl> Sn = Z} < Cf0 e ekl (q15)

Suppose now that b > 0is given. Then we can choose v sufficiently large so that
Afv < 13/2 and cr/v < 13/2. Consequently, if we set @ = Av~! and C = CA’IIQ/U we

would have in view of (115)

E |:exp (& max |Sk|)
1<k<n

where we used that |z|/2 < z%/n +n/2 as follows by the Cauchy—Schwarz inequality.
o

5, — Z] 2 6B < ¢ i)

7.1.2 Discrete case

In this section we give general conditions under which a distribution satisfying
Assumptions D1-D4 will also satisfy Assumption D5. We use the same notation
as in Sects. 2.2 and 4.

We first introduce some useful notation. Let p(n) be a probability mass function
on Z. We say that p is unimodal if there exists at least one integer M such that

pn) > pn—1)foralln < M, and p(n+1) < p(n) foralln > M.

We further say that p(-) is strongly unimodal if the convolution of p(-) with any uni-
modal distribution function %(-) on Z is again unimodal. In [25, Theorem 3], inspired
by the classical work of [23], the authors proved that p(-) is strongly unimodal if and
only if

P> p(n—Dpn+1)foralln e Z. (116)

Definition 13 Suppose that px satisfies Assumptions D1-D4 and ¢ = —o0, 8 = 0.
It follows from Assumption D2 that X has all finite moments and we let © = E[X]. In

addition, we have A(0) = 4% — i and so u, = (A) (1) = 0 and Gy, (uy,) =
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A(uy) —uy - o = 0. The latter and Proposition 4 imply that there is a constant A > 0
such that for all » > 1 we have

pa(lum]) = n=172A.

Indeed, the latter is obvious from (41) for all large n and for small n we can deduce it
from the positivity of p, (Lun]) from Assumption C1. The above implies that we can
find a constant R > O such that R > ||+ 1+ A~

In view of Proposition 4 applied to s = —2R and ¢ = 2R we also deduce that there
are positive constants Cg and cg such that foralln > 1 and z € [-2R,2R]N L,

pn(z) = Crn~1/2eCRn,

As before the above follows from Proposition 4 provided » is sufficiently large, while
for small it follows from the positivity of p,(z) on [-2R,2R] N L,,.

Finally, given the above constants, we can find constants C r and ¢g such that for
all n > 1 we have

3/2 ~ .
Efe*! X7 [4”7 + LCR]ﬁeCR”:| < Cp-e®",

The main result of the section is as follows.

Lemma 17 Suppose that px satisfies Assumptions DI-D4. Then it will also satisfy
Assumption D5 if any of the following hold

- a > —00;
- B < ooy
— o= —00, B =00 and px(n) is a strongly unimodal function.
Moreover, if « > —o0 then we can take &(l;) = #A-Hal and C’(I;) =1ifB <
then we can take &(l;) - _b and C(b) = 1. Ifa = —o0 and B = oo then we can

1+b+|B]
choose &(5) =z} and CA’(ZAJ) = CA'IIQ/U, where v is a large enough integer such that
crv~ ! < 13/2 and w~! < 5/2 withcg, Cg as in Definition 13 and ) as in Assumption
D2.

Proof The cases @ > —oo and 8 < oo can be handled exactly the same as in the proof
of Lemma 16. We focus on the case « = —o0 and 8 = oo in the remainder.
Notice that by assumption p,, (n) are unimodal functions for any m > 1. For future
use we call o = E[X]and for |¢| < A as in Assumption D2 we set M| x| (1) = E [¢'I*]].
By definition we have for m > 1 that

pm (Imp)) = m=12 . A,

The latter implies that if M,, is any integer such that p,,(x) < p,,(y) forallx <y <
M,, and p,, (x) < pn(y) for all x > y > M,,, we then have |M,,| < Rm. Indeed,
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if we suppose for example that M, > Rm then p,,(n + |[mu]) > p, (lmu]) for all
n=0,...,(1+A Hm] and so

LA+A"m] A
Yo Pt mul) = (LA + A m]+ 1) pu(lmp)) = (14 A" Hm—= > 1,
n=0 ﬂ

which is impossible. One rules out the case M,, < —Rm in a similar fashion.
Letusnow fixn > 1,1 <m < n, |z| > 2Rn and A > 0 as in Assumption D2. We
then have that

E I:e)‘lsml

Sy =z]

Z”‘\E\ZH-Rn Pm(k)Pn—m(Z — k)e)\lkl

ZkeZ P (k) pn—m(z — k) ’
Mk (117)
(1D

=)+UD+UII), where (I) =

Zk>|z\+Rn Pm (k) pn—m(z — k)e

Y kez PmK) pn—m(z — k)
Yk PO Pam (2 — k)M
T ez PO pu—m(z — k)

n =

Firstly, we have the trivial bound

(I) < MRl (118)
In addition, we have thatif z < —2 Rn then by the unimodality of the sequence p;,—, ()
we get
Zk>Rn+|z\ P (K)pp—m(z — k)e)\lkl
P (M) pp—m (2 — M)

