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Abstract. — We form generating series, valued in the Chow group and the
arithmetic Chow group, of special divisors on the compactified integral model
of a Shimura variety associated to a unitary group of signature pn´ 1, 1q, and
prove their modularity. The main ingredient in the proof is the calculation of
vertical components appearing in the divisor of a Borcherds product on the
integral model.

Résumé (Modularité des séries génératrices de diviseurs sur les
variétés de Shimura unitaires)

Nous formons des séries génératrices, à valeurs dans le groupe de Chow
et dans le groupe de Chow arithmétique, formées des diviseurs spéciaux sur
le modèle intégral compact d’une variété de Shimura associée à un groupe
unitaire de signature pn ´ 1, 1q, et prouvons leur modularité. L’ingrédient
principal de la preuve est le calcul des composantes verticales apparaissantes
dans le diviseur d’un produit de Borcherds sur le modèle intégral.
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1. Introduction

The goal of this paper is to prove the modularity of a generating series

of special divisors on the compactified integral model of a Shimura variety

associated to a unitary group of signature pn ´ 1, 1q. The special divisors in

question were first studied on the open Shimura variety in [KR11, KR14],

and then on the toroidal compactification in [How15].

This generating series is an arithmetic analogue of the classical theta kernel

used to lift modular forms from Up2q and Upnq. In a similar vein, our modular

generating series can be used to define a lift from classical cuspidal modular

forms of weight n to the codimension one Chow group of the unitary Shimura

variety.

1.1. Statement of the main result. — Fix a quadratic imaginary field

k Ă C of odd discriminant discpkq “ ´D. We are concerned with the arith-

metic of a certain unitary Shimura variety, whose definition depends on the

choices of k-hermitian spaces W0 and W of signature p1, 0q and pn´ 1, 1q, re-

spectively, where n ě 3. We assume that W0 and W each admit an Ok-lattice

that is self-dual with respect to the hermitian form.

Attached to this data is a reductive algebraic group

(1.1.1) G Ă GUpW0q ˆGUpW q

over Q, defined as the subgroup on which the unitary similitude characters

are equal, and a compact open subgroup K Ă GpAf q depending on the above

choice of self-dual lattices. As explained in §2, there is an associated hermitian

symmetric domain D, and a Deligne-Mumford stack ShpG,Dq over k whose

complex points are identified with the orbifold quotient

ShpG,DqpCq “ GpQqzD ˆGpAf q{K.

This is the unitary Shimura variety of the title.

The stack ShpG,Dq can be interpreted as a moduli space of pairs pA0, Aq

in which A0 is an elliptic curve with complex multiplication by Ok, and A is
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a principally polarized abelian scheme of dimension n endowed with an Ok-

action. The pair pA0, Aq is required to satisfy some additional conditions,

which need not concern us in the introduction.

Using the moduli interpretation, one can construct an integral model of

ShpG,Dq over Ok. In fact, following work of Pappas and Krämer, we explain

in §2.3 that there are two natural integral models related by a morphism

SKra Ñ SPap. Each integral model has a canonical toroidal compactification

whose boundary is a disjoint union of smooth Cartier divisors, and the above

morphism extends uniquely to a morphism

(1.1.2) S˚Kra Ñ S˚Pap

of compactifications.

Each compactified integral model has its own desirable and undesirable

properties. For example, S˚Kra is regular, while S˚Pap is not. On the other

hand, every vertical (i.e. supported in nonzero characteristic) Weil divisor

on S˚Pap has nonempty intersection with the boundary, while S˚Kra has certain

exceptional divisors in characteristics p | D that do not meet the boundary.

An essential part of our method is to pass back and forth between these two

models in order to exploit the best properties of each. For simplicity, we will

state our main results in terms of the regular model S˚Kra.

In §2 we define a distinguished line bundle ω on SKra, called the line bundle

of weight one modular forms, and a family of Cartier divisors ZKrapmq indexed

by integers m ą 0. These special divisors were introduced in [KR11, KR14],

and studied further in [BHY15, How12, How15]. For the purposes of the

introduction, we note only that one should regard the divisors as arising from

embeddings of smaller unitary groups into G.

Denote by

Ch1
QpS˚Kraq – PicpS˚Kraq bZ Q

the Chow group of rational equivalence classes of divisors with Q coefficients.

Each special divisor ZKrapmq can be extended to a divisor on the toroidal

compactification simply by taking its Zariski closure, denoted Z˚Krapmq. The

total special divisor is defined as

(1.1.3) Ztot
Krapmq “ Z˚Krapmq ` BKrapmq P Ch1

QpS˚Kraq

where the boundary contribution is defined, as in (5.3.3), by

BKrapmq “
m

n´ 2

ÿ

Φ

#tx P L0 : xx, xy “ mu ¨ S˚KrapΦq.
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The notation here is the following: The sum is over the equivalence classes

of proper cusp label representatives Φ as defined in §3.1. These index the

connected components S˚KrapΦq Ă BS˚Kra of the boundaryp1q. Inside the sum,

pL0, x¨, ¨yq is a hermitian Ok-module of signature pn´ 2, 0q, which depends on

Φ.

The line bundle of modular forms ω admits a canonical extension to the

toroidal compactification, denoted the same way. For the sake of notational

uniformity, we extend (1.1.3) to m “ 0 by setting

(1.1.4) Ztot
Krap0q “ ω

´1 ` Exc P Ch1
QpS˚Kraq.

Here Exc is the exceptional divisor of Theorem 2.3.4. It is a reduced effective

divisor supported in characteristics p | D, disjoint from the boundary of the

compactification. The following result appears in the text as Theorem 7.1.5.

Theorem A. — Let χk : pZ{DZqˆ Ñ t˘1u be the Dirichlet character deter-

mined by k{Q. The formal generating series
ÿ

mě0

Ztot
Krapmq ¨ q

m P Ch1
QpS˚Kraqrrqss

is modular of weight n, level Γ0pDq, and character χnk in the following sense:

for every Q-linear functional α : Ch1
QpS˚Kraq Ñ C, the series

ÿ

mě0

αpZtot
Krapmqq ¨ q

m P Crrqss

is the q-expansion of a classical modular form of the indicated weight, level,

and character.

We can prove a stronger version of Theorem A. Denote by xCh
1

QpS˚Kraq the

Gillet-Soulé [GS90] arithmetic Chow group of rational equivalence classes of

pairs pZ “ pZ,Grq, where Z is a divisor on S˚Kra with rational coefficients,

and Gr is a Green function for Z. We allow the Green function to have

additional log-log singularities along the boundary, as in the more general

theory developed in [BGKK07]. See also [BBGK07, How15].

