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Abstract. — We prove two formulas in the style of the Gross-Zagier theo-
rem, relating derivatives of L-functions to arithmetic intersection pairings on
a unitary Shimura variety. We also prove a special case of Colmez’s conjec-
ture on the Faltings heights of abelian varieties with complex multiplication.
These results are derived from the authors’ earlier results on the modularity
of generating series of divisors on unitary Shimura varieties.

Résumé (Modularité des séries génératrices de diviseurs sur les
variétés de Shimura unitaires II: applications arithmétiques)

Nous prouvons deux formules dans le style du théoreme de Gross-
Zagier, reliant les dérivées des fonctions L aux accouplements d’intersection
arithmétique sur une variété de Shimura unitaire. Nous prouvons également
un cas particulier de la conjecture de Colmez sur les hauteurs de Faltings des
variétés abéliennes & multiplication complexe. Ces résultats sont déduits des
résultats antérieurs des auteurs sur la modularité des séries génératrices de
diviseurs sur les variétés de Shimura unitaires.
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1. Introduction

Fix an integer n > 3, and a quadratic imaginary field k < C of odd dis-
criminant disc(k) = —D. Let xg : A* — {£1} be the associated quadratic
character, let 05, < Oy, denote the different of k, let hy be the class number of
k, and let wg, be the number of roots of unity in k.

By a hermitian Og-lattice we mean a projective Og-module of finite rank
endowed with a nondegenerate hermitian form.

1.1. Arithmetic theta lifts. — Suppose we are given a pair (dg, a) in which
— qag is a self-dual hermitian Og-lattice of signature (1, 0),
— a is a self-dual hermitian Og-lattice of signature (n —1,1).
This pair determines hermitian k-spaces Wy = agg and W = ag.
From this data we constructed in [BHKRYa] a smooth Deligne-Mumford
stack Sh(G, D) of dimension n — 1 over k with complex points

Sh(G, D)(C) = G(Q\D x G(A)/E.

The reductive group G < GU(Wj) x GU(W) is the largest subgroup on which
the two similitude characters agree, and K < G(Ay) is the largest subgroup
stabilizing the Z-lattices Gy © Wo(As) and @ < W (Ay).

We also defined in [BHKRYa), §2.3] an integral model

(1.1.1) Skra © M(1,0) X0y M%ﬁl,l)

of Sh(G, D). It is regular and flat over Ok, and admits a canonical toroidal
compactification Skra — S, Whose boundary is a smooth divisor.

The main result of [BHKRYa] is the construction of a formal generating
series of arithmetic divisors
(1.1.2) B(r) = 3 2l (m) - g™ € Cho(St [l

m=0

valued in the Gillet-Soulé codimension one arithmetic Chow group with ratio-
nal coefficients, extended to allow log-log Green functions at the boundary as
in [BGKKO07, BBGKO07], and the proof that this generating series is modu-
lar of weight n, level I'g(D), and character x}. The modularity result implies
that the coefficients span a finite-dimensional subspace of the arithmetic Chow
group [BHKRYa, Remark 7.1.2].
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After passing to the arithmetic Chow group with complex coefficients, for
any classical modular form

9 € Sn(T'o(D), xk)

we may form the Petersson inner product

~ —— ~, L dudv
Gugpa = | G0l
Po(D)\H v
where 7 = u + iv. As in [Kud04]|, define the arithmetic theta lift
~ ~ ~1
(113) 6(9) = <¢79>P6t € Ch(C(SIﬂéra)'

Armed with the construction of the arithmetic theta lift , we are
now able to complete the program of [How12, How15, BHY15] to prove
Gross-Zagier style formulas relating arithmetic intersections to derivatives of
L-functions.

The Shimura variety Sp ., carries different families of codimension n — 1
cycles constructed from complex multiplication points, and our results show
that the arithmetic intersections of these families with arithmetic lifts are
related to central derivatives of L-functions.

1.2. Central derivatives and small CM points. — In §2we construct an
étale and proper Deligne-Mumford stack Vg, over Ok, along with a morphism
ysm - Sfl%ra'

This is the small CM cycle. Intersecting arithmetic divisors against Vs, defines
a linear functional
~1
[7 : ysm] : Ch(C(SIﬂzra) - C,

and our first main result computes the image of the arithmetic theta lift
under this linear functional.

The statement involves the convolution L-function L(g, 64, s) of two mod-
ular forms

g€ Sp(wr), Op € My—1(wy)

valued in finite-dimensional representations of SLo(Z). We refer the reader to
§2.3] for the precise definitions. Here we note only that g is the image of g
under an induction map

(1'2'1) Sn(FO(D)aX;;) - Sn(wL)

from scalar-valued forms to vector-valued forms, that 6, is the theta function
attached to a quadratic space A over Z of signature (2n — 2,0), and that the
L-function L(g,60x,s) vanishes at its center of symmetry s = 0.
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Theorem A. — The arithmetic theta lift satisfies

N d .
[0(9) : Yem] = — dege(Vsm) - £L(g,9/\, S)}szo‘
Here we have defined

1
deg(c(ysm) = Z TA -2/ N[?
yermcy AUt @)l
where the sum is over the finitely many isomorphism classes of the groupoid
of complex points of Vem, viewed as an Og-stack.

The proof is given in by combining the modularity result of [ BHKRYal
with the main result of [BHY15]. In §3| we provide alternative formulations
of Theorem [A] that involve the usual convolution L-function of scalar-valued
modular forms, as opposed to the vector-valued forms g and 65. See especially

Theorem B.4.11

1.3. Central derivatives and big CM points. — Fix a totally real field
F of degree n, and define a CM field

E=k®QF.

Let ® < Hom(F,C) be a CM type of signature (n — 1,1), in the sense that
there is a unique P € ®, called the special embedding, whose restriction to k
agrees with the complex conjugate of the inclusion k < C. The reflex field of
the pair (E, ®) is
Ep = ¢*P(E) < C,

and we denote by Og < Fg its ring of integers.

We define in @ an étale and proper Deligne-Mumford stack Vs over Og,
along with a morphism of Og-stacks

ybig - SI?ra'
This is the big CM cycle. Here we view Vs as an Op-stack using the inclusion
Ok < Og of subrings of C (which is the complex conjugate of the special

embedding ¢*P : Op — Og). Intersecting arithmetic divisors against Vg
defines a linear functional

~1
[_ : ybig] : Ch(C(SI?ra) - C.
Our second main result relates the image of the arithmetic theta lift (1.1.3)
under this linear functional to the central derivative of a generalized L-function

defined as the Petersson inner product (E(s), §)pet.- The modular form g(7) is,
once again, the image of g(7) under the induction map (1.2.1)). The modular
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form E(,s) is defined as the restriction via the diagonal embedding H — H"
of a weight one Hilbert modular Eisenstein series valued in the space of the
contragredient representation wy . See for details.

Theorem B. — Assume that the discriminants of k/Q and F'/Q are odd and
relatively prime. The arithmetic theta lift satisfies

~ -1 d -
[0(9) : ybig] = 7 ) deg(C(ybig) ’ £<E(3),Q>Pet‘s=o~
Here we have defined

1
degcVhig) = Y, s
Y€V big (C) |Aut(y)|

where the sum is over the finitely many isomorphism classes of the groupoid
of complex points of Vyig, viewed as an Oy-stack.

The proof is given in §4 by combining the modularity result of [BHKRYa|
with the intersection calculations of [BKY12, How12, How15].

1.4. Colmez’s conjecture. — Suppose E is a CM field with maximal to-
tally real subfield F'. Let D and Dp be the absolute discriminants of £ and
F, set T'r(s) = 7~%/?T'(s5/2), and define the completed L-function

Dg
Dp
of the character xg : Ay — {+1} determined by E/F. It satisfies the func-
tional equation A(1 — s, xg) = A(s, xg), and

AN'(0,xe) _ L'(0,xp) + L oe | P
A0, xg)  L(O,xp) 2 Dy

where v = —I"(1) is the Euler-Mascheroni constant.

2

A(s,xE) = Tr(s + DFUL(s, xp)

- [F;Q] log(4me?),

Suppose A is an abelian variety over C with complex multiplication by Og
and CM type ®. In particular A is defined over the algebraic closure of Q in
C. It is a theorem of Colmez [Col93| that the Faltings height

Fal Fal
hB.ey = W™ (A)
depends only on the pair (F, ®), and not on A itself. Moreover, Colmez gave a
conjectural formula for this Faltings height in terms of logarithmic derivatives

of Artin L-functions. In the special case where F = k, Colmez’s conjecture
reduces to the well-known Chowla-Selberg formula

1 ANO,xk) 1
14.1 hFalt = _f.i’_i'l 1 3 v
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where we omit the CM type {id} < Hom(k, C) from the notation.
Now suppose we are in the special case of §1.3] where

E=kQqF

and ® < Hom(E, C) has signature (n—1,1). In this case, Colmez’s conjecture
simplifies to the equality of the following theorem.

Theorem C ([YY18]). — For a pair (E,®) as above,
2 NO,xg) 4—-n ANO,xk) n

pRalt _ _“ ’ . ) ~ " os(1673e7).

B0 =70 Roe) T2 A 1 BT

In [BHKRYal, §2.4] we defined the line bundle of weight one modular forms
w on Sf,,. It was endowed it with a hermitian metric in [BHKRYal, §7.2],
and the resulting metrized line bundle determines a class

& e Chg (St
The constant term of is
(1.4.2) Zi9t (0) = —& + (Exc, —log(D))
where Exc is the exceptional locus of S, appearing in [BHKRYal Theorem
2.3.4]. It is a smooth effective Cartier divisor supported in characteristics

dividing D, and we view it as an arithmetic divisor by endowing it with the
constant Green function —log(D) in the complex fiber.

Theorem D. — The metrized line bundle & satisfies
~ —2 A/(Oa XE)
: | = — d o) .
[UJ yb g] n Eg(c(yb g) A(OaXE)

Theorem [C| is proved in [Y'Y18] as a consequence of the average version
of Colmez’s conjecture [AGHMP18, [YZ18, [How20|. Note that the proof
in [YY18] does not require our standing hypothesis that disc(k) is odd. Of
course the assumption that disc(k) is odd is still needed for Theorem |§|, as it
is only under these hypotheses that we have even defined the integral model
Sk and its line bundle of weight one modular forms.

In §5| we will show that Theorems[C|and [D]are equivalent. One can interpret
this in one of two ways. As Theorem [C] is already known, this equivalence
proves Theorem D. On the other hand, in will give an independent proof
of Theorem [D| under the additional assumption that the discriminants of k
and F' are odd and relatively prime. In this way we obtain a new proof of
Theorem [C| under these extra hypotheses.
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1.5. The case n = 2. — Throughout the introduction we have assumed
that n > 3, and the reader might wonder how much of what we have written
extends to the case n = 2.

As explained in [BHKRYa, §1.6], when n = 2 the proof of the modularity
of breaks down because there is no known integral model of Sh(G, D)
whose reduction at the primes of Oy dividing D is normal. The existence
of such a model when n > 2 is used in [loc. cit.] to compute the vertical
components of divisors of Borcherds products.

When n = 2, the Shimura variety Sh(G, D) is essentially a union of mod-
ular curves (if the k-hermitian space W admits an isotropic line) or compact
quaternionic Shimura curves (if W is anisotropic). In either case the analogues
of Theorems [A] and [B| are close in spirit to the Gross-Zagier theorem [GZ86]
and its generalizations [YZZ13]. In particular, the statement of Theorems
is quite parallel to the key result Theorem 6.1 in |[GZ86l Section 1.6]. If we
interchange in the computation of [A(g) : Vsm] the order of taking the Peters-
son inner product and the height pairing, this quantity is very analogous to
the left hand side of Theorem 6.1 in [GZ86]. Both quantities are expressed as
central derivatives of a Rankin convolution L-function of g and a binary theta
function which is determined by the CM cycle in question. If g is a newform,
then é(g) should lie in a g-isotypical component and the height pairing in our
Theorem [A] should be proportional to the height of the g-isotypical component
of (a twist of) Ysm. It would be interesting to make such a comparison precise.
However, note that there are substantial differences as well. While we work
with unitary Shimura varieties and CM points whose discriminants are equal
to the level, Gross and Zagier work with GLo Shimura varieties and CM points
whose discriminants are coprime to the level.

Theorem |Cl|is true as stated when n = 2, and is proved in [Y'Y18]. Indeed,
Colmez’s conjecture is known for all quartic CM fields. If the quartic CM field
is Galois over QQ, then the Galois group is abelian and Colmez’s conjecture
is known by work of Colmez [Col93] and Obus [Obul3]. In the non-Galois
case the CM types form a single Aut(C/Q)-orbit; as Colmez’s conjecture is
constant on such orbits, the full Colmez conjecture follows from the average
case proved in [AGHMP18| and [YZ18§].

Theorem [D] is also true as stated when n = 2. Indeed, when we prove the
equivalence of Theorems [C] and D] in §5] we only assume n > 2.

1.6. Thanks. — The results of this paper are the outcome of a long term
project, begun initially in Bonn in June of 2013, and supported in a crucial
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way by three weeklong meetings at AIM, in Palo Alto (May of 2014) and San
Jose (November of 2015 and 2016), as part of their AIM SQuaRE’s program.
The opportunity to spend these periods of intensely focused efforts on the
problems involved was essential. We would like to thank the University of
Bonn and AIM for their support.

2. Small CM cycles and derivatives of L-functions

In this section we combine the results of [ BHKRYa] and [BHY15] to prove
Theorem [A] Although we will restrict to n > 3 in §2.5 we allow n > 2 until
that point.

2.1. A Shimura variety of dimension zero. — Define a rank three torus
Tsm over Q as the fiber product
Tsm Gm
l ldiag.
Resk/QGm X Resk/QGm N x Nm Gm X Gm

Its group of Q-points is
Tsm(Q) = {(z,y) e K* x k™ : 2T = yy}.

The fixed embedding k < C identifies Deligne’s torus S with the real alge-

braic group (Resy/gGm)r, and the diagonal inclusion
S < (Resg/gGm)r x (ReskoGm)r
factors through a morphism hgy : S — Tyngr. The pair (Tsm, {hsm}) is a
Shimura datum, which, along with the compact open subgroup
Kon = Tan(Ap) 0 (OF x OF),

determines a 0-dimensional k-stack Sh(Ty,) with complex points

Sh(Tem)(C) = Tom (@Q\{hsm} X Tem(Af)/ K-

2.2. The small CM cycle. — The Shimura variety just constructed has a
moduli interpretation, which allows us to construct an integral model. The
interpretation we have in mind requires first choosing a triple (ag,a;,b) in
which

— qap is a self-dual hermitian Og-lattice of signature (1, 0),
— @ is a self-dual hermitian Og-lattice of signature (0, 1),



MODULARITY OF UNITARY GENERATING SERIES II 9

— b is a self-dual hermitian Og-lattice of signature (n — 1,0).

The hermitian forms on ag and b induce a hermitian form of signature (n—1,0)
on the projective Og-module

A= Hom@k(ao, b),

as explained in [BHY15! §2.1] or [ BHKRYa, (2.1.5)].

Recall from [BHY15) §3.1] or [BHKRYa), §2.3] the Og-stacks M,y and
M q,p)- Both parametrize abelian schemes A — S of relative dimension p > 1
over Op-schemes, endowed with principal polarizations and Og-actions. For
the first moduli problem we impose the signature (p,0) condition that O
acts on the Og-module Lie(A) via the structure morphism O — Og. For
the second we impose the signature (0, p) condition that the action is by the
complex conjugate of the structure morphism. Both of these stacks are étale
and proper over Ok by [How15| Proposition 2.1.2].

