
MODULARITY OF GENERATING SERIES OF

DIVISORS ON UNITARY SHIMURA VARIETIES II:

ARITHMETIC APPLICATIONS

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael

Rapoport & Tonghai Yang

Abstract. — We prove two formulas in the style of the Gross-Zagier theo-
rem, relating derivatives of L-functions to arithmetic intersection pairings on
a unitary Shimura variety. We also prove a special case of Colmez’s conjec-
ture on the Faltings heights of abelian varieties with complex multiplication.
These results are derived from the authors’ earlier results on the modularity
of generating series of divisors on unitary Shimura varieties.

Résumé (Modularité des séries génératrices de diviseurs sur les
variétés de Shimura unitaires II: applications arithmétiques)

Nous prouvons deux formules dans le style du théorème de Gross-
Zagier, reliant les dérivées des fonctions L aux accouplements d’intersection
arithmétique sur une variété de Shimura unitaire. Nous prouvons également
un cas particulier de la conjecture de Colmez sur les hauteurs de Faltings des
variétés abéliennes à multiplication complexe. Ces résultats sont déduits des
résultats antérieurs des auteurs sur la modularité des séries génératrices de
diviseurs sur les variétés de Shimura unitaires.
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1. Introduction

Fix an integer n ě 3, and a quadratic imaginary field k Ă C of odd dis-

criminant discpkq “ ´D. Let χk : Aˆ Ñ t˘1u be the associated quadratic

character, let dk Ă Ok denote the different of k, let hk be the class number of

k, and let wk be the number of roots of unity in k.

By a hermitian Ok-lattice we mean a projective Ok-module of finite rank

endowed with a nondegenerate hermitian form.

1.1. Arithmetic theta lifts. — Suppose we are given a pair pa0, aq in which

– a0 is a self-dual hermitian Ok-lattice of signature p1, 0q,

– a is a self-dual hermitian Ok-lattice of signature pn´ 1, 1q.

This pair determines hermitian k-spaces W0 “ a0Q and W “ aQ.

From this data we constructed in [BHKRYa] a smooth Deligne-Mumford

stack ShpG,Dq of dimension n´ 1 over k with complex points

ShpG,DqpCq “ GpQqzD ˆGpAf q{K.

The reductive group G Ă GUpW0qˆGUpW q is the largest subgroup on which

the two similitude characters agree, and K Ă GpAf q is the largest subgroup

stabilizing the pZ-lattices pa0 ĂW0pAf q and pa ĂW pAf q.
We also defined in [BHKRYa, §2.3] an integral model

(1.1.1) SKra ĂMp1,0q ˆOk
MKra
pn´1,1q

of ShpG,Dq. It is regular and flat over Ok, and admits a canonical toroidal

compactification SKra ãÑ S˚Kra whose boundary is a smooth divisor.

The main result of [BHKRYa] is the construction of a formal generating

series of arithmetic divisors

(1.1.2) pφpτq “
ÿ

mě0

pZtotal
Kra pmq ¨ q

m P xCh
1

QpS˚Kraqrrqss

valued in the Gillet-Soulé codimension one arithmetic Chow group with ratio-

nal coefficients, extended to allow log-log Green functions at the boundary as

in [BGKK07, BBGK07], and the proof that this generating series is modu-

lar of weight n, level Γ0pDq, and character χnk. The modularity result implies

that the coefficients span a finite-dimensional subspace of the arithmetic Chow

group [BHKRYa, Remark 7.1.2].
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After passing to the arithmetic Chow group with complex coefficients, for

any classical modular form

g P SnpΓ0pDq, χ
n
kq

we may form the Petersson inner product

xpφ, gyPet “

ż

Γ0pDqzH
gpτq ¨ pφpτq

du dv

v2´n

where τ “ u` iv. As in [Kud04], define the arithmetic theta lift

(1.1.3) pθpgq “ xpφ, gyPet P
xCh

1

CpS˚Kraq.

Armed with the construction of the arithmetic theta lift (1.1.3), we are

now able to complete the program of [How12, How15, BHY15] to prove

Gross-Zagier style formulas relating arithmetic intersections to derivatives of

L-functions.

The Shimura variety S˚Kra carries different families of codimension n ´ 1

cycles constructed from complex multiplication points, and our results show

that the arithmetic intersections of these families with arithmetic lifts are

related to central derivatives of L-functions.

1.2. Central derivatives and small CM points. — In §2 we construct an

étale and proper Deligne-Mumford stack Ysm over Ok, along with a morphism

Ysm Ñ S˚Kra.

This is the small CM cycle. Intersecting arithmetic divisors against Ysm defines

a linear functional

r´ : Ysms : xCh
1

CpS˚Kraq Ñ C,
and our first main result computes the image of the arithmetic theta lift (1.1.3)

under this linear functional.

The statement involves the convolution L-function Lpg̃, θΛ, sq of two mod-

ular forms

g̃ P SnpωLq, θΛ PMn´1pω
_
Λ q

valued in finite-dimensional representations of SL2pZq. We refer the reader to

§2.3 for the precise definitions. Here we note only that g̃ is the image of g

under an induction map

(1.2.1) SnpΓ0pDq, χ
n
kq Ñ SnpωLq

from scalar-valued forms to vector-valued forms, that θΛ is the theta function

attached to a quadratic space Λ over Z of signature p2n´ 2, 0q, and that the

L-function Lpg̃, θΛ, sq vanishes at its center of symmetry s “ 0.
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Theorem A. — The arithmetic theta lift (1.1.3) satisfies

rpθpgq : Ysms “ ´degCpYsmq ¨
d

ds
Lpg̃, θΛ, sq

ˇ

ˇ

s“0
.

Here we have defined

degCpYsmq “
ÿ

yPYsmpCq

1

|Autpyq|
,

where the sum is over the finitely many isomorphism classes of the groupoid

of complex points of Ysm, viewed as an Ok-stack.

The proof is given in §2, by combining the modularity result of [BHKRYa]

with the main result of [BHY15]. In §3 we provide alternative formulations

of Theorem A that involve the usual convolution L-function of scalar-valued

modular forms, as opposed to the vector-valued forms g̃ and θΛ. See especially

Theorem 3.4.1.

1.3. Central derivatives and big CM points. — Fix a totally real field

F of degree n, and define a CM field

E “ k bQ F.

Let Φ Ă HompE,Cq be a CM type of signature pn ´ 1, 1q, in the sense that

there is a unique ϕsp P Φ, called the special embedding, whose restriction to k

agrees with the complex conjugate of the inclusion k Ă C. The reflex field of

the pair pE,Φq is

EΦ “ ϕsppEq Ă C,
and we denote by OΦ Ă EΦ its ring of integers.

We define in §4.2 an étale and proper Deligne-Mumford stack Ybig over OΦ,

along with a morphism of Ok-stacks

Ybig Ñ S˚Kra.

This is the big CM cycle. Here we view Ybig as an Ok-stack using the inclusion

Ok Ă OΦ of subrings of C (which is the complex conjugate of the special

embedding ϕsp : Ok Ñ OΦ). Intersecting arithmetic divisors against Ybig

defines a linear functional

r´ : Ybigs : xCh
1

CpS˚Kraq Ñ C.

Our second main result relates the image of the arithmetic theta lift (1.1.3)

under this linear functional to the central derivative of a generalized L-function

defined as the Petersson inner product xEpsq, g̃yPet. The modular form g̃pτq is,

once again, the image of gpτq under the induction map (1.2.1). The modular
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form Epτ, sq is defined as the restriction via the diagonal embedding HÑ Hn

of a weight one Hilbert modular Eisenstein series valued in the space of the

contragredient representation ω_L . See §4.3 for details.

Theorem B. — Assume that the discriminants of k{Q and F {Q are odd and

relatively prime. The arithmetic theta lift (1.1.3) satisfies

rpθpgq : Ybigs “
´1

n
¨ degCpYbigq ¨

d

ds
xEpsq, g̃yPet

ˇ

ˇ

s“0
.

Here we have defined

degCpYbigq “
ÿ

yPYbigpCq

1

|Autpyq|
,

where the sum is over the finitely many isomorphism classes of the groupoid

of complex points of Ybig, viewed as an Ok-stack.

The proof is given in §4, by combining the modularity result of [BHKRYa]

with the intersection calculations of [BKY12, How12, How15].

1.4. Colmez’s conjecture. — Suppose E is a CM field with maximal to-

tally real subfield F . Let DE and DF be the absolute discriminants of E and

F , set ΓRpsq “ π´s{2Γps{2q, and define the completed L-function

Λps, χEq “

ˇ

ˇ

ˇ

ˇ

DE

DF

ˇ

ˇ

ˇ

ˇ

s
2

ΓRps` 1qrF :QsLps, χEq

of the character χE : AˆF Ñ t˘1u determined by E{F . It satisfies the func-

tional equation Λp1´ s, χEq “ Λps, χEq, and

Λ1p0, χEq

Λp0, χEq
“
L1p0, χEq

Lp0, χEq
`

1

2
log

ˇ

ˇ

ˇ

ˇ

DE

DF

ˇ

ˇ

ˇ

ˇ

´
rF : Qs

2
logp4πeγq,

where γ “ ´Γ1p1q is the Euler-Mascheroni constant.

Suppose A is an abelian variety over C with complex multiplication by OE

and CM type Φ. In particular A is defined over the algebraic closure of Q in

C. It is a theorem of Colmez [Col93] that the Faltings height

hFalt
pE,Φq “ hFaltpAq

depends only on the pair pE,Φq, and not on A itself. Moreover, Colmez gave a

conjectural formula for this Faltings height in terms of logarithmic derivatives

of Artin L-functions. In the special case where E “ k, Colmez’s conjecture

reduces to the well-known Chowla-Selberg formula

(1.4.1) hFalt
k “ ´

1

2
¨

Λ1p0, χkq

Λp0, χkq
´

1

4
¨ logp16π3eγq,
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where we omit the CM type tidu Ă Hompk,Cq from the notation.

Now suppose we are in the special case of §1.3, where

E “ k bQ F

and Φ Ă HompE,Cq has signature pn´1, 1q. In this case, Colmez’s conjecture

simplifies to the equality of the following theorem.

Theorem C ([YY18]). — For a pair pE,Φq as above,

hFalt
pE,Φq “ ´

2

n
¨

Λ1p0, χEq

Λp0, χEq
`

4´ n

2
¨

Λ1p0, χkq

Λp0, χkq
´
n

4
¨ logp16π3eγq.

In [BHKRYa, §2.4] we defined the line bundle of weight one modular forms

ω on S˚Kra. It was endowed it with a hermitian metric in [BHKRYa, §7.2],

and the resulting metrized line bundle determines a class

pω P xCh
1

QpS˚Kraq.

The constant term of (1.1.2) is

(1.4.2) pZtot
Krap0q “ ´pω ` pExc,´ logpDqq

where Exc is the exceptional locus of S˚Kra appearing in [BHKRYa, Theorem

2.3.4]. It is a smooth effective Cartier divisor supported in characteristics

dividing D, and we view it as an arithmetic divisor by endowing it with the

constant Green function ´ logpDq in the complex fiber.

Theorem D. — The metrized line bundle pω satisfies

rpω : Ybigs “
´2

n
¨ degCpYbigq ¨

Λ1p0, χEq

Λp0, χEq
.

Theorem C is proved in [YY18] as a consequence of the average version

of Colmez’s conjecture [AGHMP18, YZ18, How20]. Note that the proof

in [YY18] does not require our standing hypothesis that discpkq is odd. Of

course the assumption that discpkq is odd is still needed for Theorem D, as it

is only under these hypotheses that we have even defined the integral model

S˚Kra and its line bundle of weight one modular forms.

In §5 we will show that Theorems C and D are equivalent. One can interpret

this in one of two ways. As Theorem C is already known, this equivalence

proves Theorem D. On the other hand, in §4.5 will give an independent proof

of Theorem D under the additional assumption that the discriminants of k

and F are odd and relatively prime. In this way we obtain a new proof of

Theorem C under these extra hypotheses.
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1.5. The case n “ 2. — Throughout the introduction we have assumed

that n ě 3, and the reader might wonder how much of what we have written

extends to the case n “ 2.

As explained in [BHKRYa, §1.6], when n “ 2 the proof of the modularity

of (1.1.2) breaks down because there is no known integral model of ShpG,Dq
whose reduction at the primes of Ok dividing D is normal. The existence

of such a model when n ą 2 is used in [loc. cit.] to compute the vertical

components of divisors of Borcherds products.

When n “ 2, the Shimura variety ShpG,Dq is essentially a union of mod-

ular curves (if the k-hermitian space W admits an isotropic line) or compact

quaternionic Shimura curves (if W is anisotropic). In either case the analogues

of Theorems A and B are close in spirit to the Gross-Zagier theorem [GZ86]

and its generalizations [YZZ13]. In particular, the statement of Theorems A

is quite parallel to the key result Theorem 6.1 in [GZ86, Section 1.6]. If we

interchange in the computation of rpθpgq : Ysms the order of taking the Peters-

son inner product and the height pairing, this quantity is very analogous to

the left hand side of Theorem 6.1 in [GZ86]. Both quantities are expressed as

central derivatives of a Rankin convolution L-function of g and a binary theta

function which is determined by the CM cycle in question. If g is a newform,

then pθpgq should lie in a g-isotypical component and the height pairing in our

Theorem A should be proportional to the height of the g-isotypical component

of (a twist of) Ysm. It would be interesting to make such a comparison precise.

However, note that there are substantial differences as well. While we work

with unitary Shimura varieties and CM points whose discriminants are equal

to the level, Gross and Zagier work with GL2 Shimura varieties and CM points

whose discriminants are coprime to the level.

Theorem C is true as stated when n “ 2, and is proved in [YY18]. Indeed,

Colmez’s conjecture is known for all quartic CM fields. If the quartic CM field

is Galois over Q, then the Galois group is abelian and Colmez’s conjecture

is known by work of Colmez [Col93] and Obus [Obu13]. In the non-Galois

case the CM types form a single AutpC{Qq-orbit; as Colmez’s conjecture is

constant on such orbits, the full Colmez conjecture follows from the average

case proved in [AGHMP18] and [YZ18].

Theorem D is also true as stated when n “ 2. Indeed, when we prove the

equivalence of Theorems C and D in §5 we only assume n ě 2.

1.6. Thanks. — The results of this paper are the outcome of a long term

project, begun initially in Bonn in June of 2013, and supported in a crucial
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way by three weeklong meetings at AIM, in Palo Alto (May of 2014) and San

Jose (November of 2015 and 2016), as part of their AIM SQuaRE’s program.

The opportunity to spend these periods of intensely focused efforts on the

problems involved was essential. We would like to thank the University of

Bonn and AIM for their support.

2. Small CM cycles and derivatives of L-functions

In this section we combine the results of [BHKRYa] and [BHY15] to prove

Theorem A. Although we will restrict to n ě 3 in §2.5, we allow n ě 2 until

that point.

2.1. A Shimura variety of dimension zero. — Define a rank three torus

Tsm over Q as the fiber product

Tsm
//

��

Gm

diag.

��
Resk{QGm ˆ Resk{QGm

NmˆNm
// Gm ˆGm.

Its group of Q-points is

TsmpQq – tpx, yq P kˆ ˆ kˆ : xx “ yyu.

The fixed embedding k Ă C identifies Deligne’s torus S with the real alge-

braic group pResk{QGmqR, and the diagonal inclusion

S ãÑ pResk{QGmqR ˆ pResk{QGmqR

factors through a morphism hsm : S Ñ Tsm,R. The pair pTsm, thsmuq is a

Shimura datum, which, along with the compact open subgroup

Ksm “ TsmpAf q X p pOˆk ˆ pOˆk q,

determines a 0-dimensional k-stack ShpTsmq with complex points

ShpTsmqpCq “ TsmpQqzthsmu ˆ TsmpAf q{Ksm.

2.2. The small CM cycle. — The Shimura variety just constructed has a

moduli interpretation, which allows us to construct an integral model. The

interpretation we have in mind requires first choosing a triple pa0, a1, bq in

which

– a0 is a self-dual hermitian Ok-lattice of signature p1, 0q,

– a1 is a self-dual hermitian Ok-lattice of signature p0, 1q,
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– b is a self-dual hermitian Ok-lattice of signature pn´ 1, 0q.

The hermitian forms on a0 and b induce a hermitian form of signature pn´1, 0q

on the projective Ok-module

Λ “ HomOk
pa0, bq,

as explained in [BHY15, §2.1] or [BHKRYa, (2.1.5)].

Recall from [BHY15, §3.1] or [BHKRYa, §2.3] the Ok-stacks Mpp,0q and

Mp0,pq. Both parametrize abelian schemes AÑ S of relative dimension p ě 1

over Ok-schemes, endowed with principal polarizations and Ok-actions. For

the first moduli problem we impose the signature pp, 0q condition that Ok

acts on the OS-module LiepAq via the structure morphism Ok Ñ OS . For

the second we impose the signature p0, pq condition that the action is by the

complex conjugate of the structure morphism. Both of these stacks are étale

and proper over Ok by [How15, Proposition 2.1.2].