In §7.3 we use the theory of regularized theta lifts to construct Green func-

tions for the special divisors Ztot
Krapmq, and hence obtain arithmetic divisors

pZtot
Krapmq P

xCh
1

QpS˚Kraq

p1qAfter base change to C, each S˚KrapΦq decomposes into h connected components, where h

is the class number of k.
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for m ą 0. We also endow the line bundle ω with a metric, and the resulting

metrized line bundle pω defines a class

pZtot
Krap0q “ pω´1 ` pExc,´ logpDqq P xCh

1

QpS˚Kraq,

where the vertical divisor Exc has been endowed with the constant Green

function ´ logpDq. The following result is Theorem 7.3.1 in the text.

Theorem B. — The formal generating series

pφpτq “
ÿ

mě0

pZtot
Krapmq ¨ q

m P xCh
1

QpS˚Kraqrrqss

is modular of weight n, level Γ0pDq, and character χnk, where modularity is

understood in the same sense as Theorem A.

Remark 1.1.1. — As this article was being revised for publication, Wei

Zhang announced a proof of his arithmetic fundamental lemma, conjectured

in [Zh12]. Although the statement is a purely local result concerning inter-

sections of cycles on unitary Rapoport-Zink spaces, Zhang’s proof uses global

calculations on unitary Shimura varieties, and makes essential use of the mod-

ularity result of Theorem B. See [Zh19].

Remark 1.1.2. — Theorem B implies that the Q-span of the classes pZtot
Krapmq

is finite dimensional. See Remark 7.1.2.

Remark 1.1.3. — There is a second method of constructing Green functions

for the special divisors, based on the methods of [Kud97b], which gives rise to

a non-holomorphic variant of pφpτq. It is a recent theorem of Ehlen-Sankaran

[ES16] that Theorem B implies the modularity of this non-holomorphic gen-

erating series. See §7.4.

One motivation for the modularity result of Theorem B is that it allows one

to construct arithmetic theta lifts. If gpτq P SnpΓ0pDq, χ
n
kq is a classical scalar

valued cusp form, we may form the Petersson inner product

pθpgq
def
“ xpφ, gyPet P

xCh
1

CpS˚Kraq

as in [Kud04]. One expects, as in [loc. cit.], that the arithmetic intersection

pairing of pθpgq against other cycle classes should be related to derivatives of

L-functions, providing generalizations of the Gross-Zagier and Gross-Kohnen-

Zagier theorems. Specific instances in which this expectation is fulfilled can

be deduced from [BHY15, How12, How15]. This will be explained in the

companion paper [BHKRYa].
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As this paper is rather long, we explain in the next two subsections the

main ideas that go into the proof of Theorem A. The proof of Theorem B is

exactly the same, but one must keep track of Green functions.

1.2. Sketch of the proof, part I: the generic fiber. — In this subsection

we sketch the proof of modularity only in the generic fiber. That is, the

modularity of

(1.2.1)
ÿ

mě0

Ztot
Krapmq{k ¨ q

m P Ch1
QpS˚Kra{kqrrqss.

The key to the proof is the study of Borcherds products [Bor98, Bor99].

A Borcherds product is a meromorphic modular form on an orthogonal

Shimura variety, whose construction depends on a choice of weakly holomor-

phic input form, typically of negative weight. In our case the input form is

any

(1.2.2) fpτq “
ÿ

m"´8

cpmqqm PM !,8
2´npD,χ

n´2
k q,

where the superscripts ! and 8 indicate that the weakly holomorphic form

fpτq of weight 2´ n and level Γ0pDq is allowed to have a pole at the cusp 8,

but must be holomorphic at all other cusps. We assume also that all cpmq P Z.

Our Shimura variety ShpG,Dq admits a natural map to an orthogonal

Shimura variety. Indeed, the k-vector space

V “ HomkpW0,W q

admits a natural hermitian form x¨, ¨y of signature pn ´ 1, 1q, induced by the

hermitian forms on W0 and W . The natural action of G on V determines an

exact sequence

(1.2.3) 1 Ñ Resk{QGm Ñ GÑ UpV q Ñ 1

of reductive groups over Q.

We may also view V as a Q-vector space endowed with the quadratic form

Qpxq “ xx, xy of signature p2n ´ 2, 2q, and so obtain a homomorphism G Ñ

SOpV q. This induces a map from ShpG,Dq to the Shimura variety associated

with the group SOpV q.

After possibly replacing f by a nonzero integer multiple, Borcherds con-

structs a meromorphic modular form on the orthogonal Shimura variety, which
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can be pulled back to a meromorphic modular form on ShpG,DqpCq. The re-

sult is a meromorphic section ψpfq of ωk, where the weight

(1.2.4) k “
ÿ

r|D

γr ¨ crp0q P Z

is the integer defined in §5.3. The constant γr “
ś

p|r γp is a 4th root of unity

(with γ1 “ 1) and crp0q is the constant term of f at the cusp

8r “
r

D
P Γ0pDqzP1pQq,

in the sense of Definition 4.1.1.

Initially, ψpfq is characterized by specifying ´ log }ψpfq}, where } ¨ } is the

Petersson norm on ωk. In particular, ψpfq is only defined up to rescaling

by a complex number of absolute value 1 on each connected component of

ShpG,DqpCq. We prove that, after a suitable rescaling, ψpfq is the analytifi-

cation of a rational section of the line bundle ωk on ShpG,Dq. In other words,

the Borcherds product is algebraic and defined over the reflex field k. This

allows us to view ψpfq as a rational section of ωk both on the integral model

SKra, and on its toroidal compactification.

We compute the divisor of ψpfq on the generic fiber of the toroidal com-

pactification S˚Kra{k, and find

(1.2.5) divpψpfqq{k “
ÿ

mą0

cp´mq ¨ Ztot
Krapmq{k.

The calculation of the divisor on the interior SKra{k follows immediately from

the corresponding calculations of Borcherds on the orthogonal Shimura variety.

The multiplicities of the boundary components are computed using the results

of [Kud16], which describe the structure of the Fourier-Jacobi expansions of

ψpfq along the various boundary components.

The equality of divisors (1.2.5) implies the relation

k ¨ ω “
ÿ

mą0

cp´mq ¨ Ztot
Krapmq{k

in the Chow group Ch1
QpS˚Kra{kq. The cusp 81 “ 1{D is Γ0pDq-equivalent to

the usual cusp at 8, and so c1p0q “ cp0q. Substituting the expression (1.2.4)

for k into the left hand side and using (1.1.4) therefore yields the relation

(1.2.6)
ÿ

r|D
rą1

γrcrp0q ¨ ω “
ÿ

mě0

cp´mq ¨ Ztot
Krapmq{k
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in Ch1
QpS˚Kra{kq. In §4.2 we construct for each r | D an Eisenstein series

Erpτq “
ÿ

mě0

erpmq ¨ q
m PMnpD,χ

n
kq,

which, by a simple residue calculation, satisfies

crp0q “ ´
ÿ

mą0

cp´mqerpmq.