Remark 2.2.1. — The generic fibers of M q gy and Mg ;) are the Shimura
varieties associated to agg and a;g, while the generic fiber of M,,_; ¢y contains
the Shimura variety associated to bg as an open and closed substack. For
more precise information, see [KR14, Proposition 2.13] and the lemma that
precedes it.

Denote by Yo the functor that associates to every Op-scheme S the
groupoid of quadruples (Ap, A1, B,n) in which

(221) (A()vAlv B) € M(l,ﬂ) (S) x M(OJ)(S) X M(n—l,O) (5)7
and
(2.2.2) n : Homp, (Ao, B) = A

is an isomorphism of étale sheaves of hermitian Og-modules, where the her-
mitian form on the left hand side is defined as in [BHKRYa, (2.5.1)]. We
impose the further condition that for every geometric point s — .S, and every
prime ¢ # char(s), there is an isomorphism of hermitian Oy ¢-lattices

(2'2'3) HomOk (AOS [Zoo]a Als[goo]) = HOmok(ao, a1) X7 Zg.
Lemma 2.2.2. — If
s = M1,0) X0, M0,1) X0, M(n-1,0)

is a geometric point of characteristic 0 such that holds for all primes
U except possibly one, then it holds for the remaining prime as well.

Proof. — The proof is identical to [BHKRYa, Lemma 2.2.2]. O



10 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

Proposition 2.2.3. — The functor Ve i represented by a Deligne- Mumford
stack, étale and proper over Oy, and there is a canonical isomorphism of k-
stacks

(2.2.4) Sh(Tem) = Ve k-

Proof. — For any Og-scheme S, let N (S) be the groupoid of triples (2.2.1)
satisfying (2.2.3)) for every geometric point s — S and every prime ¢ # char(s).
In other words, the definition is the same as Vs, except that we omit the datum

(2.2.2) from the moduli problem.
We interrupt the proof of Proposition for a lemma.

Lemma 2.2.4. — The functor N is represented by an open and closed sub-
stack

N c M(1,0) X O M(o,l) X Oy M(nq,o)-

Proof. — This is [BHY15| Proposition 5.2]. As the proof there is left to the
reader, we indicate the idea. Let

B = M1,0) X0, M0,1) X0, M(n-1,0)

be one connected component, and suppose there is a geometric point s — B
of characteristic p such that (2.2.3) holds for all £ # p. The geometric fibers
of the f-adic sheaf Hom, (Ao[¢*], A1[¢*°]) on

B(p) = B Xspec(z) Spec(Zy))

are all isomorphic, and therefore holds for all geometric points s — B,
and all £ # p. In particular, using Lemma if s — B is a geometric point
of characteristic 0, then holds for every prime ¢. Having proved this,
one can reverse the argument to see that holds for every geometric
point s — B and every ¢ # char(s). Thus if the condition holds at
one geometric point, it holds at all geometric points on the same connected
component. O

We now return to the proof of Proposition[2.2.3] As noted above, the stacks
Mp0) and Mg ) are étale and proper over Ok, and hence the same is true
of V.

Let (Ao, A1, B) be the universal object over A/. Combining [BHY15| The-
orem 5.1] and [Hid04, Corollary 6.9], the étale sheaf Homg, (Ao, B) is rep-
resented by a Deligne-Mumford stack whose connected components are finite
étale over N. Fixing a geometric point s — N, we obtain a representation of
7€ (NV, s) on a finitely generated Og-module Homp, (Aos, Bs), and the kernel
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of this representation cuts out a finite étale cover N/ — N over which the
sheaf Hom, (Ao, B) becomes constant.

It is now easy to see that the functor )Ném is represented by the disjoint
union of finitely many copies of the maximal open and closed substack of N’
over which there exists an isomorphism .

It remains to construct the isomorphism . The natural actions of O
on agp and b, along with the complex conjugate of the natural action of O on
a1, determine a morphism of reductive groups

(w,2)—(w,z,2)

Resg/gGm x ResggGm GU(apg) x GU(a1g) x GU(bg).

Restricting this morphism to the subtorus Ty, defines a morphism

Lem, 7w r = GU(agr) x GU(air) x GU(bg),

endowing the real vector spaces agr, air, and br with complex structures.
The isomorphism ([2.2.4]) on complex points sends a pair

(hsm, g) € Sh(Tsm)(C)
to the quadruple (Ag, A1, B,n) defined by
Ao(C) = agr/ga0, A1(C) = air/ga1, B(C) = br/gb,

endowed with their natural Og-actions and polarizations as in the proof of
[BHKRYal Proposition 2.2.1]. The datum 7 is the canonical identification

Homop, (Ao, B) = Homp, (g9ap, gb) = Homop, (ag, b) = A.

It follows from the theory of canonical models that this isomorphism on com-
plex points descends to an isomorphism of k-stacks, completing the proof of

Proposition 223 O

The finite group Aut(A) of automorphisms of the hermitian lattice A acts
on Ysm by
v F (AO)A1>B777) = (A0>A17B¢’7077)7

allowing us to form the stack quotient Vs, = Aut(A)\)NJsm. The forgetful map
Vom = M0 x M(g.1) X M(n_10)

(all fiber products over Of) factors through an open and closed immersion
Yem — M(1,0) X M(g,1) X M(n_1,0)

whose image is the open and closed substack N of Lemma
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The triple (ag, a1, b) determines a pair (ag, a) as in the introduction, simply
by setting a = a; @ b. This data determines a unitary Shimura variety with
integral model Sk;, as in ([1.1.1)), and there is a commutative diagram

Yem M1,0) X M(,1) X Mn—1,0)

: |

Skra M(I,O) X M](irﬁl’l)-

The vertical arrow on the right sends
(Ao, A1, B) — (Ao, A1 x B),
and the arrow 7 is defined by the commutativity of the diagram.

Remark 2.2.5. — In order for A1 x B to define a point of Mgﬁl 1y, We

must endow its Lie algebra with a codimension one subsheaf
Fa,xp < Lie(A; x B)
satisfying Kramer’s condition [BHKRYal §2.3]. We choose F4, x5 = Lie(B).

Definition 2.2.6. — Composing the morphism 7 in the diagram above with
the inclusion of Sk, into its toroidal compactification, we obtain a morphism
of Op-stacks
T ysm - Sf%ra
called the small CM cycle.
As in [How15l, Definition 3.1.8], there is a linear functional
~1
Ch(C (Sl*(ra) —-C
called arithmetic degree along Vsm and denoted Z [ZA : Ysm], defined as the
composition
—~1 % ~1 deg
Ch(C(SI’zra) o Ch(C(ySHl) ==
The first arrow is pullback of arithmetic divisors. The second arrow (arithmetic
degree) is normalized as follows: An irreducible divisor Z © Yy, is necessarily
supported in finitely many nonzero characteristics, and hence any C-valued

function Gr(Z,-) on the finite set Vsm(C) defines a Green function for it. The
arithmetic degree of the arithmetic divisor

(2,Gr(2,)) € Che (Vo)
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is defined to be

deg(2,Gr(2,)) = > Y M+ Z #GY(Z , %)

10 o) #Auty(2) Aut,y, ( )’

where F?lg is an algebraic closure of Ok/q, and N(q) = #(Ok/q).

Remark 2.2.7. — The above definition of arithmetic degree does not in-
clude a factor of 1/2 in front of the archimedean contribution, seemingly in
disagreement with the usual definition (see [GS90, §3.4.3] for example). In
fact there is no disagreement. Our convention is that Vs (C) means the com-
plex points of Yy (C) as a k-stack, whereas in the usual definition it would be
regarded as a Q-stack. Thus the usual definition includes a sum over twice as
many complex points, but with a 1/2 in front.

Remark 2.2.8. — The small CM cycle arises from a morphism of Shimura
varieties. Indeed, there is a morphism of Shimura data (Tgm, {hsm}) — (G, D),
and the induced morphism of Shimura varieties sits in a commutative diagram

Sh(Tym) Sh(G, D)
stm/k ysm/k: = SKra/k'
Proposition 2.2.9. — The degree dege(Vsm) of Theorem satisfies
4 " ) 21—0(D)
egc(Veom) = (hi/wr)” - m7

where o(D) is the number of distinct prime divisors of D.

Proof. — This is an elementary calculation. Briefly, the groupoid Y (C)
has 21_°(D)hi isomorphism classes of points, and each point has the same
automorphism group Op x O x U(A). O

Recall from ([1.4.2)) that the constant term of (1.1.2) is
ZIt(Orta(O) =-Ww+ (EXC, - 10g(D)>

where @ is the metrized line bundle of weight one modular forms. The ex-
ceptional locus Exc © Sk;a was defined in [BHKRYa, §2.3]. It is a reduced
effective Cartier divisor supported in characteristics dividing D, and can be
characterized as follows. The integral model Sk,, carries over it an abelian
scheme A — Skq, of relative dimension n endowed with an action of Op. This
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abelian scheme is obtained by pulling back the universal object from the sec-
ond factor of the fiber product in . If we let 6 € O be a fixed square
root of —D, then Exc is the reduced stack underlying closed substack of Siya
defined by § - Lie(A) = 0.

Proposition 2.2.10. — The constant term satisfies
A,<O, Xk)

Proof. — The second equality was proved in the course of proving [BHY15|
Theorem 6.4]. We note that the argument uses the Chowla-Selberg formula

(1.4.1) in an essential way.

The first equality is equivalent to
[(Exc, —log(D)) : Ysm] = 0,
and so it suffices to prove
(2.2.5) [(0,10g(D)) : Ysm] = dege(Vem) - log(D) = [(Exc,0) : Vem].
The first equality in is obvious from the definitions. To prove the
second equality, we first prove
(2.2.6) Vsm X Sira BXC = Vom X Spec(0y) SPEC(Ok /).

As the exceptional locus Exc Sk, is reduced and supported in charac-
teristics dividing D, it satisfies

[Z55(0) : Vo] = —[@ : Vam] = 2degc(Vom) -

Exc © Skpa X Spec(Og) Spec((’)k/ak).

This implies the inclusion c in . As Vi is étale over O, the right hand
side of is reduced, and hence so is the left hand side. To prove that
equality holds in , it now suffices to check the inclusion > on the level
of geometric points.

As above, let § € Ok be a square root of —D. Suppose p | D is a prime,
p < Oy is the unique prime above it, and Fglg is an algebraic closure of its
residue field. Suppose we have a point y € ysm(Fg‘g) corresponding to a triple
(Ag, A1, B) over Fglg .Asd=0inTF gdg, the signature conditions imply that the
endomorphism § € Oy, Kkills the Lie algebras of Ag, A1, and B. In particular §
kills the Lie algebra of A1 x B, which is the pullback via

T Vem — SKra

of the universal A — Sky,. Using the characterization of Exc recalled above,
we find that that 7(y) € Exc. This proves (2.2.6)).
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The equality (2.2.6), and the fact that both sides of that equality are re-
duced, implies that

1
[(Exc,0) : Vo] = D log(p) ] [Aut(y)|’
p|D YEVsm (Fglg)

On the other hand, the étaleness of Vg, — Spec(Op) implies that the right
hand side is equal to

Slog) Y = log(D) - degc(Vem),

A
completing the proof of the second equality in (2.2.5]). O
2.3. The convolution L-function. — Recall that we have defined a her-

mitian Og-lattice A = Homo, (ag, b) of signature (n — 1,0). We also define
hermitian Op-lattices

Lo = Homo, (ap,a1), L = Homo, (ao,a),
of signature (1,0) and (n —1,1), so that L =~ Lo @ A.
The hermitian form {-,-) : L x L — O determines a Z-valued quadratic

form Q(x) = (x,z) on L, and we denote in the same way its restrictions to Lg
and A. The dual lattice of L with respect to the Z-bilinear form

(2.3.1) [21, 22] = Q21 + x2) — Q(21) — Q(x2)
is L' =o' L.

As in [BHY15| §2.2] we denote by Sy, = C[L’/L] the space of complex-
valued functions on L'/L, and by wy, : SLo(Z) — Autc(Sr) the Weil rep-
resentation. There is a complex conjugate representation wy, on Sy defined
by

wL(7)¢ = wi(7)o.
Suppose we begin with a classical scalar-valued cusp form

g9(r) = Y c(m)q™ € Su(To(D), X7),

m>0

Such a form determines a vector-valued form
(2.3.2) g(t) = > (gln)(7) - wr (v~ 1) do € Sn(@L),
7€l (D)\SL2(Z)

where ¢g € Sy, is the characteristic function of the trivial coset. This construc-
tion defines the induction map ([1.2.1]). The form g(7) has a g-expansion

g(r) = ), &m)q™

m>0
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with coefficients é(m) € St.
There is a similar Weil representation wp : SLa(Z) — Autc(Sa), and for
every m € Q we define a linear functional Rx(m) € Sy by

Ry(m)(¢) = > ¢(x)

zeN’
(z,z)y=m

where ¢ € Sy and (-, -) : AgxAg — k is the Q-linear extension of the hermitian
form on A. The theta series

OA(T) = D Ra(m)q™ € My—1(w})
meqQ

is a modular form valued in the contragredient representation S .
As in [BHY15, §5.3] or [BY 09, §4.4], we define the Rankin-Selberg convo-

lution L-function

(2.3.3) L(3,05,8) =T (f tn— 1) 3 {em), Ba(m)}

2 or (47Tm)%+”71
Here {-,-} : S x Sy — C is the tautological pairing. The inclusion
N/AN—L'/L
induces a linear map S;, — Sp by restriction of functions, and we use the dual

Sy — S} to view Rp(m) as an element of S} .

Remark 2.3.1. — The convolution L-function satisfies a functional equation
in s — —s, forcing L(g,04,0) = 0.

Remark 2.3.2. — In this generality, neither the cusp form g nor the theta
series 0, is a Hecke eigenform. Thus the convolution L-function (2.3.3)) cannot
be expected to have an Euler product expansion.

2.4. A preliminary central derivative formula. — We now recall the
main result of [BHY15], and explain the connection between the cycles and
Shimura varieties here and in that work.

Define hermitian @k—lattices

]Lo,f = Homok(ao, a1) Xz 2, Lf = Hornok(ao7 Cl) Xz 2,

and let Lo and Lo be kgp-hermitian spaces of signatures (1,0) and (n,0),
respectively. In the terminology of [BHY15, §2.1], the pairs

Lo = (Lo,e0, Lo,f), L= (Leo,Ly)
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are incoherent hermitian (kg, @k)—modules. Our small CM cycle is related to
the cycle of [BHY15, §5.1] by

Ysm — Skra

VLo,p) — Mo,

and the metrized line bundle &' of [BHKRYa] agrees with the metrized
cotautological bundle 7y, of [BHY15].

Let A be the automorphism group of the finite abelian group L’/L endowed
with the quadratic form L'/l — Q/Z obtained by reduction of Q : L —
Z. The tautological action of A on Sp = C[L//L] commutes with the Weil
representation wy,, and hence A acts on all spaces of modular forms valued in
the representation wy,.

Let Hy_p(wp) be the space of harmonic Maass forms of [BHY15l §2.2].
Every f € Hy_p,(wr) has a holomorphic part

=S ctm) g,
meqQ
m>»—0o0

which is a formal g-expansion with coefficients in Sy. Let c}” (0,0) be the value
of C}_(O) € S at the trivial coset.