Remark 2.2.1. — The generic fibers of Mp1,0q and Mp0,1q are the Shimura

varieties associated to a0Q and a1Q, while the generic fiber of Mpn´1,0q contains

the Shimura variety associated to bQ as an open and closed substack. For

more precise information, see [KR14, Proposition 2.13] and the lemma that

precedes it.

Denote by rYsm the functor that associates to every Ok-scheme S the

groupoid of quadruples pA0, A1, B, ηq in which

(2.2.1) pA0, A1, Bq PMp1,0qpSq ˆMp0,1qpSq ˆMpn´1,0qpSq,

and

(2.2.2) η : HomOk
pA0, Bq – Λ

is an isomorphism of étale sheaves of hermitian Ok-modules, where the her-

mitian form on the left hand side is defined as in [BHKRYa, (2.5.1)]. We

impose the further condition that for every geometric point sÑ S, and every

prime ` ‰ charpsq, there is an isomorphism of hermitian Ok,`-lattices

(2.2.3) HomOk
pA0sr`

8s, A1sr`
8sq – HomOk

pa0, a1q bZ Z`.

Lemma 2.2.2. — If

sÑMp1,0q ˆOk
Mp0,1q ˆOk

Mpn´1,0q

is a geometric point of characteristic 0 such that (2.2.3) holds for all primes

` except possibly one, then it holds for the remaining prime as well.

Proof. — The proof is identical to [BHKRYa, Lemma 2.2.2].
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Proposition 2.2.3. — The functor rYsm is represented by a Deligne-Mumford

stack, étale and proper over Ok, and there is a canonical isomorphism of k-

stacks

(2.2.4) ShpTsmq – rYsm{k.

Proof. — For any Ok-scheme S, let N pSq be the groupoid of triples (2.2.1)

satisfying (2.2.3) for every geometric point sÑ S and every prime ` ‰ charpsq.

In other words, the definition is the same as rYsm except that we omit the datum

(2.2.2) from the moduli problem.

We interrupt the proof of Proposition 2.2.3 for a lemma.

Lemma 2.2.4. — The functor N is represented by an open and closed sub-

stack

N ĂMp1,0q ˆOk
Mp0,1q ˆOk

Mpn´1,0q.

Proof. — This is [BHY15, Proposition 5.2]. As the proof there is left to the

reader, we indicate the idea. Let

B ĂMp1,0q ˆOk
Mp0,1q ˆOk

Mpn´1,0q

be one connected component, and suppose there is a geometric point s Ñ B
of characteristic p such that (2.2.3) holds for all ` ‰ p. The geometric fibers

of the `-adic sheaf HomOk
pA0r`

8s, A1r`
8sq on

Bppq “ B ˆSpecpZq SpecpZppqq

are all isomorphic, and therefore (2.2.3) holds for all geometric points sÑ Bppq
and all ` ‰ p. In particular, using Lemma 2.2.2, if sÑ B is a geometric point

of characteristic 0, then (2.2.3) holds for every prime `. Having proved this,

one can reverse the argument to see that (2.2.3) holds for every geometric

point s Ñ B and every ` ‰ charpsq. Thus if the condition (2.2.3) holds at

one geometric point, it holds at all geometric points on the same connected

component.

We now return to the proof of Proposition 2.2.3. As noted above, the stacks

Mpp,0q and Mp0,pq are étale and proper over Ok, and hence the same is true

of N .

Let pA0, A1, Bq be the universal object over N . Combining [BHY15, The-

orem 5.1] and [Hid04, Corollary 6.9], the étale sheaf HomOk
pA0, Bq is rep-

resented by a Deligne-Mumford stack whose connected components are finite

étale over N . Fixing a geometric point sÑ N , we obtain a representation of

πet1 pN , sq on a finitely generated Ok-module HomOk
pA0s, Bsq, and the kernel
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of this representation cuts out a finite étale cover N 1 Ñ N over which the

sheaf HomOk
pA0, Bq becomes constant.

It is now easy to see that the functor rYsm is represented by the disjoint

union of finitely many copies of the maximal open and closed substack of N 1

over which there exists an isomorphism (2.2.2).

It remains to construct the isomorphism (2.2.4). The natural actions of Ok

on a0 and b, along with the complex conjugate of the natural action of Ok on

a1, determine a morphism of reductive groups

Resk{QGm ˆ Resk{QGm
pw,zqÞÑpw,z,zq
ÝÝÝÝÝÝÝÝÝÑ GUpa0Qq ˆGUpa1Qq ˆGUpbQq.

Restricting this morphism to the subtorus Tsm defines a morphism

S hsm
ÝÝÑ Tsm,R Ñ GUpa0Rq ˆGUpa1Rq ˆGUpbRq,

endowing the real vector spaces a0R, a1R, and bR with complex structures.

The isomorphism (2.2.4) on complex points sends a pair

phsm, gq P ShpTsmqpCq

to the quadruple pA0, A1, B, ηq defined by

A0pCq “ a0R{ga0, A1pCq “ a1R{ga1, BpCq “ bR{gb,

endowed with their natural Ok-actions and polarizations as in the proof of

[BHKRYa, Proposition 2.2.1]. The datum η is the canonical identification

HomOk
pA0, Bq “ HomOk

pga0, gbq “ HomOk
pa0, bq “ Λ.

It follows from the theory of canonical models that this isomorphism on com-

plex points descends to an isomorphism of k-stacks, completing the proof of

Proposition 2.2.3.

The finite group AutpΛq of automorphisms of the hermitian lattice Λ acts

on rYsm by

γ ˚ pA0, A1, B, ηq “ pA0, A1, B, γ ˝ ηq,

allowing us to form the stack quotient Ysm “ AutpΛqz rYsm. The forgetful map

rYsm ÑMp1,0q ˆMp0,1q ˆMpn´1,0q

(all fiber products over Ok) factors through an open and closed immersion

Ysm ÑMp1,0q ˆMp0,1q ˆMpn´1,0q

whose image is the open and closed substack N of Lemma 2.2.4.
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The triple pa0, a1, bq determines a pair pa0, aq as in the introduction, simply

by setting a “ a1 ‘ b. This data determines a unitary Shimura variety with

integral model SKra as in (1.1.1), and there is a commutative diagram

Ysm
//

π

��

Mp1,0q ˆMp0,1q ˆMpn´1,0q

��
SKra

Ă //Mp1,0q ˆMKra
pn´1,1q.

The vertical arrow on the right sends

pA0, A1, Bq ÞÑ pA0, A1 ˆBq,

and the arrow π is defined by the commutativity of the diagram.

Remark 2.2.5. — In order for A1 ˆ B to define a point of MKra
pn´1,1q, we

must endow its Lie algebra with a codimension one subsheaf

FA1ˆB Ă LiepA1 ˆBq

satisfying Krämer’s condition [BHKRYa, §2.3]. We choose FA1ˆB “ LiepBq.

Definition 2.2.6. — Composing the morphism π in the diagram above with

the inclusion of SKra into its toroidal compactification, we obtain a morphism

of Ok-stacks

π : Ysm Ñ S˚Kra

called the small CM cycle.

As in [How15, Definition 3.1.8], there is a linear functional

xCh
1

CpS˚Kraq Ñ C

called arithmetic degree along Ysm and denoted pZ ÞÑ r pZ : Ysms, defined as the

composition

xCh
1

CpS˚Kraq
π˚
ÝÝÑ xCh

1

CpYsmq
ydeg
ÝÝÑ C.

The first arrow is pullback of arithmetic divisors. The second arrow (arithmetic

degree) is normalized as follows: An irreducible divisor Z Ă Ysm is necessarily

supported in finitely many nonzero characteristics, and hence any C-valued

function GrpZ, ¨q on the finite set YsmpCq defines a Green function for it. The

arithmetic degree of the arithmetic divisor

pZ,GrpZ, ¨qq P xCh
1

CpYsmq
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is defined to be

ydegpZ,GrpZ, ¨qq “
ÿ

qĂOk

ÿ

zPZpFalg
q q

logpNpqqq

#AutX pzq
`

ÿ

zPYsmpCq

GrpZ, zq
#AutYsmpCqpzq

,

where Falg
q is an algebraic closure of Ok{q, and Npqq “ #pOk{qq.

Remark 2.2.7. — The above definition of arithmetic degree does not in-

clude a factor of 1{2 in front of the archimedean contribution, seemingly in

disagreement with the usual definition (see [GS90, §3.4.3] for example). In

fact there is no disagreement. Our convention is that YsmpCq means the com-

plex points of YsmpCq as a k-stack, whereas in the usual definition it would be

regarded as a Q-stack. Thus the usual definition includes a sum over twice as

many complex points, but with a 1{2 in front.

Remark 2.2.8. — The small CM cycle arises from a morphism of Shimura

varieties. Indeed, there is a morphism of Shimura data pTsm, thsmuq Ñ pG,Dq,
and the induced morphism of Shimura varieties sits in a commutative diagram

ShpTsmq //

–

��

ShpG,Dq

–

��
rYsm{k

// Ysm{k
π // SKra{k.

Proposition 2.2.9. — The degree degCpYsmq of Theorem A satisfies

degCpYsmq “ phk{wkq
2 ¨

21´opDq

|AutpΛq|
,

where opDq is the number of distinct prime divisors of D.

Proof. — This is an elementary calculation. Briefly, the groupoid YsmpCq
has 21´opDqh2

k isomorphism classes of points, and each point has the same

automorphism group Oˆk ˆOˆk ˆ UpΛq.

Recall from (1.4.2) that the constant term of (1.1.2) is

pZtot
Krap0q “ ´pω ` pExc,´ logpDqq

where pω is the metrized line bundle of weight one modular forms. The ex-

ceptional locus Exc Ă SKra was defined in [BHKRYa, §2.3]. It is a reduced

effective Cartier divisor supported in characteristics dividing D, and can be

characterized as follows. The integral model SKra carries over it an abelian

scheme AÑ SKra of relative dimension n endowed with an action of Ok. This
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abelian scheme is obtained by pulling back the universal object from the sec-

ond factor of the fiber product in (1.1.1). If we let δ P Ok be a fixed square

root of ´D, then Exc is the reduced stack underlying closed substack of SKra

defined by δ ¨ LiepAq “ 0.

Proposition 2.2.10. — The constant term (1.4.2) satisfies

r pZtot
Krap0q : Ysms “ ´rpω : Ysms “ 2 degCpYsmq ¨

Λ1p0, χkq

Λp0, χkq
.

Proof. — The second equality was proved in the course of proving [BHY15,

Theorem 6.4]. We note that the argument uses the Chowla-Selberg formula

(1.4.1) in an essential way.

The first equality is equivalent to

rpExc,´ logpDqq : Ysms “ 0,

and so it suffices to prove

(2.2.5) rp0, logpDqq : Ysms “ degCpYsmq ¨ logpDq “ rpExc, 0q : Ysms.

The first equality in (2.2.5) is obvious from the definitions. To prove the

second equality, we first prove

(2.2.6) Ysm ˆSKra
Exc “ Ysm ˆSpecpOkq

SpecpOk{dkq.

As the exceptional locus Exc Ă SKra is reduced and supported in charac-

teristics dividing D, it satisfies

Exc Ă SKra ˆSpecpOkq
SpecpOk{dkq.

This implies the inclusion Ă in (2.2.6). As Ysm is étale over Ok, the right hand

side of (2.2.6) is reduced, and hence so is the left hand side. To prove that

equality holds in (2.2.6), it now suffices to check the inclusion Ą on the level

of geometric points.

As above, let δ P Ok be a square root of ´D. Suppose p | D is a prime,

p Ă Ok is the unique prime above it, and Falg
p is an algebraic closure of its

residue field. Suppose we have a point y P YsmpFalg
p q corresponding to a triple

pA0, A1, Bq over Falg
p . As δ “ 0 in Falg

p , the signature conditions imply that the

endomorphism δ P Ok kills the Lie algebras of A0, A1, and B. In particular δ

kills the Lie algebra of A1 ˆB, which is the pullback via

π : Ysm Ñ SKra

of the universal A Ñ SKra. Using the characterization of Exc recalled above,

we find that that πpyq P Exc. This proves (2.2.6).
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The equality (2.2.6), and the fact that both sides of that equality are re-

duced, implies that

rpExc, 0q : Ysms “
ÿ

p|D

logppq
ÿ

yPYsmpFalg
p q

1

|Autpyq|
.

On the other hand, the étaleness of Ysm Ñ SpecpOkq implies that the right

hand side is equal to
ÿ

p|D

logppq
ÿ

yPYsmpCq

1

|Autpyq|
“ logpDq ¨ degCpYsmq,

completing the proof of the second equality in (2.2.5).

2.3. The convolution L-function. — Recall that we have defined a her-

mitian Ok-lattice Λ “ HomOk
pa0, bq of signature pn ´ 1, 0q. We also define

hermitian Ok-lattices

L0 “ HomOk
pa0, a1q, L “ HomOk

pa0, aq,

of signature p1, 0q and pn´ 1, 1q, so that L – L0 ‘ Λ.

The hermitian form x¨, ¨y : L ˆ L Ñ Ok determines a Z-valued quadratic

form Qpxq “ xx, xy on L, and we denote in the same way its restrictions to L0

and Λ. The dual lattice of L with respect to the Z-bilinear form

(2.3.1) rx1, x2s “ Qpx1 ` x2q ´Qpx1q ´Qpx2q

is L1 “ d´1
k L.

As in [BHY15, §2.2] we denote by SL “ CrL1{Ls the space of complex-

valued functions on L1{L, and by ωL : SL2pZq Ñ AutCpSLq the Weil rep-

resentation. There is a complex conjugate representation ωL on SL defined

by

ωLpγqφ “ ωLpγqφ.

Suppose we begin with a classical scalar-valued cusp form

gpτq “
ÿ

mą0

cpmqqm P SnpΓ0pDq, χ
n
kq,

Such a form determines a vector-valued form

(2.3.2) g̃pτq “
ÿ

γPΓ0pDqzSL2pZq
pg|nγqpτq ¨ ωLpγ´1qφ0 P SnpωLq,

where φ0 P SL is the characteristic function of the trivial coset. This construc-

tion defines the induction map (1.2.1). The form g̃pτq has a q-expansion

g̃pτq “
ÿ

mą0

c̃pmqqm
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with coefficients c̃pmq P SL.

There is a similar Weil representation ωΛ : SL2pZq Ñ AutCpSΛq, and for

every m P Q we define a linear functional RΛpmq P S
_
Λ by

RΛpmqpφq “
ÿ

xPΛ1
xx,xy“m

φpxq

where φ P SΛ and x¨, ¨y : ΛQˆΛQ Ñ k is the Q-linear extension of the hermitian

form on Λ. The theta series

θΛpτq “
ÿ

mPQ
RΛpmqq

m PMn´1pω
_
Λ q

is a modular form valued in the contragredient representation S_Λ .

As in [BHY15, §5.3] or [BY09, §4.4], we define the Rankin-Selberg convo-

lution L-function

Lpg̃, θΛ, sq “ Γ
´s

2
` n´ 1

¯

ÿ

mě0

tc̃pmq, RΛpmqu

p4πmq
s
2
`n´1

.(2.3.3)

Here t¨ , ¨u : SL ˆ S
_
L Ñ C is the tautological pairing. The inclusion

Λ1{Λ Ñ L1{L

induces a linear map SL Ñ SΛ by restriction of functions, and we use the dual

S_Λ Ñ S_L to view RΛpmq as an element of S_L .

Remark 2.3.1. — The convolution L-function satisfies a functional equation

in s ÞÑ ´s, forcing Lpg̃, θΛ, 0q “ 0.

Remark 2.3.2. — In this generality, neither the cusp form g nor the theta

series θΛ is a Hecke eigenform. Thus the convolution L-function (2.3.3) cannot

be expected to have an Euler product expansion.

2.4. A preliminary central derivative formula. — We now recall the

main result of [BHY15], and explain the connection between the cycles and

Shimura varieties here and in that work.

Define hermitian pOk-lattices

L0,f “ HomOk
pa0, a1q bZ pZ, Lf “ HomOk

pa0, aq bZ pZ,

and let L0,8 and L8 be kR-hermitian spaces of signatures p1, 0q and pn, 0q,

respectively. In the terminology of [BHY15, §2.1], the pairs

L0 “ pL0,8,L0,f q, L “ pL8,Lf q
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are incoherent hermitian pkR, pOkq-modules. Our small CM cycle is related to

the cycle of [BHY15, §5.1] by

Ysm
// SKra

YpL0,Λq
//ML,

and the metrized line bundle pω´1 of [BHKRYa] agrees with the metrized

cotautological bundle pTL of [BHY15].

