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Abstract The existence of Birkeland magnetic field‐aligned current (FAC) system was proposed more
than a century ago, and it has been of immense interest for investigating the nature of solar
wind‐magnetosphere‐ionosphere coupling ever since. In this paper, we present the first application of deep
learning architecture for modeling the Birkeland currents using data from the Active Magnetosphere and
Planetary Electrodynamics Response Experiment (AMPERE). The model uses a 1‐hr time history of
several different parameters such as interplanetary magnetic field (IMF), solar wind, and geomagnetic and
solar indices as inputs to determine the global distribution of Birkeland currents in the Northern
Hemisphere. We present a comparison between our model and bin‐averaged statistical patterns under
steady IMF conditions and also when the IMF is variable. Our deep learning model shows good agreement
with the bin‐averaged patterns, capturing several prominent large‐scale features such as the Regions 1
and 2 FACs, the NBZ current system, and the cusp currents along with their seasonal variations. However,
when IMF and solar wind conditions are not stable, our model provides a more accurate view of the
time‐dependent evolution of Birkeland currents. The reconfiguration of the FACs following an abrupt
change in IMF orientation can be traced in its details. The magnitude of FACs is found to evolve with
e‐folding times that vary with season and MLT. When IMF Bz turns southward after a prolonged northward
orientation, NBZ currents decay exponentially with an e‐folding time of∼25 min, whereas Region 1 currents
grow with an e‐folding time of 6–20 min depending on the MLT.

1. Introduction

The existence of a field‐aligned current (FAC) system was first proposed by Kristian Birkeland (Birkeland,
1908) and later confirmed by Zmuda et al. (1966). Since then, data from magnetometers on several satellite
missions such as Dynamics Explorer 2 (Weimer, 2001), Orsted/Magsat (Papitashvili et al., 2002), DMSP
(Ohtani et al., 2005), and Challenging Minisatellite Payload (CHAMP) (Laundal, Finlay, et al., 2018;
Laundal, Reistad, et al., 2018) have provided crucial insights into the nature of solar wind‐magnetosphere‐
ionosphere coupling (e.g., Iijima & Potemra, 1976a; Lysak, 1990; Milan et al., 2018). For example, the
large‐scale structure and magnitude of FACs are strongly controlled by the interplanetary magnetic field
(IMF) and season (e.g., Fujii et al., 1981; Iijima & Potemra, 1976a, 1978; Potemra, 1985). Depending on
the orientation and magnitude of IMF Bz and By, three major current systems were reported: (1) the
Region 1 and Region 2 currents (e.g., Anderson et al., 2008; Iijima & Potemra, 1976a, 1978; Weimer,
2001), (2) Region 0 or cusp currents (e.g., Erlandson et al., 1988; Iijima & Potemra, 1976b; Saunders,
1989), and (3) NBZ currents (e.g., Iijima et al., 1984; Iijima & Shibaji, 1987; Mauk & Zanetti, 1987;
Saunders, 1989). On average, currents were found to be stronger in the summer hemisphere (e.g., Fujii et al.,
1981; Laundal et al., 2016), in some cases by a factor of 2–3 (Ohtani et al., 2005). The impact of season was
particularly strong on the dayside current system and was noted to significantly reduce the intensity of the
NBZ and cusp currents during winter (e.g., Green et al., 2009; Papitashvili et al., 2002; Weimer, 2001). Due to
the restricted spatio‐temporal coverage of the earlier missions, most of our understanding pertaining to the
Birkeland currents was limited to static and steady‐state conditions. However, during the last solar cycle, the
ActiveMagnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project started pro-
viding global maps of the Birkeland current system at a 10‐min cadence (Anderson et al., 2000, 2002; Waters
et al., 2001), opening up new possibilities to explore their dynamics (Coxon et al., 2018; Matsuo et al., 2015;
Murphy et al., 2012).

©2020. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2020JA027908

Key Points:
• We developed the first deep learning

model to predict the dynamics of
AMPERE‐derived field aligned
currents

• When IMF changes abruptly, the
initial response and total
reconfiguration time of FACs vary
with MLT and season

• For an abrupt change in IMF Bz or
By, our model predicts an
exponential response in FACs

Correspondence to:
B. S. R. Kunduri,
bharatr@vt.edu

Citation:
Kunduri, B. S. R., Maimaiti, M.,
Baker, J. B. H., Ruohoniemi, J. M.,
Anderson, B. J., & Vines, S. K. (2020).
A deep learning‐based approach for
modeling the dynamics of AMPERE
Birkeland currents. Journal of
Geophysical Research: Space Physics,
125, e2020JA027908. https://doi.org/
10.1029/2020JA027908

Received 11 FEB 2020
Accepted 13 JUL 2020
Accepted article online 29 JUL 2020

KUNDURI ET AL. 1 of 20

https://orcid.org/0000-0002-7406-7641
https://orcid.org/0000-0002-4261-4241
https://orcid.org/0000-0001-6255-3039
https://orcid.org/0000-0002-2747-7066
https://orcid.org/0000-0003-2543-0149
https://orcid.org/0000-0002-7515-3285
https://doi.org/10.1029/2020JA027908
https://doi.org/10.1029/2020JA027908
mailto:bharatr@vt.edu
https://doi.org/10.1029/2020JA027908
https://doi.org/10.1029/2020JA027908
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020JA027908&domain=pdf&date_stamp=2020-08-11


Statistical characterizations of the Birkeland current system pre-
sented in previous studies are in good overall agreement for stable
IMF conditions (for e.g., Green et al., 2009; Iijima & Potemra,
1976a; Weimer, 2001). However, there have been conflicting results
pertaining to the response of the high‐latitude ionosphere to a change
in the IMF (Anderson et al., 2018; Lockwood et al., 1986; Ridley et al.,
1998; Ruohoniemi et al., 2002; Saunders et al., 1992). In particular, a
key question has generated a lot of debate in the community, namely:
Is the onset of the ionospheric response to abrupt changes in IMF
simultaneous across all magnetic local time (MLT) sectors? Early
studies with the EISCAT radar (Lockwood et al., 1986) and magnet-
ometers (Saunders et al., 1992) suggested the response of ionospheric
convection to southward turning of IMF propagates away from noon,
resulting in a time delay on the order of a few tens of minutes near
dusk (Saunders et al., 1992). Later, contradictory results were pre-

sented by Ridley et al. (1997, 1998), who used the Assimilative Mapping of Ionospheric Electrodynamics
(AMIE) procedure (Richmond, 1992) and showed the response to a southward turning of IMF is globally
simultaneous (within a few minutes). This global response was further demonstrated by Ruohoniemi and
Greenwald (1998) using observations from Super Dual Auroral Radar Network (SuperDARN). More
recently, Snekvik et al. (2017) analyzed magnetic field perturbations from the AMPERE project during per-
iods of dayside reconnection and showed that the initial response is almost simultaneous across all MLT sec-
tors. They further reported that the initial response is strongest near noon, whereas the response on the
nightside grew stronger after an initial delay of ∼10 min. Clearly, the response of high‐latitude ionosphere
to changes in IMF is still an active area of research, and several key aspects such as the reconfiguration times
(Milan et al., 2018; Moretto et al., 2018) associated with the Birkeland currents are yet to be determined.