Asin [BF04] or [BY09, §3.1], there is a A-equivariant, surjective, conjugate
linear differential operator

f : Han(wL) - Sn(wL)’

and the construction of [BHY15| (4.15)] defines a linear functional
(2.4.1) 2 Hy_p(wr)® — Che(SE,).
These are related by the main result of [BHY15|, which we now state.
Theorem 2.4.1 (|BHY15]). — The equality

[Z2(f) : Yom] = £ (0,0) - [@ : Vo] = — dege(Vem) - L'(E(f), 04, 0)
holds for any A-invariant f € Ho_n(wp).

2.5. The proof of Theorem [A] — Throughout we assume n > 3.
Under this assumption the linear functional is closely related to the
coefficients of the generating series . Indeed, If m is a positive integer,
[BHY15 Lemma 3.10] shows that there is a unique

fm € -[{2—TL(‘~‘)L)A



18 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

with holomorphic part
(2.5.1) f(T) = ¢0-q7™ + O(1),

where ¢ € S, is the characteristic function of the trivial coset. Applying the
above linear functional to this form recovers the mt" coefficient

iKra(m) = Z(fim)
of the generating series ([1.1.2]).

The following proposition explains the connection between the linear func-

tional (2.4.1)) and the arithmetic theta lift (1.1.3)).

Proposition 2.5.1. — For every g € S,(I'o(D), x3) there is a A-invariant
form f € Ho_p(wr) such that
(25.2) 0g) = 2(f) + ¢} (0,0) - Zi8,(0),

and such that (f) is equal to the form g€ S, (wy) defined by (2.5.4). More-
over, we may choose f to be a linear combination of the forms f, characterized

by (5.

Proof. — Consider the space H5°  (I'o(D), xy) of harmonic Maass forms of
[BHKRYa, §7.2]. The constructions of [BF04] provide us with a surjective
conjugate linear differential operator

§: Hg.in(FO(D)a XZ) - STL(FO(D)v XZ))
and we choose an fy € H3°  (I'o(D), xz) such that {(fo) = g. It is easily seen
that fy may be chosen to vanish at all cusps of I'g(D) different from co. This
can, for instance, be attained by adding a suitable weakly holomorphic form

in the space M;fon (To(D), x3) of BHKRYal, §4.2]. The Fourier expansion of
the holomorphic part of fy is denoted

f ) =Y e (m)g™.

meQ
As in (2.3.2)), the form fy determines an Sr-valued harmonic Maass form
f(r) = DI (folan)(7) - wi(v o € Hynlwr)?

Y€l (D)\SL2(Z)

As the E-operator is equivariant for the action of SLg(Z), we have (f) =
g. According to [BHKRYa|, Proposition 6.1.2], which holds analogously for
harmonic Maass forms, the coefficients of the holomorphic part f* satisfy

* if u=20
ct(m, p) = co(m) if p
f( ) 0 otherwise
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for all m < 0. This equality implies that
f = Z cg(_m)fm7

m>0

where f,, € Hy_p(wr)? is the harmonic form characterized by (2.5.1)). Indeed,
the difference between the two forms is a harmonic form A whose holomorphic
part >~ ¢ (m)g™ has no principal part. It follows from [BF04, Theorem
3.6] that such a harmonic form is actually holomorphic, and therefore vanishes
because the weight is negative.

The above decomposition of f as a linear combination of the f,,’s implies
that

2(f) = Y] (-m) - 2k (m) € Che(Sia),
m>0

and consequently

8(g) = (b, £(fo))pet

= {fo. $}
= > e (—=m) - 2 (m)
m=0

— 2(f) + ¢} (0,0) - 2125 (0).
Here, in the second line, we have used the bilinear pairing
{'7 } : Hﬁn(FO(D%X;}:) X MH<FO(D)7XZ) —-C

analogous to [BF04, Proposition 3.5], and the fact that fp vanishes at all
cusps different from oo. O

Remark 2.5.2. — It is incorrectly claimed in [BHY15| §1.3] that (2.5.2))
holds for every form f with £(f) = g.

The following is stated in the introduction as Theorem [A]

Theorem 2.5.3. — If g € S,(T'o(D),x%) and g € Sp(wr) are related by

, then
[0(9) : Vsm] = — dege(Vem) - L’(g, 04, 0).

Proof. — Choosing f as in Proposition [2.5.1] and using the first equality of
Proposition [2.2.10} yields

[0(9) : Vo] = [Z(£) : Vo] — €£(0,0) - [@ : V).
Thus the claim follows from Theorem 2.4.7] O
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3. Further results on the convolution L-function

In this section we specialize to the case where g € S, (I'o(D), x}) is a new
eigenform, and express the convolution L-function associated to the
vector valued cusp form g in terms of the usual L-function associated to g.

This allows us, in Theorem [3.4.1] below, to rewrite Theorem [A] of the intro-
duction in a way that avoids vector-valued modular forms. When n is even,
it also allows us to formulate a version of Theorem [Alin which the L-function
has an Euler product.

We assume n > 2 until we reach at which point we restrict to n > 3.

3.1. Atkin-Lehner operators. — Recall that xy is the idele class charac-
ter associated to the quadratic field k. If we view xg as a Dirichlet character
modulo D, then any factorization D = ()1@)2 induces a factorization

Xk = XQ1XQ2

where xq, : (Z/Q;Z)* — C* is a quadratic Dirichlet character.
Fix a normalized cuspidal new eigenform

g(r) = Y} e(m)q™ € Sy(To(D), xi)-

m>0

As in [BHKRYal Section 4.1], for each positive divisor @ | D, fix a matrix

Ro - <§,y £5> e To(D/Q)

with «, 5,7,9 € Z, and define the Atkin-Lehner operator
_(Qa B _ Q
Wqo = <D’7 0s) = Rg e

90(1) = Xx4(B)XDo(a) - 9lnWa
= > co(m)g™,

m>0

The cusp form

is then independent of the choice of «, 3, v, 9.
Let €g(g) be the fourth root of unity

cle) = ] x6(@Q/a)- A
qlQ

q prime
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where
— [=¢""2 ifn=0 (mod?2)
‘ {5(1(]15" ifn=1 (mod 2),
and 9, is defined by
5 _ {1 ifg=1 (mod 4)
! i ifg=3 (mod4).
According to [Asa76l, Theorem 2], we have

cQ(m) = eq(g)x(m)c(m) if (m, Q) = 1,
cq(m) = eq(9)xD q(m)e(m) if (m, D/Q) = 1,
cq(mimz) = eq(g) teg(mi)eg(ms) if (my1,mg) = 1.
Remark 3.1.1. — If n is even, then the Fourier coefficients of g are totally

real. It follows that gg = eg(g)g for every divisor @ | D. Furthermore,

o) = [ (—d' 2elg) = £1.
qQ

3.2. Twisting theta functions. — Let (ag,a1,b) be a triple of self-dual
hermitian Og-lattices of signatures (1,0), (0,1), and (n—1,0), as in §2.2] and
recall that from this data we constructed hermitian Op-lattices

(3.2.1) a=a;®b, L =Homp,(ag,a)

of signature (n — 1,1). We also define

(3.2.2) L1 = HOII](Q,e (ao, Cll), A= Hom@k(ao, [J),

sothat L = L1 @ A.

Let GU(A) be the unitary similitude group associated with A, viewed as an
algebraic group over Z. For any Z-algebra R its R-valued points are given by
GU(A)(R) = {h € GLo,(Ag) : <(hz,hy) = v(h){z,y) Vx,y € Ar},
where v(h) € R* denotes the similitude factor of h. Note the relation

(3.2.3) Nmy, q(det(h)) = v(h)" "

For h € GU(A)(R) the similitude factor v(h) belongs to R-.
As A is positive definite, the set

~

Xa = GUA)(QN\GU(A)(Af)/GU(A)(Z)

is finite. Denoting by
CL(k) = k*\k* /Oy,
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the ideal class group of k, the natural map Resy oG, — GU(A) to the center
induces an action

(3.2.4) CL(k) x Xy —> Xa.

As in the proof of [BHKRYal Proposition 2.1.1], any h € GU(A)(Ay)

determines an Op-lattice

Ah = A@ N h//i
This lattice is not self-dual under the hermitian form (—, —) on Ag. However,
there is a unique positive rational number rat(v(h)) such that

v(h)

rat(v(h))

and the lattice Ay, is self-dual under the rescaled hermitian form
1

(T, ypn = M Lz, Y).

If h e GU(A)(Z) then A, = A. If h e GU(A)(Q), then Ay = A as hermitian
Op-modules. Hence h — Ay, defines a function from X to the set of isometry

€™,

classes of self-dual hermitian Og-module of signature (n — 1,0).
Similarly, for any h € GU(A)(Af) we define a self-dual hermitian Op-lattice
of signature (0,1) by endowing

Ll,h = LlQ N det(h)fq

with the hermitian form

1
(@, ypn = W (T, y)-

The assignment h — Ly j, defines a map from X, to the set of isometry classes
of self-dual hermitian Og-lattices of signature (0,1).

Lemma 3.2.1. — For any h € GU(A)(Ay) the hermitian Og-lattice
Ly =L, ®Ap

18 isomorphic everywhere locally to L. Moreover, Ly and L become isomor-
phism after tensoring with Q.

Proof. — Let p be a prime. As in [BHKRYa), §1.8], a k,-hermitian space is
determined by its dimension and invariant. The relations

det(Ay, @z Q) = rat(v(h))!™" - det(A ®7 Q),
det(L1, ®z Q) = rat(u(h))l_" -det(L1 ®z Q),
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combined with , imply that L&z Q and Ly ®zQ have the same invariant
everywhere locally. As they both have signature (n—1, 1), they are isomorphic
everywhere locally, and hence isomorphic globally.

A result of Jacobowitz [Jac62] shows that any two self-dual lattices in L®gz
Q are isomorphic everywhere locally, and hence it follows from the previous
paragraph that L and L are isomorphic everywhere locally. ]

Define a linear map
My 1 (wX) = Myu_1(To(D), ")

from S -valued modular forms to scalar-valued modular forms by evaluation
at the characteristic function ¢g € Sy of the trivial coset 0 € A’/A. This map
takes the vector valued theta series 0y € M, (w) ) of to the scalar valued
theta series
o) = Y Rem) g™,
meZ=0

where R°(m) is the number of ways to represent m by A.

Let 1 be an algebraic automorphic form for GU(A) which is trivial at co
and right GUA(Z)—invariant. In other words, a function

n: Xy — C.
Throughout we assume that under the action (3.2.4)) the function n transforms
with a character x,, : CL(k) — C*, that is,
(3.2.5) n(ah) = xy(@)n(h).

We associate a theta function to n by setting

< n(h) sc n—1
A= 20 Thuagy] O € Mo (To(D)x™):
heXp

This form is cuspidal when the character y, is non-trivial. We denote its
Fourier expansion by

757(:1\(7—) = 2 Rff/\(m) q".
mz=0

Similarly, we may define
n(h)
Ona(T) = -0, (7),
! th [Aut(Ag)| "

but this is only a formal sum: as h varies the forms 05, take values in the
varying spaces SX’L.
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Lemma allows us to identify S;, = Sr,, and hence make sense of the
L-function L(§,604,,s) as in (2.3.3). In the next subsection we will compare

_ n(h) .
(326) L(g79 7A78) = 7‘[/(979/\ 78)'
" th Aut(An)] '
to the usual convolution L-function
o0 SC
s c(m) Ry (m)
3.2.7 L(g,60°¢\,8) =T(= +n—1 — =

of the scalar-valued forms g and 9757?/\-

3.3. Rankin-Selberg L-functions for scalar and vector valued forms.
— In this subsection we prove a precise relation between ([3.2.6) and (3.2.7)).
First, we give an explicit formula for the Fourier coefficients a(m, ) of g in
terms of those of g analogous to [BHKRYal, Proposition 6.1.2].

For a prime p dividing D define

(3.3.1) Yp =0, " - (D, p), - invy(Vy) € {£1, i},

where invy(V}) is the invariant of V, = Homg(Wy, W) ®g Q, in the sense
of [BHKRYal, (1.8.3)] and 4, € {1,i} is as before. It is equal to the local
Weil index of the Weil representation of SLa(Z,) on Sr, = S(V,), where V}, is
viewed as a quadratic space by taking the trace of the hermitian form. This
is explained in more detail in [BHKRYal, Section 8.1]. For any @ dividing D
we define

(3.3.2) v =11
qlQ

Remark 3.3.1. — If n is even and p | D, then (3.3.1]) simplifies to

1 n/2
= — inv,(V,).
p < » > p( p)

For any p € L'/L define @, | D by

Q,LL: Hpa

p|D
pp#0

where p, is the image of p in L; /Ly. Let ¢, € Sp, be the characteristic function
of .
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Proposition 3.3.2. — For all m € Q the coefficients a(m) € S, of § satisfy

ZQH\Q|D Q'"g - c(mQ) if m=—-Q(u) (mod Z),

0 otherwise.

a(m, p) =

Proof. — The first formula is a special case of results of Scheithauer [Sch09,
Section 5]. It can also be proved in the same way as Proposition 6.1.2 of
[BHKRYa|. The complex conjugation over -y arises because of the fact that
g transforms with the complex conjugate representation wy. The additional
factor Q=" is due to the fact that we work here in weight n. O

Proposition 3.3.3. — The convolution L-function (2.3.3)) satisfies

L(§79A73> = 2 Q%PYQ : L(gQ,H?\Cq,S),
QD

where q € k* is such that qQ@,: = Q@,: Moreover, for any n : Xy — C
satisfying (3.2.5)) the L-functions (3.2.6) and (5.2.7) are related by

L(3,0p0,8) = > Q270 - Xn(a ™) L(gQ, 05, 5)-
QD

Proof. — Proposition [3.3.2] implies

(979A; Z Z Z Ql_n'YQ‘ G (mQ)RA(m ¢u)

s Sin—1
F( peA'/A meQ=0 Qu|Q|D (47Tm) n—

-3 ¥ (m@ > Aalm.s)

QID medZ0 peN /A
Qul@Q
=Y Qg Z —— ) RA(m/Q, ¢p).
Q|D MEZ=0 ) MEA'/A
QulQ

The first claim now follows from the relation

Z RA(m/Qv N) = RAqfl (ma 0) = RAq (m7 O)
neN' /A
QulQ
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For the second claim, if we replace A by Ay, and Ly by Ly j, for h € X, then
L and g remain unchanged. The above calculations therefore imply that

L(3,0p0,8) = > 1Q2 Z|At ( O, 5)

Q|D heX
Z 'YQQ Z L( QveA ’ )
QD heX s ]Aut Ah h
= Y1 79Q7 - xy(a ) L(9q, 65n, 5),
QID
where we have used (3.2.5) and the fact that [Aut(A)| = [Aut(Agn)|- O

Corollary 3.3.4. — If n is even, then

L(g,0y,n,5) = L(g, fz(:Aa s) - H (1 + Xn(p_l)ep(g)%p%)'
p|D

Proof. — This is immediate from Proposition [3.3.3] and Remark [3.1.1] O

3.4. Small CM cycles and derivatives of L-functions, revisited. —
Now we are ready to state a variant of Theorem [A] using only scalar valued
modular forms. Assume n > 3.

Every h € X, determines a codimension n — 1 cycle

(341) ysm,h - szra

as follows. From the triple (ap,a;,b) fixed in and the hermitian Op-
lattices Ly, = L1, @ Ay, of Lemma [3.2.1} we denote by a1, and by, the unique
hermitian Og-lattices satisfying

L, = Homp, (ag, a14), Ap = Homp, (ag, br),

and set a5, = a1, @by, so that L, =~ Homp, (ag, ap). Compare with and
B2.3).