Let ∆ be the automorphism group of the finite abelian group L1{L endowed

with the quadratic form L1{L Ñ Q{Z obtained by reduction of Q : L Ñ

Z. The tautological action of ∆ on SL “ CrL1{Ls commutes with the Weil

representation ωL, and hence ∆ acts on all spaces of modular forms valued in

the representation ωL.

Let H2´npωLq be the space of harmonic Maass forms of [BHY15, §2.2].

Every f P H2´npωLq has a holomorphic part

f`pτq “
ÿ

mPQ
m"´8

c`f pmq ¨ q
m,

which is a formal q-expansion with coefficients in SL. Let c`f p0, 0q be the value

of c`f p0q P SL at the trivial coset.

As in [BF04] or [BY09, §3.1], there is a ∆-equivariant, surjective, conjugate

linear differential operator

ξ : H2´npωLq Ñ SnpωLq,

and the construction of [BHY15, (4.15)] defines a linear functional

(2.4.1) pZ : H2´npωLq
∆ Ñ xCh

1

CpS˚Kraq.

These are related by the main result of [BHY15], which we now state.

Theorem 2.4.1 ([BHY15]). — The equality

r pZpfq : Ysms ´ c
`
f p0, 0q ¨ rpω : Ysms “ ´ degCpYsmq ¨ L

1pξpfq, θΛ, 0q

holds for any ∆-invariant f P H2´npωLq.

2.5. The proof of Theorem A. — Throughout §2.5 we assume n ě 3.

Under this assumption the linear functional (2.4.1) is closely related to the

coefficients of the generating series (1.1.2). Indeed, If m is a positive integer,

[BHY15, Lemma 3.10] shows that there is a unique

fm P H2´npωLq
∆
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with holomorphic part

(2.5.1) f`mpτq “ φ0 ¨ q
´m `Op1q,

where φ0 P SL is the characteristic function of the trivial coset. Applying the

above linear functional to this form recovers the mth coefficient

pZtot
Krapmq “

pZpfmq

of the generating series (1.1.2).

The following proposition explains the connection between the linear func-

tional (2.4.1) and the arithmetic theta lift (1.1.3).

Proposition 2.5.1. — For every g P SnpΓ0pDq, χ
n
kq there is a ∆-invariant

form f P H2´npωLq such that

(2.5.2) pθpgq “ pZpfq ` c`f p0, 0q ¨ pZ
tot
Krap0q,

and such that ξpfq is equal to the form g̃ P SnpωLq defined by (2.3.2). More-

over, we may choose f to be a linear combination of the forms fm characterized

by (2.5.1).

Proof. — Consider the space H82´npΓ0pDq, χ
n
kq of harmonic Maass forms of

[BHKRYa, §7.2]. The constructions of [BF04] provide us with a surjective

conjugate linear differential operator

ξ : H82´npΓ0pDq, χ
n
kq Ñ SnpΓ0pDq, χ

n
kq,

and we choose an f0 P H
8
2´npΓ0pDq, χ

n
kq such that ξpf0q “ g. It is easily seen

that f0 may be chosen to vanish at all cusps of Γ0pDq different from 8. This

can, for instance, be attained by adding a suitable weakly holomorphic form

in the space M !,8
2´npΓ0pDq, χ

n
kq of [BHKRYa, §4.2]. The Fourier expansion of

the holomorphic part of f0 is denoted

f`0 pτq “
ÿ

mPQ
c`0 pmqq

m.

As in (2.3.2), the form f0 determines an SL-valued harmonic Maass form

fpτq “
ÿ

γPΓ0pDqzSL2pZq
pf0|2´nγqpτq ¨ ωLpγ

´1qφ0 P H2´npωLq
∆.

As the ξ-operator is equivariant for the action of SL2pZq, we have ξpfq “

g̃. According to [BHKRYa, Proposition 6.1.2], which holds analogously for

harmonic Maass forms, the coefficients of the holomorphic part f` satisfy

c`f pm,µq “

#

c`0 pmq if µ “ 0

0 otherwise
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for all m ď 0. This equality implies that

f “
ÿ

mą0

c`0 p´mqfm,

where fm P H2´npωLq
∆ is the harmonic form characterized by (2.5.1). Indeed,

the difference between the two forms is a harmonic form h whose holomorphic

part
ř

mě0 c
`
h pmqq

m has no principal part. It follows from [BF04, Theorem

3.6] that such a harmonic form is actually holomorphic, and therefore vanishes

because the weight is negative.

The above decomposition of f as a linear combination of the fm’s implies

that
pZpfq “

ÿ

mą0

c`0 p´mq ¨
pZtot

Krapmq P
xCh

1

CpS˚Kraq,

and consequently

pθpgq “ xpφ, ξpf0qyPet

“ tf0, pφu

“
ÿ

mě0

c`0 p´mq ¨
pZtot

Krapmq

“ pZpfq ` c`f p0, 0q ¨ pZ
tot
Krap0q.

Here, in the second line, we have used the bilinear pairing

t¨, ¨u : H82´npΓ0pDq, χ
n
kq ˆMnpΓ0pDq, χ

n
kq Ñ C

analogous to [BF04, Proposition 3.5], and the fact that f0 vanishes at all

cusps different from 8.

Remark 2.5.2. — It is incorrectly claimed in [BHY15, §1.3] that (2.5.2)

holds for every form f with ξpfq “ g̃.

The following is stated in the introduction as Theorem A.

Theorem 2.5.3. — If g P SnpΓ0pDq, χ
n
kq and g̃ P SnpωLq are related by

(2.3.2), then

rpθpgq : Ysms “ ´ degCpYsmq ¨ L
1pg̃, θΛ, 0q.

Proof. — Choosing f as in Proposition 2.5.1, and using the first equality of

Proposition 2.2.10, yields

rpθpgq : Ysms “ r pZpfq : Ysms ´ c
`
f p0, 0q ¨ rpω : Ysms.

Thus the claim follows from Theorem 2.4.1.
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3. Further results on the convolution L-function

In this section we specialize to the case where g P SnpΓ0pDq, χ
n
kq is a new

eigenform, and express the convolution L-function (2.3.3) associated to the

vector valued cusp form g̃ in terms of the usual L-function associated to g.

This allows us, in Theorem 3.4.1 below, to rewrite Theorem A of the intro-

duction in a way that avoids vector-valued modular forms. When n is even,

it also allows us to formulate a version of Theorem A in which the L-function

has an Euler product.

We assume n ě 2 until we reach §3.4, at which point we restrict to n ě 3.

3.1. Atkin-Lehner operators. — Recall that χk is the idele class charac-

ter associated to the quadratic field k. If we view χk as a Dirichlet character

modulo D, then any factorization D “ Q1Q2 induces a factorization

χk “ χQ1χQ2

where χQi : pZ{QiZqˆ Ñ Cˆ is a quadratic Dirichlet character.

Fix a normalized cuspidal new eigenform

gpτq “
ÿ

mą0

cpmqqm P SnpΓ0pDq, χ
n
kq.

As in [BHKRYa, Section 4.1], for each positive divisor Q | D, fix a matrix

RQ “

˜

α β
D
Qγ Qδ

¸

P Γ0pD{Qq

with α, β, γ, δ P Z, and define the Atkin-Lehner operator

WQ “

ˆ

Qα β

Dγ Qδ

˙

“ RQ

ˆ

Q

1

˙

.

The cusp form

gQpτq “ χnQpβqχ
n
D{Qpαq ¨ g|nWQ

“
ÿ

mą0

cQpmqq
m,

is then independent of the choice of α, β, γ, δ.

Let εQpgq be the fourth root of unity

εQpgq “
ź

q|Q
q prime

χnQpQ{qq ¨ λq,
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where

λq “ cpqq ¨

#

´q1´n
2 if n ” 0 pmod 2q

δqq
1´n

2 if n ” 1 pmod 2q,

and δq is defined by

δq “

#

1 if q ” 1 pmod 4q

i if q ” 3 pmod 4q.

According to [Asa76, Theorem 2], we have

cQpmq “ εQpgqχ
n
Qpmqcpmq if pm,Qq “ 1,

cQpmq “ εQpgqχ
n
D{Qpmqcpmq if pm,D{Qq “ 1,

cQpm1m2q “ εQpgq
´1cQpm1qcQpm2q if pm1,m2q “ 1.

Remark 3.1.1. — If n is even, then the Fourier coefficients of g are totally

real. It follows that gQ “ εQpgqg for every divisor Q | D. Furthermore,

εQpgq “
ź

q|Q

`

´ q1´n
2 cpqq

˘

“ ˘1.

3.2. Twisting theta functions. — Let pa0, a1, bq be a triple of self-dual

hermitian Ok-lattices of signatures p1, 0q, p0, 1q, and pn´ 1, 0q, as in §2.2, and

recall that from this data we constructed hermitian Ok-lattices

(3.2.1) a “ a1 ‘ b, L “ HomOk
pa0, aq

of signature pn´ 1, 1q. We also define

(3.2.2) L1 “ HomOk
pa0, a1q, Λ “ HomOk

pa0, bq,

so that L “ L1 ‘ Λ.

Let GUpΛq be the unitary similitude group associated with Λ, viewed as an

algebraic group over Z. For any Z-algebra R its R-valued points are given by

GUpΛqpRq “ th P GLOk
pΛRq : xhx, hyy “ νphqxx, yy @x, y P ΛRu,

where νphq P Rˆ denotes the similitude factor of h. Note the relation

Nmk{Qpdetphqq “ νphqn´1.(3.2.3)

For h P GUpΛqpRq the similitude factor νphq belongs to Rą0.

As Λ is positive definite, the set

XΛ “ GUpΛqpQqzGUpΛqpAf q{GUpΛqppZq

is finite. Denoting by

CLpkq “ kˆzpkˆ{ pOˆk
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the ideal class group of k, the natural map Resk{QGm Ñ GUpΛq to the center

induces an action

CLpkq ˆXΛ ÝÑ XΛ.(3.2.4)

As in the proof of [BHKRYa, Proposition 2.1.1], any h P GUpΛqpAf q
determines an Ok-lattice

Λh “ ΛQ X hpΛ.

This lattice is not self-dual under the hermitian form x´,´y on ΛQ. However,

there is a unique positive rational number ratpνphqq such that

νphq

ratpνphqq
P pZˆ,

and the lattice Λh is self-dual under the rescaled hermitian form

xx, yyh “
1

ratpνphqq
¨ xx, yy.

If h P GUpΛqppZq then Λh “ Λ. If h P GUpΛqpQq, then Λh – Λ as hermitian

Ok-modules. Hence h ÞÑ Λh defines a function from XΛ to the set of isometry

classes of self-dual hermitian Ok-module of signature pn´ 1, 0q.

Similarly, for any h P GUpΛqpAf q we define a self-dual hermitian Ok-lattice

of signature p0, 1q by endowing

L1,h “ L1Q X detphqpL1

with the hermitian form

xx, yyh “
1

ratpνphqqn´1
¨ xx, yy.

The assignment h ÞÑ L1,h defines a map from XΛ to the set of isometry classes

of self-dual hermitian Ok-lattices of signature p0, 1q.

Lemma 3.2.1. — For any h P GUpΛqpAf q the hermitian Ok-lattice

Lh “ L1,h ‘ Λh

is isomorphic everywhere locally to L. Moreover, Lh and L become isomor-

phism after tensoring with Q.

Proof. — Let p be a prime. As in [BHKRYa, §1.8], a kp-hermitian space is

determined by its dimension and invariant. The relations

detpΛh bZ Qq “ ratpνphqq1´n ¨ detpΛbZ Qq,

detpL1,h bZ Qq “ ratpνphqq1´n ¨ detpL1 bZ Qq,
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combined with (3.2.3), imply that LbZQ and LhbZQ have the same invariant

everywhere locally. As they both have signature pn´1, 1q, they are isomorphic

everywhere locally, and hence isomorphic globally.

A result of Jacobowitz [Jac62] shows that any two self-dual lattices in LbZ
Q are isomorphic everywhere locally, and hence it follows from the previous

paragraph that L and Lh are isomorphic everywhere locally.

Define a linear map

Mn´1pω
_
Λ q ÑMn´1pΓ0pDq, χ

n´1
k q

from S_Λ -valued modular forms to scalar-valued modular forms by evaluation

at the characteristic function φ0 P SΛ of the trivial coset 0 P Λ1{Λ. This map

takes the vector valued theta series θΛ PMn´1pω
_
Λ q of §2.3 to the scalar valued

theta series

θsc
Λ pτq “

ÿ

mPZě0

Rsc
Λ pmq ¨ q

m,

where Rsc
Λ pmq is the number of ways to represent m by Λ.

Let η be an algebraic automorphic form for GUpΛq which is trivial at 8

and right GUΛppZq-invariant. In other words, a function

η : XΛ ÝÑ C.

Throughout we assume that under the action (3.2.4) the function η transforms

with a character χη : CLpkq Ñ Cˆ, that is,

ηpαhq “ χηpαqηphq.(3.2.5)

We associate a theta function to η by setting

θsc
η,Λ “

ÿ

hPXΛ

ηphq

|AutpΛhq|
¨ θsc

Λh
PMn´1pΓ0pDq, χ

n´1
k q.

This form is cuspidal when the character χη is non-trivial. We denote its

Fourier expansion by

θsc
η,Λpτq “

ÿ

mě0

Rsc
η,Λpmq ¨ q

m.

Similarly, we may define

θη,Λpτq “
ÿ

hPXΛ

ηphq

|AutpΛhq|
¨ θΛhpτq,

but this is only a formal sum: as h varies the forms θΛh take values in the

varying spaces S_Λh .
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Lemma 3.2.1 allows us to identify SL – SLh , and hence make sense of the

L-function Lpg̃, θΛh , sq as in (2.3.3). In the next subsection we will compare

(3.2.6) Lpg̃, θη,Λ, sq “
ÿ

hPXΛ

ηphq

|AutpΛhq|
¨ Lpg̃, θΛh , sq.

to the usual convolution L-function

(3.2.7) Lpg, θsc
η,Λ, sq “ Γ

`s

2
` n´ 1

˘

8
ÿ

m“1

cpmqRsc
η,Λpmq

p4πmq
s
2
`n´1

of the scalar-valued forms g and θsc
η,Λ.

3.3. Rankin-Selberg L-functions for scalar and vector valued forms.

— In this subsection we prove a precise relation between (3.2.6) and (3.2.7).

First, we give an explicit formula for the Fourier coefficients apm,µq of g̃ in

terms of those of g analogous to [BHKRYa, Proposition 6.1.2].

For a prime p dividing D define

(3.3.1) γp “ δ´np ¨ pD, pqnp ¨ invppVpq P t˘1,˘iu,

where invppVpq is the invariant of Vp “ HomkpW0,W q bQ Qp in the sense

of [BHKRYa, (1.8.3)] and δp P t1, iu is as before. It is equal to the local

Weil index of the Weil representation of SL2pZpq on SLp Ă SpVpq, where Vp is

viewed as a quadratic space by taking the trace of the hermitian form. This

is explained in more detail in [BHKRYa, Section 8.1]. For any Q dividing D

we define

(3.3.2) γQ “
ź

q|Q

γq.

Remark 3.3.1. — If n is even and p | D, then (3.3.1) simplifies to

γp “

ˆ

´1

p

˙n{2

invppVpq.

For any µ P L1{L define Qµ | D by

Qµ “
ź

p|D
µp‰0

p,

where µp is the image of µ in L1p{Lp. Let φµ P SL be the characteristic function

of µ.
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Proposition 3.3.2. — For all m P Q the coefficients ãpmq P SL of g̃ satisfy

ãpm,µq “

$

&

%

ř

Qµ|Q|D
Q1´nγQ ¨ cQpmQq if m ” ´Qpµq pmod Zq,

0 otherwise.

Proof. — The first formula is a special case of results of Scheithauer [Sch09,

Section 5]. It can also be proved in the same way as Proposition 6.1.2 of

[BHKRYa]. The complex conjugation over γQ arises because of the fact that

g̃ transforms with the complex conjugate representation ωL. The additional

factor Q1´n is due to the fact that we work here in weight n.

Proposition 3.3.3. — The convolution L-function (2.3.3) satisfies

Lpg̃, θΛ, sq “
ÿ

Q|D

Q
s
2γQ ¨ LpgQ, θ

sc
Λq
, sq,

where q P pkˆ is such that q2
pOˆk “ Q pOˆk . Moreover, for any η : XΛ Ñ C

satisfying (3.2.5) the L-functions (3.2.6) and (3.2.7) are related by

Lpg̃, θη,Λ, sq “
ÿ

Q|D

Q
s
2γQ ¨ χηpq

´1qLpgQ, θ
sc
η,Λ, sq.