Substituting this expression into (1.2.6) yields

(1.2.7) 0 “
ÿ

mě0

cp´mq ¨
´

Ztot
Krapmq{k `

ÿ

r|D
rą1

γrerpmq ¨ ω
¯

,

where we have also used the relation erp0q “ 0 for r ą 1.

We now invoke a variant of the modularity criterion of [Bor99], which is

our Theorem 4.2.3: if a formal q-expansion
ÿ

mě0

dpmqqm P Crrqss

satisfies 0 “
ř

mě0 cp´mqdpmq for every input form (1.2.2), then it must be

the q-expansion of a modular form of weight n, level Γ0pDq, and character χnk.

It follows immediately from this and (1.2.7) that the formal q-expansion
ÿ

mě0

´

Ztot
Krapmq{k `

ÿ

r|D
rą1

γrerpmq ¨ ω
¯

¨ qm

is modular in the sense of Theorem A. Rewriting this as
ÿ

mě0

Ztot
Krapmq{k ¨ q

m `
ÿ

r|D
rą1

γrErpτq ¨ ω

and using the modularity of each Eisenstein series Erpτq, we deduce that

(1.2.1) is modular.

1.3. Sketch of the proof, part II: vertical components. — In order to

extend the arguments of §1.2 to prove Theorem A, it is clear that one should

attempt to compute the divisor of the Borcherds product ψpfq on the integral

model S˚Kra and hope for an expression similar to (1.2.5). Indeed, the bulk of

this paper is devoted to precisely this problem.

The subtlety is that both divpψpfqq and Ztot
Krapmq will turn out to have

vertical components supported in characteristics dividing D. Even worse, in

these bad characteristics the components of the exceptional divisor Exc Ă S˚Kra

do not intersect the boundary, and so the multiplicities of these components
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in the divisor of ψpfq cannot be detected by examining its Fourier-Jacobi

expansion.

This is where the second integral model S˚Pap plays an essential role. The

morphism (1.1.2) sits in a cartesian diagram

Exc //

��

S˚Kra

��
Sing // S˚Pap,

where the singular locus Sing Ă S˚Pap is the reduced closed substack of points

at which the structure morphism S˚Pap Ñ SpecpOkq is not smooth. It is 0-

dimensional and supported in characteristics dividing D. The right vertical

arrow restricts to an isomorphism

(1.3.1) S˚Kra r Exc – S˚Pap r Sing.

For each connected component s P π0pSingq the fiber

Excs “ ExcˆS˚Pap
s

is a smooth, irreducible, vertical Cartier divisor on S˚Kra, and Exc “
Ů

s Excs.

As the Ok-stack S˚Pap is proper and normal with normal fibers, every irre-

ducible vertical divisor on it is the reduction, modulo some prime of Ok, of

an entire connected (=irreducible) component. From this it follows that every

vertical divisor meets the boundary. Thus one could hope to use (1.3.1) to

view ψpfq as a rational section on S˚Pap, compute its divisor there by examining

Fourier-Jacobi expansions, and then pull that calculation back to S˚Kra.

This is essentially what we do, but there is an added complication. The

line bundle ω on (1.3.1) does not extend to S˚Pap, and similarly the divisor

Z˚Krapmq on (1.3.1) cannot be extended across the singular locus to a Cartier

divisor on S˚Pap. However, if you square the line bundle and the divisors, they

have much better behavior. This is the content of the following result, which

is an amalgamation of Theorems 2.4.3, 2.5.3, 2.6.3, and 3.7.1 of the text.

Theorem C. — There is a unique line bundle ΩPap on S˚Pap whose restriction

to (1.3.1) is isomorphic to ω2. Denoting by ΩKra its pullback to S˚Kra, there

is an isomorphism

ω2 – ΩKra bOpExcq.
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Similarly, there is a unique Cartier divisor Ytot
Pappmq on S˚Pap whose restriction

to (1.3.1) is equal to 2Ztot
Krapmq. Its pullback Ytot

Krapmq to S˚Kra satisfies

2Ztot
Krapmq “ Ytot

Krapmq `
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs.

Here Ls is a positive definite self-dual hermitian lattice of rank n associated

to the singular point s, and x¨ , ¨y is its hermitian form.

Setting Ytot
Papp0q “ Ω´1

Pap, we obtain a formal generating series

ÿ

mě0

Ytot
Pappmq ¨ q

m P Ch1
QpS˚Papqrrqss

whose pullback via S˚Kra Ñ S˚Pap is twice the generating series of Theorem

A, up to an error term coming from the exceptional divisors. More precisely,

Theorem C shows that the pullback is

2
ÿ

mě0

Ztot
Krapmq ¨ q

m ´
ÿ

sPπ0pSingq

ϑspτq ¨ Excs P Ch1
QpS˚Kraqrrqss,

where each ϑspτq is the classical theta function whose coefficients count points

in the positive definite hermitian lattice Ls.

Over (1.3.1) we have ω2k – Ωk
Pap, which allows us to view ψpfq2 as a

rational section of the line bundle Ωk
Pap on S˚Pap. We examine its Fourier-

Jacobi expansions along the boundary components and are able to compute

its divisor completely (it happens to include nontrivial vertical components).

We then pull this calculation back to S˚Kra, and find that ψpfq, when viewed

as a rational section of ωk, has divisor

divpψpfqq “
ÿ

mą0

cp´mq ¨ Ztot
Krapmq `

ÿ

r|D

γrcrp0q ¨
´Exc

2
`
ÿ

p|r

S˚Kra{Fp

¯

´
ÿ

mą0

cp´mq

2

ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs

´ k ¨ divpδq

where δ P Ok is a square root of ´D, p Ă Ok is the unique prime above p | D,

and S˚Kra{Fp
is the mod p fiber of S˚Kra, viewed as a divisor. This is stated in

the text as Theorem 5.3.3. Passing to the generic fiber recovers (1.2.5), as it

must.
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As in the argument leading to (1.2.7), this implies the relation

0 “
ÿ

mě0

cp´mq ¨

˜

Ztot
Krapmq ´

1

2

ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs

¸

`
ÿ

mě0

cp´mq ¨
ÿ

r|D
rą1

γrerpmq

˜

ω ´
Exc

2
´
ÿ

p|r

S˚Kra{Fp

¸

in the Chow group of S˚Kra, and the modularity criterion implies that

ÿ

mě0

Ztot
Krapmq ¨ q

m ´
1

2

ÿ

sPπ0pSingq

ϑspτq ¨ Excs

`
ÿ

r|D
rą1

γrErpτq ¨

˜

ω ´
Exc

2
´
ÿ

p|r

S˚Kra{Fp

¸

is a modular form. As each theta series ϑspτq and Eisenstein series Erpτq is

modular, so is
ř

Ztot
Krapmq ¨ q

m. This completes the outline of the proof of

Theorem A.

1.4. The structure of the paper. — We now briefly describe the contents

of the various sections of the paper.