7 ) pm(k)e“"'sglE[e“S’"]fg Mix| ()"

k>Rn+|z|

un =

<

On the other hand, if z > 2Rn we have by the unimodality of p,, (-) that

Zk>Rn+|z\ pm(k)pn—m(Z — k)e)‘lkl
Pm(Z— My_p) P (My—p)

< > pumz =k < £ ¢ Mix (V)"

k>Rn+|z|

(1 =

Applying the same arguments to (//7) and combining the cases z > 2Rn and z <
—2Rn we conclude that if |z] > 2Rn we have

i

I+ 1) < —e“Z'M|X|(A)" (119)
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Combining (118) and (119) and the inequality

n
S, = z] < Y E[eH
m=1

E |:exp (A max |Sk|> Sn = Z] , (120)
1<k<n

we conclude that if |z| > 2Rn then
E |:exp (A max |Sk|>
1<k<n

where we apply inequality e* + e’ < e forx, y > 1.
Suppose now that |z| < 2Rn. Then by definition we have

4n3/2
S, = }5 " MM 0 - R (121)
C

Ak
E [ex|sm| S, = Z] _ kez Pmk) pnom(z — k)et

Pn(2)

< Cp'Vne™ " pu(k) pum(z — k)"
keZ

< Cp' Ve 3 pu k)t = C' e ™ Mix (1)
keZ

Combining the latter with (121) we conclude that for any z € R we have

E |:exp <A max |Sk|> Sy = Zi|
1<k=<n

an3/? . 3 A Grnta
[ +Cx ﬁef"”} Mpx ()" - e < Cp e efRmHEL (122)

<

From here the proof proceeds as that of Lemma 16. O

7.2 Insufficiency of Assumptions D1-D4

In this section we construct a probability distribution px, which satisfies Assumptions
D1-D4, but for which the statement of Theorem 4 does not hold. The example illus-
trates that in general one needs further assumptions on py in order to ensure the strong
coupling of random walk bridges with step distribution py and Brownian bridges of
fixed variance.

We will use the same notation as in Sect. 2.1. Suppose that A = {x € Z : x = 3" +
n forsomen € N}and B = {x € Z : x = —3" for some n € N}. For convenience we
denote a,, = 3" + n and b, = —3" for n > 1 and note that these are distinct integers.
We define a weight function w as follows

exp(—x?) if x € AU B,

w(x) = . 10!
exp(—g(x))if ¢ AU B, where g(x) = 10

(123)
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Observe that w(x) > Oforall x € Z and w(x) < e‘xz for all x € Z. This means that
Z:=) ..y w(x) < oo and the function

px(x) = wx)-Z7! (124)

defines a probability mass function on Z. We note that py satisfies Assumption D1,
with « = —o0 and 8 = 00; Assumption D2 with any A > 0, in particular we have
D4 = R and so by Lemma 3 we know that Ay is continuous on R so that Assumption
D3 is also satisfied. Finally, by definition px(x) < Z ~1e=** and so Assumption D4
is satisfied with D = Z~! and d = 1. Overall, we see that px satisfies Assumptions
D1-D4.

Suppose now that §"2) is a random walk bridge whose steps size is py. We want
to show that forany a, ¢, C > Oand o > 0 and any coupling of S¥) with a Brownian
bridge B of variance o> there exists a z € Z such that

E I:eaA(Z,z)] > Celil’ (125)

where A(n, 7) = A(n, z, B®, S®9) = SUPo</<p ‘\/713;‘/}1 +iz— St("’Z)‘ . The latter
statement implies that we cannot couple the bridge of size two to any fixed variance

Brownian bridge uniformly in the endpoint z, which means that Theorem 4 fails to
hold for this bridge.

Remark 3 Let us heuristically explain why the above example breaks the coupling.
The distribution in (124) satisfies the condition that it has spikes at the points in A
and B and is extremely small away from those sets. The latter means that for certain
large enough z, we will have that conditional on X; + X»> = z, with overwhelming
probability X1 = 3* + z and X» = —3% or X1 = —3% and X» = 3% + z. The latter
implies that the midpoint of the bridge is essentially a Bernoulli variable that takes
the values 3% 4 z and —3% with equal probability. This makes its variance increase as
we increase z, which makes a close coupling to a Brownian bridge of fixed variance
impossible.

The main take-away point is that while px may be an extremely well-behaved
distribution, the conditional distribution of the midpoint of a Bridge with step size
px can become quite singular in the presence of spikes in py. This means that one
needs better control of the conditional distribution, and one way to achieve this is to
assume py has no spikes. This is one reason behind our introduction of the strongly
log-concave distributions in Sect. 7.1 above.