Proof. — Proposition 3.3.2 implies

Lpg̃, θΛ, sq

Γp s2 ` n´ 1q
“

ÿ

µPΛ1{Λ

ÿ

mPQą0

ÿ

Qµ|Q|D

Q1´nγQ ¨
cQpmQqRΛpm,φµq

p4πmq
s
2
`n´1

“
ÿ

Q|D

Q1´nγQ
ÿ

mP 1
Q
Zą0

cQpmQq

p4πmq
s
2
`n´1

ÿ

µPΛ1{Λ
Qµ|Q

RΛpm,φµq

“
ÿ

Q|D

Q
s
2γQ

ÿ

mPZą0

cQpmq

p4πmq
s
2
`n´1

ÿ

µPΛ1{Λ
Qµ|Q

RΛpm{Q,φµq.

The first claim now follows from the relation

ÿ

µPΛ1{Λ
Qµ|Q

RΛpm{Q,µq “ RΛq´1 pm, 0q “ RΛqpm, 0q.
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For the second claim, if we replace Λ by Λh and L1 by L1,h for h P XΛ, then

L and γQ remain unchanged. The above calculations therefore imply that

Lpg̃, θη,Λ, sq “
ÿ

Q|D

γQQ
s
2

ÿ

hPXΛ

ηphq

|AutpΛhq|
LpgQ, θ

sc
Λqh

, sq

“
ÿ

Q|D

γQQ
s
2

ÿ

hPXΛ

ηpq´1hq

|AutpΛhq|
LpgQ, θ

sc
Λh
, sq

“
ÿ

Q|D

γQQ
s
2 ¨ χηpq

´1qLpgQ, θ
sc
η,Λ, sq,

where we have used (3.2.5) and the fact that |AutpΛhq| “ |AutpΛqhq|.

Corollary 3.3.4. — If n is even, then

Lpg̃, θη,Λ, sq “ Lpg, θsc
η,Λ, sq ¨

ź

p|D

`

1` χηpp
´1qεppgqγpp

s
2

˘

.

Proof. — This is immediate from Proposition 3.3.3 and Remark 3.1.1.

3.4. Small CM cycles and derivatives of L-functions, revisited. —

Now we are ready to state a variant of Theorem A using only scalar valued

modular forms. Assume n ě 3.

Every h P XΛ determines a codimension n´ 1 cycle

(3.4.1) Ysm,h Ñ S˚Kra

as follows. From the triple pa0, a1, bq fixed in §3.2 and the hermitian Ok-

lattices Lh “ L1,h ‘ Λh of Lemma 3.2.1, we denote by a1,h and bh the unique

hermitian Ok-lattices satisfying

L1,h – HomOk
pa0, a1,hq, Λh – HomOk

pa0, bhq,

and set ah “ a1,h‘bh so that Lh – HomOk
pa0, ahq. Compare with (3.2.1) and

(3.2.2).

Repeating the construction of the small CM cycle Ysm with the triple

pa0, a1, bq replaced by pa0, a1,h, bhq results in a proper étale Ok-stack Ysm,h.

Repeating the construction of the Shimura variety SKra with the triple pa0, aq

replaced by pa0, ahq results in a new Shimura variety SKra,h, along with a finite

and unramified morphism

Ysm,h Ñ SKra,h.

It follows from Lemma 3.2.1 that a and ah are isomorphic everywhere locally,

and examination of the moduli problem defining SKra in [BHKRYa, §2.3]

shows that SKra depends only the everywhere local data determined by the
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pair pa0, aq, and not on the actual global Ok-hermitian lattices. Therefore,

there is a canonical morphism of Ok-stacks

Ysm,h Ñ SKra,h – SKra

in which the isomorphism is simply the identity functor on the moduli prob-

lems. In the end, this amounts to simply repeating the construction of Ysm Ñ

SKra from Definition 2.2.6 word-for-word, but replacing Λ by Λh everywhere.

This defines the desired cycle (3.4.1).

Each algebraic automorphic form η : XΛ Ñ C satisfying (3.2.5) now deter-

mines a cycle

ηYsm “
ÿ

hPXΛ

ηphq ¨ Ysm,h

on S˚Kra with complex coefficients, and a corresponding linear functional

r´ : ηYsms : xCh
1

CpS˚Kraq Ñ C.

Theorem 3.4.1. — The arithmetic theta lift (1.1.3) satisfies

rpθpgq : Ysms “ ´ degCpYsmq ¨
d

ds

”

ÿ

Q|D

Q
s
2γQLpgQ, θ

sc
Λq
, sq

ı

ˇ

ˇ

s“0
,

where q P pkˆ is such that q2
pOˆk “ Q pOˆk . Moreover, if n is even and η : XΛ Ñ

C satisfies (3.2.5), then

rpθpgq : ηYsms

“ ´21´opdkq phk{wkq
2
¨
d

ds

”

Lpg, θsc
η,Λ, sq ¨

ź

p|D

`

1` χηpp
´1qεppgqγpp

s
2

˘

ı

ˇ

ˇ

s“0
,

where p P pkˆ such that p2
pOˆk “ p pOˆk . Note that in the first formula the sum

is over all positive divisors Q | D, while in the second the product is over the

prime divisors p | D.

Proof. — The first assertion follows from Theorem A and Proposition 3.3.3.

For the second assertion, applying Theorem A to

Ysm,h Ñ S˚Kra,h – S˚Kra

yields

rpθpgq : Ysm,hs “ ´ degCpYsm,hq ¨
d

ds
Lpg̃, θΛh , sq

ˇ

ˇ

s“0
.

Combining this with Proposition 2.2.9 yields

rpθpgq : ηYsms “ ´21´opdkq phk{wkq
2
¨
d

ds
Lpg̃, θη,Λ, sq

ˇ

ˇ

s“0
,
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and an application of Corollary 3.3.4 completes the proof.

Remark 3.4.2. — Since the L-function (3.2.6) vanishes at s “ 0, the same

must be true for the expressions in brackets on the right hand sides of the

equalities of the above theorem. In particular, when n is even, then either

Lpg, θsc
η,Λ, sq or at least one of the factors

1` χηpp
´1qεppgqγpp

s
2

(for a prime p | D) vanishes at s “ 0. If we pick the newform g such that the

latter local factors are nonvanishing, then Lpg, θsc
η,Λ, 0q “ 0 and we obtain

rpθpgq : ηYsms “ ´21´opdkq
h2
k

w2
k

¨
ź

p|D

`

1` χηpp
´1qεppgqγp

˘

¨ L1pg, θsc
η,Λ, 0q.

4. Big CM cycles and derivatives of L-functions

In this section we prove Theorem B by combining results of [BHKRYa]

and [How12, How15, BKY12]. We asume n ě 2 until §4.4, at which point

we restrict to n ě 3.

4.1. A Shimura variety of dimension zero. — Let F be a totally real

field of degree n, and define a CM field E “ kbQ F. Define a rank n` 2 torus

Tbig over Q as the fiber product

Tbig
//

��

Gm

diag.

��
Resk{QGm ˆ ResE{QGm

NmˆNm
// Gm ˆ ResF {QGm.

Its group of Q-points is

TbigpQq – tpx, yq P kˆ ˆ Eˆ : xx “ yyu.

Remark 4.1.1. — There is an isomorphism

TbigpQq – kˆ ˆ kerpNm : Eˆ Ñ Fˆq

defined by px, yq ÞÑ px, x´1yq. It is clear that this arises from an isomorphism

Tbig – Resk{QGm ˆ ker
`

Nm : ResE{QGm Ñ ResF {QGm

˘

.

As in the discussion preceding Theorem B, let Φ Ă HomQpE,Cq be a CM

type of signature pn´ 1, 1q, let

ϕsp : E Ñ C
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be its special element, and let OΦ be the ring of integers of EΦ “ ϕsppEq.

The CM type Φ determines an isomorphism Cn – ER, and hence an em-

bedding Cˆ Ñ EˆR arising from a morphism of real algebraic groups S Ñ
pResE{QGmqR. This induces a morphism

SÑ pResk{QGmqR ˆ pResE{QGmqR,

which factors through a morphism

hbig : SÑ Tbig,R.

The pair pTbig, thbiguq is a Shimura datum, which, along with the compact

open subgroup

Kbig “ TbigpAf q X p pOˆk ˆ pOˆEq,
determines a 0-dimensional EΦ-stack ShpTbigq with complex points

ShpTbigqpCq “ TbigpQqzthbigu ˆ TbigpAf q{Kbig.

4.2. The big CM cycle. — The Shimura variety just constructed has a

moduli interpretation, which we will use to construct an integral model. The

interpretation we have in mind requires first choosing a triple pa0, a, iEq in

which

– a0 is a self-dual hermitian Ok-lattice of signature p1, 0q,

– a is a self-dual hermitian Ok-lattice of signature pn´ 1, 1q,

– iE : OE Ñ EndOk
paq is an action extending the action of Ok.

Denoting by H : aˆ aÑ Ok the hermitian form, we require further that

HpiEpxqa, bq “ Hpa, iEpxqbq

for all x P OE and a, b P a, and that in the decomposition

aR –
à

ϕF :FÑR
abOF ,ϕF R

the summand indexed by ϕF “ ϕsp|F is negative definite (which, by the sig-

nature condition, implies that the other summands are positive definite).

Remark 4.2.1. — In general such a triple need not exist. In the applications

will assume that the discriminants of k{Q and F {Q are odd and relatively

prime, and in this case one can construct such a triple using the argument of

[How12, Proposition 3.1.6].

We now define a moduli space of abelian varieties with complex multipli-

cation by OE and type Φ, as in [How12, §3.1]. Denote by CMΦ the functor

that associates to every OΦ-scheme S the groupoid of triples pA, ι, ψq in which
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– AÑ S is an abelian scheme of dimenension n,

– ι : OE Ñ EndpAq is an OE-action,

– ψ : AÑ A_ is a principal polarization such that

ιpxq_ ˝ ψ “ ψ ˝ ιpxq

for all x P OE .

We also impose the Φ-determinant condition that every x P OE acts on LiepAq

with characteristic polynomial equal to the image of
ź

ϕPΦ

pT ´ ϕpxqq P OΦrT s

in OSrT s. We usually abbreviate A P CMΦpSq, and suppress the data ι and

ψ from the notation. By [How12, Proposition 3.1.2], the functor CMΦ is

represented by a Deligne-Mumford stack, proper and étale over OΦ .

Remark 4.2.2. — The Φ-determinant condition defined above agrees with

that of [How12, §3.1]. As in [Har15, Proposition 2.1.3], this is a consequence

of Amitsur’s formula, which can be found in [Ami80, Theorem A] or [Che14,

Lemma 1.12].

Define an open and closed substack

Ybig ĂMp1,0q ˆOk
CMΦ

as the union of connected components B Ă Mp1,0q ˆOk
CMΦ satisfying the

following property: for every complex point y “ pA0, Aq P BpCq, and for all

primes `, there is an OE-linear isomorphism of hermitian Ok,`-lattices

(4.2.1) HomOk,`
pA0r`

8s, Ar`8sq – HomOk
pa0, aq bZ Q`.

Remark 4.2.3. — To verify that a connected component B Ă Mp1,0q ˆOk

CMΦ is contained in Ybig, it suffices to check that (4.2.1) holds for one com-

plex point y P BpCq. This is a consequence of the main theorem of complex

multiplication and the fact that the points of BpCq form a single AutpC{EΦq-

orbit.

Proposition 4.2.4. — There is a canonical isomorphism of EΦ-stacks

ShpTbigq – Ybig{EΦ
.

Proof. — The natural actions of Ok and OE on a0 and a determine an action

of the subtorus

Tbig Ă Resk{QGm ˆ ResE{QGm
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on a0Q and aQ, and the morphism hbig : S Ñ Tsm,R endows each of the real

vector spaces a0R and aR with a complex structure.

The desired isomorphism on complex points sends

phbig, gq P ShpTsmqpCq

to the pair pA0, Aq defined by

A0pCq “ a0R{ga0, ApCq “ aR{ga.

The elliptic curve A0 is endowed with its natural Ok-action and its unique

principal ploarization. The abelian variety A is endowed with its natural OE-

action, and the polarization induced by the symplectic form determined by its

Ok-hermitian form, as in the proof of [BHKRYa, Proposition 2.2.1].

It follows from the theory of canonical models that this isomorphism on

complex points descends to an isomorphism of EΦ-stacks.

The triple pa0, a, iEq determines a pair pa0, aq as in the introduction, which

determines a unitary Shimura variety with integral model SKra as in (1.1.1).

Recalling that Ok Ă OΦ as subrings of C, we now view both Ybig and CMΦ

as Ok-stacks. There is a commutative diagram

Ybig
//

π

��

Mp1,0q ˆ CMΦ

��
SKra

//Mp1,0q ˆMKra
pn´1,1q

(all fiber products are over Ok), in which the vertical arrow on the right is the

identity on the first factor and “forget complex multiplication” on the second.

The arrow π is defined by the commutativity of the diagram.

Remark 4.2.5. — In order to define the morphism

CMΦ ÑMKra
pn´1,1q

in the diagram above, we must endow a point A P CMΦpSq with a subsheaf

FA Ă LiepAq satisfying Krämer’s condition [BHKRYa, §2.3]. Using the mor-

phism

OE
ϕsp

ÝÝÑ OΦ Ñ OS ,

denote by Jϕsp Ă OE bZ OS the kernel of

OE bZ OS
xby ÞÑϕsppxq¨y
ÝÝÝÝÝÝÝÝÝÑ OS .

According to [How15, Lemma 4.1.2], the subsheaf FA “ JϕspLiepAq has the

desired properties.
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Definition 4.2.6. — Composing the morphism π in the diagram above with

the inclusion of SKra into its toroidal compactification, we obtain a morphism

of Ok-stacks

π : Ybig Ñ S˚Kra,

called the big CM cycle.

Exactly as in §2.2, the arithmetic degree along Ybig is the composition

xCh
1

CpS˚Kraq
π˚
ÝÝÑ xCh

1

CpYbigq
ydeg
ÝÝÑ C.

We denote this linear functional by pZ ÞÑ r pZ : Ybigs.

Remark 4.2.7. — The big CM cycle arises from a morphism of Shimura

varieties. Indeed, there is a morphism of Shimura data pTbig, thbiguq Ñ pG,Dq,
and the induced morphism of Shimura varieties sits in a commutative diagram

of EΦ-stacks

ShpTbigq //

–

��

ShpG,Dq{EΦ

–

��
Ybig{EΦ

π // SKra{EΦ
.

Proposition 4.2.8. — The degree degCpYbigq of Theorem B satisfies

1

n
¨ degCpYbigq “

hk
wk

¨
Λp0, χEq

2r´1
,

where r is the number of places of F that ramify in E (including all

archimedean places).

Proof. — It is clear from Proposition 4.2.4 that

1

n
¨ degCpYbigq “

ÿ

yPShpTbigqpCq

1

|Autpyq|
“
|TbigpQqzTbigpAf q{Kbig|

|TbigpQq XKbig|
.

Note that when we defined the degree on the left we counted the complex

points of Ybig viewed as an Ok-stack, whereas in the middle expression we are

viewing ShpTbigq as an EΦ-stack. This is the reason for the correction factor

of n “ rEΦ : ks on the left.

Let E1 Ă Eˆ be the kernel of the norm map Nm : Eˆ Ñ Fˆ, and define

pE1 Ă pEˆ, pO1E Ă pOˆE
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similarly. Note that µpEq “ E1X pO1E is the group of roots of unity in E, whose

order we denote by wE . Using the isomorphism TbigpQq – kˆˆE1 of Remark

4.1.1, we find

(4.2.2)
|TbigpQqzTbigpAf q{Kbig|

|TbigpQq XKbig|
“
hk
wk

¨
|E1z pE1{ pO1E |

wE
.

Denote by CF and CE the ideal class groups of E and F , and by F̃ and

Ẽ their Hilbert class fields. As E{F is ramified at all archimedean places,

F̃ X E “ F , and the natural map

GalpẼ{Eq Ñ GalpF̃ {F q

is surjective. Hence, by class field theory, the norm

Nm : CE Ñ CF

is surjective. Denote its kernel by B, so that we have a short exact sequence

1 Ñ B Ñ CE
Nm
ÝÝÑ CF Ñ 1.

Define a group

B̃ “ Eˆz

"

pB, βq :
B Ă E is a fractional OE-ideal,

β P Fˆ, and NmpBq “ βOF

*

,

where the action of Eˆ is by α ¨ pB, βq “ pαB, ααβq. There is an evident

short exact sequence

1 Ñ NmpOˆEqzO
ˆ
F

β ÞÑpOE ,βq
ÝÝÝÝÝÝÑ B̃ Ñ B Ñ 1.

Lemma 4.2.9. — We have rOˆE : NmpOˆEqs “ 2n´1wE.

Proof. — Let Q “ rOˆE : µpEqOˆF s. If Q “ 1 then

rNmpOˆEq : Oˆ,2F s “ 1 and rOˆE : OˆF s “
1

2
¨ wE ,

and so

rOˆF : NmpOˆEqs “ rO
ˆ
F : Oˆ,2F s “ 2n “

2n´1wE

rOˆE : OˆF s
,

where the middle equality follows from Dirichlet’s unit theorem.