In §2 we introduce the unitary Shimura variety associated to the group G of

(1.1.1), and explain its realization as a moduli space of pairs pA0, Aq of abelian

varieties with extra structure. We then review the integral models constructed

by Pappas and Krämer, and the singular and exceptional loci of these models.

These are related by a cartesian diagram

Exc //

��

SKra

��
Sing // SPap,

where the vertical arrow on the right is an isomorphism outside of the 0-

dimensional singular locus Sing. We also define the line bundle of modular

forms ω on SKra.

The first main result of §2 is Theorem 2.4.3, which asserts the existence of

a line bundle ΩPap on SPap restricting to ω2 over

SKra r Exc – SPap r Sing.
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We then define the Cartier divisor ZKrapmq on SKra and prove Theorem 2.5.3,

which asserts the existence of a Cartier divisor YPappmq on SPap whose restric-

tion to SPap r Sing coincides with 2ZKrapmq. Up to error terms supported on

the exceptional locus Exc, the pullbacks of ΩPap and YPappmq to SKra are there-

fore equal to ω2 and 2ZKrapmq, respectively. The error terms are computed in

Theorem 2.6.3, which is the analogue of Theorem C for the noncompactified

Shimura varieties.

In §3 we describe the canonical toroidal compactifications S˚Kra Ñ S˚Pap,

and the structure of their formal completions along the boundary. In §3.1

and §3.2 we introduce the cusp labels Φ that index the boundary components,

and their associated mixed Shimura varieties. In §3.3 we construct smooth

integral models CΦ of these mixed Shimura varieties, following the general

recipes of the theory of arithmetic toroidal compactification, as moduli spaces

of 1-motives. In §3.4 we give a second moduli interpretation of these integral

models. This is one of the key technical steps in our work, and allows us

to compare Fourier-Jacobi expansions on our unitary Shimura varieties to

Fourier-Jacobi expansions on orthogonal Shimura varieties. See the remarks

at the beginning of §3 for further discussion. In §3.5 and §3.6 we construct the

line bundle of modular forms and the special divisors on the mixed Shimura

varieties CΦ. Theorem 3.7.1 describes the canonical toroidal compactifications

S˚Kra and S˚Pap and their properties. In §3.8 we describe the Fourier-Jacobi

expansions of sections of ωk on S˚Kra in algebraic language, and in §3.9 we

explain how to express these Fourier-Jacobi coefficients in classical complex

analytic coordinates.

In the short §4 we introduce the weakly holomorphic modular forms that

will be used as inputs for the construction of Borcherds products. We also

state in Theorem 4.2.3 a variant of the modularity criterion of Borcherds.

In §5 we consider the unitary Borcherds products associated to weakly holo-

morphic forms

(1.4.1) f PM !,8
2´npD,χ

n´2
k q.

Ultimately, the integrality properties of the unitary Borcherds products will be

deduced from an analysis of their Fourier-Jacobi expansions. These expansions

involve certain products of Jacobi theta functions, and so, in §5 we review

facts about the arithmetic theory of Jacobi forms. For us, Jacobi forms will

be sections of a suitable line bundle Jk,m on the universal elliptic curve living

over the moduli stack (over Z) of all elliptic curves. The key point is to have
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a precise description of the divisor of the canonical section

Θ24 P H0pE ,J0,12q

of Proposition 5.1.4. In §5.2 we prove Borcherds quadratic identity, allowing

us to relate J0,1 to a certain line bundle (determined by a Borcherds product)

on the boundary component BΦ associated to a cusp label Φ.

After these technical preliminaries, we come to the statements of our main

results about unitary Borcherds products. Theorem 5.3.1 asserts that, for

each weakly holomorphic form (1.4.1) satisfying integrality conditions on the

Fourier coefficients cpmq with m ď 0, there is a rational section ψpfq of the line

bundle ωk on S˚Kra with explicit divisor on the generic fiber and prescribed

zeros and poles along each boundary component. Moreover, for each cusp

label Φ, the leading Fourier-Jacobi coefficient of ψpfq has an expression as

a product of three factors, two of which, P vertΦ and P horΦ , are constructed in

terms of Θ24. Theorem 5.3.3 gives the precise divisor of ψpfq on S˚Kra, and

Theorem 5.3.4 gives an analogous formula on S˚Pap. An essential ingredient in

the calculation of these divisors is the calculation of the divisors of the factors

P vertΦ and P horΦ , which is done in §5.4.

In §6 we prove the main results stated in §5.3. In §6.1 we construct a vector

valued form f̃ from (1.4.1), and give expressions for its Fourier coefficients in

terms of those of f . The vector valued form f̃ defines a Borcherds product

ψ̃pfq on the symmetric space D̃ for the orthogonal group of the quadratic

space pV,Qq and, in §6.2, we define the unitary Borcherds product ψpfq as its

pullback to D. In §6.3 we determine the analytic Fourier-Jacobi expansion of

ψpfq at the cusp Φ by pulling back the product formula for ψ̃pfq computed

in [Kud16] along a one-dimensional boundary component of D̃. In §6.4 we

show that the unitary Borcherds product constructed analytically arises from

a rational section of ωk and that, after rescaling by a constant of absolute

value 1, this section is defined over k. This is Proposition 6.4.4. In §6.5 we

complete the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

In §7 we use the calculation of the divisors of Borcherds products to prove

the modularity results discussed in detail earlier in the introduction.

In §8 we provide some supplementary technical calculations.

1.5. The case n “ 2. — Throughout the introduction we have assumed

that n ě 3, but one could ask if similar results hold for n “ 2. This seems to

be a delicate question.
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The assumption that n ě 3 guarantees that W contains an isotropic k-

line, which implies that ShpG,Dq has no compact (meaning proper over k)

components. When n “ 2 the Shimura variety ShpG,Dq is essentially a union

of classical modular curves (if W contains an isotropic k-line) or of compact

quaternionic Shimura curves (if W contains no isotropic k-line).

When n “ 2 one could still construct Borcherds products on ShpG,Dq as

pullbacks from orthogonal Shimura varies, and use the results of [HMP] to

prove that they are defined over the reflex field k. Analyzing their divisors

on the integral models SKra Ñ SPap seems quite difficult. The compact case

falls well outside the reach of our arguments, which rely in an essential way

on the anaysis of Fourier-Jacobi expansions near the boundary of a toroidal

compactification.

However, even in the noncompact n “ 2 case there are some technical issues

that we do not know how to resolve. Foremost among these is that when n “ 2

the reduction of SPap at a prime of Ok above D is not normal, and so (as in

the familiar case of modular curves) the reduction of an irreducible component

need not remain irreducible. This causes the proof of Proposition 6.5.2 to

break down in a serious way. In essence, we do not know how to exclude the

possibility that constants κΦ appearing in Proposition 6.4.1 contribute some

nontrivial error term to the divisor of the Borcherds product.

In §2 and §3 we assume n ě 2, but from §5 onwards we restrict to n ě 3

(the integer n plays no role in the short §4).