Repeating the construction of the small CM cycle YV, with the triple
(ag, a1, b) replaced by (ag,asp,bp) results in a proper étale Og-stack Vim,p-
Repeating the construction of the Shimura variety Sk, with the triple (ag, a)
replaced by (ag, aj,) results in a new Shimura variety Skra,h, 2long with a finite
and unramified morphism

ysm,h - SKra,h‘

It follows from Lemma[3.2.T]that a and ay, are isomorphic everywhere locally,
and examination of the moduli problem defining Sk;, in [BHKRYal §2.3]
shows that Skra depends only the everywhere local data determined by the
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pair (ag,a), and not on the actual global Og-hermitian lattices. Therefore,
there is a canonical morphism of Og-stacks

ysm,h - SKra,h = SKra

in which the isomorphism is simply the identity functor on the moduli prob-
lems. In the end, this amounts to simply repeating the construction of Ve —
Skra from Definition word-for-word, but replacing A by A everywhere.
This defines the desired cycle .

Each algebraic automorphic form 7 : X, — C satisfying now deter-
mines a cycle

NYVem = Z U(h) : ysm,h

hGXA
on S, with complex coefficients, and a corresponding linear functional

~1
[_ : nysm] : Ch(C(SI’zra) - C.
Theorem 3.4.1. — The arithmetic theta lift satisfies
0 d s sc
[0(9) : Yom] = = dege(Vem) - —-| Y] @370L(90: 0%, 9) ||,y
QD

where q € k* is such that qQ@,: = Q@,: Moreover, if n is even and n : X) —

C satisfies (3.2.5)), then
[6(9) : nVem]

—0 d SC - 5
_ _l=oldk) (o, fuog)? %[L(g,ﬁmms) TT0+ e M) ][,y
p|D

where p € kX such that ]:12(?),;< = p@,: Note that in the first formula the sum
is over all positive divisors Q | D, while in the second the product is over the
prime divisors p | D.

Proof. — The first assertion follows from Theorem [A] and Proposition [3.3.3
For the second assertion, applying Theorem [A] to
ysm,h - ‘S‘I)zrajz, = szra
yields

~ d
[9(9) : ysm,h] = - deg(c(ysm,h) : £L(g, eAha S)’s=0'

Combining this with Proposition yields

A B d
[9(9) : nysm] = _21 (dk) (hk/wk)z : EL(.Q? 677,/\7 8)|s:O’
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and an application of Corollary completes the proof. O

Remark 3.4.2. — Since the L-function vanishes at s = 0, the same
must be true for the expressions in brackets on the right hand sides of the
equalities of the above theorem. In particular, when n is even, then either
L(g, oA s) or at least one of the factors

1+ ¥y (0 Dep(9)vpp2

(for a prime p | D) vanishes at s = 0. If we pick the newform ¢ such that the

latter local factors are nonvanishing, then L(g, oA 0) = 0 and we obtain

0 —o hi — sc
[0(g) : nYsm] = —2° “’”;’; J T+ X enl9)w) - L9, 654, 0).
k pD

4. Big CM cycles and derivatives of L-functions

In this section we prove Theorem |B| by combining results of [BHKRYal|
and [How12, How15, BKY12]. We asume n > 2 until at which point
we restrict to n > 3.

4.1. A Shimura variety of dimension zero. — Let F' be a totally real
field of degree n, and define a CM field F = k®q F. Define a rank n + 2 torus
Tig over Q as the fiber product

Tbig Gm

| -

Resk/QGm X RGSE/QGm Gm X RGSF/QGm.

NmxNm
Its group of Q-points is
Thig(Q) = {(z,y) e K™ x E* : 2T = yy}.
Remark 4.1.1. — There is an isomorphism
Thig(Q) = k™ x ker(Nm : E* — F*)
defined by (z,y) — (2,2~ 'y). It is clear that this arises from an isomorphism
Thig = Resk/QGm X ker(Nm : ResE/@(Gm — ResF/QGm).

As in the discussion preceding Theorem B| let ® < Homg(E,C) be a CM
type of signature (n — 1,1), let

PP E—C
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be its special element, and let Og be the ring of integers of Eg = ¢P(FE).

The CM type ® determines an isomorphism C" =~ Eg, and hence an em-
bedding C* — Ey arising from a morphism of real algebraic groups S —
(Resg/gGum)r- This induces a morphism

S — (Resk/QGm)R X (ResE/@Gm)R,
which factors through a morphism
hyig : S — Thig R-
The pair (Thig, {hbig}) is a Shimura datum, which, along with the compact
open subgroup
Kig = Toig(Af) 0 (OF x OF),
determines a 0-dimensional Eg-stack Sh(Tbig) with complex points

Sh(Thig) (C) = Thig(Q)\{Anig} x Thig(Ar)/Kbig-

4.2. The big CM cycle. — The Shimura variety just constructed has a
moduli interpretation, which we will use to construct an integral model. The
interpretation we have in mind requires first choosing a triple (ag,a,ig) in
which

— ap is a self-dual hermitian Og-lattice of signature (1,0),
— ais a self-dual hermitian Og-lattice of signature (n — 1, 1),
—ip: O — Endp, (a) is an action extending the action of O.

Denoting by H : a x a — Oy, the hermitian form, we require further that
H(ig(x)a,b) = H(a,ig(T)b)
for all z € O and a,b € a, and that in the decomposition
aR = @ a®0p,or R
pr:F—R

the summand indexed by pp = ©°P|F is negative definite (which, by the sig-
nature condition, implies that the other summands are positive definite).

Remark 4.2.1. — In general such a triple need not exist. In the applications
will assume that the discriminants of k/Q and F/Q are odd and relatively
prime, and in this case one can construct such a triple using the argument of
[How12, Proposition 3.1.6].

We now define a moduli space of abelian varieties with complex multipli-
cation by O and type @, as in [How12] §3.1]. Denote by CMg the functor
that associates to every Og-scheme S the groupoid of triples (A, ¢, 1) in which
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— A — S is an abelian scheme of dimenension n,
— 1: O — End(A) is an Og-action,
— 1 : A— AV is a principal polarization such that

t(x)Y o1p = 1) o u(T)
for all x € Op.

We also impose the ®-determinant condition that every z € O acts on Lie(A)
with characteristic polynomial equal to the image of

[ [(T = ¢(x)) € Os[T]

in Og[T]. We usually abbreviate A € CMg(S), and suppress the data ¢ and
¢ from the notation. By [How12| Proposition 3.1.2], the functor CMg is
represented by a Deligne-Mumford stack, proper and étale over Og .

Remark 4.2.2. — The ®-determinant condition defined above agrees with
that of [How12, §3.1]. As in [Har15| Proposition 2.1.3], this is a consequence
of Amitsur’s formula, which can be found in [Ami80, Theorem A] or [Chel4]
Lemma 1.12].

Define an open and closed substack
Whig © M(1,0) X0, CMa

as the union of connected components B < M ) X0, CMg satistying the
following property: for every complex point y = (Ag, A) € B(C), and for all
primes £, there is an Opg-linear isomorphism of hermitian Oy ¢-lattices

(4.2.1) Homo, ,(Ao[£*], A[£*]) = Homo, (a0, @) ®z Q.

Remark 4.2.3. — To verify that a connected component B < M o) X0,
CMyg is contained in Vg, it suffices to check that holds for one com-
plex point y € B(C). This is a consequence of the main theorem of complex
multiplication and the fact that the points of B(C) form a single Aut(C/Es)-
orbit.

Proposition 4.2.4. — There is a canonical isomorphism of Eg-stacks
Sh(Thig) = Voig/Ee-

Proof. — The natural actions of O and Of on ag and a determine an action
of the subtorus

Thig < ResggGm % ResgoGm
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on agg and ag, and the morphism hyig : S — Ty, g endows each of the real
vector spaces agr and ag with a complex structure.
The desired isomorphism on complex points sends

(hbiga g) € Sh(Tsm)((C)
to the pair (Ap, A) defined by
Ao(C) = agr/gag, A(C) = ar/ga.

The elliptic curve Ag is endowed with its natural Og-action and its unique
principal ploarization. The abelian variety A is endowed with its natural Og-
action, and the polarization induced by the symplectic form determined by its
Og-hermitian form, as in the proof of [BHKRYa, Proposition 2.2.1].

It follows from the theory of canonical models that this isomorphism on
complex points descends to an isomorphism of Fg-stacks. O

The triple (ag, a,ip) determines a pair (ag, a) as in the introduction, which
determines a unitary Shimura variety with integral model Sk;, as in .
Recalling that O < Og as subrings of C, we now view both My, and CMg
as Op-stacks. There is a commutative diagram

Vbig ——= M109) x CMo

| |

Skra > M(I,O) X Ml(flrilyl)

(all fiber products are over O), in which the vertical arrow on the right is the
identity on the first factor and “forget complex multiplication” on the second.
The arrow 7 is defined by the commutativity of the diagram.

Remark 4.2.5. — In order to define the morphism

Ay — MR,
in the diagram above, we must endow a point A € CMg(S) with a subsheaf
Fa < Lie(A) satisfying Kramer’s condition [BHKRYal §2.3]. Using the mor-
phism

@°P

Op — 0O — Og,

denote by Js» © O ®z Og the kernel of

zQyr— P (x)-
Op @y Og 220227 @ Y, o

According to [How15|, Lemma 4.1.2], the subsheaf 4 = JspLie(A) has the
desired properties.
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Definition 4.2.6. — Composing the morphism 7 in the diagram above with
the inclusion of Sk, into its toroidal compactification, we obtain a morphism
of Op-stacks

. *
T ybig — SKra?

called the big CM cycle.

Exactly as in the arithmetic degree along Ypig is the composition
—~1 * 1 H\

Ch(C(SI,zra) > Ch(C(ybig) ﬁ)

We denote this linear functional by Z — [Z : Vbig]-

Remark 4.2.7. — The big CM cycle arises from a morphism of Shimura
varieties. Indeed, there is a morphism of Shimura data (Thg, {hbig}) — (G, D),
and the induced morphism of Shimura varieties sits in a commutative diagram
of Eg-stacks

Sh(Thig) — Sh(G, D) /g,

:l l:

™
Woig/Ee — SKra/Es-

Proposition 4.2.8. — The degree degc(Dvig) of Theorem@ satisfies

1 ~ hx A0, xE)
. degc(Vbig) = o Tl

where r is the number of places of F that ramify in E (including all
archimedean places).

Proof. — Tt is clear from Proposition that

3 U [Thig(Q\Thig(As)/ Kbig|
yeSh(Thig) (C) [Aut(y)| Thig(Q) N Kig]

1
—_ d i =
0 egc(yb g)

Note that when we defined the degree on the left we counted the complex
points of ie viewed as an Og-stack, whereas in the middle expression we are
viewing Sh(Thig) as an Eg-stack. This is the reason for the correction factor
of n = [Eg : k] on the left.

Let E' < E* be the kernel of the norm map Nm : E* — F*, and define

7~ X A A %
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similarly. Note that u(E) = E'n @’E is the group of roots of unity in E, whose
order we denote by wg. Using the isomorphism Ti,is(Q) = k* x E’ of Remark

we find

(4.2.2) | Toig (Q)\Thig (Ar)/Kvig| _ Ik %
|Tbig(©) N Kbig| Wi wWg

Denote by Cr and Cg the ideal class groups of E and F, and by F and
E their Hilbert class fields. As E/F is ramified at all archimedean places,
F n E = F, and the natural map

Cal(E/E) — Gal(F/F)
is surjective. Hence, by class field theory, the norm
Nm:Cg — Cp
is surjective. Denote its kernel by B, so that we have a short exact sequence
1-B—Cp 5 Cp— 1.

Define a group
5 x B < Eis a fractional Og-ideal,
B=E \{(%’5)‘ B e F*, and Nm(B) = fOp }

where the action of E* is by a - (%B,5) = (B, aaf). There is an evident
short exact sequence

(OE,B)

1 - Nm(O)\0: 220, 5 g1,

Lemma 4.2.9. — We have [0} : Nm(03)] = 2" lwg.
Proof. — Let Q =[O : (E)OL]. If Q =1 then
1
[Nm(Oj) : (’);’2] =1 and [Of:0.] =z wg,

2

and so
on—ly E
(05 : O]
where the middle equality follows from Dirichlet’s unit theorem.
If @ > 1 then [Was82l Theorem 4.12] and its proof show that @ = 2, and
that the image of the map ¢ : Oy — O, defined by ¢(x) = /7 is the index

two subgroup ¢(O%) = u(E)? < u(E). From this it follows easily that
[Nm(0F): 05% =2 and [0f:0F] = wg,

[OF - Nm(Op)] = [0f - O] = 2" =
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and so
1 9 _ 2 lwg
OF :Nm(Of)] == - [0f : Op ] =2""1 = ————=
[OF : Nm(OF)] 5 [OF : Op~] (0% 07]
O
Combining the information we have so far gives

N o o 2" lwg Cg

(4.2.3) |B| =[O0 :Nm(Op)]-|B| = : | =wg - A0, xE),

(O : O] |CF|

where the final equality is a consequence of Dirichlet’s class number formula.

Lemma 4.2.10. — There is an exact sequence
1> E\E' /O — B — {+1}" — {+1} — 1.

Proof. — Every x € E’ determines a fractional Op-ideal B = zOf with
Nm(®B) = Op, and the rule x — (B, 1) is easily seen to define an injection
(4.2.4) E\E'/O); — B.

Given a (B, 3) € B, consider the elements g, (3) € {£1} as v runs over
all places of F. If v is split in E then certainly xg,(8) = 1. If v is inert in
E then Nm(8) = fOp implies that xg.(8) = 1. As the product over all v of
XEw(8) is equal to 1, we see that sending (8, ) to the tuple of x g ,(3) with
v ramified in E defines a homomorphism

(4.2.5) B — ker({£1}" 228, (4 13),

To see that (4.2.5) is surjective, fix a tuple (&,), € {£1}" indexed by the
places of F' ramified in E, and assume that [[, e, = 1. Let b € Aj be any
idele satisfying:

— If v is ramified in E then xg ,(by) = €.

— If v is a finite place of F' then b, € OF,.

The second condition implies that xg ,(by) = 1 whenever v is unramified in
FE, and hence

xEe(b) = HG”J =1.
Thus b lies in the kernel of the reciprocity map
An — F*\A;/Nm(Ay) = Gal(E/F),

and so can be factored as b = 12T for some € F* and x € A7, Setting

B = xOp, the pair (B, 3) € B maps to (e,), under (4.2.5).
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It only remains to show that the image of is equal to the kernel of
. It is clear from the definitions that the composition
EN\E')O)y — B — {+1}7
is trivial, proving one inclusion. For the other inclusion, suppose (B, 3) € B
lies in the kernel of . We have already seen that this implies that
f € F* satisfies xg(8) = 1 for every place v of F, and so  is a norm from

FE everywhere locally. By the Hasse-Minkowski theorem, § is a norm globally,
say 8 = aa with v € E*. In the group B, we therefore have the relation

(B,8) =a™(B,8) = (A1)
for a fractional Op-ideal 2 = o~ 1B satisfying Nm(2) = Op. Any such 2 has
the form 2 = zOp for some x € E’, proving that (B, 3) lies in the image of

@24). 0
Combining the lemma with (4.2.3|) gives
ENE/Oy Bl AO.xe)
WE 2r-lwg or—1 7

and combining this with completes the proof of Proposition m O
Proposition 4.2.11. — Assume that the discriminants of k and F are rel-
atively prime. The constant term satisfies
[ZAItgrta(O) t Vbig] = —[@ : Vhig]-
Proof. — The stated equality is equivalent to
[(Exc, —log(D)) : Yoig] = 0,
and so it suffices to prove
[(0,10g(D)) : Phig] = degc(Whig) - log(D) = [(Exc,0) : Pig]-

The first equality is clear from the definitions. To prove the second equality,
we first argue that

(4'2'6) ybig X Skra Exc = ybig X Spec(Ok) Spec(ok/bk)v
as in the proof of Proposition [2.2.10
The inclusion < of (4.2.6)) is again clear from
Exc < Skpa X Spec(Og) Spec(Ok/0k).