In the remainder we prove (125). We will prove that there are large enough z such
that

2,z
E [ems{ * )—ﬁBf/z—z/2|:| > Celi?
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which certainly implies (125). Using that ¥l > ealxl=alyl > o@/2)lxl _ palyl ye
see that

E I:eanz’Z)ﬁBf/zz/Z} - E [e(a/2)|s§2’z>|] +E [ alv/2Bg, 2|+Iaz/2|]

E [e(a/2)|s{2‘”|] _ E[ alv/2BY, 2|+|az/2|]

Furthermore we have

[ a|fBl/2\+|aZ/2\] < elazl/2 [IE [exp (aﬁBi’/z)] +E [CXP (‘aﬁBY/Z)ﬂ

— 26\az|/2+a202/4

Combining the above statements we see that to prove (125) it is enough to show that
for any fixed a, ¢, C > 0 we can find large enough z so that

E [e“'sz'”‘] > Cetle. (126)

This is the statement we will establish.
We claim that if z = 2 - 3" with m sufficiently large we have

3pi(a;)p1(b;) = pa(2). (127)

If true the above would imply

[ als®?| ’] ) pi1k)pi(z — ke - pi(az)pi(b;)e’™ . 1 RIS
P2(2) P2(2) 3

keZ

which certainly implies (126). We thus focus on (127).
We have for all m > 2 that

p2(2) < () + (D), where (1) =2 "1{k ¢ A,z —k ¢ A}p1(k)pi(z = h),
N =l (128)
(I =2 pia)pi —a).

r=1

Ifr <mthenwehaved < a, <3"+mandso3" T 4+m >2.3"—-4>7—q, >
2.3" — 3™ —m > 3""! 4 m. This means that z — a, ¢ AU B and so

Zm(ar)m(z —ay) < ZPI(Z —a)<Z7 ' m-exp (—g(3’”‘1 + m)) .

r=1 r=1

(129)
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Ifm<r <2-3"thenwehavez —a, =2-3" — 3" — r and so
3 s s—aq > -3
This means that z — a, ¢ A U B and so

z—1 z—1

> piladpic—a) < Y piz—a) <27 (z—m) - exp(—g(3™).

r=m+1 r=m+1

(130)
If2 - 3" < r then
3 >z—a=2-3"-3 —r> 3"
This means that z — a, ¢ A U B and so
o0 o0 o0
Z pia)pi1(z —ar) < Z piz—a)<z7". Z exp (—g(3")). (131D
r=z41 r=z+1 r=z+1
Combining (129), (130) and (131) we have
o0
(I =2pi(a)-prz—a) <Z7' - Y exp(—g(3)
r=z+1
+Z71 7 exp(—g(2/6)) < e 810, (132)

where the last inequality holds provided m (and hence z) is sufficiently large. On the
other hand,

Pl(az) . pl(Z - az) = exp(_azz) . eXp(—b?)
= exp (-(31 +2)2— 32Z> > 10. ¢ 8G/10)

for all large enough m and so we conclude that for all large m and z = 2 - 3™ we have

(1) =@22)- pi(az) - p1(z —az). (133)

We next focus on (7). Notice that if £k < 3" then z — k > 3™ and so

z/2 z/2
Y UkgAz—k¢ Appiz—k) <Y Mk ¢ A z—k¢ Alpi(z—h)
r=I1 r=1

=< (z/2) - exp(—g(z/2)).
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In addition, we have

Y k¢ Az—k¢ Apik)pi(z—k)

r=z/2+1
< ) Hk¢gAz—kgAlpik) < Y exp(—g(r) < exp(—g(z/3)),
r=z/2+1 r=z/2+1

where the last inequality holds for all large enough m. Combining the latter we get for
all large m

(1) = z-exp(—g(z/2)) +2 - exp(—g(z/3))
< exp(—g(z/10)) = (0.1) - p1(az) - p1(z — az). (134)

Combining (133) and (134) we conclude (127), which concludes our proof.

8 Examples

In this section we present several examples of distributions that satisfy Assumptions
C1-C6 in Sect. 8.1 and Assumptions D1-D5 in Sect. 8.2. The goal is to illustrate
how to verify that a given distribution satisfies the assumptions and in particular
prove Theorems 1 and 2. In Sect. 8.3 we discuss an example with the log-gamma
distribution with parameter y > 0. The log-gamma distribution is of interest to us due
to connections to integrable probability and the example we consider is the principal
one that motivated our quantified Theorem 5. This example benefits the work in [42].

8.1 Examples: continuous jumps

We continue with the notation from Sect. 2.1.

Example 1. We consider the distributions in Theorem 1. By assumption we know that
X is a continuous random variable with density fx(-), which has a compact interval
of support [«, 8] and which is continuously differentiable and positive on (¢, 8) with
a bounded derivative. Since the derivative of fx is bounded and continuous on («, )
we conclude that fy can be continuously extended to [«, 8] and so Assumption C1
is satisfied. In addition, since X is uniformly bounded, we see that Assumption C2 is
satisfied for any A > 0 and so D4 = R. The latter and Lemma 1 imply that A(-) is
continuous on R and so Assumption C3 holds.
We next observe using integration by parts that if z € C and z # 0 we have

/3 e,BZ eaz /3 exz
/ fx(x)e“dx = fx(B) - < fx(a) - — / fy(x) - de.