If Q ą 1 then [Was82, Theorem 4.12] and its proof show that Q “ 2, and

that the image of the map φ : OˆE Ñ OˆE defined by φpxq “ x{x is the index

two subgroup φpOˆEq “ µpEq2 Ă µpEq. From this it follows easily that

rNmpOˆEq : Oˆ,2F s “ 2 and rOˆE : OˆF s “ wE ,



34 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

and so

rOˆF : NmpOˆEqs “
1

2
¨ rOˆF : Oˆ,2F s “ 2n´1 “

2n´1wE

rOˆE : OˆF s
.

Combining the information we have so far gives

(4.2.3) |B̃| “ rOˆF : NmpOˆEqs ¨ |B| “
2n´1wE

rOˆE : OˆF s
¨
|CE |

|CF |
“ wE ¨ Λp0, χEq,

where the final equality is a consequence of Dirichlet’s class number formula.

Lemma 4.2.10. — There is an exact sequence

1 Ñ E1z pE1{ pO1E Ñ B̃ Ñ t˘1ur Ñ t˘1u Ñ 1.

Proof. — Every x P pE1 determines a fractional OE-ideal B “ xOE with

NmpBq “ OF , and the rule x ÞÑ pB, 1q is easily seen to define an injection

(4.2.4) E1z pE1{ pO1E Ñ B̃.

Given a pB, βq P B̃, consider the elements χE,vpβq P t˘1u as v runs over

all places of F . If v is split in E then certainly χE,vpβq “ 1. If v is inert in

E then NmpBq “ βOF implies that χE,vpβq “ 1. As the product over all v of

χE,vpβq is equal to 1, we see that sending pB, βq to the tuple of χE,vpβq with

v ramified in E defines a homomorphism

(4.2.5) B̃ Ñ ker
`

t˘1ur
product
ÝÝÝÝÝÑ t˘1u

˘

.

To see that (4.2.5) is surjective, fix a tuple pεvqv P t˘1ur indexed by the

places of F ramified in E, and assume that
ś

v εv “ 1. Let b P AˆF be any

idele satisfying:

– If v is ramified in E then χE,vpbvq “ εv.

– If v is a finite place of F then bv P OˆF,v.
The second condition implies that χE,vpbvq “ 1 whenever v is unramified in

E, and hence

χEpbq “
ź

v

εv “ 1.

Thus b lies in the kernel of the reciprocity map

AˆF Ñ FˆzAˆF {NmpAˆEq – GalpE{F q,

and so can be factored as b “ β´1xx for some β P Fˆ and x P AˆE . Setting

B “ xOE , the pair pB, βq P B̃ maps to pεvqv under (4.2.5).
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It only remains to show that the image of (4.2.4) is equal to the kernel of

(4.2.5). It is clear from the definitions that the composition

E1z pE1{ pO1E Ñ B̃ Ñ t˘1ur

is trivial, proving one inclusion. For the other inclusion, suppose pB, βq P B̃

lies in the kernel of (4.2.5). We have already seen that this implies that

β P Fˆ satisfies χE,vpβq “ 1 for every place v of F , and so β is a norm from

E everywhere locally. By the Hasse-Minkowski theorem, β is a norm globally,

say β “ αα with α P Eˆ. In the group B̃, we therefore have the relation

pB, βq “ α´1pB, βq “ pA, 1q

for a fractional OE-ideal A “ α´1B satisfying NmpAq “ OF . Any such A has

the form A “ xOE for some x P pE1, proving that pB, βq lies in the image of

(4.2.4).

Combining the lemma with (4.2.3) gives

|E1z pE1{ pO1E |
wE

“
|B̃|

2r´1wE
“

Λp0, χEq

2r´1
,

and combining this with (4.2.2) completes the proof of Proposition 4.2.8.

Proposition 4.2.11. — Assume that the discriminants of k and F are rel-

atively prime. The constant term (1.4.2) satisfies

r pZtot
Krap0q : Ybigs “ ´rpω : Ybigs.

Proof. — The stated equality is equivalent to

rpExc,´ logpDqq : Ybigs “ 0,

and so it suffices to prove

rp0, logpDqq : Ybigs “ degCpYbigq ¨ logpDq “ rpExc, 0q : Ybigs.

The first equality is clear from the definitions. To prove the second equality,

we first argue that

(4.2.6) Ybig ˆSKra
Exc “ Ybig ˆSpecpOkq

SpecpOk{dkq,

as in the proof of Proposition 2.2.10.

The inclusion Ă of (4.2.6) is again clear from

Exc Ă SKra ˆSpecpOkq
SpecpOk{dkq.

Recall that Ybig Ñ SpecpOΦq is étale. Our hypothesis on the discriminants of

k and F implies that SpecpOΦq Ñ SpecpOkq is étale at all primes dividing dk,

and hence the same is true for Ybig Ñ SpecpOkq. This implies that the right
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hand side of (4.2.6) is reduced, and hence so is the left hand side. To prove

equality in (4.2.6), it therefore suffices to prove the inclusion Ą on the level of

geometric points.

Suppose p | dk is prime, and let Falg
p be an algebraic closure of its residue

field. Suppose that y P YbigpFalg
p q corresponds to the pair pA0, Aq, so that

A P CMΦpFalg
p q. Let W be the completed étale local ring of the geometric

point

SpecpFalg
p q

y
ÝÑ Ybig Ñ SpecpOΦq.

More concretely, W is the completion of the maximal unramified extension of

Ok,p, equipped with an injective ring homomorphism OΦ Ñ W . Let Cp be

the completion of an algebraic closure of the fraction field of W , and fix an

isomorphism of EΦ-algebras C – Cp.

For every ϕ P Φ the induced map OE Ñ C – Cp takes values in the subring

W , and the induced map

OE bZ W Ñ
ź

ϕPΦ

W

is surjective (by our hypothesis that k and F have relatively prime discrimi-

nants). Denote its kernel by JΦ Ă OE bZW , and define an OE bZW -module

LieΦ “ pOE bZ W q{JΦ –
ź

ϕPΦ

W.

As in the proof of [How15, Lemma 4.1.2], there is an isomorphism of OE bZ
Falg
p -modules

LiepAq – LieΦ bW Falg
p –

ź

ϕPΦ

Falg
p .

Let δ P Ok be a square root of ´D. As the image of δ under

OE
ϕ
ÝÑW Ñ Falg

p

is 0 for every ϕ P Φ, it follows from what was said above that δ annihilates

LiepAq. Exactly as in the proof of Proposition 2.2.10, this implies that the

image of y under Ybig Ñ SKra lies on the exceptional divisor. This completes

the proof of (4.2.6), and the remainder of the proof is exactly as in Proposition

2.2.10.

4.3. A generalized L-function. — The action iE : OE Ñ EndOk
paqmakes

L “ HomOk
pa0, aq

into a projective OE-module of rank one, and the Ok-hermitian form on L

defined by [BHKRYa, (2.1.5)] satisfies xαx1, x2y “ xx1, αx2y for all α P OE
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and x1, x2 P L. It is a formal consequence of this that the E-vector space

V “ LbZ Q carries an E-hermitian form

x´,´ybig : V ˆ V Ñ E,

uniquely determined by the property

xx1, x2y “ TrE{kxx1, x2ybig.

This hermitian form has signature p0, 1q at ϕsp|F , and signature p1, 0q at all

other archimedean places of F .

From the E-hermitian form we obtain an F -valued quadratic form Qpxq “

xx, xybig on V with signature p0, 2q at ϕsp|F , and signature p2, 0q at all other

archimedean places of F . The Q-quadratic form

(4.3.1) Qpxq “ TrF {QQpxq

is Z-valued on L Ă V , and agrees with the quadratic form of §2.3. Let

ωL : SL2pZq Ñ AutCpSLq

be the Weil representation on the space SL “ CrL1{Ls, where L1 “ d´1
k L is

the dual lattice of L relative to the Z-bilinear form (2.3.1).

Write each ~τ P FC in the form ~τ “ ~u` i~v with ~u,~v P FR, and set

HF “ t~τ P FC : ~v is totally positiveu.

Every Schwartz function φ P Sp pV q determines an incoherent Hilbert modular

Eisenstein series

(4.3.2) Ep~τ , s, φq “
ÿ

αPF

Eαp~v, s, φq ¨ q
α

on HF , as in [BKY12, (4.4)] and [AGHMP18, §6.1]. If we identify

SL “ CrL1{Ls Ă Sp pV q

as the space of pL-invariant functions supported on pL1, then (4.3.2) can be

viewed as a function Ep~τ , sq on HF taking values in the complex dual S_L .

We quickly recall the construction of (4.3.2). If v is an arichmedean place

of F , denote by pCv,Qvq the unique positive definite rank 2 quadratic space

over Fv. Set C8 “
ś

v|8 Cv. The rank 2 quadratic space

C “ C8 ˆ pV

over AF is incoherent, in the sense that it is not the adelization of any F -

quadratic space. In fact, C is isomorphic to V everywhere locally, except at

the unique archimedean place ϕsp|F at which V is negative definite.
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Let ψQ : QzAÑ Cˆ be the standard additive character, and define

ψF : F zAF Ñ Cˆ

by ψF “ ψQ ˝ TrF {Q. Denote by Ips, χEq the degenerate principal series

representation of SL2pAF q induced from the character χE | ¨ |
s on the subgroup

B Ă SL2 of upper triangular matrices. Thus Ips, χEq consists of all smooth

functions Φpg, sq on SL2pAF q satisfying the transformation law

Φ

ˆˆ

a b

a´1

˙

g, s

˙

“ χEpaq|a|
s`1Φpg, sq.

The Weil representation ωC determined by the character ψF defines an action

of SL2pAF q on SpC q, and for any Schwartz function

φ8 b φ P SpC8q b Sp pV q – SpC q

the function

(4.3.3) Φpg, 0q “ ωC pgqpφ8 b φqp0q

lies in the induced representation Ip0, χEq. It extends uniquely to a standard

section Φpg, sq of Ips, χEq, which determines an Eisenstein series

Epg, s, φ8 b φq “
ÿ

γPBpF qzSL2pF q

Φpγg, sq

in the variable g P SL2pAF q.
We always choose φ P SL Ă SpV q, and take the archimedean component

φ8 of our Schwartz function to be the Gaussian distribution

φ18 “ bφ
1
v P

â

v|8

SpCvq

defined by φ1vpxq “ e´2πQvpxq, so that the resulting Eisenstein series

Ep~τ , s, φq “
1

a

Nmp~vq
¨ Epg~τ , s, φ

1
8 b φq

has parallel weight 1. Here

g~τ “

ˆ

1 ~u

0 1

˙ˆ

?
~v

1{
?
~v

˙

P SL2pFRq

and Nm : FˆR Ñ Rˆ is the norm.

A choice of ordering of the embeddings F Ñ R fixes an isomorphism of

HF with the n-fold product of the complex upper half-plane with itself, and

the diagonal inclusion H ãÑ HF is independent of the choice of ordering.
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By restricting our Eisenstein series to the diagonal we obtain an S_L -valued

function

Epτ, sq “ Ep~τ , sq|H

in the variable τ P H, which transforms like a modular form of weight n and

representation ω_L under the full modular group SL2pZq.
Given a cusp form g̃ P SnpωLq valued in SL, consider the Petersson inner

product

(4.3.4) xEpsq, g̃yPet “

ż

SL2pZqzH

 

g̃pτq, Epτ, sq
( du dv

v2´n
,

where t¨ , ¨u : SLˆS
_
L Ñ C is the tautological pairing. This is an unnormalized

version of the generalized L-function

Lps, g̃q “ Λps` 1, χEq ¨ xEpsq, g̃yPet

of [BKY12, (1.2)] or [AGHMP18, §6.3].

Let F` Ă F be the subset of totally positive elements. The Eisenstein series

Ep~τ , sq satisfies a functional equation in s ÞÑ ´s, forcing it to vanish at s “ 0.

As in [BKY12, Proposition 4.6] and [AGHMP18, §6.2], we can extract from

the central derivative E1p~τ , 0q a formal q-expansion

aF p0q `
ÿ

αPF`

aF pαq ¨ q
α

If α P F` then E1αp~v, 0, φq is independent of ~v, and we define aF pαq P S
_
L by

aF pα, φq “ Λp0, χEq ¨ E
1
αp~v, 0, φq.

We define aF p0q P S
_
L by

aF p0, φq “ Λp0, χq ¨ E10p~v, 0, φq ´ Λp0, χEq ¨ φp0q log Nmp~vq.

Again, this is independent of ~v.

Remark 4.3.1. — For notational simplicity, we often denote by aF pα, µq the

value of aF pαq : SL Ñ C at the characteristic function of a coset µ P L1{L.

For any nonzero α P F , define

DiffpC , αq “ tplaces v of F : Cv does not represent αu.

This is a finite set of odd cardinality, and any v P DiffpC , αq is necessarily

nonsplit in E. We are really only interested in this set when α P F`. As C is

positive definite at all archimedean places, for such α we have

DiffpC , αq “ tprimes p Ă OF : Vp does not represent αu.
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We will need explicit formulas for all aF pα, µq with α P F`, but only for the

trivial coset µ “ 0. These are provided by the following proposition.

Proposition 4.3.2. — Suppose α P F`.

1. If |DiffpC , αq| ą 1 then aF pαq “ 0.

2. If DiffpC , αq “ tpu, then

aF pα, 0q “ ´2r´1 ¨ ρpαdF p
´εpq ¨ ordppαpdF q ¨ logpNppqq,

where the notation is as follows: r is the number of places of F ramified

in E (including all archimedean places), dF Ă OF is the different of F ,

and

εp “

#

1 if p is inert in E

0 if p is ramified in E.

Moreover, for any fractional OF -ideal b Ă F we have set

ρpbq “ |tideals B Ă OE : BB “ bOEu|.

In particular, ρpbq “ 0 unless b Ă OF .

Proof. — Up to a change of notation, this is [How12, Proposition 4.2.1],

whose proof amounts to collecting together calculations of [Yan05]. More

general formulas can be found in [AGHMP18, §7.1] and [HY12, §4.6].

Proposition 4.3.3. — Assume that the discriminants of k and F are rela-

tively prime. For any µ P L1{L we have

aF p0, µq “

#

´2Λ1p0, χEq if µ “ 0

0 otherwise.

Proof. — Let Φµ “
ś

p Φµ,p be the standard section of Ips, χEq determined

by the characteristic function φµ P SL Ă SpV q of µ P L1{L. According to

[AGHMP18, Proposition 6.2.3], we then have

(4.3.5) aF p0, µq “ ´2φµp0qΛ
1p0, χEq ´ Λp0, χEq ¨

d

ds

´

ź

p

Mpps, φµq
¯ˇ

ˇ

ˇ

s“0
,

where the product is over all finite places p of F , and the local factors on the

right have the form

(4.3.6) Mpps, φµq “ cp ¨
Lpps` 1, χEq

Lpps, χEq
¨W0,pps,Φµq

for some constants cp independent of s. Here, setting

w “
`

0 ´1
1 0

˘

, npbq “
`

1 b
0 1

˘

,
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the function

W0,pps,Φµq “

ż

Fp

Φµ,p pwnpbq, sq db

is the value of the local Whittaker function W0,ppg, s,Φµq at the identity in

SL2pFpq. Our goal is to prove that Mpps, φµq is independent of s, and hence

both the particular value of cp and the choice of Haar measure on Fp are

irrelevant to us.

Fix a prime p Ă OF , and let p be the rational prime below it. We may

identify Vp – Ep in such a way that Lp – OE,p, and so that the Fp-valued

quadratic form Q on Vp – Ep becomes

Qpxq “ βxx

for some β P Fˆp . If dF denotes the different of F {Q, then

(4.3.7) βOF,p “ d´1
F OF,p.

Indeed, let dE be the different of E{Q. The lattice L1p “ d´1
k OE,p is the dual

lattice of OE,p relative to the Qp-bilinear form rx, ys “ TrEp{Qppβxyq, which

implies the first equality in

β´1OE,p “ dEd
´1
k OE,p “ dFOE,p.

The second equality is a consequence of our assumption that the discriminants

of k and F are relatively prime.

If we endow Vp “ Ep with the rescaled quadratic form

Q7pxq
def
“ β´1Qpxq “ xx,

and define a new additive character

ψ7F,ppxq
def
“ ψF,ppβxq

(unramified by (4.3.7)), we obtain a new Weil representation

ω7 : SL2pFpq Ñ AutpSpVpqq,

and hence, as in (4.3.3), a function

SpVpq
φ ÞÑΦ7pps,gq
ÝÝÝÝÝÝÝÑ Ipps, χEq

defined by first setting Φ7pp0, gq “ ω7pgqφp0q, and then extending to a standard

section.

The local Schwartz function φµ,p P SpVpq now determines a standard section

Φ7µ,ppg, sq of Ipps, χEq, and explicit formulas for the Weil representation, as in
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[HY12, (4.2.1)], show that
ż

Fp

Φµ,p pwnpbq, sq db “

ż

Fp

Φ7µ,p pwnpbq, sq db.