1.6. Thanks. — The results of this paper are the outcome of a long term

project, begun initially in Bonn in June of 2013, and supported in a crucial

way by three weeklong meetings at AIM, in Palo Alto (May of 2014) and San

Jose (November of 2015 and 2016), as part of their AIM SQuaRE’s program.

The opportunity to spend these periods of intensely focused efforts on the

problems involved was essential. We would like to thank the University of

Bonn and AIM for their support.

1.7. Notation. — Throughout the paper, k Ă C is a quadratic imaginary

field of odd discriminant discpkq “ ´D. Denote by δ “
?
´D P k the unique

choice of square root with Impδq ą 0, and by d “ δOk the different of Ok.

Fix a π P Ok satisfying Ok “ Z` Zπ. If S is any Ok-scheme, define

εS “ π b 1´ 1b iSpπq P Ok bZ OS

εS “ π b 1´ 1b iSpπq P Ok bZ OS ,
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where iS : Ok Ñ OS is the structure map. The ideal sheaves generated by

these sections are independent of the choice of π, and sit in exact sequences

of free OS-modules

0 Ñ pεSq Ñ Ok bZ OS
αbx ÞÑiSpαqx
ÝÝÝÝÝÝÝÝÑ OS Ñ 0

and

0 Ñ pεSq Ñ Ok bZ OS
αbx ÞÑiSpαqx
ÝÝÝÝÝÝÝÝÑ OS Ñ 0.

It is easy to see that εS ¨ εS “ 0, and that the images of pεSq and pεSq under

Ok bZ OS
αbx ÞÑiSpαqx
ÝÝÝÝÝÝÝÝÑ OS

Ok bZ OS
αbx ÞÑiSpαqx
ÝÝÝÝÝÝÝÝÑ OS ,

respectively, are both equal to the sub-sheaf dOS . This defines isomorphisms

of OS-modules

(1.7.1) pεSq – dOS – pεSq.

If N is an Ok bZ OS-module then N{εSN is the maximal quotient of N on

which Ok acts through the structure morphism iS : Ok Ñ OS , and N{εSN is

the maximal quotient on which Ok acts through the complex conjugate of the

structure morphism. If D P OˆS then more is true: there is a decomposition

(1.7.2) N “ εSN ‘ εSN,

and the summands are the maximal submodules on which Ok acts through

the structure morphism and its conjugate, respectively. From this discussion

it is clear that one should regard εS and εS as integral substitutes for the

orthogonal idempotents in kbQC – CˆC. The Ok-scheme S will usually be

clear from context, and we abbreviate εS and εS to ε and ε.

Let kab Ă C be the maximal abelian extension of k in C, and let

art : kˆzpkˆ Ñ Galpkab{kq

be the Artin map of class field theory, normalized as in [Mil05, §11]. As usual,

S “ ResC{RGm is Deligne’s torus.

For a prime p ď 8 we write pa, bqp for the Hilbert symbol of a, b P Qˆp .

Recall that the invariant of a hermitian space V over kp “ kbQQp is defined

by

invppV q “ pdetV,´Dqp,(1.7.3)

where detV is the determinant of the matrix of the hermitian form with

respect to a kp-basis. If p ă 8 then V is determined up to isomorphism by
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its kp-rank and invariant. If p “ 8 then V is determined up to isomorphism

by its signature pr, sq, and its invariant is inv8pV q “ p´1qs.

The term stack always means Deligne-Mumford stack.

2. Unitary Shimura varieties

In this section we define a unitary Shimura variety ShpG,Dq over our

quadratic imaginary field k Ă C and describe its moduli interpretation. We

then recall the work of Pappas and Krämer, which provides us with two inte-

gral models related by a surjection SKra Ñ SPap. This surjection becomes an

isomorphism after restriction to Okr1{Ds. We define a line bundle of weight

one modular forms ω and a family of Cartier divisors ZKrapmq, m ą 0, on

SKra,

The line bundle ω and the divisors ZKrapmq do not descend to SPap, and

the main original material in §2 is the construction of suitable substitutes on

SPap. These substitutes consist of a line bundle ΩPap that agrees with ω2

after restricting to Okr1{Ds, and Cartier divisors YPappmq that agree with

2ZKrapmq after restricting to Okr1{Ds.

2.1. The Shimura variety. — Let W0 and W be k-vector spaces endowed

with hermitian forms H0 and H of signatures p1, 0q and pn´1, 1q, respectively.

We always assume that n ě 2. Abbreviate

W pRq “W bQ R, W pCq “W bQ C, W pAf q “W bQ Af ,

and similarly for W0. In particular, W0pRq and W pRq are hermitian spaces

over C “ k bQ R.

We assume the existence of Ok-lattices a0 ĂW0 and a ĂW , self-dual with

respect to the hermitian forms H0 and H. As the inverse of δ “
?
´D P k

generates the inverse different of k{Q, this is equivalent to self-duality with

respect to the symplectic forms

(2.1.1) ψ0pw,w
1q “ Trk{QH0pδ

´1w,w1q, ψpw,w1q “ Trk{QHpδ
´1w,w1q.

This data will remain fixed throughout the paper.

As in (1.1.1), let G Ă GUpW0qˆGUpW q be the subgroup of pairs for which

the similitude factors are equal. We denote by ν : G Ñ Gm the common

similitude character, and note that νpGpRqq Ă Rą0.

Let DpW0q “ ty0u be a one-point set, and define

(2.1.2) DpW q “ tnegative definite C-planes y ĂW pRqu,
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so that GpRq acts on the connected hermitian domain

D “ DpW0q ˆDpW q.

The lattices a0 and a determine a maximal compact open subgroup

(2.1.3) K “
 

g P GpAf q : gpa0 “ pa0 and gpa “ pa
(

Ă GpAf q,

and the orbifold quotient

ShpG,DqpCq “ GpQqzD ˆGpAf q{K

is the space of complex points of a smooth k-stack of dimension n´1, denoted

ShpG,Dq.
The symplectic forms (2.1.1) determine a k-conjugate-linear isomorphism

(2.1.4) HomkpW0,W q
x ÞÑx_
ÝÝÝÝÑ HomkpW,W0q,

characterized by ψpxw0, wq “ ψ0pw0, x
_wq. The k-vector space

V “ HomkpW0,W q

carries a hermitian form of signature pn´ 1, 1q defined by

(2.1.5) xx1, x2y “ x_2 ˝ x1 P EndkpW0q – k.

The group G acts on V in a natural way, defining an exact sequence (1.2.3).

The hermitian form on V induces a quadratic form Qpxq “ xx, xy, with

associated Q-bilinear form

(2.1.6) rx, ys “ Trk{Qxx, yy.

In particular, we obtain a representation GÑ SOpV q.

Proposition 2.1.1. — The stack ShpG,Dq{C has 21´opDqh2 connected com-

ponents, where h is the class number of k and opDq is the number of prime

divisors of D.