Z
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Letus fixs,r € Rwitha < s <t < § and suppose that z = u + iv with u € [s, 1].
Then the boundedness of fx(-) and f (-) and the above equation imply that

Ki(s,1)
1+ v’

=

B
/ fx(x)e*dx

for some sufficiently large constant Ki(s,?) and so Assumption C4 holds with
p(s,t) =1.

As fx(-) has compact support and is bounded, Assumption C5 holds as well. In
view of Lemma 16 Assumption C6 also holds. Overall, we conclude that fx satisfies
Assumptions C1-C6 and so by Theorem 3 we conclude Theorem 1.

The above example illustrates that our strong coupling result holds for essentially
any compactly supported density with a bounded continuous derivative. We next illus-
trate a case when the support is not compact using the usual exponential distribution.

Example 2. Suppose that X has exponential distribution with parameter © > 0, i.e.
fx(x) = 1{x > 0} - we **. In this case Assumption C1 holds trivially with « = 0 and
B = oo. In addition, we have My (t) = ﬁ and so Assumption C2 holds with any
0 < A < u. Next, we have that A(x) = log(u) —log(u —t) is lower semi-continuous
on D, = (—o0, ) and Assumption C3 holds.

Letusfixs,t € RwithO < s < ¢ < oo and suppose that z = u+iv withu € [s, t].
Then we have

jz Ki(s, 1)
IMx(2)| = ’ ‘ <
w— 1+ |v]

for some sufficiently large constant Ki(s,?) and so Assumption C4 holds with
p(s, t) = 1. Assumption C5 holds trivially as fx (x) = Oforx < 0and Assumption C6
is satisfied in view of Lemma 16. Overall, we conclude that fx satisfies Assumptions
C1-C6 and so Theorem 3 holds for random walk bridges with exponential jumps.

8.2 Examples: discrete jumps

We continue with the notation from Sect. 2.2.

Example 1. We consider the distributions in Theorem 2. By assumption we know
that X is an integer valued random variable with probability mass function px(-)
such that px(x) > O for all x € Z N [a, B] and P(X € [«, B]) = 1. The latter
iplies that px satisfies Assumption D1. In addition, since X is uniformly bounded,
we see that Assumption D2 is satisfied for any A > 0 and so D4 = R. The latter and
Lemma 3 imply that A(-) is continuous on R and so Assumption D3 holds. As px (-) is
compactly supported and bounded, Assumption D4 holds as well. In view of Lemma 17
Assumption D5 also holds. Overall, we conclude that p x satisfies Assumptions D1-D5
and so by Theorem 4 we conclude Theorem 2.

The above example illustrates that our strong coupling result holds for essentially
any integer valued variable with a single compact (integer) interval of support. We next
illustrate a case when the support is not compact using the usual geometric distribution.
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Example 2. Suppose that X has geometric distribution with parameter g € (0, 1), i.e.
px(n) = q-(1—¢g)" forn > 0. In this case Assumption D1 holds trivially witha = 0
and B = co. In addition, we have My (t) = #_q)e, and so Assumption D2 holds
withany 0 < A < —log(1—g¢). Next, we have that A(x) = log(g) —log(1—(1—g)e")
is lower semi-continuous on D) = (—o0, —log(l — ¢g)) and Assumption D3 holds.
Assumption D4 holds trivially as px(x) = 0 for x < 0 and Assumption D5 is
satisfied in view of Lemma 17. Overall, we conclude that py satisfies Assumptions
D1-D5 and so Theorem 4 holds for random walk bridges with geometric jumps.

8.3 Example: log-gamma distribution

The log-gamma density function with parameter y > 0 is given by

fy(x) =

exp (yx —e*) forx e R. (135)
i &P e =)

If £ is a random variable with density f;, one readily observes that

Ty +1)

M:(t) = o) and so Mg () < oo fort > —y. (136)

The above formula also implies that
E[&] =m, = ¢V (y) and Var ) = o) = vV (). (137)

where %) denote the polygamma functions given by

plan!
V@ =logr@and y M@ = S5y 7@, fork 0. (138)

We consider in this section random walk bridges as in the setup of Sect. 2.1, whose

£y To indicate the dependence of the bridges on y we

jump has distribution X = 5,

write S)(,"’Z) to denote a process whose law is given by that of a random walk bridge
with step distribution X and which is condititioned to end at z after n steps. The main
result we wish to establish is the following.

Corollary2 For any b > 0 and yy > 0 there exist constants 0 < C, a,a’ < 00 such
that for every positive integer n and y > yy, there is a probability space on which are

defined a Brownian bridge B° with o = 1 and a family of processes S)(,"’Z) forz e R
such that
E[eaA(n,Z)] < Ceal(lOg")ebZz/n, (139)

where A(n, 2) = SUpg<;<, |v/NBim + L2 — SJ(,"’;Z)L
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In the remainder of this section we provide the proof of Corollary 2. The goal is to
show that the density

fx(x) = exp (v (oyx +my) — 7+ (140)

F()

satisfies Assumptions C1-C6 and that the constants in Definition 6 and the functions
in Assumption 6 can be chosen uniformly in y > yy. If true then Corollary 2 will
follow from Theorem 5 applied to p = 0 and ¢’ = 1. For clarity we split the proof
into several steps and use the same notation as in Sect. 2.1.