Statistical and empirical models of the Birkelend currents have generally been limited to steady‐state IMF
conditions (Green et al., 2009; Papitashvili et al., 2002; Weimer, 2001). Developing a “data‐based” model
to predict these currents when the IMF and solar wind are variable has been particularly challenging
because of (1) the limitations in spatio‐temporal coverage provided by earlier missions (such as Dynamics
Explorer 2 and DMSP) and (2) limitations of traditional time series prediction tools such as
Autoregressive Integrated Moving Average (ARIMA) (Siami‐Namini & Namin, 2018; Wang et al., 2017).
However, recent studies have demonstrated that deep learning can be a very powerful tool that can be used
to model time series data such as wind speed (Chen et al., 2018) and the stock market (Qin et al., 2017), even
when the data set is noisy (Zhang et al., 2016). These studies show that deep learning architectures have
great potential to model the dynamics of spatio‐temporal phenomena such as the Birkeland currents.

In this study, we take advantage of the recent advancements in deep learning to model the time‐dependent
evolution of AMPERE FACs in the Northern Hemisphere. The large and continuously available database of
global Birkeland current patterns provided by the AMPERE project is ideally suitable for training deep learn-
ing architectures that are capable of capturing such complicated behavior (LeCun et al., 2015; Maimaiti et al.,
2019). To this end, we use a 60‐min time history of solar wind bulk speed (Vx), proton number density (Np),
IMF components (Bx, By, and Bz), and geomagnetic and solar indices (Sym‐H, Asym‐H, SuperMAGAL/AU,
and F10.7 flux) along with the month (indicative of season) as inputs to a convolutional neural network
(CNN) model to estimate global Birkeland currents at a given moment.

2. Data Sets and Modeling
2.1. Solar Wind, IMF, and Geomagnetic Indices

One set of crucial inputs to ourmodel are the IMF components (Bz, By, and Bx) and solar wind X‐component
speed and number density (Vx and Np) parameters. In the current study, we use 1‐min averaged OMNI
values (King & Papitashvili, 2005), time shifted to the bow shock. A uniform 10‐min delay was added to
the OMNI solar wind and IMF data to account for the propagation time of the solar wind through the
magnetosheath and the time for AMPERE to express the influence of the solar wind on the FACs
(Wing et al., 2002). Finally, we normalized these values by subtracting the mean and divide by standard

Table 1
Mean and Standard Deviation in the Input Parameters (Between 1 January 2010
and 1 January 2016) Used for Normalizing the Data

Input parameters Mean Standard deviation

Bz (nT) 0.00193 3.392
By (nT) −0.008 3.928
Bx (nT) 0.084 3.366
Vx (km/s) −409.66 89.08
Np (cm−3) 5.90 4.80
AU (nT) 238.28 1,493.80
AL (nT) −234.71 1,099.24
Sym‐H (nT) −10.52 16.68
Asym‐H (nT) 19.06 13.88
F10.7 (sfu) 116.59 27.94

Note. See section 2.1 for details.
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deviation (a standard practice in machine learning to improve the performance of the backpropagation
algorithm). The mean and standard deviation of the input parameters are listed in Table 1.

To incorporate the impact of geomagnetic disturbances at midlatitudes, the longitudinally asymmetric
(Asym‐H) and symmetric (Sym‐H) disturbance indices (Iyemori, 1990) were used as inputs to our model.
The Sym‐H and Asym‐H indices have a higher temporal resolution of 1 min compared to the 1‐hr resolution
of the Dst index and are thus more suitable for the current study. These indices were accessed through the
Geomagnetic Data Service, Kyoto, Japan. The impact of auroral electrojets was incorporated using
SuperMAG derived AL and AU indices (Gjerloev, 2012), and the 10.7‐cm solar radio flux (F10.7) was used
as a proxy for solar activity (Tapping, 2013). Finally, to model the influence of season, we used month as
an input feature to the model. Since season is a cyclical feature, we transformed month into two new input
parameters using a sine and cosine transformation to accurately represent its impact.

2.2. AMPERE FACs

The AMPERE project provides global maps of the Birkeland current system using measurements of mag-
netic field perturbations from the magnetometers on board the Iridium satellite constellation (Anderson
et al., 2000, 2002; Waters et al., 2001). The Iridium constellation consists of 66+ commercial satellites in
780‐km polar circular orbits, distributed over six equally spaced orbital planes, with 2‐hr local time separa-
tion. Each satellite carries an engineering‐grade magnetometer. Perturbations measured by these magnet-
ometers are processed to remove the background International Geomagnetic Reference Field (IGRF) and
long‐period residuals from the observations, following which a spherical harmonic inversion technique is
used to derive the FACs in the polar regions (Anderson et al., 2000; Waters et al., 2001). These global FAC
maps are provided at a 10‐min cadence on a spatial grid spanning 1 hr in MLT and 1° in magnetic latitude
(MLAT). The AMPERE project has provided estimates of FACs over both hemispheres nearly continuously
since 2010, making the data set ideally suited for training deep learning applications. In this study, we train
the model on data between 1 January 2010 and 1 January 2016.

2.3. CNN Model

Our goal in this study is to model the evolution of FACs based on a time history of IMF. In particular, we aim
to capture two features as accurately as possible : (1) the reconfiguration of the FAC system from one steady
state to another and (2) the response of FACs to a change in IMF at different locations. Both these tasks
require a model that is suitable for capturing complex features in a temporal data set, and a ResNet CNN
is one such model (Fawaz et al., 2019; He, Zhang, et al., 2016; Maimaiti et al., 2019). Furthermore, the
ResNet CNN architecture is less prone to the adverse effects associated with deeper architectures and is rela-
tively easier to optimize (Glorot & Bengio, 2010). Deep learning models require a lot of data, and they tend to
work best when the data are continuous in both space and time (e.g., Lake et al., 2015, 2017). This aspect
makes the AMPERE project (Anderson et al., 2000, 2002), which has been providing global FAC maps con-
tinuously with a temporal resolution of 10 min over the last several years, ideally suitable for training such
models. For these reasons, we decided to adopt a ResNet CNN architecture to model FACs using time

Figure 1. An illustration of the CNN architecture with three ResNet units. The input layer takes a 2‐D input array with
60 (minutes history) × 11 (parameters indicating solar and geomagnetic activity and season) dimensions, and the output
layer produces estimated AMPERE currents in the Northern Hemisphere. Each polyhedron between the adjacent
convolution layers represents the mapping of a previous layer to the next through a 2‐D convolution. The three
curved downward pointing arrows indicate the ResNet units.
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histories of IMF, solar wind, and geomagnetic indices as inputs. Hereafter, we will refer to this model as the
CNN model.