Proof. — Each g P GpAf q determines Ok-lattices

ga0 “W0 X gpa0, ga “W X gpa.

The hermitian forms H0 and H need not be Ok-valued on these lattices. How-

ever, if ratpνpgqq denotes the unique positive rational number such that

νpgq

ratpνpgqq
P pZˆ

then the rescaled hermitian forms ratpνpgqq´1H0 and ratpνpgqq´1H make ga0

and ga into self-dual hermitian lattices.
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As D is connected, the components of ShpG,Dq{C are in bijection with the

set GpQqzGpAf q{K. The function g ÞÑ pga0, gaq establishes a bijection from

GpQqzGpAf q{K to the set of isometry classes of pairs of self-dual hermitian Ok-

lattices pa10, a
1q of signatures p1, 0q and pn´1, 1q, respectively, for which the self-

dual hermitian lattice HomOk
pa10, a

1q lies in the same genus as HomOk
pa0, aq Ă

V .

Using the fact that SUpV q satisfies strong approximation, one can show that

there are exactly 21´opDqh isometry classes in the genus of HomOk
pa0, aq, and

each isometry class arises from exactly h isometry classes of pairs pa10, a
1q.

It will be useful at times to have other interpretations of the hermitian

domain D. The following remarks provide alternate points of view. Recalling

the idempotents ε, ε P kbQC of §1.7, define isomorphisms of real vector spaces

(2.1.7) prε : W pRq – εW pCq, prε : W pRq – εW pCq

as, respectively, the compositions

W pRq ãÑW pCq “ εW pCq ‘ εW pCq proj.
ÝÝÝÑ εW pCq

W pRq ãÑW pCq “ εW pCq ‘ εW pCq proj.
ÝÝÝÑ εW pCq.

Remark 2.1.2. — Each pair z “ py0, yq P D determines a line prεpyq Ă

W pCq, and hence a line

z “ HomCpW0pCq{εW0pCq, prεpyqq Ă εV pCq.

This construction identifies

D –
 

z P εV pCq : rz, zs ă 0
(

{Cˆ Ă PpεV pCqq

as an open subset of projective space.

Remark 2.1.3. — Define a Hodge structure

F 1W0pCq “ 0, F 0W0pCq “ εW0pCq, F´1W0pCq “W0pCq

on W0pCq, and identify the unique point y0 P DpW0q with the corresponding

morphism SÑ GUpW0qR. Every y P DpW q defines a Hodge structure

F 1W pCq “ 0, F 0W pCq “ prεpyq ‘ prεpy
Kq, F´1W pCq “W pCq

on W pCq. If we identify y P DpW q with the corresponding morphism S Ñ
GUpW qR, then for any point z “ py0, yq P D the product morphism

y0 ˆ y : SÑ GUpW0qR ˆGUpW qR

takes values in GR. This realizes D Ă HompS, GRq as a GpRq-conjugacy class.
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Remark 2.1.4. — In fact, the discussion above shows that ShpG,Dq ad-

mits a map to the Shimura variety defined the group UpV q together with the

homomorphism

hGross : SÑ UpV qpRq, z ÞÑ diagp1, . . . , 1, z̄{zq.

Here we have chosen a basis for V pRq for which the hermitian form has matrix

diagp1n´1,´1q. Note that, for analogous choices of bases for W0pRq and W pRq,
the corresponding map is

h : SÑ GpRq, z ÞÑ pzq ˆ diagpz, . . . , z, z̄q,

which, under composition with the homomorphism GpRq Ñ UpV qpRq, gives

hGross. The existence of this map provides an answer to a question posed by

Gross: how can one explicitly relate the Shimura variety defined by the unitary

group UpV q, as opposed to the Shimura variety defined by the similitude group

GUpV q, to a moduli space of abelian varieties? Our answer is that Gross’s

unitary Shimura variety is a quotient of our ShpG,Dq, whose interpretation as

a moduli space is explained in the next section.

2.2. Moduli interpretation. — We wish to interpret ShpG,Dq as a moduli

space of pairs of abelian varieties with additional structure. First, we recall

some generalities on abelian schemes.

For an abelian scheme π : A Ñ S over an arbitrary base S, define the

first relative de Rham cohomology sheaf H1
dRpAq “ R1π˚Ω

‚
A{S as the rela-

tive hypercohomology of the de Rham complex Ω‚A{S . The relative de Rham

homology

HdR
1 pAq “ HompH1

dRpAq,OSq

is a locally free OS-module of rank 2 ¨ dimpAq, sitting in an exact sequence

0 Ñ F 0HdR
1 pAq Ñ HdR

1 pAq Ñ LiepAq Ñ 0.

Any polarization of A induces an OS-valued alternating pairing on HdR
1 pAq,

which in turn induces a pairing

(2.2.1) F 0HdR
1 pAq b LiepAq Ñ OS .

If the polarization is principal then both pairings are perfect. When S “

SpecpCq, Betti homology satisfies H1pApCq,Cq – HdR
1 pAq, and

ApCq – H1pApCq,ZqzHdR
1 pAq{F 0HdR

1 pAq.

For any pair of nonnegative integers ps, tq, define an algebraic stack Mps,tq

over k as follows: for any k-scheme S let Mps,tqpSq be the groupoid of triples

pA, ι, ψq in which
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– AÑ S is an abelian scheme of relative dimension s` t,

– ι : Ok Ñ EndpAq is an action such that the locally free summands

LiepAq “ εLiepAq ‘ εLiepAq

of (1.7.2) have OS-ranks s and t, respectively,

– ψ : A Ñ A_ is a principal polarization, such that the induced Rosati

involution : on End0pAq satisfies ιpαq: “ ιpαq for all α P Ok.

We usually omit ι and ψ from the notation, and just write A PMps,tqpSq.

Proposition 2.2.1. — The Shimura variety ShpG,Dq is isomorphic to an

open and closed substack

(2.2.2) ShpG,Dq ĂMp1,0q ˆk Mpn´1,1q.

More precisely, ShpG,DqpSq classifies, for any k-scheme S, pairs

(2.2.3) pA0, Aq PMp1,0qpSq ˆMpn´1,1qpSq

for which there exists, at every geometric point s Ñ S, an isomorphism of

hermitian Ok,`-modules

(2.2.4) HomOk
pT`A0,s, T`Asq – HomOk

pa0, aq b Z`
for every prime `. Here the hermitian form on the right hand side of (2.2.4)

is the restriction of the hermitian form (2.1.5) on HomkpW0,W q b Q`. The

hermitian form on the left hand side is defined similarly, replacing the sym-

plectic forms (2.1.1) on W0 and W with the Weil pairings on the Tate modules

T`A0,s and T`As.

Proof. — As this is routine, we only describe the open and closed immersion

on complex points. Fix a point

pz, gq P ShpG,DqpCq.