Step 1. In this step we summarize several statements that we will need throughout the

proof.
From (136) we have
Mx (1) = e Mr!/ov Ly +t/oy) and A(r) = log[Mx ()]
I'(y)
=w““@+lﬂ—w“Ww—fﬁ, (141)
Oy Oy

Using (140) we have

2
dilog fx(x) =0y (y — e ") and d—log fx@) = —oze’"V ce%rr. (142)
x

From [18, Lemma 3] we have for x > 0

1 (0) 1
log(x) — " <y (x) <log(x) — o

k=D! . K (k Dt K
X 2xk+l 'g// ()< —i—mforkeN

(143)

X

Using (143) and [1, (6.3.18)] we know that

1
oy = y 24+ 07" and m, =logy — g +0(y Hasy — co. (144)

We have the following series representation for w(o) (z) forz #0,—1,-2,..., see
e.g. [1,6.3.16],
T 1 1
O,y — — 145
Y (z) VE+,,E_0|:”+1 n+zi|’ (145)

where yg is the Euler constant.

Step 2. In this step we demonstrate that fx(-) satisfies Assumptions C1-C5.

@ Springer



KMT coupling for random walk bridges 721

From (140) we know that Assumption C1 holds with « = —o0 and 8 = oo. In
addition, from (141) we know that Assumption C2 holds forany 0 < A < o), - ¥, in
particular it holds when A = 2-L. oy -y. We have Dy = (—yo,,00) and A(") is
lower semi-continuous on R. This verifies Assumption C3.

We isolate the verification of Assumption C4 in the following lemma.

Lemma 18 Forany y > Oand —o, -y < § < T < oo thereisa K1(S,T,y) >0
such that

K

[Mx(2)| < , where z =u +ivwiths <u <t. (146)
1+ |v]|
Proof From (145) we have
Mx(z)
[Mx(z)| = [Mx )] -
Mx (u)

v X i i
=M R - '
| X(M)|exp(/0 ’;:;) e[n+1 n+y+(u+iy)/0y}dy>

We observe that

Re[l _ P }: el .
n+1l n+y+wu+iy)/oy, (n+y+ujoy)?+y>?

Combining the last two statements we see

Mx ()] < |Mx (@) -exp( v _zy—dﬁ) = ML
o la=+y7] Vv? + a?
where a = y + u/o,. The last line proves (146). O

In view of (146) we conclude that fx satisfies Assumption C4. We next verify
Assumption C5.

Lemma 19 For any yy > O there exist constants L, D, d > 0 such that

fx(x) <L forallx € Rand fx(x) < De_”lx2 forall x > 0. (148)

Proof From (142) we know that fx is log-concave and has a unique maximum when
X =Xc=0, U [log(y) — m,y |. In particular, this implies that

Oy
I'(y)

fx(x) = fx(xe) = exp (y log(y) —v).

The right side above is uniformly bounded on [y, M] for any finite M, andas y — oo
we have by Stirling’s approximation formula (see e.g. [1, 6.1.37]) and (144) that

Oy
I'(y)

1
exp (¥ log(y) —y) ~ T as y — oo.
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Overall we conclude that we can find L sufficiently large depending on yq alone so
that the left inequality in (148) holds.
We next fix x > 0. We have

fx(x)
fx(©0)

emVO'2
= exp (yo,x — e ") <exp | — x?).

where in the last inequality we used that e* > 1 +a + % for a > 0. We observe by
(143) that

and so we conclude that
Fx () = fx(0) - exp (—e! - x22).

This proves the right inequality in (148) with D = L and d = e~ 1/70/2. O

Step 3. In what follows we fix —00 < s <t < ocoandset S, = uy; = (A)~(s) and
T, =u = A’ )’1 (t). We write below C(yyp, s, t) to mean a generic positive constant
that depend on s, ¢ and yg, whose value may change from line to line. The goal of this
step is to show

v+ 580, =Cs,1,y0)-yandy +Tyo, ' <Cls,t,00)-y. (149
From (141) we know that

v O + 8,0, -y O)
Oy

_ V00t h —vOm

Oy

A(Sy) =

= s and A'(T})

(150)

Combining (150) and (143) we conclude that

1

P
2(y + S,0, 1)

1
log [y + Sy(ry_l] —log[y] — ; >0y -8
(151)

log [y+Tyay_1] —log[y] — +— =<0y t.

y+Tyo, ' 2y

From the first line in (151) we see that

1
log [y + Syoy_l] > log[y]l+oy -5 — y_
0
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Exponentiating both sides above and using (144) we get the left part of (149).
On the other hand, from the second line in (151) we have

log [V + TyU},_l:I <log[y]+ oy -t + m
Yy

Using the left part of (149) we have y + T},oy_l >y + Sya},_1 > C(s,t,y0) -y and

so if we exponentiate both sides of the above equation we conclude the right side of
(149).