In Figure 1, we present a schematic of our CNN model architecture. The input layer is a 2‐D array with 60
(minute time history) × 11 (solar wind, IMF, geomagnetic indices, and F10.7 flux) dimensions. Specifically,
we use Vx, Np, Bz, By, Bx, Sym‐H, Asym‐H, AL, AU, and F10.7 flux alongside sine and cosine transform of
the month (see section 2.1) as inputs. The input layer is followed by three ResNet units, each made up of
three identical convolution layers stacked in series. A “shortcut” connection between the input and output
of each ResNet unit performs an identity mapping, and its output is added to the output of the next stack of
convolution layers. The primary advantage of a ResNet unit is that it helps overcome the problem of
vanishing/exploding gradients that are often encountered in deep architectures (He, Zhang, et al., 2016).
When training such deep models, repeated multiplication can cause the backpropagated gradients to grow
very large (or small), thereby causing the vanishing/exploding gradients problem. As a result, the gradient
descent update leaves the weights from the initial layers virtually unchanged, and the training never con-
verges to a good solution; a ResNet unit can helpmitigate the problem. The output from the final ResNet unit
is transformed to form a flattened 1‐D layer, which is further transformed to another 1‐D (1 × 1,200 units)
layer. Finally, the last layer having 1 × 1,200 dimensions is transformed into a 2‐D map of predicted
AMPERE FACs, with 50 × 24 dimensions (providing FAC estimates between 40 and 90 MLAT at 1° resolu-
tion and 24 hr in MLT with 1‐hr resolution). We trained several variations of the CNN model to optimize
hyperparameters such as the number of ResNet units, and the model presented in Figure 1 was selected
as optimal based on the mean absolute error.

Our CNN model is implemented in Keras with a Tensorflow backend (Chollet, 2015) and trained on the
GPU infrastructure provided by Virginia Tech's Advanced Research Computing. As with any deep learning
approach, the objective of our model was to minimize a loss function by optimizing the network's weights
according to a backpropagation algorithm (Rumelhart et al., 1986). For our specific problem, the require-
ment was to use a loss function that can quantify the difference between predicted FACs and actual
AMPERE observations on a global scale. We tested several different loss functions such as root mean
squared error, mean absolute error, and correlation coefficient loss and found that the choice of loss function
had no significant impact on the training process. We therefore chose the mean absolute error as the most
intuitively obvious loss function.We used the “Adam” optimizer (Kingma & Ba, 2014) for stochastic gradient
descent optimization. The adjustable parameters of “Adam” used in this study are learning rate α¼ 0.002,
learning rate decay¼ 0.0, and exponential decay rates β1¼ 0.9 and β2¼ 0.999 (see Kingma & Ba, 2014 for
the definitions of these adjustable parameters). We trained our model using data between 1 January 2010
and 1 January 2016. A data point was constructed every 10 min and consisted of a Northern Hemisphere
AMPERE FAC map and the corresponding 60‐min history of the input parameters (see Figure 1 and
section 2.1). We discarded unreliable data points when any of the input parameters were missing for more
than 10min continuously. Finally, we split the data set into three parts: train (90%), validation (9%), and test
(1%) in chronological order, similar to the approach taken in Maimaiti et al. (2019). Such a split prevents the
model from overfitting as the test and validation time periods are completely independent of the training
time period. Moreover, all the data corresponding to the entire day as well as the previous and next days dur-
ing an event (14May 2013) analyzed in this study were manually removed from the training data set to make
the analysis results completely independent of the training data set.

The choice of input parameters and their corresponding time history is another important “tunable” aspect
of our model. We examined several models trained on different combinations of input parameters as well as
input time history before choosing one with optimal performance (quantified by mean absolute error for the
training and validation data sets). A summary of these models with different input combinations is pre-
sented in Table 2. Each row in the table represents a combination of IMF or geomagnetic/solar indices used
as inputs and each column represents the length of their time history. The values in each cell show the cor-
responding mean absolute error (μA/m2) for the training/validation data sets. We chose the input para-
meters based on prior knowledge (e.g., Gjerloev, 2012; Iyemori, 1990; Laundal et al., 2016; Laundal,
Finlay, et al., 2018; Weimer et al., 2003) of their role in influencing FACs as well as their availability over
extended periods of time. However, we didn't use composite solar wind‐magnetosphere coupling functions
such as dΦ/dt (Newell et al., 2007) as inputs to our model since previous studies have shown that deep
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learning models can replicate the behavior of such functions and their addition doesn't substantially
improve the model's performance any further (e.g., Maimaiti et al., 2019).

We trained the model on four different combinations of time history: 20, 40, 60, and 80min. The first row of
the table shows the mean absolute errors when all the input parameters (IMF and solar wind, SML/SMU,
SYM/ASY, and F10.7 indices) are used for training the model. The second, third, and fourth rows show
the mean absolute errors of models trained with consecutively lesser number of input parameters. For exam-
ple, in the second row, the F10.7 index is not used as an input, and in the third row, both F10.7 and
SYM/ASY indices are discarded. Removing the geomagnetic indices one at a time gradually reduces the
model performance, and as expected, the model with the highest errors is the one trained only on IMF
and solar wind parameters. We tested several different combinations of input parameters and are only sum-
marizing the best four‐, three‐, two‐, and one‐parameter models in the table. The rows and columns with
lowest errors are highlighted. Note that the training and validation errors systematically decrease as time
history increases up until 60 min, beyond which there is no significant change in the error. Based on the
mean absolute errors listed in Table 2, we selected themodel with 60‐min time history and all the input para-
meters (IMF and solar wind, SML/SMU, SYM/ASY, and F10.7 indices) included for further analysis. It is not
surprising that our deep learning model with several geomagnetic and solar indices alongside IMF and solar
wind parameters as inputs provides amuchmore accurate view of the FACs as compared to amodel which is
trained only on IMF and solar wind data. However, such a model has limited utility as a space weather fore-
casting tool since several geomagnetic and solar indices are not available in real‐time unlike solar wind and
IMF data from upstream satellites. We therefore suggest two possible approaches to increase our model's uti-
lity as a forecasting tool: (1) predicted values of geomagnetic and solar indices (Liemohn et al., 2018 and
references therein) can be used as inputs to our model and (2) use the version of our model trained only
on IMF and solar wind as input for forecasting purposes. In that regard, we have open‐sourced all our code
and both the models on Github for community use (see acknowledgements section).

2.4. Bin‐Averaged Statistical Model

To validate our CNNmodel under steady‐state conditions and to further demonstrate its utility during inter-
vals of variable IMF, we first compare its predictions with bin‐averaged statistical patterns in the next sec-
tions. The bin‐averaged statistical patterns were created using the exact same data set used for developing
the CNN model. This means any differences can be wholly attributed to methodology, rather than to the
underlying data. Specifically, we used the time stamps from the time‐delayed OMNI data set (see
section 2.1) to bin the 10‐min cadence AMPERE data and derive average current density at IMF magnitudes
ranging from 5 through 15 nT for eight equally spaced IMF clock angles (0 through 360) with a 45° separa-
tion. Similar to the approach taken by Carter et al. (2016), all current densities with a magnitude less than
0.1 μA/m2 were discarded from the analysis. To limit our analysis to stable IMF conditions, we only used
intervals when IMF was stable for at least 20min, both in terms of magnitude and clock angle. The
20‐min stability condition used in our study is consistent with previous studies which have used intervals
ranging between 10 and 35‐min (e.g., Pettigrew et al., 2010; Ruohoniemi & Greenwald, 1996; Weimer,
2001). Finally, to account for seasonal variability, these time intervals were further subdivided based on
the month May–August (summer), November–February (winter), and March–April and September–
October (equinox). From hereon, we will refer to these average patterns as the “statistical model” for the
remainder of this study.