Recall that Vs — Spec(Og) is étale. Our hypothesis on the discriminants of
k and F implies that Spec(Og) — Spec(Oy) is étale at all primes dividing 0,
and hence the same is true for M,z — Spec(Og). This implies that the right
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hand side of is reduced, and hence so is the left hand side. To prove
equality in , it therefore suffices to prove the inclusion o on the level of
geometric points.

Suppose p | 9 is prime, and let Fglg be an algebraic closure of its residue
field. Suppose that y € ybig(IFglg) corresponds to the pair (Ag, A), so that
Ae CM@(Fglg). Let W be the completed étale local ring of the geometric
point

Spec(F3®) £ Wiy — Spec(Og).
More concretely, W is the completion of the maximal unramified extension of
Ok p, equipped with an injective ring homomorphism Og — W. Let C, be
the completion of an algebraic closure of the fraction field of W, and fix an
isomorphism of Eg-algebras C = C,.

For every ¢ € ® the induced map O — C = C, takes values in the subring

W, and the induced map
Op@zW — [ [W
ped
is surjective (by our hypothesis that k and F' have relatively prime discrimi-
nants). Denote its kernel by Jo € Op ®z W, and define an O ®z W-module

Lieq, = (OE Rz W)/Jcp = H W.
ped

As in the proof of [How15| Lemma 4.1.2], there is an isomorphism of O ®z,
Fglg—modules
. . alg alg
Lie(A) = Liep ®w Fy° = H F,°.
wed
Let 6 € O be a square root of —D. As the image of § under

Og LW ]Fglg
is 0 for every ¢ € &, it follows from what was said above that § annihilates
Lie(A). Exactly as in the proof of Proposition this implies that the
image of y under Vy;; — Skra lies on the exceptional divisor. This completes

the proof of (4.2.6]), and the remainder of the proof is exactly as in Proposition
2.2.10) O

4.3. A generalized L-function. — The action i : O — Endp, (a) makes
L= Hom@k(ao, Cl)

into a projective Og-module of rank one, and the Og-hermitian form on L
defined by [BHKRYa, (2.1.5)] satisfies {ax1,z2) = (x1,axs) for all a« € Of
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and x1,20 € L. It is a formal consequence of this that the E-vector space
¥ = L ®y Q carries an E-hermitian form

<_a_>big Y XYV — E,
uniquely determined by the property

(@1,22) = Trg/p{r1, ©2)big-

This hermitian form has signature (0,1) at ¢*P|p, and signature (1,0) at all
other archimedean places of F.

From the E-hermitian form we obtain an F-valued quadratic form 2(z) =
{x, z)nig on ¥ with signature (0,2) at ¢*°|p, and signature (2,0) at all other
archimedean places of F'. The Q-quadratic form

(4.3.1) Q(z) = Trp/2(z)
is Z-valued on L c ¥, and agrees with the quadratic form of Let
wr, : SLo(Z) — Autc(SL)

be the Weil representation on the space S;, = C[L'/L], where L' = d.'L is
the dual lattice of L relative to the Z-bilinear form (2.3.1)).
Write each T € F¢ in the form T = 4 + v with @, ¥ € Fr, and set
Hp = {7 € Fr : ¥ is totally positive}.

~

Every Schwartz function ¢ € S(¥') determines an incoherent Hilbert modular
Eisenstein series

(4.3.2) E(7,5,¢) = ). Ea(¥,s,6) - ¢°

on Hr, as in [BKY12 (4.4)] and [AGHMP18| §6.1]. If we identify

S, =C[L'/L] = S(¥)
as the space of L-invariant functions supported on r , then can be
viewed as a function E(7,s) on Hp taking values in the complex dual S} .
We quickly recall the construction of . If v is an arichmedean place
of F, denote by (%,, Z,) the unique positive definite rank 2 quadratic space
over F,. Set € = Hv|oo %,. The rank 2 quadratic space

C=CpxV

over Ar is incoherent, in the sense that it is not the adelization of any F-
quadratic space. In fact, € is isomorphic to ¥ everywhere locally, except at
the unique archimedean place ¢°P|r at which ¥ is negative definite.
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Let g : Q\A — C* be the standard additive character, and define
Y F\Ap — C*

by ¥r = 9g o Trp)p. Denote by I(s,xg) the degenerate principal series
representation of SLa(Ar) induced from the character xg|-|° on the subgroup
B < SLy of upper triangular matrices. Thus I(s, xg) consists of all smooth
functions ®(g, s) on SLa(Af) satisfying the transformation law

o ((“ 2)os) = xe@lat el

The Weil representation w¢ determined by the character g defines an action
of SLy(Ar) on S(¥), and for any Schwartz function

~

b0 @ ¢ € S(C) @ S(V) = 5(7)

the function

(4.3.3) ®(g,0) = wz(9)(¢e ® ¢)(0)

lies in the induced representation I(0, xg). It extends uniquely to a standard
section ®(g, s) of I(s, xg), which determines an Eisenstein series

E(g,5,60®¢) = Y. ®(yg,5)
~eB(F)\SLa(F)
in the variable g € SLa(Ap).
We always choose ¢ € S;, < S(¥), and take the archimedean component
¢ of our Schwartz function to be the Gaussian distribution
5 = @y € Q) S(%0)
v|oo
defined by ¢l(x) = e~ 2720(%) 50 that the resulting Eisenstein series
1

v/ Nm(7)

E(Fa‘S?gb): E(g?asa¢§o®¢)

has parallel weight 1. Here

gz = <(1) ?) (ﬁ 1/\/5> € SLo(FR)

and Nm : F' — R* is the norm.

A choice of ordering of the embeddings ' — R fixes an isomorphism of
Hr with the n-fold product of the complex upper half-plane with itself, and
the diagonal inclusion H < Hp is independent of the choice of ordering.
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By restricting our Eisenstein series to the diagonal we obtain an S} -valued
function
E(1,s) = E(T,s)|u
in the variable 7 € H, which transforms like a modular form of weight n and
representation w) under the full modular group SLa(Z).
Given a cusp form g € S, (wy) valued in S, consider the Petersson inner
product

(4.3.4) (E(8), ypet = f

SLa(Z)\H

(50, Brs)} S5

where {-,-} : S;. xS — Cis the tautological pairing. This is an unnormalized
version of the generalized L-function

[’(Sag) = A(S + 17XE') ’ <E(S)a§>Pet

of [BKY12, (1.2)] or [AGHMP1IS, §6.3].

Let I, < F be the subset of totally positive elements. The Eisenstein series
E(7, s) satisfies a functional equation in s — —s, forcing it to vanish at s = 0.
As in [BKY12] Proposition 4.6] and [AGHMDP18| §6.2], we can extract from
the central derivative E'(7,0) a formal g-expansion

ar(0) + Z ap(a) - q*

aEF+

If o € F then E/ (7,0, ) is independent of ¥, and we define ar(a) € SY by
ar(a, ) = A0, xp) - B (7,0, 9).
We define ap(0) € S} by
arp(0,¢) = A0, x) - Ey(7,0,) — A0, x) - ¢(0) log Nm(%).
Again, this is independent of .

Remark 4.3.1. — For notational simplicity, we often denote by ap(a, 11) the
value of ap(a) : Sp — C at the characteristic function of a coset pe L'/L.

For any nonzero « € F, define
Diff (¢, «) = {places v of F': €, does not represent a}.

This is a finite set of odd cardinality, and any v € Diff (¢, «) is necessarily
nonsplit in E. We are really only interested in this set when a € Fy. As € is
positive definite at all archimedean places, for such o we have

Diff (¢, o) = {primes p < Op : ¥, does not represent a}.
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We will need explicit formulas for all ap(c, ) with « € F', but only for the
trivial coset p = 0. These are provided by the following proposition.

Proposition 4.3.2. — Suppose o € F .
1. If IDiff (¢, )| > 1 then ap(a) = 0.
2. If Diff (¢, ) = {p}, then
ar(a,0) = —2""1. p(adpp™ ) - ordy,(apdr) - log(N(p)),

where the notation is as follows: r is the number of places of F' ramified
in E (including all archimedean places), 9p < OF is the different of F,
and

1 ifpisinertin E
®° {O if p is ramified in E.
Moreover, for any fractional Op-ideal b € F we have set
p(b) = |{ideals B = O : BB = bOg}|.
In particular, p(b) = 0 unless b < Op.
Proof. — Up to a change of notation, this is [How12l Proposition 4.2.1],

whose proof amounts to collecting together calculations of [Yan05]. More
general formulas can be found in [AGHMP18| §7.1] and [HY12] §4.6]. O

Proposition 4.3.3. — Assume that the discriminants of k and F' are rela-
tively prime. For any p € L'/L we have

(0, 1) —2N(0,xg) ifpu=0
ap(0, 1) =
el 0 otherwise.

Proof. — Let ®, = [], ®,p be the standard section of I(s, xp) determined
by the characteristic function ¢, € S, < S(¥) of p € L'/L. According to
[AGHMP18, Proposition 6.2.3], we then have

(135)  ar(0.1) = 26,000, x5) ~ A, x2) - - ([ Myls,6,))
p

Y

s=0

where the product is over all finite places p of F', and the local factors on the
right have the form

LP(S + 17 XE)
Lp(sv XE)
for some constants ¢, independent of s. Here, setting

w=(95), n®)=(51)

(4.3.6) My (s, dp) = cp - Wop(s, u)
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the function
Wop(s, @) = f @, (wn(b),s) db

P
is the value of the local Whittaker function Wy (g, s, ®,) at the identity in
SLy(Fy). Our goal is to prove that M,(s, ¢,) is independent of s, and hence
both the particular value of ¢, and the choice of Haar measure on F} are
irrelevant to us.
Fix a prime p < Op, and let p be the rational prime below it. We may
identify ¥, =~ E, in such a way that L, =~ Og,, and so that the Fj-valued
quadratic form £ on ¥, = E, becomes

Q(x) = pax
for some (€ F,. If 9 denotes the different of F//Q, then
(4.3.7) BOpp =0 Opp.

Indeed, let g be the different of E/Q. The lattice L{J = o,;l(oE,p is the dual
lattice of O relative to the Qp-bilinear form [z,y] = Trg, 1, (82Y), which
implies the first equality in

B O0py = 050, Oy = 0pO% .

The second equality is a consequence of our assumption that the discriminants
of k and F' are relatively prime.
If we endow ¥, = E, with the rescaled quadratic form

2 (x) = p7 2() = a7,
and define a new additive character
Uhp(x) < oy (Ba)
(unramified by (4.3.7))), we obtain a new Weil representation
wh: SLo(Fy) — Aut(S(%)),
and hence, as in , a function
S(%) ¢ @} (s,9)

defined by first setting <I>g (0,9) = wk(g)$(0), and then extending to a standard
section.
The local Schwartz function ¢, , € S(7%;) now determines a standard section

Ip(sv XE)

(I)/ﬁt,p (g,s) of I,(s, xE), and explicit formulas for the Weil representation, as in
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[HY12] (4.2.1)], show that

f @, (wn(b),s) db = f &%, (wn(b),s) db.
Fy Fy

What our discussion shows is that there is no harm in rescaling the quadratic
form on ¥, to make 3 = 1, and simultaneously modifying the additive char-
acter 1 pp to make it unramified.

After this rescaling, one can easily deduce explicit formulas for Wy, (s, ®,)
from the literature. Indeed, if the local component p, € L;J /Ly is zero, then
the calculations found in [Yan05) §2] imply that

_ Ly(s,xe)
Ly(s+1,xE)

up to scaling by a nonzero constant independent of s. If instead pp # 0 then p

is ramified in F (and in particular p > 2), and it follows from the calculations

found in the proof of [HY12| Proposition 4.6.4] that Wy (s, ®,) = 0. In any

case (4.3.6) is independent of s for every p, and so the derivative in (4.3.5)
vanishes. 0

WO,;J(S7 (I),LL)

4.4. A preliminary central derivative formula. — The entirety of
is devoted to proving Theorem [4.4.1] which a big CM analogue of Theo-
rem m The proof will make essential use of the calculations of [How12,
How15, BKY12].

We assume n > 3 throughout §4.4] This allows us to make use of the
distinguished harmonic forms

fm € Han(wL)A
(for m > 0) characterized by (2.5.1]).
Theorem 4.4.1. — Assume that the discriminants of k/Q and F/Q are odd

and relatively prime, and fix a positive integer m. If f = fn, is the harmonic
form above, and Z is the linear function , then

n[Z(f) : Voig] A0, xk)

dege (Vbig) A0, xp)

For the form f = f,,, we have

+2¢£(0,0) = 2 B(), & el g

~

Z(f) = 2128 (m) = (2124 (m), O (fn)) € Ch (Stra),

where the Green function ©8(f,,) for the divisor Z{&t (m) is constructed in
[BHKRYal §7] as a regularized theta lift. The arithmetic degree appearing
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in Theorem decomposes as

length(O
(44.1)  [Z(f): Voigl = D log(N 2 IAut((y)iy)
POy, V(2108 (m) " Vhig) (F2'%)
@reg m
Ay M
YE€Vbig (C) i

where F, = Ok /p, and O, is the étale local ring of

def
(4.4.2) ZiGa(m) 0 Vig = ZiGa(m) x sz, Vi

at y. The final summation is over all complex points of M., viewed as an
Op-stack. We will see that the terms on the right hand side of - are
intimately related to the Eisenstein series coefficients ap(«) of -

We first study the structure of the stack-theoretic mtersectlon . Sup-
pose S is a connected Ogp-scheme, and

(Ao,A) € (M(LD) X(/)k CM{))(S)

is an S-point. The Og-module Homp, (Ag, A) carries an Og-hermitian
form (—,—) defined by [BHKRYal (2.5.1)]. The construction of this her-
mitian form only uses the underlying point of Skra, and not the action
Orp — Endp,(A). As in [Howl5, §3.2], the extra action of Op makes
Homp, (Ag, A) into a projective Og-module, and there is a totally positive
definite E-hermitian form (—, —)pi; on

(4.4.3) 7/(14(), A) = Homok (Ao, A) ®Z @
characterized by the relation

(x1,22) = Trg/p{r1, 2)big-

for all 1,29 € Homp, (Ao, 4).

Fix an a € F;. Recalling that
(444) ybig c M(LO) X0 CM(I)
as an open and closed substack, for any Og-scheme S let Zpig(a)(S) be the
groupoid of triples (Ag, A, z), in which

- (A07 A) € ybig(S)a

— x € Homg, (Ao, A) satisfies (x, z)pig = .
This functor is represented by an Og-stack Zpig(«r), and the evident forgetful
morphism

Zpig(a) — Dhbig
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is finite and unramified.

This construction is entirely analogous to the construction of the special
divisors Z{2t (m) — Skra of [BHKRYa]. In fact, directly from the definitions,
if S is an Og-scheme an S-point

(A(), A, (L‘) € (Zf(orta(m) M ybig) (S)

consists of a pair (Ag, A) € Jpig(S) and an x € Homp, (Ao, A) satisfying m =
{x,x). From this it is clear that there is an isomorphism

(4.4.5) ZLm) A Vg || Zeiglo),
aEF+
TrF/Q(a):m

defined by sending the triple (Ag, A, x) to the same triple, but now viewed as
an S-point of the stack Zpi,(a) determined by a = (&, 2)pig.