The component g determines Ok-lattices ga0 Ă W0 and ga Ă W , which are

self-dual with respect to the symplectic forms

ratpνpgqq´1ψ0 and ratpνpgqq´1ψ

of (2.1.1), rescaled as in the proof of Proposition 2.1.1.

By Remark 2.1.3 the point z P D determines Hodge structures on W0 and

W , and in this way pz, gq determines principally polarized complex abelian

varieties

A0pCq “ ga0zW0pCq{F 0pW0q

ApCq “ gazW pCq{F 0pW q
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with actions of Ok. One can easily check that the pair pA0, Aq determines a

complex point of Mp1,0q ˆk Mpn´1,1q, and this construction defines (2.2.2) on

complex points.

The following lemma will be needed in §2.3 for the construction of integral

models for ShpG,Dq.

Lemma 2.2.2. — Fix a k-scheme S, a geometric point s Ñ S, a prime p,

and a point (2.2.3). If the relation (2.2.4) holds for all ` ‰ p, then it also

holds for ` “ p.

Proof. — As the stack ShpG,Dq is of finite type over k, we may assume that

s “ SpecpCq. The polarizations on A0 and A induce symplectic forms on the

first homology groups H1pA0,spCq,Zq and H1pAspCq,Zq, and the construction

(2.1.5) makes

LBepA0,s, Asq “ HomOk

`

H1pA0,spCq,Zq, H1pAspCq,Zq
˘

into a self-dual hermitian Ok-lattice of signature pn´ 1, 1q, satisfying

LBepA0,s, Asq bZ Z` – HomOk
pT`A0,s, T`Asq

for all primes `.

If the relation (2.2.4) holds for all primes ` ‰ p, then LBepA0,s, Asq b Q
and HomkpW0,W q are isomorphic as k-hermitian spaces everywhere locally

except at p, and so they are isomorphic at p as well. In particular, for every

` (including ` “ p) both sides of (2.2.4) are isomorphic to self-dual lattices

in the hermitian space HomkpW0,W q bQ Q`. By the results of Jacobowitz

[Jac62] all self-dual lattices in this local hermitian space are isomorphicp2q,

and so (2.2.4) holds for all `.

Remark 2.2.3. — For any positive integer m define

Kpmq “ ker
`

K Ñ AutOk
ppa0{mpa0q ˆAutOk

ppa{mpaq
˘

.

For a k-scheme S, a Kpmq-structure on pA0, Aq P ShpG,DqpSq is a triple

pα0, α, ζq in which ζ : µm – Z{mZ is an isomorphism of S-group schemes, and

α0 : A0rms – pa0{mpa0, α : Arms – pa{mpa

are Ok-linear isomorphisms identifying the Weil pairings on A0rms and Arms

with the Z{mZ-valued symplectic forms on pa0{mpa0 and pa{mpa deduced from

the pairings (2.1.1). The Shimura variety GpQqzD ˆ GpAf q{Kpmq admits a

canonical model over k, parametrizing Kpmq-structures on points of ShpG,Dq.

p2qThis uses our standing hypothesis that D is odd.
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2.3. Integral models. — In this subsection we describe two integral models

of ShpG,Dq over Ok, related by a morphism SKra Ñ SPap.

The first step is to construct an integral model of the moduli space Mp1,0q.

More generally, we will construct an integral model of Mps,0q for any s ą 0.

Define an Ok-stack Mps,0q as the moduli space of triples pA, ι, ψq over Ok-

schemes S such that

– AÑ S is an abelian scheme of relative dimension s,

– ι : Ok Ñ EndpAq is an action such εLiepAq “ 0, or, equivalently, such

that the induced action of Ok on the OS-module LiepAq is through the

structure map iS : Ok Ñ OS ,

– ψ : A Ñ A_ is a principal polarization whose Rosati involution satisfies

ιpαq: “ ιpαq for all α P Ok.

The stack Mps,0q is smooth of relative dimension 0 over Ok by [How15, Propo-

sition 2.1.2], and its generic fiber is the stack Mps,0q defined earlier.

Remark 2.3.1. — The stack Mpn´2,0q will play an important role in §3.

In the degenerate case n “ 2, we interpret this as Mp0,0q “ SpecpOkq. The

universal abelian scheme over it should be understood as the 0 group scheme.

The question of integral models for Mpn´1,1q is more subtle, but well-

understood after work of Pappas and Krämer. The first integral model was

defined by Pappas [Pap00]. Let

MPap
pn´1,1q Ñ SpecpOkq

be the stack whose functor of points assigns to an Ok-scheme S the groupoid

of triples pA, ι, ψq in which

– AÑ S is an abelian scheme of relative dimension n,

– ι : Ok Ñ EndpAq is an action satisfying the determinant condition

detpT ´ ιpαq | LiepAqq “ pT ´ αqn´1pT ´ αq P OSrT s

for all α P Ok,

– ψ : A Ñ A_ is a principal polarization whose Rosati involution satisfies

ιpαq: “ ιpαq for all α P Ok,

– viewing the elements εS and εS of §1.7 as endomorphisms of LiepAq, the

induced endomorphisms
ľn

εS :
ľn

LiepAq Ñ
ľn

LiepAq
ľ2

εS :
ľ2

LiepAq Ñ
ľ2

LiepAq

are trivial (Pappas’s wedge condition).
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It is clear that the generic fiber of MPap
pn´1,1q is isomorphic to the moduli space

Mpn´1,1q defined earlier. Denote by

Singpn´1,1q ĂMPap
pn´1,1q

the singular locus: the reduced substack of points at which the structure

morphism to Ok is not smooth.

Theorem 2.3.2 (Pappas). — The stack MPap
pn´1,1q is flat over Ok of relative

dimension n´ 1, and is Cohen-Macaulay and normal. Moreover:

1. For any prime p Ă Ok, the reduction MPap
pn´1,1q{Fp

is Cohen-Macaulay. If

n ą 2 the reduction is geometrically normal.

2. The singular locus is a 0-dimensional stack, finite over Ok and supported

in characteristics dividing D. It is the reduced substack underlying the

closed substack defined by δ ¨ LiepAq “ 0.

Proof. — When n ą 2 all of this is proved in [Pap00] using the theory of local

models, and it is straightforward to check that the arguments carry overp3q to

the case n “ 2. The only change is that if p Ă Ok lies above p | D, the stack

MPap
p1,1q{Ok,p

is étale locally isomorphic to

SpecpOk,prx, ys{pxy ´ pqq,

whose special fiber is not normal.