Table 2
Model Performance for Different Input Parameters and Time History

20min 40min 60min 80min

IMF/SW + SMU/SML + SYM/ASY + F10.7 0.0735/0.0897 0.0733/0.0898 0.0731/0.0891 0.0732/0.0894
IMF/SW + SMU/SML + SYM/ASY 0.0736/0.0908 0.0734/0.0903 0.0733/0.0895 0.0733/0.0895
IMF/SW + SMU/SML 0.0744/0.0926 0.0741/0.0907 0.0739/0.0906 0.0739/0.0905
IMF/SW only 0.0757/0.0937 0.0750/0.0917 0.0747/0.0902 0.0748/0.0903

Note. Each row represents different combinations of input parameters, and each column corresponds to a time history of the input parameters used during the
training process. The values in each cell represent mean absolute errors (μA/m2) for training and validation data sets.
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Figure 2. A sample prediction by the CNNmodel and a statistical model during an event on 14 May 2013. The first two panels show IMF By and Bz between 0500
and 0815 UT, and dashed lines mark the time period close to a shift in IMF orientation. The bottom four panels show a comparison between FAC current
densities (a) estimated using the statistical model, (b) determined by AMPERE, and (c) predicted by the CNN model, at selected intervals during the event.
See text for details.

10.1029/2020JA027908Journal of Geophysical Research: Space Physics

KUNDURI ET AL. 6 of 20



3. Observations

In the previous sections, we focused on the data sets, model architecture, and training. In particular, we dis-
cussed the utility of a ResNet CNN architecture in modeling complex temporal features associated with the
Birkeland current system. In this section, we present the CNNmodel predictions under widely varying solar
and geomagnetic conditions, validate them against the statistical model, and finally analyze the response of
the Birkeland current system to sudden changes in IMF.

3.1. Case Study Analysis : 0510 to 0810 UT on 14 May 2013

Figure 2 shows a predictionmade by our CNNmodel at 0510–0810 UT on 14May 2013 compared with actual
AMPERE observations as well as the statistical model. The top two panels show IMF By and Bz, and the
dotted vertical line marks a time instance (∼06:40 UT) just prior to a sudden change in IMF during which
IMF By dropped from a nearly zero value to lower than −2.5 nT, whereas Bz turned from northward to
southward. The bottom four panels show the statistical model estimates (left), actual data from AMPERE
(center), and the CNNmodel predictions (right) at selected instances during the event. During the first time
instance at 0650 UT (just before the transition in IMF), the statistical model estimates are based on the aver-
age IMF Bz and By values between 0630 and 0650 UT, which correspond to a magnitude of 5 nT and a clock
angle of 0° (dominant Bz positive conditions). On the other hand, the CNN model predictions are based on
the 60min of IMF, solar wind, and geomagnetic indices between 0550 and 0650 UT. The second time
instance presents a comparison at 0700 UT, immediately after the transition when the average IMF magni-
tude (over previous 20min) remains at 5 nT, but the clock angle changes to 270° (dominant By negative con-
ditions). Similarly, the statistical model estimates at 0730 and 0800 UT correspond to an IMFmagnitude of 5
nT and a clock angle of 225°. It is evident that, unlike the statistical model estimates, FACs from actual
AMPERE data do not reconfigure instantaneously. Instead, they are in good agreement with the CNN
model, which shows that they slowly reconfigure over several minutes. For example, in Figure 2, we can note
that immediately after the Bz southward turning (by 0700 UT), the statistical model shows a fully formed
Region 1 and Region 2 FAC system along with the downward directed cusp currents in the postnoon sector.
However, the actual AMPERE data and the CNNmodel show a different behavior, wherein the Region 1 and
Region 2 FACs initially start developing on the dayside, and it takes an hour (0800 UT) for the Region 1/2
system and the cusp current system to fully develop. The statistical model by design can only show a transi-
tion as occurring between discrete states, which is unrealistic when the IMF changes abruptly. We believe
our CNN model can be particularly useful in such a scenario.

In Figure 3, we present latitude versus time plots of median FAC densities (median values of FACs at the
selected MLTs at every MLAT) at four different MLT sectors to further analyze the time‐dependent

Figure 3. Latitude versus time plot depicting variations in current densities at different MLTs (a–d) for the event (14 May
2013) shown in Figure 2. Each panel presents a comparison between the median current densities determined by
AMPERE (top subplot) and predicted by the CNN model (bottom subplot). The corresponding MLT sectors are
indicated on top of each panel, and the current densities are color coded according to the color bar on the right.
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evolution of FACs on both the dayside and the nightside. Each sub-
plot shows the actual data (top) and the CNN model (bottom) for
the same event on 14 May 2013 presented in Figure 2. We note that
the CNN model shows an increase in FAC densities (after a change
in IMF orientation ∼07:00 UT) to values exceeding 0.5 μA/m2 on
the dayside (between 14 and 17 MLTs), in good agreement with the
actual data. On the nightside, the upward Region 1 currents in actual
AMPERE data are very weak (<0.2 μA/m2) and are centered at ∼70
MLAT, with a latitudinal width not exceeding 2–3°. In comparison,
the CNN model is in good agreement with the actual data both in
terms of location and latitudinal width, albeit slightly underestimat-
ing the current densities. We further note two other important fea-
tures from the figure. First, the CNN model predicts that the FACs
gradually move to lower latitudes, in good agreement with actual
data. Second, the CNN model and actual data indicate that the mag-
nitude of response is much stronger on the dayside.

The similarities and differences between the AMPERE data (top) and
the CNN model (bottom) are further evident in Figure 4, which
shows the time history of mean upward Region 1 currents for the
same event on 14 May 2013. Prior to the abrupt change in IMF orien-
tation (∼0700 UT), there isn't a lot of variability in the FACs and the

CNN model estimates FACs ranging between ∼0 and 0.2 μA/m2, in good agreement with AMPERE data.
After the abrupt change in IMF, the CNN model predicts a gradual increase in the currents for ∼40–50
min and higher FAC densities on the dayside with peak values exceeding 0.5 μA/m2. Actual AMPERE obser-
vations show that the currents indeed take about 40–50min to reach peak values varying between 0.1 and
0.6 μA/m2, in good agreement with the CNN model estimates. In later sections, we will further analyze
the response of FACs to a change in IMF and its dependence on MLT and season.