Proposition 4.4.2. — For each a € Fy the stack Zyg(a) is either empty,
or has dimension 0 and is supported at a single prime of Og. Moreover,

1. If |Diff (€, )| > 1 then Zynig(o) = .

2. Suppose that Diff (¢, ) = {p} for a single prime p < Op, let q € O
be the unique prime above it, and denote by qe < Og¢ the corresponding
prime under the isomorphism ¢ : E =~ Eg. Then Zyig(a) is supported
at the prime qg, and satisfies

1 h
Z :i,p(aan_fp)7
w,

Aut(y
yEZbig(a)(F&af) | ( )|

where Fy, is the residue field of qo, and €y, and p are as in Proposition
[4.53.3 Moreover, the étale local Tings at all geometric points

y € Zpig(a)(Fq)
have the same length

length(O,) — ord (apdr) - {1/2 if Eq/F.,J is unramified

1 otherwise.
Proof. — This is essentially contained in [How12, §3|. In that work we
studied the Og-stack Zg () classifying triples (A, A, z) exactly as in the
definition of Zy;,(a), except we allowed the pair (Ag, A) to be any point of
M1,0) X0, CMg rather than a point of the substack . Thus we have a
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cartesian diagram

Zhig(a) Zg(a)

| |

ybig - M(I,O) X0 C./\/l@.

As the bottom horizontal arrow is an open and closed immersion, so is the
top horizontal arrow. In other words, our Zpis(«) is a union of connected
components of the stack Zg(a) of [How12].

Lemma 4.4.3. — Fach Zg(a) has dimension 0. If y is a geometric point
of Zo(a) corresponding to a triple (Ao, A, x) over k(y), then k(y) has nonzero
characteristic, Ay and A are supersingular, and the E-hermitian space
has dimension one. Moreover, if p € Op denotes the image of y under the
composition

(4.4.6) Zg(a) = Spec(Og) = Spec(Og) — Spec(Op)
(the isomorphism is ¢*P : E =~ Eg ), then p is nonsplit in E, and the following
are equivalent:
— The geometric point y factors through the open and closed substack
Zpig(a) C Zo(a).
— The E-hermitian space is isomorphic to ¥ everywhere locally

except at p and p*P|p.

Proof. — This is an easy consequence of [How12, Proposition 3.4.5] and
[How12| Proposition 3.5.2]. The only part that requires explanation is the
final claim.

Fix a connected component

B < M) X0, CMao.
As in [How12| §3.4], for each complex point y = (Ap, A) € B(C) one can
construct from the Betti realizations of Ay and A an F-hermitian space
¥ (B) = Homg (H1(A40(C), Q), H1(A(C), Q)

of dimension 1. This hermitian space has signature (0,1) at ¢*P|p, and sig-
nature (1,0) at all other archimedean places of F. Moreover, as in Remark
[4:2.3] this hermitian space depends only on the connected component B, and
not on the particular complex point y. The open and closed substack

Wig © M(1,0) X0, CMa



46 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

can be characterized as the union of all components B for which ¥ (B) =~ 7.

So, suppose we have a geometric point y = (A4, A, z) of Z5(a), and denote
by

B < M) xo, CMae

the connected component containing the underlying point y = (Ap, A). The
content of [How12, Proposition 3.4.5] is that the hermitian space is
isomorphic to ¥ (B) everywhere locally except at p and ¢°P|p. From this we
deduce the equivalence of the following statements:

— The geometric point y — Zg (o) factors through Zpie ().
— The underlying point y — M, o) X0, CMag factors through V;g.
— The hermitian spaces ¥ (B) and ¥ are isomorphic.
— The E-hermitian space is isomorphic to ¥ everywhere locally
except at p and ¢*P|p.
O

Now suppose that Zyie(a) is nonempty. If we fix a geometric point y =
(Ao, A, x) as above, the vector x € Homp, (Ao, A) satisfies {x, x)pi; = o, and
hence represents a. The above lemma now implies that ¥ represents
a everywhere locally except at p and ¢°P|pr, where p is the image of y under
(4.4.6)). From this it follows first Diff (¢, a) = {p}, and then that all geometric
points of Zy;z(cr) have the same image under , and lie above the same
prime qo < Og characterized as in the statement of Proposition In
particular, if |Diff (€', a)| > 1 then Zi, (o) = &.

It remains to prove part (2) of the proposition. For this we need the follow-
ing lemma.

Lemma 4.4.4. — Assume that Diff (¢, ) = {p} for some prime p < Op,
and let @ < Op be the unique prime above it. The open and closed substack
Zhig(a) © Zo(a) is equal to the union of all connected components of Za(c)
that are supported at the prime qo.

Proof. — We have already seen that every geometric point of Ziz(a) lies
above the prime q¢, and so it suffices to prove that every geometric point of
Zp () lying above the prime g factors through Zyie(a). Let y — Z () be
such a point.

If y corresponds to the triple (Ao, A,x), then 2 € Homp, (Ao, A) satis-
fies (x,2)nig = a, and hence represents a. But the assumption that
Diff(¢,a) = {p} implies that ¥ represents « everywhere locally except at p
and ¢°P|p, and it follows from this that ¥ and are isomorphic locally
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everywhere except at p and ¢*P|p. By the previous lemma, this implies that
y factors through Z,i (). O

With this last lemma in hand, all parts of (2) follow from the correspond-
ing statements for Z¢(«) proved in [How12, Theorem 3.5.3] and [How12|
Theorem 3.6.2].

O
Proposition 4.4.5. — For every a € Fy we have
Z n - log(N Z length(Oy)  ar(a,0)
d ; Aut A0, xR)’
pc0, COBC yb g) Y€ Zpig(0) (F3®) [Aut(y) (0. xe)

where the inner sum is over all F;lg—points of Zpig(v), viewed as an Og-stack.

Proof. — Combining Propositions 4.2.8] [4.3.2] and 4.4.2| shows that

2 n - log(N(qe)) Z length(Oy) ~ ar(a,0)

degc(Vrig) [Aut(y)] A0 xp)’

12<Os Y€ Zig () (F5E)

where the inner sum is over all Fa & points of Zyig(ar), viewed as an Og-stack.
The claim follows by collecting together all primes q¢ < Og lying above a
common prime p < O. O

Proposition 4.4.6. — The regularized theta lift ©™2(f,,) satisfies

n ores(f,,
2 (fm) ()

mye%ig(c) |Aut(y)|

4 ar(0,0) A0, x)

——ds<E(3)’f(fm)>Pet}s:o+ a;+ A0, xE) 2Cf (0,0 A0, xE)
Trpg(a)=m

Proof. — This is a special case of the main result of [BKY12|. This requires
some explanation, as that work deals with cycles on Shimura varieties of type
GSpin, rather than the unitary Shimura varieties under current consideration.

Recall that we have an F-quadratic space (¥, 2) of rank two, and a Q-
quadratic space (V, Q) whose underlying Q-vector space

V= Homk(Wo, W)
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is equal to ¥, and whose quadratic form is (4.3.1). As in [BKY12| §2] or
[AGHMP18, §5.3] this data determines a commutative diagram

1 Gm TGspin Tso 1

| |

1 —> Gy, — GSpin(V) —=SO(V) —= 1,

with exact rows, of algebraic groups over Q. The torus Tso = Resg/pSO(7)
has Q-points
Tso(Q) ={ye B : yy = 1},
while the torus Tgspin has Q-points
Taspin(Q) = E™ /ker(Norm : F* — Q™).

The map Tgspin — Tso is © +— x/Z. To these groups one can associate
morphisms of Shimura data

(TGspins {haspin}) (Tso,{hso})

| |

(GSle(V), DGSpin) _— (SO(V), Dso).

In the top row both data have reflex field Eg. In the bottom row both data

have reflex field Q.
Let Kso < SO(V)(Af) be any compact open subgroup that stabilizes the

lattice L < V, and fix any compact open subgroup Kgspin < GSpin(V)(Ay)
contained in the preimage of Kgo. The Shimura data in the bottom row, along
with these compact open subgroups, determine Shimura varieties Mgspin —
Mso. These are Q-stacks of dimension 2n — 2.

The Shimura data in the top row, along with the compact open subgroups
KaspinNTGspin (Af) and KsonTso (Af), determine Shimura varieties YGspin —
Ys0. These are Eg-stacks of dimension 0, but we instead view them as stacks
over Spec(Q), so that there is a commutative diagram

(4.4.7) YGSpin — Y50

L

Maspin — Mso.

Assume that the compact open subgroup Kgo acts trivially on the quotient
L'/L. For every form f € Hs_p,(wr), one can find in [BKY12, Theorem
3.2] the construction of a divisor Zgspin(f) on Maspin, along with a Green
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function @ggpin( f) for that divisor, constructed as a regularized theta lift. Up

to change of notation, [BKY12, Theorem 1.1] asserts that

n (H)gggpin(f) y) d
dege (Yaspin) aciinr = = CE) € )pet
deg(C(YGSpin) erG%:m((C) |Aut(y)| d3< (s),&( )>P t‘s_o
4.4.
pnel'/L

where the coefficients a(m) € Sp, are defined by

am)= > ap(a)
acF L
TrF/@(a):m
if m > 0, and by a(0) = ap(0).

It is not difficult to see, directly from the constructions, that both the
divisor Zgspin(f) and the Green function @ggpin( f) descend to the quotient
Mso. If we call these descents Zso(f) and Og5(f), it is a formal consequence
of the commutativity of that the equality continues to hold if
all subscripts GSpin are replaced by SO.

Moreover, suppose that our form f € Hy_,,(wr) is invariant under the action
of the finite group A of as is true for the form f,, of . In this
case one can see, directly from the definitions, that the divisor Zso(f) and the
Green function @gecg)( f) descend to the orthogonal Shimura variety determined
by the maximal compact open subgroup

Kso ={g€SO(V)(Ay) : gL = L}.

From now on we fix this choice of Kgo.
Specializing (4.4.8) to the form f = f,,, and using the formula for a(0) =
ar(0) found in Proposition we obtain

n D 036 (fm) (%)

d
degc(Ys0) |[Aut(y)] B _£<E(S)’ E(fm)pet],_q

yeYs50(C)
a0m,0) ooy NOXE)
A0, xE) Jm A0, xE)

As in [BHKRYal §2.1], our group G < GU(Wp) x GU(W) acts on V in

a natural way, defining a homomorphism G — SO(V'). On the other hand,
Remark shows that Tiig = ResggGm x Ts0, and projection to the second

(4.4.9) (0,0) -
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factor defines a morphism Ti,;; — T50. We obtain morphisms of Shimura data

(Thigs {hrig}) — (T50, {hso})

| |

(G, D) (SO(V), Dso),

which induce morphisms of k-stacks

Woig/k — Ysosk

L

Skra/k — Mso/k-

The Green function ©5(f;,) on Skya/ defined in [BHKRYa, §7.2] is sim-
reg

ply the pullback of the Green function Ogj(fm) via the bottom horizontal
arrow. It follows easily that

n OS(fn)y) _ m "% f1r) (1)
dege(Voo) = o MAut(y)| ~ degeOhag) o) TAut(y)l

and comparison with (4.4.9) completes the proof of Proposition m O

Proof of Theorem[{.4.11 — Combining the decomposition (4.4.5)) with Propo-
sition [.4.5] shows that

Z nlog(N(p)) Z length(O,) _ Z —ap(a,0)
dege (Vi Aut A(0, ’
pcOp gc( g) YE(ZLEL (M) N Vhig) (Fa'8) | )l Tr;ggszm 0.xe)

Plugging this formula and the archimedean calculation of Proposition [4.4.6]

into (4.4.1) leaves

n-[Z(fm) : Voie] N0, xg) d
e = 2500 Ty~ B el o,
as desired. 0

4.5. The proof of Theorem Bl — We now use Theorem to prove a
special case of Theorem [D] and then prove Theorem [Bl We assume n > 3.
Recall the differential operator

' Hg_n(wL) — Sn(w[,)
of Its kernel is the subspace
M;_,(wr) © Hy—p(wr)
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of weakly holomorphic forms.

Lemma 4.5.1. — In the notation of §2.4, there exists a A-invariant form
fe M  (wr) such that C}_(0,0) #0, and

Z(f) + ¢} (0,0) - Zi85,(0) = 0.
Proof. — Denote by
S35, (To(D), Xi) & Ms_,(To(D), X)

the subspace of forms that vanish at all cusps other than oo, and choose any
form
|
fo(r) = > clm)-q™ € S3%,(To(D), x)

meZ
m>»—00

such that ¢(0) # 0. The existence of such a form can be proved as in

[BBGKO07, Lemma 4.11]. As in (2.3.2) there is an induced form
f(r) = > (fol2—n¥)(7) - wr.(y "o € My, (wr)*,

7€l (D)\SL2(Z)
which we claim has the desired properties.
Indeed, the proof of Proposition shows that c;{ (0,0) = ¢o(0), and that
[ =2m=0Cco(—m)fm. In particular,

2(f) = Y co(=m) - 28 (m) € Che(Sira)-

m>0
Given any modular form
g(r) = ), d(m)-q™ € My(D, x}),
m=0

summing the residues of the meromorphic form fo(7)g(7)dT on Xo(D)(C)
shows that

> co(—m) - d(m) = 0.

m=0
Thus the modularity of the generating series implies the second equality
in

Z(f) +co(0) - Zi85(0) = > co(—m) - Zigh (m) = 0.
m=0

O]

We can now prove Theorem [D| under some additional hypotheses. These
hypotheses will be removed in
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Theorem 4.5.2. — If the discriminants of k/Q and F/Q are odd and rela-
tively prime, then

A/(07 XE)

Proof. — If we choose f as in Lemma then £(f) = 0, and so Theorem
[4.47] simplifies to

—nc}’(O, 0) -

N -2
(@ Vhig] = e deg(Mvig) -

(2128 (0) : Vhg] N(0,xE)
degc(Pbig) A0, xE)

An application of Proposition [£.2.11] completes the proof. O

+2¢5(0,0) - =0.

The following is Theorem [B]in the introduction.

Theorem 4.5.3. — Assume that the discriminants of k/Q and F/Q are odd
and relatively prime, and let g € S, (To(D), x™) and g € Sy(wr) be related by

(2.3.9). The central derivative of the Petersson inner product is related
to the arithmetic theta lift by

[B(0) Vi) = - dec(Vrig) - (), Dpwc],
Proof. — 1If we choose f as in Proposition then £(f) = g and
[0(9) : Voig] = [Z(f) : Yoig] + ¢ (0,0) - [Z184(0) = Vhig]-
Proposition and Theorem [4£.5.2] allow us to rewrite this as
[0(9) : Yhie] = [Z(f) : Dhig] — ¢} (0,0) - [@ : V]

= [2(f) : Dhig] + % - ¢£(0,0) - dege (Vi) - A'(0, xp)

A0, xE)’

and comparison with Theorem [4.4.1] completes the proof. O

5. Faltings heights of CM abelian varieties

In §5] we assume n > 2, and study Theorems [C] and [D] of the introduction.
As in let F' be a totally real field of degree n, set

E=k®qF,

and let ® ¢ Hom(FE, C) be a CM type of signature (n — 1,1). We fix a triple
(Clo, a, ZE) as in
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5.1. Some metrized line bundles. — By virtue of the inclusion (I.1.1)),
there is a universal pair (Ag, A) over Sk;a consisting of an elliptic curve my :
Ay — Skra and an abelian scheme 7 : A — Sk;a of dimension n.
Endowing the Lie algebras of Ap and A with their Faltings (a.k.a. Hodge)
metrics gives rise to metrized line bundles
Lie(Ag) € Pic(Skra),  det(Lie(A)) € Pic(Skra)-
A vector 7 in the fiber

det(Lie(A,)) ™" = A" Fil' Hig(A) = /" Hig(As)

at a complex point s € Skra(C) has norm
(5.11) Wiz =||  nawl
As(C)

The metric on Lie(Ag) is defined similarly.
We now recall some notation from [BHKRYa| §1.8]. Fix a m € O such
that O = Z + Zm. If S is any Og-scheme, define
(5.1.2) es=m®1—-1Ris(T) € O ®z Og
s =TR1-1®ig(T) € O ®z Og,
where ig : O — Og is the structure map. We usually just write € and €, when
the scheme S is clear from context.