Step 4. In this step we show that we can find co > M, ; > m,; > 0 that depend on
s, t and yg alone such thatif y > yp and x € [S,, T ] we have

My = A"(x) = my,. (152)

From (143) we have that for x € [S,, T} ]

1 1 1 1
— - [ — + 1)2} > A"(Sy) 2 A" () = — -y (y +x<fy")

14

1 1 1
> A1) = = - + .
03 v+ Tyay_l 20y + Tyay_l)2

The above inequalities together with (149) and (144) imply (152).

Step 5. We have from (144) and (149) that there is 8},, € (0, 1) sufficiently small
depending on s, t and y; such that

y +min(S,,0) -0, ' > 26! -0, (153)

We fix such a 8 , and denote S, =8, — 8}, and T, =T, + 81 ,. Notice that if

D81t(min(0, Sy), max(7T,, 0)) is as in Definition 1 then let Cl{zeC:—=y.0, <
Re(z) < oo}. In this step we show that we can find M(s, t,v0) > 0, depending on

s, t and yy, such that

|A(2)] < M()(s, t,yp) forall z € Bagt(min(o, Sy), max(T),, 0)). (154)

From (141) and (145) we have for x € (—y - 0y, 00) that

1 1 & 1
Aw=— [0 +x0, ) =0 ] and 40 = = Y o >0,
oy o, —on+y+xo,)

which implies that x = 0 is the unique minimizer of A(x) and the maximum of this
function on [§/,, T)L] is obtained either when x = Sj’, orx = T)ﬁ. Furthermore, it
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fpllows from (144), (149) and (151) that there is a sufficiently large positive constant
C(s,t, y0) > 0 such that

Cls,t,0) = Ty > S = —Cls, 1, y0). (155)
Combining (155) vyith (153) and (143) we conclude that there is a sufficiently large
positive constant M/ (s, t, y9) > O such that for x € [min(0, S)’,), max(T/, 0)] we
have
|A' ()] < MiGs, 1, ). (156)
Combining (155) and (156) with the fact that A(0) = 0 we conclude that there is a
sufficiently large constant My (s, t, yp) > Osuchthatforx € [min(0, S)’,), max (7", 0)]
we have

|A()| < MoGs, £, ). (157)

Now we suppose that x € [min(0, S;,), max (7, 0)] and note that

) " a’1y2+x(n+y+xa’])
A’(x+ly)=;'2 2
i — (n+y)[(n+)/+xoy )* 4o, 2y2]
R y
- (158)
U}%g(n—i—y—i—xoy )2—|—a y2

where we used (145). In particular, we see that

i o, 'y 4 Ixln+y +xo, ) 1 i 32
< .
3 S +y +xo, )2 +0,72 T 0y Sty + oy 'x)?
 J— |x| P R—— 1
,% nX_: (n+y+xo, 12 0,}'3/ g(rw—y—i—o;lx)z
and also
| — || | —
"3,;)(n+y+xoy‘l)2+y Uﬁg(n+y+xa )2
We use that

00 1 | ~ .
Z —1y2 = —1\2 +/ —_12du
n+y+xoy )T (y+xo, 02 oo (v +xoy +u)

1 1

—15\2 + —1
(y +x0,) y +xo,

@ Springer



KMT coupling for random walk bridges 725

Substituting the above inequalities into (158) we get for x € [min(0, S)’,), max (7, 0)]

I 1 1 N B S
A (x +iy)| < - * el I + >+ +=1-
(y +x0p, )%  y+xoy o,-y o, o,y o0}

From (149) we have y + S/, 07! > C(s, t, o) - ¥ and so the above inequality implies
vy quality 1mp

C 1, 2 2
A+ iyl < (SVVO)-[ b +'y']

a;-y o2 O';-J/ o2

14 Y

If we finally combine the latter with (155) and (143) we see that
1A' (x +iy)| < C(s, 1, y0) - [1+ 7. (159)

In view of (157) and (159) we know that by possibly making Mo(s, t, yo) larger we
can ensure that (154) holds.

Step 6. In this step we show that we can choose the constants in Definitions 1 and 2
uniformly in y > yp. We fix m, ; and M ; as in (152) above. From (154) and the fact
that x = 0 is the unique minimizer of A(x) on [min(0, S)//), max(7T), 0)] we get

MO > My (x) 2 1. (160)
Also we have

y
[Mx(x) — Mx(x +iy)| = Mx(x) - ‘1 —exp (/ iA'(x +iu)du) <C(s,t,90) - Iyl
0

The latter implies that we can pick 0 < 65 ; < 8}’, sufficiently small depending on s, ¢
and yp so that

885 - Mo(s. 1, v0) < my; and |My(x) — My (x +iy)| < 1/2. (1e1)

In particular, the latter together with (154) and (160) imply that for z € 55&[ Sy, T,)
we have Re[Mx(z)] > 1/2 and 88; ;- |A(z)| < my,;. Thus &, satisfies the conditions
in Definition 1.