3.2. Steady‐State Analysis : Statistical Model Versus CNN Model

Before further analyzing our CNN model's response to variable IMF and solar wind conditions, it is neces-
sary to validate its performance during steady‐state conditions and determine if it is consistent with expecta-
tions based on standard statistical techniques. To that end, Figure 5 presents a comparison between our CNN
model and the statistical model for four different clock angles during both summer and winter. The current
patterns correspond to an IMF magnitude of 5 nT and represent (from top to bottom) dominant Bz positive,
Bz negative, By positive, and By negative conditions, respectively. To calculate these steady‐state patterns
using the CNN model, we assume the corresponding IMF Bz and By values remain constant over the
60‐min input history and the remaining parameters such as Vx, Np, and geomagnetic indices are substituted
with average values (see Table 1). For example, to simulate steady‐state Bz positive conditions (top panels),
we manually input Bz ¼ 5 nT and By ¼ 0 nT (corresponding to a clock angle of 0°) over the 60‐min input
period.

From Figure 5, we can clearly see that both the CNN and statistical models show a prominent Region
1/Region 2 current system (Iijima & Potemra, 1976a) with current densities exceeding 0.6 μA/m2 during
southward Bz conditions. When Bz is predominantly positive, both models show a strong NBZ current sys-
tem (Potemra, 1985) and a relatively weaker Region 1 current system. Both models predict the existence of
the Region 0 or the cusp currents (Iijima & Potemra, 1976b) between 80° and 84° MLAT, which are directed
upward (downward) for By positive (negative) conditions. Another prominent feature is the impact of sea-
son. Both models clearly show stronger currents in the summer hemisphere, for all clock angles, especially
on the dayside. For example, the NBZ currents are observed poleward of 80° MLAT, exceeding 0.4 μA/m2

during summer. During winter, they shift slightly equatorward to ∼80° MLAT and have a much narrower
latitudinal width. Furthermore, the magnitudes of the NBZ currents also reduce during winter to
∼0.15 μA/m2 (statistical model) and ∼0.1 μA/m2 (CNN model). Similar behavior is observed in the Region
0 currents. While both models are in good overall agreement in terms of the large‐scale structure of the
Birkeland currents, they exhibit certain differences in terms of magnitudes and latitudinal extent.

Figure 4. The time history of mean upward FAC densities determined by
AMPERE (top panel) and predicted by the CNN model (bottom panel)
for the event (14 May 2013) shown in Figure 2.
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Specifically, the CNNmodel predictions of FAC density are stronger and have sharper spatial features when
compared to the statistical model estimates. We will analyze the differences and similarities between these
two models further in section 4.

3.3. Time‐Dependent Analysis : Controlled Transitions

In this section, we examine the evolution of the FAC patterns predicted by our CNNmodel during idealized
conditions when the IMF changes abruptly from one clock angle to another. In Figure 6, we present the
CNN model predictions for an abrupt change from pure northward to pure southward conditions.
Specifically, we present six different CNN model predictions during both summer and winter seasons, and
each prediction is marked by a specific time instance relative to the transition time (TPred¼ 0). The top panel
shows the input time‐history of IMF Bz and By for each TPred instance. For the first prediction (TPred¼ 0), the
entire 60‐min IMF Bz input history is manually given a value of +5 nT, indicating an input interval when
IMF Bz was purely northward. For the remaining predictions (between TPred ¼ 10 and 60min), negative
Bz values (−5 nT) are incrementally added to the input time history. For example, when TPred ¼ 10 min,
the input Bz closest to the prediction time (between the 50th and the 60th minute) is replaced with −5
nT, and when TPred ¼ 20 min, the last 20 min are replaced with −5 nT. We repeat this until the entire Bz
input history is replaced with a value of −5 at TPred ¼ 60 min, indicating a period when IMF was southward
throughout. To segregate the impact of IMF Bz, the remaining input parameters are substituted with average
values listed in Table 1. The bottom panels show global maps of FAC distributions predicted by the CNN
model at different TPred values, for both winter (left) and summer (right). We note that when Bz is purely
northward (TPred ¼ 0), the CNN model shows an NBZ current system during both seasons; however, the
NBZ currents are stronger in summer (>0.4 μA/m2) compared to winter (<0.15 μA/m2). As we move from

Figure 5. A comparison between the CNNmodel and statistical patterns under steady IMF conditions (Bt¼ 5 nT) during
summer (right) and winter (left) for the Northern Hemisphere. See text for details.
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dominant Bz positive to Bz negative conditions, the NBZ current system slowly dissipates and a strong
Region 1/Region 2 current system develops by TPred ¼ 50 min with current densities exceeding 0.6 μA/m2.

The temporal details of the FAC evolution to a sudden southward turning are illustrated in Figure 7, which
presents MLAT versus TPred color‐coded by FAC densities at 10 MLT (top), 14 MLT (middle), and 21 MLT
(bottom), for both summer and winter. The NBZ currents are located on the dayside, typically between 9
and 15 MLTs (Iijima et al., 1984). In the figure, we chose to focus our analysis on 10 and 14 MLTs for further
examination since the NBZ currents are most prominent in this region and to cover both the prenoon and
postnoon sectors to study their temporal behavior. With 10 and 14 MLTs, we can examine the dynamics
of dayside FACs, so we chose 21 and 3 MLTs to analyze the behavior of nightside FACs. In particular, we
will compare the differences in the time scales of Region 1 FACs between the dayside and the nightside
(e.g., Snekvik et al., 2017). Note that the NBZ currents located poleward of 80° MLAT, at 10 and 14 MLTs,
take ∼50min to dissipate in summer. However, this reconfiguration time is much shorter in winter, when
the currents take less than 30min to dissipate in both the dawn and dusk sectors. In short, Figures 6 and
7 clearly indicate that the response of FACs to a change in IMF Bz orientation varies with both MLT and
season. We will further discuss this behavior and compare these results with previous studies in section 4.

We now examine the time scales associated with the reconfiguration of FACs in response to sudden north-
ward to southward IMF turnings. This is shown in Figure 8. The top panels apply to a sudden southward
turning (see Figures 6 and 7), while the bottom panels apply to a sudden northward turning. The

Figure 6. Time evolution of FACs predicted by the CNN model during a simulated time interval, when IMF Bz changed from a pure northward orientation to
pure southward. The top panel shows the history of IMF Bz and By input to the model at different prediction times (TPred). The predictions by the model
during winter (bottom left) and summer (bottom right) for Northern Hemisphere are shown for different TPred. See text for details.
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evolution of integrated downward NBZ currents (ΣJ↓NBZ) in the left panels and the integrated upward Region

1 currents (ΣJ↑R1 ) in the right panels are shown at selected MLTs as a function of TPred. We calculate the
integrated NBZ currents by summing up the upward (positive) or downward (negative) current values
above 80° MLAT at the corresponding MLT. The actual sign of the NBZ currents is determined by
manual inspection. Similarly, the integrated Region 1 currents are estimated by summing up the currents
between 60° and 80° MLAT, and to filter out Region 2 FACs from our calculations, we only add up

Figure 7. Latitude versus time plot depicting the variations in current densities at different MLTs for the prediction times indicated in Figure 6.