Remark 5.1.1. — If N is an Ok ®z Og-module then N/eéN is the maxi-
mal quotient of N on which O acts through the structure morphism ig :
Ok — Og, and N/eN is the maximal quotient on which Oy acts through the
conjugate of the structure morphism. If D € O then

N = eN @eN,

and the summands are the maximal submodules on which O acts through
the structure morphism and its conjugate, respectively.

As in [BHKRYa,, §2.2], the relative de Rham homology H{(A) is a rank
2n vector bundle on Sk, endowed with an action of Oy induced from that on
A. In fact, it is locally free of rank n as an O ®z Os,,,-module, and

V = H{®(4)feH{R (4)

is a rank n vector bundle. We make det()) into a metrized line bundle by
declaring that a local section n of its inverse

detV)™' = A" eHig(A) € Hig(A)
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has norm at a complex point s € Skya(C).

As the exceptional divisor Exc c Sk;, of [BHKRYa, §2.3] is supported in
characteristics dividing D, the line bundle O(Exc) is canonically trivial in the
generic fiber. We endow it with the trivial metric. That is to say, the constant
function 1, viewed as a section of O(Exc), has norm |1]|> = 1.

Recall that the line bundle w of [BHKRYal, §2.4] was endowed with a
metric in [BHKRYa, §7.2], defining

GezﬁﬂﬁSKw)
For any positive real number ¢, denote by
Olc) € Pic(Skra)

the trivial bundle Og, . endowed with the constant metric |[1]? = c.

Proposition 5.1.2. — There is an isomorphism

08127 D™ H®? © &®? ® det(Lie(A)) ® Lie(A)®? =~ O(Exc) ® det(V)
of metrized line bundles on Skya.
Proof. — In [BHKRYa, §2.4] we defined a line bundle Qky, on Skra by

Qi = det(Lie(A)) ' @ Lie(49)® 2 @ det(V),
and in [BHKRYal Theorem 2.6.3] we constructed an isomorphism
w®? =~ Qkya ® O(Exc).

This defines the desired isomorphism
(5.1.3) w®? ® det(Lie(A)) ® Lie(A4)®* = O(Exc) ® det(V)

on underlying line bundles, and it remains to compare the metrics.
In the complex fiber this can be made more explicit. At any complex point
s € Skra(C) the Hodge short exact sequence admits a canonical splitting

HR(A,) = FO(A,) @ Lie(Ay),

where FO(A,) = Fil’H{®(A,) is the nontrivial step in the Hodge filtration.
When combined with the decomposition of Remark we obtain

HR(A,) = eFY(A,) @eF°(A,) @ eLie(A,) @eLie( Ay)
—_— Y Y~ Y~~~

1 n—1 n—1 1
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where the subscripts indicate the dimensions as C-vector spaces. There is a
similar decomposition

HM®(Agy) = eFO(Aps) ®eF°(Aps) @ eLie(Ags) DeLie( Ags)
0 1 1 0
Denote by

(5.1.4) ¥ HB(A) x HI®(4,) > C

the alternating pairing determined by the principal polarization on A;. The
two direct summands

eFO(A,) @eLie(A,) ¢ HIR(A,)

are interchanged by complex conjugation. We endow both e¢F%(A,) and
€lie(As) with the metric

¥(b,b)

1. 2=

(5.15) iz = [252.

so that the pairing

(5.1.6) ¥ : eFY(A,) ®eLie(As) — OUr®H;t

is an isometry.
For a,b € eLie(Ay), define p,gyp : €FY(As) — €Lie(As) by
(5.1.7) Pagb(€) = Y(€a,e) - €b = —D(a,e) - b.

The factor of —D comes from the observation that € acts on €Lie(Ay) as
++/—D, where the sign depends on the choice of 7 used in ((5.1.2).
We now define P,gy by the commutativity of

(5.1.8) det(Vy) L det(Lic(As))
eFO(A,) ® det(eLie(As)) —> eLie(As) ® det(eLie(As)).
Pa@p®id
This defines the isomorphism
(5.1.9) (eLie(A5))®? L Hom (det(Vs), det(Lie(4s)))

of [ BHKRYa, Lemma 2.4.5].

Lemma 5.1.3. — The isomorphism defines an isometry
det(V,) = 027D H®? ® (eF°(A4))®? ® det(Lie(Ay)).
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Proof. — Fix an isomorphism A%" H;(A4(C),Z) ~ Z and extend it to a C-
linear isomorphism

vol : /\2n H®(4,) =C.
Under the de Rham comparison isomorphism H;(A4(C),C) =~ H{R(Aj),
the pairing (5.1.4)) restricts to a perfect pairing
1/) . Hl(AS((C),Z) X Hl(AS((C),Z) — 2mi.

It follows that there is a unique element ¥ = a A 8 € A% H1(A4(C),Z) such
that

27 - 1/1(% b) = 1/1(047 aW’(@ b) - 1/1(047 b)w(ﬁ7a)
for all a,b € H1(As(C),Z). The map
(A" mae.z)e (A" H4(©),2) -z

defined by a ® b — vol(¥ A a A b) is a perfect pairing of Z-modules.
We now metrize the line

det(eLie(A,)) = A" eH{(A,)

by [|p]? = |[vol(¥ A u A f)|. With this definition, the vertical arrows in ((5.1.8)
are isometries.

Using (5.1.6) and (5.1.7]), one sees that the map
Pagy € Hom(FY(A,), eLie(A,))

satisfies ||pagp| = 27D - |a ® b|, and hence also |Pugp| = 27D - |a ® b||. This
proves that the isomorphism P defines an isometry

02rD)?? @ (eLie(As))®? =~ Hom (det(Vs), det(Lie(As))).
The isomorphism (5.1.6|) allows us to rewrite this as
det(V,) = 027D H®? ® (eF°(A,))®? ® det(Lie(Ay)).

O
The proof of [BHKRYal, Proposition 2.4.2] gives an isomorphism
(5.1.10) ws = Hom(Lie(Ags), eFY(As)) < €V
where

V' = Homy, (H1(A0s(C), Q), H1(4+(C), Q).
As in [BHKRYa, §2.1], there is a Q-bilinear form [-,-] : V x V' — Q induced
by the polarizations on Ags and A;. If we extend this to a C-bilinear form on

V(C = HOHlk@(C (HiiR(AOS)’ HiiR(AS))
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then the metric on wy is defined, as in [BHKRYal §7.2], by

o _ |z, 7]
Jof? = B2
for any x € Hom(Lie(Ags), eF?(Ay)).
On the other hand, we have defined the Faltings metric on Lie(Ays), and
defined a metric on eF°(Ay) by . The following lemma shows that
(5.1.10) respects the metrics, up to scaling by a factor of 4me?.

Lemma 5.1.4. — The isomorphism defines an isometry
Ol4re?ys ® @s = Hom(Lie(Ags), eFO(Ay)).
Proof. — The alternating form
Yo+ HiR(Ags) x HiR(Aps) — C
analogous to ([5.1.4)) restricts to a perfect pairing
o : H1(Aps(C),Z) x Hi(Aos(C),Z) — 2miZ,
and hence the Faltings metric on Lie(Ags) = eH{F(Ag,) is
lal? = (2m) " vo(a, @)].
From the definition of the bilinear form on V', one can show that
[z,Z] - Yo(a,a) = Y(za,Ta)
for all € €V¢. Comparing with the metric on eF°(Ay) shows that
dme” - |z[* - Jal? = (2m) 7" - [¢(za, 7a)| = [zal?,

for all z € w, and a € Lie(Aps), as claimed. O

The two lemmas provide us with isometries
det(V,) = 027D H®? ® (eF°(A4))®? ® det(Lie(Ay))
=~ O8%' D2 ® 02 ® Lie(Ags)®? det(Lie(As))
and the composition agrees with the isomorphism . This completes the
proof of Proposition [5.1.2 O

Recall the big CM cycle 7 : Mg — Sj,, of Definition All of the
metrized line bundles on Sk, appearing in Proposition can be extended
to the toroidal compactification S, (with possible log-singularities along the
boundary) so as to define classes in the codimension one arithmetic Chow
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group. However, we don’t actually need this. Indeed, we can define a homo-
morphism
[— . ybig] . PiC(SKra) —- R

as the composition

5o * o> 1 deg

Pic(Skra) —— Pic(Vbig) = Ch (Jhig) —>
As the big CM cycle does not meet the boundary of the toroidal compactifi-
cation, the composition

éBl (szra) = P/)i\C(S;%ra> — I;i\C(SKra) M} R

agrees with the arithmetic degree along Vg of Definition [4.2.6]

Remark 5.1.5. — Directly from the definitions, and recalling Remark
the metrized line bundle O{c) satisfies

[0C): Voigl = >, —log 1> = —log(c) - dege(Vhig)-
YEWbig(C)
5.2. The Faltings height. — Recall from the moduli stack CMg of
abelian varieties over Og-schemes with complex multiplication by O and CM
type .
Suppose A € CMg(C). Choose a model of A over a number field L < C

large enough that the Néron model 7 : A — Spec(Op,) has everywhere good
dim(A)

reduction. Pick a nonzero rational section s of the line bundle 7.2 /O,

Spec(Op), and define

-1 _
hFalt A, _ 1 j o T ,
A AT U;inc | o |

and

T ‘1@] S ordy(s) - log N(p).
’ pcOr,

By a result of Colmez [Col93], the Faltings height
hifg) = i (A,s) + (A, 5)

RE(A,s) =

depends only on the pair (E, ®).
Proposition 5.2.1. — The arithmetic degree of Lie(A) along Yyig satisfies
[det(Lie(A)) : Voig] = —2 degc(Vbig) - h{ia)-
Similarly, recalling the Faltings height hgalt of ,
[Lie(Ao) : Voig] = —2degc(Vig) - hi™"-
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Proof. — Suppose we are given a morphism y : Spec(Or) — g for some
finite extension L/Eg. The restriction of A to O, has complex multiplication
by Or and CM type ®, and comparing the definition of the Faltings height
with the definition of (Tc:g found in [How15l §3.1], shows that the composition

—

Pic(Skr) = Ch (Vhig) L> Ch' (Spec(0y)) 25 R

sends Lie(4)™! to [L: Q] - h?glfb).

We may choose L in such a way that the Og-stack

ybig X Spec(Og) SpeC(OL)

admits a finite étale cover by a disjoint union Yy = | |Spec(Or) of, say, m
copies of Spec(Op), and then

. . . Fal
[Lie(A) : Vhig] _ [Lie(A) : Yigg] _ ™[ QD) )
degc(Vig) degc(Ybig) m[L : k] (&:2)
This proves the first equality, and the proof of the second is similar. O

5.3. Gross’s trick. — The goal of is to compute the degree of the
metrized line bundle det()) along the big CM cycle. The impatient reader
may skip directly to Proposition for the answer. However, the strategy
of the calculation is simple enough that we can explain it in a few sentences.

It is an observation of Gross |[Gro| that the metrized line bundle det(V)
behaves, for all practical purposes, like the trivial bundle Og, . endowed with
the constant metric |1 = exp(—c) for a certain period c. This is made more
precise in Theorem and Corollary below. A priori, the constant ¢
is something mysterious, but one can evaluate it by computing the degree of
det(V) along any codimension n — 1 cycle that one chooses. We choose a cycle
along which the universal abelian scheme A — Sk, degenerates to a product
of CM elliptic curves. Using this, one can express the value of ¢ in terms of
the Faltings height ht®" appearing in . The degree of det(V) along Mg
is readily computed from this.

To carry out this procedure, the first step is to construct a cover of Skya(C)
over which the line bundle det()) can be trivialized analytically. Fix a positive
integer m, let K(m) < K be the compact open subgroup of [BHKRYa,
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Remark 2.2.3], and consider the finite étale cover

ShK(m)(G,D)((C) —G(Q)\D x G(Ay)/K(m)
Sh(G, D) (C) G(Q)\D x G(Ay)/K.

This cover has a moduli interpretation, exactly as with Sk, itself, but with ad-
ditional level m structure. This allows us to construct a regular integral model
Skra(m) over Og[1/m] of Shg () (G, D), along with a finite étale morphism

Skra (m) - SKra/(’)k [1/m]-

We use the notation det()) for both the metrized line bundle on Sk;,, and for
its pullback to Skya(m).

The following results extends a theorem of Gross [Grol Theorem 1] to
integral models.

Theorem 5.3.1. — Suppose m = 3, let Z*'8 < C be the subring of all alge-
braic integers, and fix a connected component

C c SKra(m)/Zalg[l/m].
The line bundle det(V) admits a nowhere vanishing section
ne H°(C,det(V)).

Such a section is unique up to scaling by Z*&[1/m]*, and its norm |n|? is
constant on C(C).

Proof. — For some g € G(Ay) we have a complex uniformization

M\D 2229, ¢(C) < Shyc ) (G, D)(C),

where I' = G(Q) n gK(m)g~!, and under this uniformization the total space
of the vector bundle det()) is isomorphic to I'\(D x C), where the action of T'
on C is via the composition

det

I« G(Q) — GL(W) L% k= < C*.

The compact open subgroup K (m) is constructed in such a way that there
is a Og-lattice ga = W (k) stabilized by I', and such that I" acts trivially on
ga/mga. This implies that the above composition actually takes values in the
subgroup

{CeOp : (=1 (modmOy)},



MODULARITY OF UNITARY GENERATING SERIES II 61

which is trivial by our assumption that m > 3. In other words, the vector
bundle det(V) becomes (non-canonically) trivial after restriction to X(C). In
fact, the argument of [Gro, Theorem 1] shows that one can find a trivializing
section 7 that is algebraic and defined over Q*& — C, and that such a section
is unique up to scaling by (Q*8)* and has constant norm |n]?.