Note that by (147) we have

(162)

. V' —u-du [Mx (x)|
IMx(x +iy)| < |Mx(x)|-exp </0 [ ) =

a’+ u?] [y + a2’

wherea = y + x - o, I Combining the latter with (149) we conclude that there is
K ; depending on s, ¢ and yp such that for all x € [min(0, S)//), max(7/, 0)] we have

< ! < Ks.i

M(x + ly) . e—A’(x)»(x+iy)e—A(x)+xA’(x) < < )
N O R R
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This fixes K, ; in Definition 2 and p;s; = 1.

Step 7. In this step we show that we can choose gs ; in Definition 3 uniformly in
Y = )0-

Let €, and R;; be as in the statement of Definition 3 for the constants ; ; and
K in Step 6. In view of (158) we have for any x € [S,,, T, ] that

o]

4 Re[AGx +iv)] = = Y (163)

dy 0 =y +xoy D2 4oy 2y

which implies that Re[ A(x 4 iy)] is decreasing in y on [0, 00) and increasing in y on
(—o00, 0). Let us first consider the case y > €, ;. The above inequality implies that

—uay_2d
Re[A(x +iy)] = A() < Re[Ax +i€;,)] — A) < f Z
— (v + Sy0y L4 n)?
2 oo
22 Z == sz f dv_l
ZGV n=0 (V + Syoy + n)2 20)/ 1 (y + Syay + 0)2

—e2
s,t

C202(y + Syoy 1)

Combining the latter with (144) and (149) we conclude that there is g5 ; € (0, 1) that
depends on s, ¢ and y; such that

Re[A(x +iy)] — A(x) < log[gs.(],

In particular, exponentiating both sides we see that for x € [S),, T,] and y > €;, we
have

Mx (x +iy)
TMr) = Gs.r- (164)

Since [Mx(x +iy)| = |Mx(x — iy)| we conclude that (164) holds for |y| > €,
which verifies that g, ; satisfies the conditions in Definition 3.

Step 8. In this step we show that we can choose the constants in Definition 4 uniformly
in y > y. We first show that we can find constants My(s,t,y9) > 0 for k =
0,1, 2, 3, 4 such that

|A® (x)| < My(s, 1, yo) forall x € [S,, T, . (165)

Indeed for k = 0, k = 1 and k = 2 this follows from (157), (156) and (152) respec-
tively. Next we have for k = 3, 4 that

|A(k)(x)|_01 W(k U(V—I—S o 1)) |: (k—2)! n (k—1)! i|
V

y +xoy =y + S0y I
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where in the last inequalitly we used (143). Using (149) and (144) we conclude (165)
for k = 3 and k = 4 as well.
Next we recall that F(z) = G,(u;) = A(u;) — u; - z. We claim that for k =

0, 1, 2, 3, 4 we can find constants M b(k,) that depend on s, 7 and yg such thatif z € [s, 7]
we have

IFO @) < M®) forall x € [S,, T 1. (166)

If z € [s,t] then u, € [S), T, ] and then in view of (154) and (155) we can find Ms(f),)
satisfying (166). We next use that u, = (A" Hz) to get

1 AP ()
/ _ V _ 3) _ Z 4)
F(2) = —uz, F'(z)= VoS F7(2) = AP F™(2)
AWy - A () =349 )
B [A” (u)]3 '

The latter equalities together with (165) and (152) prove (166). The constants in (166)
satisfy the conditions in Definition 4.

Step 9. In this step we show that we can choose the constants in Definitions 5 and 6
uniformly in y > yp. Observe that by Steps 6. and 7. we can choose the constant Ny
in Proposition 1 depending on s, f and yy alone and the same is true for the constant
C1. Since D, d and L in Assumption C5 were chosen uniformly in Lemma 19 in Step
2. we conclude that we can pick R; in Definition 5 depending on s, t and g alone.
We now let § = —6R; and f = 6R;. Then from Steps 6. and 7. we can pick all the
remaining constants in Definition 6 uniformly in y > yp.

Step 10. In this step we show that for any r > 0 there is a constant Ay > 0 that
depends on r and yy alone such that

inf  fx(x) = Ao, (167)

xe[—r,r
We begin by proving a useful lemma.

Lemma 20 The function f,(x) converges uniformly over compact sets to ¢(x) =
—x2)2

Nz

e

asy — oQ.