Figure 8. Time scales associated with decay/growth of FACs when IMF Bz turns from a northward orientation to
southward (top panels) and vice versa (bottom panels) during summer. The left panels show the decay(top)/
growth(bottom) rates of the integrated downward directed NBZ currents (14 MLT), and the right panels show
the growth(top)/decay(bottom) rates of integrated Region 1 currents. The family of curves showing 2‐sigma
(standard deviation) errors in the fits are also overlaid as thin solid lines.
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currents which have the opposite sense to NBZ currents at that MLT. Exponential fits for the data are shown
in the figure which are used to estimate the e‐folding times. Since we analyze the time scales associated with
the response in FACs, we also show the family of curves marking the 2‐sigma (standard deviation) error
regions for the fits. As expected, when IMF turns southward after a prolonged period of northward orienta-

tionΣJ↓NBZ decays, whereas theΣJ
↑
R1 grows and vice‐versa for a northward turning. However, it is interesting

that these currents change with e‐folding times that vary with MLT. For example, when IMF turns south-

ward, we find thatΣJ↓NBZ at 14MLT fades with an e‐folding time of∼25 min, while theΣJ↑R1 in the noon sector
(14 MLT) has the fastest e‐folding time of ∼8.5 min, which progressively increases to ∼45min at 20 MLT.

Similarly, for a northward turning, ΣJ↓NBZ at 14 MLT increases with an e‐folding time of ∼8min, whereas Σ

J↑R1 decrease with e‐folding times between 0.8 and 1.6 hr. We can also observe from the figure that ΣJ↓NBZ

responds after a time‐lag of ∼10min when compared toΣJ↑R1. This behavior could be attributed to the differ-
ences in the location of the reconnection sites on the magnetopause. Namely, magnetic reconnection during
southward Bz (driving Region 1 currents) is expected to occur near the subsolar point, whereas during north-
ward Bz (driving NBZ currents), reconnection is expected to occur poleward of the cusp (Crooker, 1979). The
time delayed response of the NBZ currents can thus be attributed to the extra time required for the sheath
plasma to carry the IMF from the subsolar point to the reconnection site poleward of the cusp. This result
is consistent with Maimaiti et al. (2017), who found that a change in ionospheric convection due to a north-
ward Bz turning was delayed by 10min compared to that for a By change and attributed this difference to the
extra time required for sheath flows to reach the high latitude reconnection site.

We now examine the impact of a change in IMF By orientation on the FAC patterns using similar techni-
ques. Figure 9 shows the CNNmodel predictions to manually simulated input periods representing a change
in IMF By from dominant positive to negative conditions, in the same format as Figure 6. When the input
time interval is dominated by a positive By (TPred ¼ 0 and 10), upward directed cusp currents are observed
poleward of 80° MLAT during summer and just equatorward of 80° MLAT during winter. These cusp cur-
rents are stronger in summer, reaching a magnitude of ∼0.5 μA/m2, whereas during winter, a weaker cur-
rent system with a magnitude of ∼0.15 μA/m2 is observed. We note that as IMF By starts turning
increasingly negative, the upward directed cusp current system dissipates and downward directed currents
start to form after TPred ¼ 10 min. We further examine this reconfiguration time at different MLTs in
Figure 10, which shows a plot of TPred versus MLAT at dawn (6), dusk (18), and noon (12) MLTs, in the same
format as Figure 7. Our motivation through this figure is to analyze the impact of IMF By, and therefore, we
chose a different set of MLTs here when compared to Figure 7. Specifically, we chose 6, 12, and 18 MLTs
since IMF By is expected to drive the cusp currents and have a significant impact across the entire dayside
spanning from dawn to dusk (Iijima & Potemra, 1976b). In the noon sector (middle panels), the cusp cur-
rents are clearly observed during both winter and summer and respond immediately (within 10 min) to a
change in IMF By. Moreover, similar to the observations in Figure 9, upward directed cusp currents are pre-
sent even at 6 MLT for By positive conditions in summer. However, during winter, these currents do not
extend beyond 9 MLT and therefore are not observed in the figure. We also note that after TPred ¼ 10min
when By turns increasingly negative, the upward cusp currents reconfigure into a downward directed sys-
tem and begin to intensify and expand in latitudinal width especially in the summer hemisphere.

The rate of change of the integrated cusp currents (ΣJcusp) and the corresponding reconfiguration times in
response to a change in IMF By from a positive to negative orientation (see Figures 9 and 10) are presented
in Figure 11 (similar format as Figure 8). As in Figure 8, the integrated cusp currents are calculated by sum-
ming current values above 80 MLAT. When compared to summer, the cusp currents are much weaker dur-
ing winter, and therefore, we limit our analysis to summer season in Figure 11. Similar to the behavior
observed with the IMF Bz transitions (Figure 8), we find that the upward directed ΣJcusp decrease and the
downward directed cusp currents increase in an exponential manner. We find that the e‐folding times asso-
ciated with a decrease in upward directed ΣJcusp (∼11 min) and increase in downward directed ΣJcusp (∼14
min) are roughly similar, and the downward ΣJcusp appear after a 10‐min delay. It is important to note that
while the downward ΣJcusp becomes prominent in our model predictions after a time delay of ∼10min, it is
possible that certain limitations in the AMPERE data set as well the model itself can have an impact on our
results. For example, the AMPERE data set has a temporal resolution of 10 min and a spatial resolution of
∼2 hr in MLT, and as a result, smaller scale features may not be reproduced by our model. Similarly, the
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AMPERE FACs with relatively low magnitude (typically <0.2 μA/m2) are not reliable because of the noise
level in the magnetometers used to derive them (>50 nT). Such factors may influence some of our results.
Later, we will compare our model predictions of FAC response to IMF transitions with observations from
earlier studies.

So far, we examined the response of FACs to an abrupt change in IMF Bz and By. It should be noted that the
relaxation time scale of the FACs depends on other factors in addition to IMF and local time. For example, if

Figure 9. Same format as Figure 6 but for a simulated event indicating a change in By from positive to negative.

Figure 10. Same as Figure 7 but for a simulated event indicating a change in By from positive to negative.
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we increase the solar wind speed (Vx) from 400 to 800 km/s, the e‐folding
time of ΣJR1 for the Bz turning from +5 to −5 nT (Figure 8) decrease from
∼8–52 min to ∼6–36 min. Similarly, for the IMF By transition in
Figure 11, the e‐folding times of ΣJCusp decrease from 14 to 9min as Vx
increases from 400 to 800 km/s. However, unlike the behavior observed
during a southward Bz turning, we find that the e‐folding times increase
with increasing Vx during a northward Bz transition (Figure 8). When
Vx is 400 km/s, e‐folding times of ΣJR1 vary between 0.8 and 2 hr and as
Vx increases to 800 km/s, the e‐folding times increase to ∼2.5–5.8 hr. We
attribute this behavior to increased solar wind‐magnetosphere coupling
during periods of enhanced Vx (Newell et al., 2007), which can drive
stronger ΣJR1 and thereby increase their dissipation time scales.