What our discussion shows is that there is no harm in rescaling the quadratic

form on Vp to make β “ 1, and simultaneously modifying the additive char-

acter ψF,p to make it unramified.

After this rescaling, one can easily deduce explicit formulas for W0,pps,Φµq

from the literature. Indeed, if the local component µp P L
1
p{Lp is zero, then

the calculations found in [Yan05, §2] imply that

W0,pps,Φµq “
Lpps, χEq

Lpps` 1, χEq

up to scaling by a nonzero constant independent of s. If instead µp ‰ 0 then p

is ramified in E (and in particular p ą 2), and it follows from the calculations

found in the proof of [HY12, Proposition 4.6.4] that W0,pps,Φµq “ 0. In any

case (4.3.6) is independent of s for every p, and so the derivative in (4.3.5)

vanishes.

4.4. A preliminary central derivative formula. — The entirety of §4.4

is devoted to proving Theorem 4.4.1, which a big CM analogue of Theo-

rem 2.4.1. The proof will make essential use of the calculations of [How12,

How15, BKY12].

We assume n ě 3 throughout §4.4. This allows us to make use of the

distinguished harmonic forms

fm P H2´npωLq
∆

(for m ą 0) characterized by (2.5.1).

Theorem 4.4.1. — Assume that the discriminants of k{Q and F {Q are odd

and relatively prime, and fix a positive integer m. If f “ fm is the harmonic

form above, and pZ is the linear function (2.4.1), then

n ¨ r pZpfq : Ybigs

degCpYbigq
` 2c`f p0, 0q

Λ1p0, χEq

Λp0, χEq
“ ´

d

ds
xEpsq, ξpfqyPet

ˇ

ˇ

s“0
.

For the form f “ fm we have

pZpfq “ pZtot
Krapmq “

`

Ztot
Krapmq,Θ

regpfmq
˘

P xCh
1
pS˚Kraq,

where the Green function Θregpfmq for the divisor Ztot
Krapmq is constructed in

[BHKRYa, §7] as a regularized theta lift. The arithmetic degree appearing
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in Theorem 4.4.1 decomposes as

r pZpfq : Ybigs “
ÿ

pĂOk

logpNppqq
ÿ

yPpZtot
KrapmqXYbigqpFalg

p q

lengthpOyq

|Autpyq|
(4.4.1)

`
ÿ

yPYbigpCq

Θregpfmqpyq

|Autpyq|

where Fp “ Ok{p, and Oy is the étale local ring of

(4.4.2) Ztot
Krapmq X Ybig

def
“ Ztot

Krapmq ˆS˚Kra
Ybig

at y. The final summation is over all complex points of Ybig, viewed as an

Ok-stack. We will see that the terms on the right hand side of (4.4.1) are

intimately related to the Eisenstein series coefficients aF pαq of §4.3.

We first study the structure of the stack-theoretic intersection (4.4.2). Sup-

pose S is a connected OΦ-scheme, and

pA0, Aq P
`

Mp1,0q ˆOk
CMΦ

˘

pSq

is an S-point. The Ok-module HomOk
pA0, Aq carries an Ok-hermitian

form x´,´y defined by [BHKRYa, (2.5.1)]. The construction of this her-

mitian form only uses the underlying point of SKra, and not the action

OE Ñ EndOk
pAq. As in [How15, §3.2], the extra action of OE makes

HomOk
pA0, Aq into a projective OE-module, and there is a totally positive

definite E-hermitian form x´,´ybig on

(4.4.3) V pA0, Aq “ HomOk
pA0, Aq bZ Q

characterized by the relation

xx1, x2y “ TrE{kxx1, x2ybig.

for all x1, x2 P HomOk
pA0, Aq.

Fix an α P F`. Recalling that

(4.4.4) Ybig ĂMp1,0q ˆOk
CMΦ

as an open and closed substack, for any OΦ-scheme S let ZbigpαqpSq be the

groupoid of triples pA0, A, xq, in which

– pA0, Aq P YbigpSq,

– x P HomOk
pA0, Aq satisfies xx, xybig “ α.

This functor is represented by an OΦ-stack Zbigpαq, and the evident forgetful

morphism

Zbigpαq Ñ Ybig
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is finite and unramified.

This construction is entirely analogous to the construction of the special

divisors Ztot
Krapmq Ñ SKra of [BHKRYa]. In fact, directly from the definitions,

if S is an OΦ-scheme an S-point

pA0, A, xq P
`

Ztot
Krapmq X Ybig

˘

pSq

consists of a pair pA0, Aq P YbigpSq and an x P HomOk
pA0, Aq satisfying m “

xx, xy. From this it is clear that there is an isomorphism

(4.4.5) Ztot
Krapmq X Ybig –

ğ

αPF`
TrF {Qpαq“m

Zbigpαq,

defined by sending the triple pA0, A, xq to the same triple, but now viewed as

an S-point of the stack Zbigpαq determined by α “ xx, xybig.

Proposition 4.4.2. — For each α P F` the stack Zbigpαq is either empty,

or has dimension 0 and is supported at a single prime of OΦ. Moreover,

1. If |DiffpC , αq| ą 1 then Zbigpαq “ H.

2. Suppose that DiffpC , αq “ tpu for a single prime p Ă OF , let q Ă OE

be the unique prime above it, and denote by qΦ Ă OΦ the corresponding

prime under the isomorphism ϕsp : E – EΦ. Then Zbigpαq is supported

at the prime qΦ, and satisfies

ÿ

yPZbigpαqpFalg
qΦ
q

1

|Autpyq|
“
hk
wk

¨ ρpαdF p
´εpq,

where FqΦ is the residue field of qΦ, and εp and ρ are as in Proposition

4.3.2. Moreover, the étale local rings at all geometric points

y P ZbigpαqpFalg
qΦ
q

have the same length

lengthpOyq “ ordppαpdF q ¨

#

1{2 if Eq{Fp is unramified

1 otherwise.

Proof. — This is essentially contained in [How12, §3]. In that work we

studied the OΦ-stack ZΦpαq classifying triples pA0, A, xq exactly as in the

definition of Zbigpαq, except we allowed the pair pA0, Aq to be any point of

Mp1,0q ˆOk
CMΦ rather than a point of the substack (4.4.4). Thus we have a
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cartesian diagram

Zbigpαq //

��

ZΦpαq

��
Ybig

//Mp1,0q ˆOk
CMΦ.

As the bottom horizontal arrow is an open and closed immersion, so is the

top horizontal arrow. In other words, our Zbigpαq is a union of connected

components of the stack ZΦpαq of [How12].

Lemma 4.4.3. — Each ZΦpαq has dimension 0. If y is a geometric point

of ZΦpαq corresponding to a triple pA0, A, xq over kpyq, then kpyq has nonzero

characteristic, A0 and A are supersingular, and the E-hermitian space (4.4.3)

has dimension one. Moreover, if p Ă OF denotes the image of y under the

composition

(4.4.6) ZΦpαq Ñ SpecpOΦq – SpecpOEq Ñ SpecpOF q

(the isomorphism is ϕsp : E – EΦ), then p is nonsplit in E, and the following

are equivalent:

– The geometric point y factors through the open and closed substack

Zbigpαq Ă ZΦpαq.

– The E-hermitian space (4.4.3) is isomorphic to V everywhere locally

except at p and ϕsp|F .

Proof. — This is an easy consequence of [How12, Proposition 3.4.5] and

[How12, Proposition 3.5.2]. The only part that requires explanation is the

final claim.

Fix a connected component

B ĂMp1,0q ˆOk
CMΦ.

As in [How12, §3.4], for each complex point y “ pA0, Aq P BpCq one can

construct from the Betti realizations of A0 and A an E-hermitian space

V pBq “ Homk

`

H1pA0pCq,Qq, H1pApCq,Qq
˘

of dimension 1. This hermitian space has signature p0, 1q at ϕsp|F , and sig-

nature p1, 0q at all other archimedean places of F . Moreover, as in Remark

4.2.3, this hermitian space depends only on the connected component B, and

not on the particular complex point y. The open and closed substack

Ybig ĂMp1,0q ˆOk
CMΦ
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can be characterized as the union of all components B for which V pBq – V .

So, suppose we have a geometric point y “ pA0, A, xq of ZΦpαq, and denote

by

B ĂMp1,0q ˆOk
CMΦ

the connected component containing the underlying point y “ pA0, Aq. The

content of [How12, Proposition 3.4.5] is that the hermitian space (4.4.3) is

isomorphic to V pBq everywhere locally except at p and ϕsp|F . From this we

deduce the equivalence of the following statements:

– The geometric point y Ñ ZΦpαq factors through Zbigpαq.

– The underlying point y ÑMp1,0q ˆOk
CMΦ factors through Ybig.

– The hermitian spaces V pBq and V are isomorphic.

– The E-hermitian space (4.4.3) is isomorphic to V everywhere locally

except at p and ϕsp|F .

Now suppose that Zbigpαq is nonempty. If we fix a geometric point y “

pA0, A, xq as above, the vector x P HomOk
pA0, Aq satisfies xx, xybig “ α, and

hence (4.4.3) represents α. The above lemma now implies that V represents

α everywhere locally except at p and ϕsp|F , where p is the image of y under

(4.4.6). From this it follows first DiffpC , αq “ tpu, and then that all geometric

points of Zbigpαq have the same image under (4.4.6), and lie above the same

prime qΦ Ă OΦ characterized as in the statement of Proposition 4.4.2. In

particular, if |DiffpC , αq| ą 1 then Zbigpαq “ H.

It remains to prove part (2) of the proposition. For this we need the follow-

ing lemma.

Lemma 4.4.4. — Assume that DiffpC , αq “ tpu for some prime p Ă OF ,

and let q Ă OE be the unique prime above it. The open and closed substack

Zbigpαq Ă ZΦpαq is equal to the union of all connected components of ZΦpαq

that are supported at the prime qΦ.

Proof. — We have already seen that every geometric point of Zbigpαq lies

above the prime qΦ, and so it suffices to prove that every geometric point of

ZΦpαq lying above the prime qΦ factors through Zbigpαq. Let y Ñ ZΦpαq be

such a point.

If y corresponds to the triple pA0, A, xq, then x P HomOk
pA0, Aq satis-

fies xx, xybig “ α, and hence (4.4.3) represents α. But the assumption that

DiffpC , αq “ tpu implies that V represents α everywhere locally except at p

and ϕsp|F , and it follows from this that V and (4.4.3) are isomorphic locally
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everywhere except at p and ϕsp|F . By the previous lemma, this implies that

y factors through Zbigpαq.

With this last lemma in hand, all parts of (2) follow from the correspond-

ing statements for ZΦpαq proved in [How12, Theorem 3.5.3] and [How12,

Theorem 3.6.2].

Proposition 4.4.5. — For every α P F` we have

ÿ

pĂOk

n ¨ logpNppqq

degCpYbigq

ÿ

yPZbigpαqpFalg
p q

lengthpOyq

|Autpyq|
“ ´

aF pα, 0q

Λp0, χEq
,

where the inner sum is over all Falg
p -points of Zbigpαq, viewed as an Ok-stack.

Proof. — Combining Propositions 4.2.8, 4.3.2, and 4.4.2 shows that

ÿ

qΦĂOΦ

n ¨ logpNpqΦqq

degCpYbigq

ÿ

yPZbigpαqpFalg
qΦ
q

lengthpOyq

|Autpyq|
“ ´

aF pα, 0q

Λp0, χEq
,

where the inner sum is over all Falg
qΦ

points of Zbigpαq, viewed as an OΦ-stack.

The claim follows by collecting together all primes qΦ Ă OΦ lying above a

common prime p Ă Ok.

Proposition 4.4.6. — The regularized theta lift Θregpfmq satisfies

n

degCpYbigq

ÿ

yPYbigpCq

Θregpfmqpyq

|Autpyq|

“ ´
d

ds
xEpsq, ξpfmqyPet

ˇ

ˇ

s“0
`

ÿ

αPF`
TrF {Qpαq“m

aF pα, 0q

Λp0, χEq
´ 2c`fmp0, 0q ¨

Λ1p0, χEq

Λp0, χEq
.

Proof. — This is a special case of the main result of [BKY12]. This requires

some explanation, as that work deals with cycles on Shimura varieties of type

GSpin, rather than the unitary Shimura varieties under current consideration.

Recall that we have an F -quadratic space pV ,Qq of rank two, and a Q-

quadratic space pV,Qq whose underlying Q-vector space

V “ HomkpW0,W q
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is equal to V , and whose quadratic form is (4.3.1). As in [BKY12, §2] or

[AGHMP18, §5.3] this data determines a commutative diagram

1 // Gm
// TGSpin

//

��

TSO
//

��

1

1 // Gm
// GSpinpV q // SOpV q // 1,

with exact rows, of algebraic groups over Q. The torus TSO “ ResF {QSOpV q

has Q-points

TSOpQq “ ty P Eˆ : yy “ 1u,

while the torus TGSpin has Q-points

TGSpinpQq “ Eˆ{kerpNorm : Fˆ Ñ Qˆq.

The map TGSpin Ñ TSO is x ÞÑ x{x. To these groups one can associate

morphisms of Shimura data

pTGSpin, thGSpinuq //

��

pTSO, thSOuq

��
pGSpinpV q,DGSpinq // pSOpV q,DSOq.

In the top row both data have reflex field EΦ. In the bottom row both data

have reflex field Q.

Let KSO Ă SOpV qpAf q be any compact open subgroup that stabilizes the

lattice L Ă V , and fix any compact open subgroup KGSpin Ă GSpinpV qpAf q
contained in the preimage of KSO. The Shimura data in the bottom row, along

with these compact open subgroups, determine Shimura varieties MGSpin Ñ

MSO. These are Q-stacks of dimension 2n´ 2.

The Shimura data in the top row, along with the compact open subgroups

KGSpinXTGSpinpAf q andKSOXTSOpAf q, determine Shimura varieties YGSpin Ñ

YSO. These are EΦ-stacks of dimension 0, but we instead view them as stacks

over SpecpQq, so that there is a commutative diagram

(4.4.7) YGSpin
//

��

YSO

��
MGSpin

// MSO.

Assume that the compact open subgroup KSO acts trivially on the quotient

L1{L. For every form f P H2´npωLq, one can find in [BKY12, Theorem

3.2] the construction of a divisor ZGSpinpfq on MGSpin, along with a Green
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function Θreg
GSpinpfq for that divisor, constructed as a regularized theta lift. Up

to change of notation, [BKY12, Theorem 1.1] asserts that

n

degCpYGSpinq

ÿ

yPYGSpinpCq

Θreg
GSpinpf, yq

|Autpyq|
“ ´

d

ds
xEpsq, ξpfqyPet

ˇ

ˇ

s“0

`
ÿ

mě0
µPL1{L

apm,µqc`f p´m,µq

Λp0, χEq
(4.4.8)

where the coefficients apmq P SL are defined by

apmq “
ÿ

αPF`
TrF {Qpαq“m

aF pαq

if m ą 0, and by ap0q “ aF p0q.

It is not difficult to see, directly from the constructions, that both the

divisor ZGSpinpfq and the Green function Θreg
GSpinpfq descend to the quotient

MSO. If we call these descents ZSOpfq and Θreg
SOpfq, it is a formal consequence

of the commutativity of (4.4.7) that the equality (4.4.8) continues to hold if

all subscripts GSpin are replaced by SO.

Moreover, suppose that our form f P H2´npωLq is invariant under the action

of the finite group ∆ of §2.4, as is true for the form fm of (2.5.1). In this

case one can see, directly from the definitions, that the divisor ZSOpfq and the

Green function Θreg
SOpfq descend to the orthogonal Shimura variety determined

by the maximal compact open subgroup

KSO “ tg P SOpV qpAf q : gL “ Lu.

From now on we fix this choice of KSO.

Specializing (4.4.8) to the form f “ fm, and using the formula for ap0q “

aF p0q found in Proposition 4.3.3, we obtain

n

degCpYSOq

ÿ

yPYSOpCq

Θreg
SOpfmqpyq

|Autpyq|
“ ´

d

ds
xEpsq, ξpfmqyPet

ˇ

ˇ

s“0

`
apm, 0q

Λp0, χEq
´ 2c`fmp0, 0q ¨

Λ1p0, χEq

Λp0, χEq
.(4.4.9)

As in [BHKRYa, §2.1], our group G Ă GUpW0q ˆ GUpW q acts on V in

a natural way, defining a homomorphism G Ñ SOpV q. On the other hand,

Remark 4.1.1 shows that Tbig – Resk{QGmˆTSO, and projection to the second
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factor defines a morphism Tbig Ñ TSO. We obtain morphisms of Shimura data

pTbig, thbiguq //

��

pTSO, thSOuq

��
pG,Dq // pSOpV q,DSOq,

which induce morphisms of k-stacks

Ybig{k
//

��

YSO{k

��
SKra{k

// MSO{k.