Proof Letus fix R > 0 and assume x € [—R, R]. The functional equation I'(z+1) =
zI'(z) and [3, Theorem 1.6] give

Fy(x) -y Ve VY < fyx) =
. < f,(x) <

V27 Jy F1

F,(x) - y VY1 2ey

21 '
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where F), (x) = 0}, - exp(y(oyx +my) — e%r* My In addition, we have from (143)
that

2
x
Y (oyx 4+ my) — e My = 5 e +ym, + oy,

where the constant in the big O notation depends on R. Combining the latter with
(144) we see that we can find a constant C > 0 depending on R such that

2 =12 .2 —1/2
P /2—Cy . 1/2 P /24+Cy .o 1/2
DI < 2.
V2 NS V2r
from which we conclude the statement of the lemma after applying (144). O

Let us fix » > 0. By Lemma 20 we know that there is y; > yy, depending on r,
such that if y > y; then

-r2/2

inf fo(X) >

1
e
X€[—r,r 221
Then since fx(x) is jointly continuous in x and y and positive on [—r, r] X [y, 1]
there exists a positive constant A depending on y; and r such that

inf f/'(x) > Ay, (168)

x€[—r,r]

for all y € [y, y1]- In particular, we deduce that (167) holds with Ag =
[ efrz 2Y

221

Step 11. Let us denote fny (-) the density of S, = X1+ - -4+ X,, where X; arei.i.d. with

distribution f. In this step we show that there is a positive constant A that depends

on Yy such that

min ( Ay,

inf  fY(x)>A-n"12 (169)
xe[—1,1]

We apply Proposition 1 to the distribution fy and for the values s = —1 and ¢t = 1.
From our work in Steps 6. and 7. we know that we can find Ny and Cp > 0 depending
on y such that for N > Ny we have

Co

V2n N A" (uy)

In particular, using (152), the fact that G;(ug) = 0 and (166) we conclude that there
is a constant A’ > 0 depending on Yy such that

fu(Nz) = -exp (NG (u7)).

%ng ]]f;\,/(x) >A N2 fory > yand N > Ny. (170)
xe[—1,
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Next, we let Ag € (0, 1) be sufficiently small so that (167) holds with r = Nj.
Then we have for 1 <n < Ny and x € [—1, 1] that

an(X)=A@"'/fo(m)mfx(xn—l)-fx(x—X1 — s —Xp—1)dx1---dx,
1 1
z/o /0 FRGD- S Gn D) fx (= X1 — - — 311 - - - g = (A0)"

In particular, we conclude from the latter and (170) that (169) holds for all n > 1 with
A = min(A)°, 4.

Step 12. In this and the next step we show that we can choose the constants in Def-
inition 12 uniformly in y > yp. From (169) we can choose A > 0 depending on yy
alone so that it satisfies the conditions of that definition. We also set R =2 + A~ ! in
that definition. We may now apply Proposition 1 to the distribution fy for the values
s = —2R and t = 2R. From our work in Steps 6. and 7. we know that we can find
No(R) and Cp(R) > 0 depending on yq such that for N > Nyp(R) we have

Co(R)

V2r N A" (uy)

In particular, using (152) and (166) we conclude there are positive constants Cg and
cg such that

IN(NzZ) = ~exp (NG (uz)) .

fh(Nz) > Cr-N""2e™®N fory > yy,z € [-2R,2R]and N > No(R). (171)

Furthermore, we can apply (167) to r = 2R + Ny(R) to obtain the existence of a
positive constant Ag(R) € (0, 1) such that

inf /' (x) = Ao(R).

xel[—r,r]

Consequently, we have for z € [-2R,2R] and 1 < n < Ny(R) that

fny(nz)=A;~--/fo(x1)-~fx(xn_1)~fx(nx—x1 — = Xp—1)dxy - - dxy

1 1
Z/O /0 fx@n) - fx(Gono1) - fx(mx —xp — -+ = xp_1)dxy - -dxy, = (Ag(R))".

The latter implies that (171) continues to hold for I < N < Ny(R) as well provided
we make Cp small enough (and positive) depending on yy. This fixes the chooice of
A, Cg and cp.

Step 13. As we mentioned in Step 2. Assumption C2 holds for any A € (0, yo, h.
Consequently, by (144) we can find A9 > 0 depending on yyp such that fy satisfies
Assumption C2 for A = Ag and y - o, > 21¢. We fix this choice for A. Notice that by
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(141) and (143) we have for x € [—A, A] that |A’(x)| < C(yp) for some C(yy) > 0.
The latter and A(0) = 0 imply that for x € [—X, 1] we have

[A)] = C(yo) (172)

for some possibly different C(yp) > 0.
Finally, given A Aand A, cr, Cg asin Step 12. and L as in Lemma 19 we can find
positive constants Cg and ¢g that depend on yy alone such that for all n > 1

3/2 A .
EfeM¥1}" [—4” S+ LC;‘ﬁeCR"} < Cp- e,

In deriving the last expression we used (172) and the simple inequality E[¢*X]] <
eAM) 4 AH),

From the proof of Lemma 19 we know that fx (x) is log-concave and so Lemma 16
is applicable. From that lemma we conclude that we can find functions a and C that
satisfy the conditions of Assumption C6. Moreover, from the fact that X, C g and Cp
are all independent of y provided y > yy, the lemma implies that the same is true for
aand C.

Summarizing all of our work in this section, we see that fx satisfies Assumptions
C1-C6 and so we can apply Theorem 5 to it. Since the constants C, a, &’ in that theorem
depend only on the parameters in Definition 6 and the functions in Assumption 6, and
the latter can be chosen uniformly in y > yy this implies that the same is true for
C, a, a’. We conclude that Theorem 5 implies Corollary 2. This suffices for the proof.
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