Lastly, we will analyze the response of our model to a “simulated” sub-
storm interval. Similar to the previous analysis shown in Figures 6 and
9, we set all the input parameters except SML index to a constant value
and vary the SML index. The results of our simulation are presented in
Figure 12. We present six different CNN model predictions during sum-
mer, and each prediction is marked by a specific time (TPred) instance rela-
tive to the transition time. The top panel shows the input time‐history of

the SML index (the remaining input parameters are substituted with average values). For the first prediction
at TPred¼ 0, the entire 60‐min history of SML is set to 0, after which SML suddenly drops to−500 and stays at
that value until TPred ¼ 30 min, simulating the onset and the expansion phases. Finally, between TPred ¼ 30
and 60min, we simulate a recovery phase by turning the value of SML back to 0. We can see the response of
our model at 10‐min intervals of TPred in the bottom panel. We can note two main features from our model's
response to the “simulated” substorm interval. First, we find that the nightside currents intensify and

Figure 11. The decay (growth) rates of integrated upward (downward)
directed cusp currents at 12 MLT for a change in IMF By orientation
from positive to negative during summer. The best fit exponential
curves for the data along with the fitting parameters is also
shown in the plot. Thin solid lines show the family of
curves indicating 2‐sigma errors in the fit.

Figure 12. Time evolution of FACs predicted by the CNN model during a simulated substorm interval, when the SML
index dropped from 0 to −500 and recovered back to 0 after a period of 30min. The top panel shows the history of
SML input to the model at different prediction times (TPred). The predictions by the model during summer are
shown for different TPred in the bottom panel. See text for details.
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expand, in immediate response to a drop in SML index and later subside during the “simulated” recovery
phase, beginning at TPred ¼ 40 min, as expected during a substorm interval due to an increase in nightside
reconnection rate (Clausen, Milan, et al., 2013; Milan et al., 2018). Second, we find an increase in the area
of the polar cap/R1‐oval indicating an increase (Clausen, Baker, et al., 2013) after the onset of a substorm,
which later recedes back to its original state during the recovery phase. This behavior is consistent with
the expanding‐contracting polar cap (ECPC) paradigm (Cowley & Lockwood, 1992), which has been
reported in previous studies (Clausen, Baker, et al., 2013; Clausen, Milan, et al., 2013; Coxon et al., 2017).
Finally, we can note that the signature of the upward directed currents associated with the SCW near mid-
night is more prominent compared to the downward directed currents. This is consistent with a few previous
studies that have noted the upward portion of the SCW in the west is typically stronger and more persistent
than the downward portion in the east (Clausen, Milan, et al., 2013; Hoffman et al., 1994). The behavior was
attributed to the fact that in the evening sector, upward directed current closes with both the westward and
eastward electrojets.

4. Discussion

In the previous sections, we presented a CNN architecture to model the spatio‐temporal dynamics of
AMPERE FACs in the Northern Hemisphere. We showed that our model was consistent with the standard
modeling of the FACs under quasi‐static conditions and successfully expressed several large‐scale features of
the Birkeland current system. However, the advantage of using our CNNmodel over bin‐averaged statistical
patterns was most apparent when IMF changed its orientation abruptly, driving an MLT‐dependent recon-
figuration in the FAC patterns. In this section, we further discuss our findings and compare themwith obser-
vations from previous studies.

We begin with a comparison between the CNN and bin‐averaged statistical models to determine the validity
of our CNN model when IMF and solar wind are stable. From Figure 5, we note that our CNN model is lar-
gely consistent with the bin‐averaged patterns. Specifically, the CNN model is able to successfully express
previously reported features such as the Region 1/Region 2 current system (Anderson et al., 2008; Iijima
& Potemra, 1976a; Papitashvili et al., 2002) during predominantly southward Bz conditions and the NBZ
currents (Weimer, 2001) during positive Bz conditions. Moreover, our CNN model also captures the strong
dependence of the dayside cusp currents on the sign of IMF By (Fujii et al., 1981; Green et al., 2009; Iijima &
Potemra, 1976a, 1976b; Ohtani et al., 1976b), with By >0 (<0) driving upward (downward) cusp currents
near noon. Finally, the strong influence of season on the large‐scale morphology and intensity of the cur-
rents predicted by our model is consistent with previous studies (Fujii et al., 1981; Green et al., 2009;
Laundal, Finlay, et al., 2018; Ohtani et al., 2005). The peak Region 1 currents in the dusk region are observed
in the postnoon sector during summer and they shift to the premidnight sector during winter. Such a redis-
tribution of peak FACs is not observed on the dawnside. This behavior can be attributed to the significant
diffuse electron precipitation in the prenoon region, which is observed independent of seasons (Laundal
et al., 2016; Newell et al., 2010) and is consistent with previous observations (Ohtani et al., 2005). One impor-
tant difference that we find between the CNN model and the statistical model is that the currents predicted
by the CNNmodel are stronger and more sharply defined in latitude when compared with the bin‐averaged
patterns presented in this study and earlier studies (Green et al., 2009; Iijima & Potemra, 1976a). We attri-
bute this behavior to the fact that the statistical patterns are averaged over a wider set of geomagnetic con-
ditions and do not take into account a time history of geomagnetic activity. As a result, the statistical patterns
have a tendency to smear features over a wider latitudinal range rendering weaker magnitudes. This beha-
vior can be observed in Figure 2, where the currents determined by the CNN model (panel c) have a much
smaller latitudinal spread compared to the statistical patterns (panel a) and are in good agreement with the
actual data (panel b). To summarize, a comparison with bin‐averaged statistical patterns shows that our
CNN model successfully replicates several important large‐scale features of the Birkeland current system
under quasi‐static IMF conditions, thereby validating its ability to express the impact of important para-
meters on FAC patterns. The Harang discontinuity is known to influence the night auroral FAC structure
(He, Vogt, et al., 2012; Iijima & Potemra, 1978). We find two important features of Harang discontinuity
in our results. First, the Harang discontinuity is located at earlier MLTs when IMF By is positive
(TPred ¼ 0 min in Figure 9), whereas it shifts to later MLTs when IMF By turns negative (TPred ¼ 50 min
in Figure 9). This is consistent with previous reports (He, Vogt, et al., 2012; Rodger et al., 1984) and has
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been attributed to the longitudinal shift in field lines associated with IMF By “penetration” into the magne-
tosphere (Rodger et al., 1984). Second, a small shift in the location of the Harang discontinuity is also
observed with season; namely, it shifts to later MLTs in winter when compared to summer (see Figures 5,
6, and 9). The standard paradigm says that the Harang discontinuity results from a dawn/dusk asymmetry
in total energetic plasma content across the magnetotail, which exists because the gradient/curvature drift
depletes dawnside flux tubes of energetic ions (Erickson et al., 1991). Our observations suggest ionospheric
conductivity may also play an important role in controlling the dynamics of Harang discontinuity.