The Green function Θregpfmq on SKra{k defined in [BHKRYa, §7.2] is sim-

ply the pullback of the Green function Θreg
SOpfmq via the bottom horizontal

arrow. It follows easily that

n

degCpYSOq

ÿ

yPYSOpCq

Θreg
SOpfmqpyq

|Autpyq|
“

n

degCpYbigq

ÿ

yPYbigpCq

Θregpfmqpyq

|Autpyq|
,

and comparison with (4.4.9) completes the proof of Proposition 4.4.6.

Proof of Theorem 4.4.1. — Combining the decomposition (4.4.5) with Propo-

sition 4.4.5 shows that
ÿ

pĂOk

n logpNppqq

degCpYbigq

ÿ

yPpZtot
KrapmqXYbigqpFalg

p q

lengthpOyq

|Autpyq|
“

ÿ

αPF`
TrF {Qpαq“m

´aF pα, 0q

Λp0, χEq
.

Plugging this formula and the archimedean calculation of Proposition 4.4.6

into (4.4.1) leaves

n ¨ r pZpfmq : Ybigs

degCpYbigq
“ ´2c`fmp0, 0q ¨

Λ1p0, χEq

Λp0, χEq
´

d

ds
xEpsq, ξpfmqyPet

ˇ

ˇ

s“0
,

as desired.

4.5. The proof of Theorem B. — We now use Theorem 4.4.1 to prove a

special case of Theorem D, and then prove Theorem B. We assume n ě 3.

Recall the differential operator

ξ : H2´npωLq Ñ SnpωLq

of §2.4. Its kernel is the subspace

M !
2´npωLq Ă H2´npωLq
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of weakly holomorphic forms.

Lemma 4.5.1. — In the notation of §2.4, there exists a ∆-invariant form

f PM !
2´npωLq such that c`f p0, 0q ‰ 0, and

pZpfq ` c`f p0, 0q ¨ pZ
tot
Krap0q “ 0.

Proof. — Denote by

S!,8
2´npΓ0pDq, χ

n
kq ĂM !

2´npΓ0pDq, χ
n
kq

the subspace of forms that vanish at all cusps other than 8, and choose any

form

f0pτq “
ÿ

mPZ
m"´8

c0pmq ¨ q
m P S!,8

2´npΓ0pDq, χ
n
kq

such that c0p0q ‰ 0. The existence of such a form can be proved as in

[BBGK07, Lemma 4.11]. As in (2.3.2) there is an induced form

fpτq “
ÿ

γPΓ0pDqzSL2pZq
pf0|2´nγqpτq ¨ ωLpγ

´1qφ0 PM
!
2´npωLq

∆,

which we claim has the desired properties.

Indeed, the proof of Proposition 2.5.1 shows that c`f p0, 0q “ c0p0q, and that

f “
ř

mą0 c0p´mqfm. In particular,

pZpfq “
ÿ

mą0

c0p´mq ¨ pZtot
Krapmq P

xCh
1

CpS˚Kraq.

Given any modular form

gpτq “
ÿ

mě0

dpmq ¨ qm PMnpD,χ
n
kq,

summing the residues of the meromorphic form f0pτqgpτqdτ on X0pDqpCq
shows that

ÿ

mě0

c0p´mq ¨ dpmq “ 0.

Thus the modularity of the generating series (1.1.2) implies the second equality

in
pZpfq ` c0p0q ¨ pZtot

Krap0q “
ÿ

mě0

c0p´mq ¨ pZtot
Krapmq “ 0.

We can now prove Theorem D under some additional hypotheses. These

hypotheses will be removed in §5.
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Theorem 4.5.2. — If the discriminants of k{Q and F {Q are odd and rela-

tively prime, then

rpω : Ybigs “
´2

n
¨ degCpYbigq ¨

Λ1p0, χEq

Λp0, χEq
.

Proof. — If we choose f as in Lemma 4.5.1 then ξpfq “ 0, and so Theorem

4.4.1 simplifies to

´nc`f p0, 0q ¨
r pZtot

Krap0q : Ybigs

degCpYbigq
` 2c`f p0, 0q ¨

Λ1p0, χEq

Λp0, χEq
“ 0.

An application of Proposition 4.2.11 completes the proof.

The following is Theorem B in the introduction.

Theorem 4.5.3. — Assume that the discriminants of k{Q and F {Q are odd

and relatively prime, and let g P SnpΓ0pDq, χ
nq and g̃ P SnpωLq be related by

(2.3.2). The central derivative of the Petersson inner product (4.3.4) is related

to the arithmetic theta lift (1.1.3) by

rpθpgq : Ybigs “
´1

n
¨ degCpYbigq ¨

d

ds
xEpsq, g̃yPet

ˇ

ˇ

s“0
.

Proof. — If we choose f as in Proposition 2.5.1, then ξpfq “ g̃ and

rpθpgq : Ybigs “ r pZpfq : Ybigs ` c
`
f p0, 0q ¨ r

pZtot
Krap0q : Ybigs.

Proposition 4.2.11 and Theorem 4.5.2 allow us to rewrite this as

rpθpgq : Ybigs “ r pZpfq : Ybigs ´ c
`
f p0, 0q ¨ rpω : Ybigs

“ r pZpfq : Ybigs `
2

n
¨ c`f p0, 0q ¨ degCpYbigq ¨

Λ1p0, χEq

Λp0, χEq
,

and comparison with Theorem 4.4.1 completes the proof.

5. Faltings heights of CM abelian varieties

In §5 we assume n ě 2, and study Theorems C and D of the introduction.

As in §1.3, let F be a totally real field of degree n, set

E “ k bQ F,

and let Φ Ă HompE,Cq be a CM type of signature pn´ 1, 1q. We fix a triple

pa0, a, iEq as in §4.2.
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5.1. Some metrized line bundles. — By virtue of the inclusion (1.1.1),

there is a universal pair pA0, Aq over SKra consisting of an elliptic curve π0 :

A0 Ñ SKra and an abelian scheme π : AÑ SKra of dimension n.

Endowing the Lie algebras of A0 and A with their Faltings (a.k.a. Hodge)

metrics gives rise to metrized line bundles

LiepA0q P xPicpSKraq, detpLiepAqq P xPicpSKraq.

A vector η in the fiber

detpLiepAsqq
´1 –

ľn
Fil1H1

dRpAsq Ă
ľn

H1
dRpAsq

at a complex point s P SKrapCq has norm

(5.1.1) }η}2s “
ˇ

ˇ

ˇ

ż

AspCq
η ^ η

ˇ

ˇ

ˇ
.

The metric on LiepA0q is defined similarly.

We now recall some notation from [BHKRYa, §1.8]. Fix a π P Ok such

that Ok “ Z` Zπ. If S is any Ok-scheme, define

εS “ π b 1´ 1b iSpπq P Ok bZ OS(5.1.2)

εS “ π b 1´ 1b iSpπq P Ok bZ OS ,

where iS : Ok Ñ OS is the structure map. We usually just write ε and ε, when

the scheme S is clear from context.

Remark 5.1.1. — If N is an Ok bZ OS-module then N{εN is the maxi-

mal quotient of N on which Ok acts through the structure morphism iS :

Ok Ñ OS , and N{εN is the maximal quotient on which Ok acts through the

conjugate of the structure morphism. If D P OˆS then

N “ εN ‘ εN,

and the summands are the maximal submodules on which Ok acts through

the structure morphism and its conjugate, respectively.

As in [BHKRYa, §2.2], the relative de Rham homology HdR
1 pAq is a rank

2n vector bundle on SKra endowed with an action of Ok induced from that on

A. In fact, it is locally free of rank n as an Ok bZ OSKra
-module, and

V “ HdR
1 pAq{εHdR

1 pAq

is a rank n vector bundle. We make detpVq into a metrized line bundle by

declaring that a local section η of its inverse

detpVq´1 –
ľn

εH1
dRpAq Ă Hn

dRpAq
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has norm (5.1.1) at a complex point s P SKrapCq.
As the exceptional divisor Exc Ă SKra of [BHKRYa, §2.3] is supported in

characteristics dividing D, the line bundle OpExcq is canonically trivial in the

generic fiber. We endow it with the trivial metric. That is to say, the constant

function 1, viewed as a section of OpExcq, has norm }1}2 “ 1.

Recall that the line bundle ω of [BHKRYa, §2.4] was endowed with a

metric in [BHKRYa, §7.2], defining

pω P xPicpSKraq.

For any positive real number c, denote by

Oxcy P xPicpSKraq

the trivial bundle OSKra
endowed with the constant metric }1}2 “ c.

Proposition 5.1.2. — There is an isomorphism

Ox8π2eγD´1yb2 b pωb2 b detpLiepAqq b LiepA0q
b2 – OpExcq b detpVq

of metrized line bundles on SKra.

Proof. — In [BHKRYa, §2.4] we defined a line bundle ΩKra on SKra by

ΩKra “ detpLiepAqq´1 b LiepA0q
b´2 b detpVq,

and in [BHKRYa, Theorem 2.6.3] we constructed an isomorphism

ωb2 – ΩKra bOpExcq.

This defines the desired isomorphism

(5.1.3) ωb2 b detpLiepAqq b LiepA0q
b2 – OpExcq b detpVq

on underlying line bundles, and it remains to compare the metrics.

In the complex fiber this can be made more explicit. At any complex point

s P SKrapCq the Hodge short exact sequence admits a canonical splitting

HdR
1 pAsq “ F 0pAsq ‘ LiepAsq,

where F 0pAsq “ Fil0HdR
1 pAsq is the nontrivial step in the Hodge filtration.

When combined with the decomposition of Remark 5.1.1 we obtain

HdR
1 pAsq “ εF 0pAsq

looomooon

1

‘ εF 0pAsq
looomooon

n´1

‘ εLiepAsq
looomooon

n´1

‘ εLiepAsq
looomooon

1
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where the subscripts indicate the dimensions as C-vector spaces. There is a

similar decomposition

HdR
1 pA0sq “ εF 0pA0sq

loooomoooon

0

‘ εF 0pA0sq
loooomoooon

1

‘ εLiepA0sq
loooomoooon

1

‘ εLiepA0sq
loooomoooon

0

Denote by

(5.1.4) ψ : HdR
1 pAsq ˆH

dR
1 pAsq Ñ C

the alternating pairing determined by the principal polarization on As. The

two direct summands

εF 0pAsq ‘ εLiepAsq Ă HdR
1 pAsq

are interchanged by complex conjugation. We endow both εF 0pAsq and

εLiepAsq with the metric

(5.1.5) }b}2s “

ˇ

ˇ

ˇ

ˇ

ψpb, bq

2πi

ˇ

ˇ

ˇ

ˇ

,

so that the pairing

(5.1.6) ψ : εF 0pAsq b εLiepAsq Ñ Ox4π2y´1
s

is an isometry.

For a, b P εLiepAsq, define pabb : εF 0pAsq Ñ εLiepAsq by

(5.1.7) pabbpeq “ ψpεa, eq ¨ εb “ ´Dψpa, eq ¨ b.

The factor of ´D comes from the observation that ε acts on εLiepAsq as

˘
?
´D, where the sign depends on the choice of π used in (5.1.2).

We now define Pabb by the commutativity of

(5.1.8) detpVsq
Pabb //

–

��

detpLiepAsqq

–

��
εF 0pAsq b detpεLiepAsqq

pabbbid
// εLiepAsq b detpεLiepAsqq.

This defines the isomorphism

(5.1.9) pεLiepAsqq
b2 P
ÝÑ Hom

`

detpVsq,detpLiepAsqq
˘

of [BHKRYa, Lemma 2.4.5].

Lemma 5.1.3. — The isomorphism (5.1.9) defines an isometry

detpVsq – Ox2πD´1yb2
s b pεF 0pAsqq

b2 b detpLiepAsqq.
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Proof. — Fix an isomorphism
Ź2nH1pAspCq,Zq – Z and extend it to a C-

linear isomorphism

vol :
ľ2n

HdR
1 pAsq – C.

Under the de Rham comparison isomorphism H1pAspCq,Cq – HdR
1 pAsq,

the pairing (5.1.4) restricts to a perfect pairing

ψ : H1pAspCq,Zq ˆH1pAspCq,Zq Ñ 2πiZ.

It follows that there is a unique element Ψ “ α ^ β P
Ź2H1pAspCq,Zq such

that

2πi ¨ ψpa, bq “ ψpα, aqψpβ, bq ´ ψpα, bqψpβ, aq

for all a, b P H1pAspCq,Zq. The map
´

ľn´1
H1pAspCq,Zq

¯

b

´

ľn´1
H1pAspCq,Zq

¯

Ñ Z

defined by ab b ÞÑ volpΨ^ a^ bq is a perfect pairing of Z-modules.

We now metrize the line

detpεLiepAsqq Ă
ľn´1

εHdR
1 pAsq

by }µ}2 “ |volpΨ^ µ^ µq|. With this definition, the vertical arrows in (5.1.8)

are isometries.

Using (5.1.6) and (5.1.7), one sees that the map

pabb P HompF 0pAsq, εLiepAsqq

satisfies }pabb} “ 2πD ¨ }a b b}, and hence also }Pabb} “ 2πD ¨ }a b b}. This

proves that the isomorphism P defines an isometry

Ox2πDyb2
s b pεLiepAsqq

b2 – Hom
`

detpVsq, detpLiepAsqq
˘

.

The isomorphism (5.1.6) allows us to rewrite this as

detpVsq – Ox2πD´1yb2
s b pεF 0pAsqq

b2 b detpLiepAsqq.

The proof of [BHKRYa, Proposition 2.4.2] gives an isomorphism

(5.1.10) ωs – HompLiepA0sq, εF
0pAsqq Ă εVC

where

V “ Homk

`

H1pA0spCq,Qq, H1pAspCq,Qq
˘

.

As in [BHKRYa, §2.1], there is a Q-bilinear form r¨ , ¨s : V ˆ V Ñ Q induced

by the polarizations on A0s and As. If we extend this to a C-bilinear form on

VC “ HomkbC
`

HdR
1 pA0sq, H

dR
1 pAsq

˘
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then the metric on ωs is defined, as in [BHKRYa, §7.2], by

}x}2 “
|rx, xs|

4πeγ

for any x P HompLiepA0sq, εF
0pAsqq.

On the other hand, we have defined the Faltings metric on LiepA0sq, and

defined a metric on εF 0pAsq by (5.1.5). The following lemma shows that

(5.1.10) respects the metrics, up to scaling by a factor of 4πeγ .

Lemma 5.1.4. — The isomorphism (5.1.10) defines an isometry

Ox4πeγys b pωs – HompLiepA0sq, εF
0pAsqq.

Proof. — The alternating form

ψ0 : HdR
1 pA0sq ˆH

dR
1 pA0sq Ñ C

analogous to (5.1.4) restricts to a perfect pairing

ψ0 : H1pA0spCq,Zq ˆH1pA0spCq,Zq Ñ 2πiZ,

and hence the Faltings metric on LiepA0sq “ εHdR
1 pA0sq is

}a}2 “ p2πq´1|ψ0pa, aq|.

From the definition of the bilinear form on V , one can show that

rx, xs ¨ ψ0pa, aq “ ψpxa, xaq

for all x P εVC. Comparing with the metric on εF 0pAsq shows that

4πeγ ¨ }x}2 ¨ }a}2 “ p2πq´1 ¨ |ψpxa, xaq| “ }xa}2,

for all x P ωs and a P LiepA0sq, as claimed.

The two lemmas provide us with isometries

detpVsq – Ox2πD´1yb2
s b pεF 0pAsqq

b2 b detpLiepAsqq

– Ox8π2eγD´1yb2
s b pωb2

s b LiepA0sq
b2 detpLiepAsqq

and the composition agrees with the isomorphism (5.1.3). This completes the

proof of Proposition 5.1.2.

Recall the big CM cycle π : Ybig Ñ S˚Kra of Definition 4.2.6. All of the

metrized line bundles on SKra appearing in Proposition 5.1.2 can be extended

to the toroidal compactification S˚Kra (with possible log-singularities along the

boundary) so as to define classes in the codimension one arithmetic Chow
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group. However, we don’t actually need this. Indeed, we can define a homo-

morphism

r´ : Ybigs : xPicpSKraq Ñ R
as the composition

xPicpSKraq
π˚
ÝÝÑ xPicpYbigq –

xCh
1
pYbigq

ydeg
ÝÝÑ R.

As the big CM cycle does not meet the boundary of the toroidal compactifi-

cation, the composition

xCh
1
pS˚Kraq –

xPicpS˚Kraq Ñ
xPicpSKraq

r´:Ybigs
ÝÝÝÝÝÑ R

agrees with the arithmetic degree along Ybig of Definition 4.2.6.

Remark 5.1.5. — Directly from the definitions, and recalling Remark 2.2.7,

the metrized line bundle Oxcy satisfies

rOxcy : Ybigs “
ÿ

yPYbigpCq
´ log }1}2 “ ´ logpcq ¨ degCpYbigq.