All that remains to show is that n may be chosen so that it extends
to a nowhere vanishing section over Z2[1/m]. The key is to recall from
[BHKRYa, §2.3] that Sh(G, D) has a second integral model Sp,, over O,
which is normal with geometrically normal fibers. It is related to the first
by a surjective morphism Sk, — Spap, Which restricts to an isomorphism
over Og[1/D]. It has a moduli interpretation very similar to that of Skra,
which allows us to do two things. First, there is a canonical descent of the
vector bundle V to Spap, defined again by V = H{®(A)/eHE(A), but where
now (Ap, A) is the universal pair over Sp,p. Second, we can add level K(m)
structure to obtain a cartesian diagram

SKra(m) - SKra/(’)k [1/m]

| |

Spap (M) ——= Spap/0y[1/m]

of Ok[1/m]-stacks with étale horizontal arrows.
In particular, Spap(m) is normal with geometrically normal fibers, from
which it follows that the above diagram extends to

C —— SKra(m)/Zalg[l/m] — SKra/Zalg[l/m]

| |

B—— SPap (m)/Zalg[l/m] - SPaP/Zalg[l/m]

for some connected component B < Spap(m) zaie[1 /m] With irreducible fibers.
Now fix a number field L < C containing k large enough that the section
n and the components C and B are defined over Op[1/m]. Viewing 7 as a
rational section of the line bundle det()) on B, its divisor is a finite sum of
vertical fibers of B, and so there is a fractional Or[1/m]-ideal b < L such that

div(n) = Zordq(b) - By,
alb
where B, is the mod q fiber of V. By enlarging L we may assume that b is

principal, and hence n can be rescaled by an element of L™ to have trivial
divisor on B. But then 7 also has trivial divisor on C, as desired. U
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Corollary 5.3.2. — Let A < Skra be a connected component. There is a
constant ¢ = c4 € R with the following property: for any finite extension L/k
and any morphism Spec(Or) — A, the image of det(V) under

(5.3.1) Pic(Skra) — Pic(A) — Pic(Spec(Oyr)) <& R

is equal to c-[L : k.

Proof. — Fix an integer m > 3. The open and closed substack
A(m) = A xsy.,. Skra(m).

of Skra(m), may be disconnected, so we fix one of its connected components
A(m)° < A(m). This is an Og[1/m]-stack, which may become disconnected
after base change to Z*#[1/m]. Fix one connected component

C = Am) g1 my-

and let n € H°(C,det(V)) be a trivializing section as in Theorem m

Choose a finite Galois extension M /k contained in C, large enough that
C and n are defined over Oy/[1/m]. For each o € Gal(M/k) we obtain a
trivializing section

0 e HO(C7, det(V))

which, by Theorem has constant norm [n?|.
Let R(m) be the quotient of R by the Q-span of {log(p) : p | m}, and define

—1
c(m) = =% Y, log|n?|? e R(m).
[M - k] oeGal(M/k)

This is independent of the choice of M, and also independent of 1 by the
uniqueness claim of Theorem Moreover, for any number field L/k and

any morphism
Spec(O[1/m]) — A(m)°,
the image of det()) under
Pic(A(m)°) — Pic(Spec(O[1/m])) *% R(m)

is equal to ¢(m) - [L : kJ.
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Now suppose we are given some Spec(Or) — A as in the statement of the
corollary. After possible enlarging L, this morphism admits a lift

A(m)°®

7
—~

—~
-
-

Spec(Or[1/m]) — Ao, [1/m];

and from this it is easy to see that the image of det()) under the composition

of (5.3.1) with R — R(m) is equal to ¢(m) - [L : k].
In particular, the image of det()) under the composition of (5.3.1)) with the
diagonal embedding

R~ []R(m)

m=3
is equal to the tuple of constants ¢(m)-[L : Q]. What this proves is that there
is a unique ¢ € R whose image under the diagonal embedding is the tuple of
constants c¢(m), and that this is the ¢ we seek. O

Proposition 5.3.3. — The constant ¢ = ¢4 of Corollary[5.5.3 is independent
of A, and is equal to

¢ = (4 —2n)hp™ +log(472D),
where hl,zalt is the Faltings height m

Proof. — Recall that we have fixed a triple (ap,a,ig) as in §4.2| Fix a g €
G(Ay) in such a way that the map

z

D 2259, g1 (@, D)(C)
factors through A(C), and a decomposition of Og-modules
ga=a @ --Day

in which each a; is projective of rank 1. Define elliptic curves over the complex
numbers by

A; ((C) = gai\ai@/EaiC.
for 0 < i <n, and

A, (C) = gay\ayc/eanc.

Endow the abelian variety A = A; x --- x A, with the diagonal action of
Oy, and the principal polarization induced by the perfect symplectic form on
ga, as in the proof of [BHKRYal, Proposition 2.2.1]. The pair (Ag, A) then
corresponds to a point (z,g) € A(C).
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As each A; has complex multiplication by O, we may choose a number
field L containing k over which all of these elliptic curves are defined and have
everywhere good reduction. If we denote again by Ag, ..., A, and A the Néron
models over Spec(Qp), the pair (Ag, A) determines a morphism

Spec(0r) — A < Skra-
The pullback of V to Spec(Op) is the rank n vector bundle
V’Spec(OL) =V @DV,

where V; = H{®(A;)/eH{®(4;). We endow V; ! ~ eH} (A;) with the metric
(5.1.1)), so that
det(v)|Spec((9L) =2V® -V,

is an isomorphism of metrized line bundles.
The following two lemmas relate the images of Vi,...,V, under the arith-
metic degree

—

(5.3.2) Pic(Spec(0r)) <5 R

to the Faltings height ALt

Lemma 5.3.4. — For 1 <i <n, the arithmetic degree sends
Vi — —[L: Q] - hEat

Proof. — The action of Ok on Lie(A4;) is through the inclusion O — Op, and
hence, as in [BHKRYal Remark 2.3.5], the quotient map

descends to an isomorphism of line bundles V; =~ Lie(A;). If we endow
Lie(A;)~! with the Faltings metric (5.1.1]) then this isomorphism respects the
metrics, and the claim follows as in the proof of Proposition ]

Lemma 5.3.5. — The arithmetic degree sends
1
Vo [L:Q] - (hE™ — 3 log(47%D)).

Proof. — The action of O on Lie(A4;) is through the complex conjugate of
the inclusion Op — Op, from which it follows that the Hodge short exact
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sequence takes the form

0—— F%A,) —— H{&(4,) Lie(A,)

0—— eHin(Ag) — H?R(An) —_— HfR(An)/erR(An) —0.

In particular, the endomorphism € on HfR(An) descends to an isomorphism
Vo = FO(A,).
Let
Un s HiR(An) @ H®(A,) — O
be the perfect pairing induced by the principal polarization on A,, and define
a second pairing ¥(z,y) = ¥y (ex,y). It follows from the previous paragraph
that this descends to a perfect pairing

UV, ®Lie(4,) = Or.

However, if we endow Lie(4,)~! with the Faltings metric (5.1.1]), then this
pairing is not a duality between metrized line bundles.
Instead, an argument as in the proof of Proposition shows that

1
UV, ®Le(Ad,) =0r{ —— ).
@Lie(4) = 05 (s )
is an isomorphism of metrized line bundles. With this isomorphism in hand,
the remainder of the proof is exactly as in the previous lemma. ]

The two lemmas show that the image of det()) under is
> dev) = [L+ Q- (2 n) - A — Liog(arD))
i=1
as claimed. This completes the proof of Proposition [5.3.3 O
Proposition 5.3.6. — The metrized line bundle det(V) satisfies
[det(V) : hig] = degeOhig) - ((4 = 20 + log(47° D) ).

Proof. — As in the proof of Proposition we may fix a finite extension
L/Eg and a finite étale cover Yiis = | |Spec(Opr) of the Op-stack
ybig X Spec(Ogp) SpeC(OL)
by, say, m copies of Spec(Or). Corollary then implies
[det(V) : Dhig]  [det(V) : Yiig]  em-[L: k]

= = = C.

degc(Mhig) degc(Yhig) m - [L : k]
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Appealing to the evaluation of the constant ¢ found in Proposition [5.3.3| com-
pletes the proof. ]

5.4. Theorems [C] and [D} — We can now put everything together, and

relate the arithmetic degree of & along e to the Faltings height h? g{ﬁb).

Proposition 5.4.1. — The metrized line bundle & satisfies

[© : Vbig] _ pFalt n—4 A'(0, xx)
dege(Vhig) B 2 A0, xx)

+ %10g(167’[’367).

Proof. — Proposition shows that

2. [087%' DY @@ : Vhig| + [det(Lie(A)) : Voig] + 2 - [Lie(Ag) : Vhig]
= [O(Exc) : Yoig| + [det(V) : Whig)-

Proposition [5.2.1] and Remark imply that the left hand side is equal to
2@ : Dhig] — 2dege(Vhig) - (log(872€ D7) + Al + 2 hE) |
while Proposition [5.3.6| shows that the right hand side is equal to
2degc (Vi) - (2 — n)hE™ + log(27D)).
Note that we have used here the equality
[O(Exc) : Vhig] = [(Exc,0) : oig] = dege(Vhig) - log(D).

from the proof of Proposition
Combining these formulas yields

[© = Vrig] Falt Falt 3
= hi&ey + (4 —n)h 2" + log(167°e”),
dege (Vhig) (E,®) ( )y g( )
and substituting the value 1’ for hialt completes the proof. ]

It is clear from Proposition that Theorems [C] and Theorem [D] are
equivalent. As Theorem |C|is proved in [YY18], this completes the proof of
Theorem

On the other hand, we proved Theorem |[D| in under the assumption
that n > 3 and the discriminants of k and F' are odd and relatively prime,
and so this gives a new proof of Theorem [C| under these hypotheses.



MODULARITY OF UNITARY GENERATING SERIES II 67

References

[AGHMP18] F. Andreatta, E.Z. Goren, B. Howard, and K. Madapusi Pera, Faltings

[Ami80]

[AsaT76]

[BBGKO07]

[BF04]
[BGKKO7]

[BHKRYa

[BHY15]

[BKY12]
[BY09)]

[Chel4]

[Col93]
[GS90]
[Gro]

[GZ86]

[Harl5]

[Hid04]

heights of abelian varieties with complex multiplication, Ann. Math. (2)
187 (2018), no. 2, 391-531.

S.A. Amitsur, On the characteristic polynomial of a sum of matrices,
Linear and Multilinear Algebra 8 (1979/80), no. 3, 177-182. MR 560557
T. Asai, On the Fourier coefficients of automorphic forms at various
cusps and some applications to Rankin’s convolution, J. Math. Soc.
Japan 28 (1976), 48-61.

J.H. Bruinier, J.I. Burgos Gil, and U. Kiihn, Borcherds products and
arithmetic intersection theory on Hilbert modular surfaces, Duke Math.
J. 139 (2007), no. 1, 1-88.

J.H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math.
J. 125 (2004), no. 1, 45-90.

J.I. Burgos Gil, J. Kramer, and U. Kiihn, Cohomological arithmetic
Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1-172. MR 2285241
J.H. Bruinier, B. Howard, S. Kudla, M. Rapoport, and T. Yang, Modu-
larity of generating series of divisors on unitary Shimura varieties. This
volume.

J.H. Bruinier, B. Howard, and T. Yang, Heights of Kudla-Rapoport
divisors and derivatives of L-functions, Invent. Math. 201 (2015), no. 1,
1-95.

J.H. Bruinier, S.S. Kudla, and T. Yang, Special values of Green func-
tions at big CM points, Int. Math. Res. Not. (2012), no. 9, 1917-1967.

J.H. Bruinier and T. Yang, Faltings heights of CM cycles and derivatives
of L-functions, Invent. Math. 177 (2009), no. 3, 631-681.

G. Chenevier, The p-adic analytic space of pseudocharacters of a profi-
nite group and pseudorepresentations over arbitrary rings, Automorphic
forms and Galois representations. Vol. 1, London Math. Soc. Lecture
Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 221—
285.

P. Colmez, Périodes des variétés abéliennes a multiplication compleze,
Ann. of Math. (2) 138 (1993), no. 3, 625-683.

H. Gillet and C. Soulé, Arithmetic intersection theory, Inst. Hautes
Etudes Sci. Publ. Math. (1990), no. 72, 93-174 (1991).

B. Gross, On the periods of abelian integrals and a formula of Chowla
and Selberg, Invent. Math. 45.

B. Gross and D. Zagier, Heegner points and derivatives of L-series, In-
ventiones Math. 84 (1986), pp. 225-320.

P. Hartwig, Kottwitz-Rapoport and p-rank strata in the reduction of
Shimura varieties of PEL type, Ann. Inst. Fourier (Grenoble) 65 (2015),
no. 3, 1031-1103.

H. Hida, p-adic automorphic forms on Shimura varieties, Springer
Monographs in Mathematics, Springer Verlag, Berlin, Heidelberg, 2004.



68

[How12]
[How15]
[How?20]

[HY12]

[Jac62]

[Kud04]

[KR14]
[Obul3]
[Sch09)]
[Was82]
[Yan05]
[YY18]
[YZ18]

[YZZ13)

J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

B. Howard, Complex multiplication cycles and Kudla-Rapoport divisors,
Ann. of Math. (2) 176 (2012), no. 2, 1097-1171.

, Complex multiplication cycles and Kudla-Rapoport divisors 11,
Amer. J. Math. 137 (2015), no. 3, 639-698.

, On the averaged Colmez conjecture. Current Developments in
Mathematics, 2018, International Press, (2020), pp. 125-178.

B. Howard and T. Yang, Intersections of Hirzebruch-Zagier divisors and
CM cycles, Lecture Notes in Mathematics, vol. 2041, Springer, Heidel-
berg, 2012.

R. Jacobowitz, Hermitian forms over local fields, Amer. J. Math., 84
(1962), 441-465.

S. Kudla, Special cycles and derivatives of Eisenstein series, Heegner
points and Rankin L-series, Math. Sci. Res. Inst. Publ., vol. 49, Cam-
bridge Univ. Press, Cambridge, 2004, pp. 243-270.

, Special cycles on unitary Shimura varieties 1I: Global theory,
J. Reine Angew. Math. 697 (2014), 91-157.

A. Obus, On Colmez’s product formula for periods of CM-abelian vari-
eties, Math. Ann. 356 (2013), no. 2, 401-418.

N.R. Scheithauer, The Weil representation of SLa(Z) and some appli-
cations, Int. Math. Res. Not. IMRN (2009), no. 8, 1488-1545.

L. Washington, Introduction to cyclotomic fields, Graduate Texts in
Mathematics, vol. 83, Springer-Verlag, New York, 1982.

T. Yang, CM number fields and modular forms, Pure Appl. Math. Q. 1
(2005), no. 2, part 1, 305-340.

T. Yang and H. Yin, CM fields of dihedral type and the Colmez conjec-
ture, Manuscripta Math. 156 (2018), no. 1-2, 1-22.

X. Yuan and S.-W. Zhang, On the averaged Colmez conjecture, Ann. of
Math. (2) 187 (2018), no. 2, 533-638.

X. Yuan, S.-W. Zhang, and W. Zhang, The Gross-Zagier formula on
Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton
University Press, Princeton, NJ, 2013.

J. BRUINIER, Fachbereich Mathematik, Technische Universitait Darmstadt, D-64289
Darmstadt, Germany e FE-mail : bruinier@mathematik.tu-darmstadt.de

B. HOwWARD, Department of Mathematics, Boston College, 140 Commonwealth Ave,
Chestnut Hill, MA 02467, USA e FE-mail : howardbe@bc.edu

S. KubpraA, Department of Mathematics, University of Toronto, 40 St. George St., BA6290,
Toronto, ON M5S 2E4, Canada e FE-mail : skudla@math.toronto.edu

M. RAPOPORT, Mathematisches Institut der Universitdt Bonn, Endenicher Allee 60, 53115
Bonn, Germany, and Department of Mathematics, University of Maryland, College
Park, MD 20742, USA e E-mail : rapoport@math.uni-bonn.de

T. YANG, Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall,
Madison, WI 53706, USA e E-mail : thyang@math.wisc.edu



	1. Introduction
	2. Small CM cycles and derivatives of L-functions
	3. Further results on the convolution L-function
	4. Big CM cycles and derivatives of L-functions
	5. Faltings heights of CM abelian varieties
	References