We now discuss the impact of abrupt changes in IMF on FACs. The results presented in section 3 suggest
that the response of FACs to variations in IMF and solar wind depends on MLT and season. Here, by
response in FACs we mean the first noticeable change in the strength of the FACs to an abrupt change in
the IMF. Please note that this is different from the total reconfiguration time, which is the total time taken
by the FACs to change from one state to another (e.g., from a fully southward Bz pattern to a fully northward
Bz pattern). In Figures 2–4, we find that after a southward turning of IMF Bz, the response of the FACs is
strongest and quickest on the dayside and progresses toward the nightside after a time delay of a few tens
of minutes. We examine Figures 6 and 7 to explore any seasonal dependencies to this behavior. From the
summer FAC maps in Figure 6, we can note that the FACs on the dayside start to intensify almost immedi-
ately near the noon sector (by TPred ¼ 10 min), whereas on the nightside, the intensification in FACs begins
after a time delay (when TPred¼ 20–30 min). In contrast, from the winter FACmaps, we can clearly note that
by TPred¼ 10min, the FACs begin to intensify on both the dayside and the nightside almost simultaneously.
These observations from our CNNmodel suggest that during winter, the response of FACs to changes in IMF
is globally simultaneous, similar to the observations of ionospheric convection presented in Ridley et al.
(1997) and Ruohoniemi and Greenwald (1998), whereas a time delay is associated with the response during
summer away from noon similar to the observations presented in Lockwood et al. (1986) and Saunders et al.
(1992). The decrease inmagnitude of the response away from the noon sector predicted by our CNNmodel is
consistent with the recent observations presented in Snekvik et al. (2017). In summary, our model predic-
tions indicate that the response of FACs to changes in IMF is complex and depends on several factors such
as season and time history of IMF, which describe the preconditioned state of the ionosphere. In some cases,
the response is found to be globally simultaneous, and in others, a time delay between dayside and nightside
response is observed. Further analysis using a large statistical set of events under different geomagnetic con-
ditions is required to fully quantify its nature.

Another crucial observation from our CNN model is that the FACs decay exponentially when IMF Bz/By
changes abruptly, as observed in Figures 8 and 11. Such behavior was previously reported by Moretto et al.
(2018), who examined AMPERE FACs during events of northward IMF turnings and found an exponential
decay in the total hemispheric current with amedian e‐folding time of 1.1 hr. In comparison, we find that the
e‐folding time depends onMLT and typically varies between 0.8 and 1.6 hr (Figure 8) when IMF turns north-
ward. Furthermore, we find that the FAC growth rates are faster than their decay rates. For example, as
observed in Figure 8, following a southward turning of IMF, the Region 1 currents grow rapidly with the
e‐folding times, gradually increasing from noon to the midnight sector (varying between 0.1 and 0.7 hr).
Finally, another important feature we can observe from Figures 7 and 10 is the variability in the current pat-
terns with season. For example, in Figure 7, the NBZ currents are very faint during winter, whereas during
summer, they are much stronger and noticeable. Moreover, unlike the winter season where the NBZ cur-
rents dissipate within 20–30min, they take up to 50min to completely dissipate during summer.
Likewise, the upward cusp currents near 12 MLT in Figure 10 take longer in summer (>20min) to dissipate
as compared to winter (<10 min). Our observations are in good agreement with Moretto et al. (2018), who
suggested that a weaker line‐tying of the magnetospheric field lines during winter can result in an easier
and quicker unwinding of current‐carrying flux tubes and therefore a faster decay period.

One advantage of using a deep learningmodel is that we can isolate and analyze the impact of different input
features by creating synthetic inputs. We took advantage of this capability to estimate the time scales of FAC
response and reconfiguration through simulated IMF transitions. We found that for a northward turning of
Bz, the NBZ currents develop with an e‐folding time of ∼8min and take ∼50 min to fully develop, whereas
R1 FACs decrease over a period of 60 min or more on the dayside (Figure 8). These time scales are in agree-
ment with Milan et al. (2018), who used principal component analysis and reported that NBZ currents
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typically take between 45 and 90min to fully develop. In comparison, McPherron et al. (2018) reported the
peak response of AMPERE‐derived dayside currents to an optimum coupling function (OPN) (McPherron
et al., 2015) as 40 min and nightside currents as 60 min. Milan et al. (2018) suggested that such time scales
could be interpreted as a signature of the expanding/contracting polar cap (ECPC) paradigm (Cowley &
Lockwood, 1992). Finally, the response of FACs to sudden transitions in IMF can be used to study inner
magnetosphere shielding. During periods of large and rapid fluctuations of IMF, the inner magnetosphere
shielding mechanism (Wolf et al., 2007) is expected to be perturbed, resulting in either undershielding or
overshielding of the inner magnetosphere (Jaggi & Wolf, 1973; Sazykin, 2000). For example, when IMF Bz
suddenly turns southward, the cross‐tail electric field should increase rapidly, whereas Region 2 FACs
(and thereby shielding electric field) takes time to readjust, allowing the “penetration” of convection electric
fields to subauroral latitudes. The Region 1 FACs are expected to respond immediately when IMF Bz
changes abruptly, whereas Region 2 FACs are expected to respond after a time lag. However, a closer exam-
ination of Figures 6 and 10 shows that our model predicts a nearly simultaneous formation of Region 1 and
Region 2 currents after the southward turning of IMF Bz. This finding is in agreement with recent
AMPERE‐based studies (Anderson et al., 2014, 2018), which show that the Region 1 and Region 2 FACs
develop together first on the dayside, later on the nightside, and finally develop into a complete Region
1/2 FAC pattern covering all MLTs. In such a scenario, it was suggested that penetration electric fields could
also be a result of fringing fields originating from local time gradients in currents (Anderson et al., 2014,
2018). A detailed investigation of the relative differences between the evolution of Region 1 and 2 FACs will
be pursued in a later effort.

5. Conclusions

In this paper, we present the first application of deep learning (ResNet CNN) architecture to model the
dynamics of the Birkeland current system in the Northern Hemisphere. The model uses a 1‐hr history of
solar wind and IMF parameters (Vx, Np, Bx, By, and Bz) along with geomagnetic indices (SML, SMU,
Sym‐H, and Asym‐H) and F10.7 flux to model the FACs. Our CNN model was trained on global FAC pat-
terns provided by the AMPERE project between 2010 and 2016. A comparison with statistical patterns
bin‐averaged by IMF Bz and By and by season showed that our CNN model successfully captured several
prominent features of the Birkeland current system such as the Region 1/Region 2, NBZ, and the cusp cur-
rents, along with their seasonal variability, under steady solar wind conditions. However, when the IMF was
variable and changed its orientation abruptly, our CNNmodel outperformed the statistical model in captur-
ing the time‐dependent evolution of FACs at different MLTs. Our model predictions suggest that FACs
decrease/grow in an exponential manner in response to an abrupt change in IMF. For example, when
IMF turns northward, the Region 1 currents fade with an e‐folding time that varies between 0.8 and 1.6 hr
depending on MLT, whereas the NBZ currents grow rapidly with an e‐folding time of ∼8min. These results
demonstrate that training deep learning models on large and nearly continuous data sets such as AMPERE
can provide new insights into the dynamics of solar wind‐magnetosphere‐ionosphere coupling, and such
models can outperform traditional bin‐averaged statistical patterns under realistic and variable IMF/solar
wind parameters.

Data Availability Statement

The Iridium‐derived AMPERE data used in this paper can be obtained from the AMPERE Science Center
(at http://ampere.jhuapl.edu/). The OMNI data used in this paper can be obtained from NASA/GSFC's
Space Physics Data Facility's CDAweb service (at http://cdaweb.gsfc.nasa.gov/).
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