5.2. The Faltings height. — Recall from §4.2 the moduli stack CMΦ of

abelian varieties over OΦ-schemes with complex multiplication by OE and CM

type Φ.

Suppose A P CMΦpCq. Choose a model of A over a number field L Ă C
large enough that the Néron model π : A Ñ SpecpOLq has everywhere good

reduction. Pick a nonzero rational section s of the line bundle π˚Ω
dimpAq
A{OL on

SpecpOLq, and define

hFalt
8 pA, sq “

´1

2rL : Qs
ÿ

σ:LÑC
log

ˇ

ˇ

ż

AσpCq
sσ ^ sσ

ˇ

ˇ,

and

hFalt
f pA, sq “

1

rL : Qs
ÿ

pĂOL

ordppsq ¨ log Nppq.

By a result of Colmez [Col93], the Faltings height

hFalt
pE,Φq “ hFalt

f pA, sq ` hFalt
8 pA, sq

depends only on the pair pE,Φq.

Proposition 5.2.1. — The arithmetic degree of LiepAq along Ybig satisfies

rdetpLiepAqq : Ybigs “ ´2 degCpYbigq ¨ h
Falt
pE,Φq.

Similarly, recalling the Faltings height hFalt
k of (1.4.1),

rLiepA0q : Ybigs “ ´2 degCpYbigq ¨ h
Falt
k .
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Proof. — Suppose we are given a morphism y : SpecpOLq Ñ Ybig for some

finite extension L{EΦ. The restriction of A to OL has complex multiplication

by OE and CM type Φ, and comparing the definition of the Faltings height

with the definition of ydeg found in [How15, §3.1], shows that the composition

xPicpSKraq
π˚
ÝÝÑ xCh

1
pYbigq

y˚
ÝÑ xCh

1
pSpecpOLqq

ydeg
ÝÝÑ R

sends LiepAq´1 to rL : Qs ¨ hFalt
pE,Φq.

We may choose L in such a way that the Ok-stack

Ybig ˆSpecpOΦq
SpecpOLq

admits a finite étale cover by a disjoint union Ybig “
Ů

SpecpOLq of, say, m

copies of SpecpOLq, and then

rLiepAq : Ybigs

degCpYbigq
“
rLiepAq : Ybigs

degCpYbigq
“ ´

mrL : Qs ¨ hFalt
pE,Φq

mrL : ks
“ ´2 ¨ hFalt

pE,Φq.

This proves the first equality, and the proof of the second is similar.

5.3. Gross’s trick. — The goal of §5.3 is to compute the degree of the

metrized line bundle detpVq along the big CM cycle. The impatient reader

may skip directly to Proposition 5.3.6 for the answer. However, the strategy

of the calculation is simple enough that we can explain it in a few sentences.

It is an observation of Gross [Gro] that the metrized line bundle detpVq
behaves, for all practical purposes, like the trivial bundle OSKra

endowed with

the constant metric }1}2 “ expp´cq for a certain period c. This is made more

precise in Theorem 5.3.1 and Corollary 5.3.2 below. A priori, the constant c

is something mysterious, but one can evaluate it by computing the degree of

detpVq along any codimension n´1 cycle that one chooses. We choose a cycle

along which the universal abelian scheme AÑ SKra degenerates to a product

of CM elliptic curves. Using this, one can express the value of c in terms of

the Faltings height hFalt
k appearing in (1.4.1). The degree of detpVq along Ybig

is readily computed from this.

To carry out this procedure, the first step is to construct a cover of SKrapCq
over which the line bundle detpVq can be trivialized analytically. Fix a positive

integer m, let Kpmq Ă K be the compact open subgroup of [BHKRYa,
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Remark 2.2.3], and consider the finite étale cover

ShKpmqpG,DqpCq

��

GpQqzD ˆGpAf q{Kpmq

��
ShpG,DqpCq GpQqzD ˆGpAf q{K.

This cover has a moduli interpretation, exactly as with SKra itself, but with ad-

ditional level m structure. This allows us to construct a regular integral model

SKrapmq over Okr1{ms of ShKpmqpG,Dq, along with a finite étale morphism

SKrapmq Ñ SKra{Okr1{ms.

We use the notation detpVq for both the metrized line bundle on SKra, and for

its pullback to SKrapmq.

The following results extends a theorem of Gross [Gro, Theorem 1] to

integral models.

Theorem 5.3.1. — Suppose m ě 3, let Zalg Ă C be the subring of all alge-

braic integers, and fix a connected component

C Ă SKrapmq{Zalgr1{ms.

The line bundle detpVq admits a nowhere vanishing section

η P H0pC, detpVqq.

Such a section is unique up to scaling by Zalgr1{msˆ, and its norm }η}2 is

constant on CpCq.

Proof. — For some g P GpAf q we have a complex uniformization

ΓzD z ÞÑpz,gq
ÝÝÝÝÝÑ CpCq Ă ShKpmqpG,DqpCq,

where Γ “ GpQq X gKpmqg´1, and under this uniformization the total space

of the vector bundle detpVq is isomorphic to ΓzpDˆCq, where the action of Γ

on C is via the composition

Γ Ă GpQq Ñ GLpW q
det
ÝÝÑ kˆ Ă Cˆ.

The compact open subgroup Kpmq is constructed in such a way that there

is a Ok-lattice ga Ă W pkq stabilized by Γ, and such that Γ acts trivially on

ga{mga. This implies that the above composition actually takes values in the

subgroup

tζ P Oˆk : ζ ” 1 pmod mOkqu,
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which is trivial by our assumption that m ě 3. In other words, the vector

bundle detpVq becomes (non-canonically) trivial after restriction to X pCq. In

fact, the argument of [Gro, Theorem 1] shows that one can find a trivializing

section η that is algebraic and defined over Qalg Ă C, and that such a section

is unique up to scaling by pQalgqˆ and has constant norm }η}2.

All that remains to show is that η may be chosen so that it extends

to a nowhere vanishing section over Zalgr1{ms. The key is to recall from

[BHKRYa, §2.3] that ShpG,Dq has a second integral model SPap over Ok,

which is normal with geometrically normal fibers. It is related to the first

by a surjective morphism SKra Ñ SPap, which restricts to an isomorphism

over Okr1{Ds. It has a moduli interpretation very similar to that of SKra,

which allows us to do two things. First, there is a canonical descent of the

vector bundle V to SPap, defined again by V “ HdR
1 pAq{εHdR

1 pAq, but where

now pA0, Aq is the universal pair over SPap. Second, we can add level Kpmq

structure to obtain a cartesian diagram

SKrapmq //

��

SKra{Okr1{ms

��
SPappmq // SPap{Okr1{ms

of Okr1{ms-stacks with étale horizontal arrows.

In particular, SPappmq is normal with geometrically normal fibers, from

which it follows that the above diagram extends to

C //

��

SKrapmq{Zalgr1{ms
//

��

SKra{Zalgr1{ms

��
B // SPappmq{Zalgr1{ms

// SPap{Zalgr1{ms

for some connected component B Ă SPappmq{Zalgr1{ms with irreducible fibers.

Now fix a number field L Ă C containing k large enough that the section

η and the components C and B are defined over OLr1{ms. Viewing η as a

rational section of the line bundle detpVq on B, its divisor is a finite sum of

vertical fibers of B, and so there is a fractional OLr1{ms-ideal b Ă L such that

divpηq “
ÿ

q|b

ordqpbq ¨ Bq,

where Bq is the mod q fiber of Y. By enlarging L we may assume that b is

principal, and hence η can be rescaled by an element of Lˆ to have trivial

divisor on B. But then η also has trivial divisor on C, as desired.
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Corollary 5.3.2. — Let A Ă SKra be a connected component. There is a

constant c “ cA P R with the following property: for any finite extension L{k

and any morphism SpecpOLq Ñ A, the image of detpVq under

(5.3.1) xPicpSKraq Ñ xPicpAq Ñ xPicpSpecpOLqq
ydeg
ÝÝÑ R

is equal to c ¨ rL : ks.

Proof. — Fix an integer m ě 3. The open and closed substack

Apmq “ AˆSKra
SKrapmq.

of SKrapmq, may be disconnected, so we fix one of its connected components

Apmq˝ Ă Apmq. This is an Okr1{ms-stack, which may become disconnected

after base change to Zalgr1{ms. Fix one connected component

C Ă Apmq˝
{Zalgr1{ms.

and let η P H0pC,detpVqq be a trivializing section as in Theorem 5.3.1.

Choose a finite Galois extension M{k contained in C, large enough that

C and η are defined over OM r1{ms. For each σ P GalpM{kq we obtain a

trivializing section

ησ P H0pCσ, detpVqq

which, by Theorem 5.3.1, has constant norm }ησ}.

Let Rpmq be the quotient of R by the Q-span of tlogppq : p | mu, and define

cpmq “
´1

rM : ks

ÿ

σPGalpM{kq

log }ησ}2 P Rpmq.

This is independent of the choice of M , and also independent of η by the

uniqueness claim of Theorem 5.3.1. Moreover, for any number field L{k and

any morphism

SpecpOLr1{msq Ñ Apmq˝,

the image of detpVq under

xPicpApmq˝q Ñ xPicpSpecpOLr1{msqq
ydeg
ÝÝÑ Rpmq

is equal to cpmq ¨ rL : ks.
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Now suppose we are given some SpecpOLq Ñ A as in the statement of the

corollary. After possible enlarging L, this morphism admits a lift

Apmq˝

��
SpecpOLr1{msq //

66

A{Okr1{ms,

and from this it is easy to see that the image of detpVq under the composition

of (5.3.1) with RÑ Rpmq is equal to cpmq ¨ rL : ks.

In particular, the image of detpVq under the composition of (5.3.1) with the

diagonal embedding

R ãÑ
ź

mě3

Rpmq

is equal to the tuple of constants cpmq ¨ rL : Qs. What this proves is that there

is a unique c P R whose image under the diagonal embedding is the tuple of

constants cpmq, and that this is the c we seek.

Proposition 5.3.3. — The constant c “ cA of Corollary 5.3.2 is independent

of A, and is equal to

c “ p4´ 2nqhFalt
k ` logp4π2Dq,

where hFalt
k is the Faltings height (1.4.1).

Proof. — Recall that we have fixed a triple pa0, a, iEq as in §4.2. Fix a g P

GpAf q in such a way that the map

D z ÞÑpz,gq
ÝÝÝÝÝÑ ShpG,DqpCq

factors through ApCq, and a decomposition of Ok-modules

ga “ a1 ‘ ¨ ¨ ¨ ‘ an

in which each ai is projective of rank 1. Define elliptic curves over the complex

numbers by

AipCq “ gaizaiC{εaiC.

for 0 ď i ă n, and

AnpCq “ ganzanC{εanC.

Endow the abelian variety A “ A1 ˆ ¨ ¨ ¨ ˆ An with the diagonal action of

Ok, and the principal polarization induced by the perfect symplectic form on

ga, as in the proof of [BHKRYa, Proposition 2.2.1]. The pair pA0, Aq then

corresponds to a point pz, gq P ApCq.
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As each Ai has complex multiplication by Ok, we may choose a number

field L containing k over which all of these elliptic curves are defined and have

everywhere good reduction. If we denote again by A0, . . . , An and A the Néron

models over SpecpOLq, the pair pA0, Aq determines a morphism

SpecpOLq Ñ A Ă SKra.

The pullback of V to SpecpOLq is the rank n vector bundle

V|SpecpOLq – V1 ‘ ¨ ¨ ¨ ‘ Vn,

where Vi “ HdR
1 pAiq{εH

dR
1 pAiq. We endow V´1

i – εH1
dRpAiq with the metric

(5.1.1), so that

detpVq|SpecpOLq – V1 b ¨ ¨ ¨ b Vn

is an isomorphism of metrized line bundles.

The following two lemmas relate the images of V1, . . . ,Vn under the arith-

metic degree

(5.3.2) xPicpSpecpOLqq
ydeg
ÝÝÑ R

to the Faltings height hFalt
k .

Lemma 5.3.4. — For 1 ď i ă n, the arithmetic degree (5.3.2) sends

Vi ÞÑ ´rL : Qs ¨ hFalt
k .

Proof. — The action of Ok on LiepAiq is through the inclusion Ok Ñ OL, and

hence, as in [BHKRYa, Remark 2.3.5], the quotient map

HdR
1 pAiq Ñ LiepAiq

descends to an isomorphism of line bundles Vi – LiepAiq. If we endow

LiepAiq
´1 with the Faltings metric (5.1.1) then this isomorphism respects the

metrics, and the claim follows as in the proof of Proposition 5.2.1.

Lemma 5.3.5. — The arithmetic degree (5.3.2) sends

Vn ÞÑ rL : Qs ¨
`

hFalt
k ´

1

2
logp4π2Dq

˘

.

Proof. — The action of Ok on LiepAiq is through the complex conjugate of

the inclusion Ok Ñ OL, from which it follows that the Hodge short exact
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sequence takes the form

0 // F 0pAnq // HdR
1 pAnq // LiepAnq // 0

0 // εHdR
1 pA0q // HdR

1 pAnq // HdR
1 pAnq{εH

dR
1 pAnq // 0.

In particular, the endomorphism ε on HdR
1 pAnq descends to an isomorphism

Vn – F 0pAnq.

Let

ψn : HdR
1 pAnq bH

dR
1 pAnq Ñ OL

be the perfect pairing induced by the principal polarization on An, and define

a second pairing Ψpx, yq “ ψnpεx, yq. It follows from the previous paragraph

that this descends to a perfect pairing

Ψ : Vn b LiepAnq – OL.

However, if we endow LiepAnq
´1 with the Faltings metric (5.1.1), then this

pairing is not a duality between metrized line bundles.

Instead, an argument as in the proof of Proposition 5.1.2 shows that

Ψ : Vn b LiepAnq – OL

B

1

2π
?
D

F

.

is an isomorphism of metrized line bundles. With this isomorphism in hand,

the remainder of the proof is exactly as in the previous lemma.

The two lemmas show that the image of detpVq under (5.3.1) is
n
ÿ

i“1

ydegpViq “ rL : Qs ¨
´

p2´ nq ¨ hFalt
k ´

1

2
logp4π2Dq

¯

as claimed. This completes the proof of Proposition 5.3.3.

Proposition 5.3.6. — The metrized line bundle detpVq satisfies

rdetpVq : Ybigs “ degCpYbigq ¨

´

p4´ 2nqhFalt
k ` logp4π2Dq

¯

.

Proof. — As in the proof of Proposition 5.2.1, we may fix a finite extension

L{EΦ and a finite étale cover Ybig “
Ů

SpecpOLq of the Ok-stack

Ybig ˆSpecpOΦq
SpecpOLq

by, say, m copies of SpecpOLq. Corollary 5.3.2 then implies

rdetpVq : Ybigs

degCpYbigq
“
rdetpVq : Ybigs

degCpYbigq
“
cm ¨ rL : ks

m ¨ rL : ks
“ c.
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Appealing to the evaluation of the constant c found in Proposition 5.3.3 com-

pletes the proof.

5.4. Theorems C and D. — We can now put everything together, and

relate the arithmetic degree of pω along Ybig to the Faltings height hFalt
pE,Φq.

Proposition 5.4.1. — The metrized line bundle pω satisfies

rpω : Ybigs

degCpYbigq
“ hFalt

pE,Φq `
n´ 4

2
¨

Λ1p0, χkq

Λp0, χkq
`
n

4
logp16π3eγq.

Proof. — Proposition 5.1.2 shows that

2 ¨ rOx8π2eγD´1y b pω : Ybigs ` rdetpLiepAqq : Ybigs ` 2 ¨ rLiepA0q : Ybigs

“ rOpExcq : Ybigs ` rdetpVq : Ybigs.

Proposition 5.2.1 and Remark 5.1.5 imply that the left hand side is equal to

2 ¨ rpω : Ybigs ´ 2 degCpYbigq ¨

´

logp8π2eγD´1q ` hFalt
pE,Φq ` 2 ¨ hFalt

k

¯

,

while Proposition 5.3.6 shows that the right hand side is equal to

2 degCpYbigq ¨
`

p2´ nqhFalt
k ` logp2πDq

˘

.

Note that we have used here the equality

rOpExcq : Ybigs “ rpExc, 0q : Ybigs “ degCpYbigq ¨ logpDq.

from the proof of Proposition 4.2.11.

Combining these formulas yields

rpω : Ybigs

degCpYbigq
“ hFalt

pE,Φq ` p4´ nqh
Falt
k ` logp16π3eγq,

and substituting the value (1.4.1) for hFalt
k completes the proof.

It is clear from Proposition 5.4.1 that Theorems C and Theorem D are

equivalent. As Theorem C is proved in [YY18], this completes the proof of

Theorem D.

On the other hand, we proved Theorem D in §4.5 under the assumption

that n ě 3 and the discriminants of k and F are odd and relatively prime,

and so this gives a new proof of Theorem C under these hypotheses.
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