The stack MPap
pn´1,1q is not regular, but has a natural resolution of singular-

ities. This leads us to our second integral model of Mpn´1,1q. As in the work

of Krämer [Krä03], define

MKra
pn´1,1q Ñ SpecpOkq

to be the stack whose functor of points assigns to an Ok-scheme S the groupoid

of quadruples pA, ι, ψ,FAq in which

– AÑ S is an abelian scheme of relative dimension n,

– ι : Ok Ñ EndpAq is an action of Ok,

– ψ : A Ñ A_ is a principal polarization satisfying ιpαq: “ ιpαq for all

α P Ok,

p3qWhen n “ 2, the Ok-stack MPap
pn´1,1q admits a canonical descent to Z, and Pappas analyzes

the structure of this descent. The descent is regular, but the regularity is destroyed by base

change to Ok.
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– FA Ă LiepAq is an Ok-stable OS-module local direct summand of rank

n ´ 1 satisfying Krämer’s condition: Ok acts on FA via the structure

map Ok Ñ OS , and acts on the line bundle LiepAq{FA via the complex

conjugate of the structure map.

There is a proper morphism

(2.3.1) MKra
pn´1,1q ÑMPap

pn´1,1q.

defined by forgetting the subsheaf FA, and we define the exceptional locus

(2.3.2) Excpn´1,1q ĂMKra
pn´1,1q

by the Cartesian diagram

Excpn´1,1q
//

��

MKra
pn´1,1q

��

Singpn´1,1q
//MPap

pn´1,1q.

Theorem 2.3.3 (Krämer). — The Ok-stack MKra
pn´1,1q is regular and flat

with reduced fibers, and satisfies the following properties:

1. The exceptional locus (2.3.2) is a disjoint union of smooth Cartier divi-

sors. Its fiber over a geometric point s Ñ Singpn´1,1q is isomorphic to

the projective space Pn´1 over kpsq.

2. The morphism (2.3.1) is proper and surjective, and restricts to an iso-

morphism

MKra
pn´1,1q r Excpn´1,1q –MPap

pn´1,1q r Singpn´1,1q.

For an Ok-scheme S, the inverse of this isomorphism endows

A P
`

MPap
pn´1,1q r Singpn´1,1q

˘

pSq

with the subsheaf FA “ ker
`

ε : LiepAq Ñ LiepAq
˘

.

Proof. — When n ą 2 all of this is proved in [Krä03] using the theory of local

models, and it is straightforward to check that nearly everythingp4q carries over

p4qWhen n ą 2, the statement of [Krä03, Theorem 4.4] asserts that the special fiber of the

local model of MKra
pn´1,1q is the union of two smooth and geometrically irreducible varieties

of dimension n´ 1, whose intersection is smooth and geometrically irreducible of dimension

n´2. When n “ 2, the structure of the local model is slightly different: its geometric special

fiber is a union X1YX2YX3 of three irreducible varieties, each isomorphic to P1, intersecting

in such a way that X1XX2 and X2XX3 are distinct reduced points. The difference between

the two cases occurs because the scheme Q defined in the proof of [Krä03, Theorem 4.4],
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to the case n “ 2. In particular, if n “ 2 and p Ă Ok lies above p | D, the same

arguments used in [loc. cit.] show that MKra
p1,1q{Ok,p

is étale locally isomorphic

to the regular scheme

SpecpOk,prx, ys{pxy ´ πqq,

for any uniformizer π P Ok,p.

Recalling (2.2.2), we define our first integral model

SPap ĂMp1,0q ˆMPap
pn´1,1q

as the Zariski closure of ShpG,Dq in the fiber product on the right, which, like

all fiber products below, is taken over over SpecpOkq. Using Lemma 2.2.2,

one can show that it is characterized as the open and closed substack whose

functor of points assigns to any Ok-scheme S the groupoid of pairs

pA0, Aq PMp1,0qpSq ˆMPap
pn´1,1qpSq

such that, at any geometric point s Ñ S, the relation (2.2.4) holds for all

primes ` ‰ charpkpsqq.

Our second integral model of ShpG,Dq is defined as the cartesian product

SKra
//

��

Mp1,0q ˆMKra
pn´1,1q

��

SPap
//Mp1,0q ˆMPap

pn´1,1q.

The singular locus Sing Ă SPap and exceptional locus Exc Ă SKra are defined

by the cartesian squares

Exc //

��

SKra

��
Sing //

��

SPap

��

Mp1,0q ˆ Singpn´1,1q
//Mp1,0q ˆMPap

pn´1,1q.

Both loci are proper over Ok, and supported in characteristics dividing D.

which parametrizes isotropic lines in a quadratic space of dimension n over a finite field, is

geometrically irreducible only when n ą 2.
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Theorem 2.3.4 (Pappas, Krämer). — The Ok-stack SKra is regular and

flat with reduced fibers. The Ok-stack SPap is Cohen-Macaulay and normal,

with Cohen-Macaulay fibers. Furthermore:

1. If n ą 2, the geometric fibers of SPap are normal.

2. The exceptional locus Exc Ă SKra is a disjoint union of smooth Cartier

divisors. The singular locus Sing Ă SPap is a reduced closed stack of

dimension 0, supported in characteristics dividing D.

3. The fiber of Exc over a geometric point s Ñ Sing is isomorphic to the

projective space Pn´1 over kpsq.

4. The morphism SKra Ñ SPap is surjective, and restricts to an isomorphism

(2.3.3) SKra r Exc – SPap r Sing.

For an Ok-scheme S, the inverse of this isomorphism endows

pA0, Aq P
`

SPap r Sing
˘

pSq

with the subsheaf FA “ ker
`

ε : LiepAq Ñ LiepAq
˘

.

Proof. — All of this follows from Theorems 2.3.2 and 2.3.3, along with the

fact that Mp1,0q Ñ SpecpOkq is finite étale.

Remark 2.3.5. — Let pA0, Aq be the universal pair over SPap. The vector

bundle HdR
1 pA0q is locally free of rank one over OkbZOSPap

and, by definition

of the moduli problem defining SPap, its quotient LiepA0q is annihilated by ε.

From this it is not hard to see that

F 0HdR
1 pA0q “ εHdR

1 pA0q.

2.4. The line bundle of modular forms. — We now construct a line bun-

dle of modular forms ω on SKra, and consider the subtle question of whether

or not it descends to SPap. The short answer is that it doesn’t, but a more

complete answer can be found in Theorems 2.4.3 and 2.6.3.

By Remark 2.1.3, every point z P D determines Hodge structures on W0

and W of weight ´1, and hence a Hodge structure of weight 0 on V “

HomkpW0,W q. Consider the holomorphic line bundle ωan on D whose fiber

at z is the complex line ωanz “ F 1V pCq determined by this Hodge structure.

Remark 2.4.1. — It is useful to interpret ωan in the notation of Remark

2.1.2. The fiber of ωan at z “ py0, yq is the line

(2.4.1) ωanz “ HomCpW0pCq{εW0pCq, prεpyqq Ă εV pCq,
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and hence ωan is simply the restriction of the tautological bundle via the

inclusion

D –
 

w P εV pCq : rw,ws ă 0
(

{Cˆ Ă PpεV pCqq.

There is a natural action of GpRq on the total space of ωan, lifting the

natural action on D, and so ωan descends to a line bundle on the complex

orbifold ShpG,DqpCq. This descent is algebraic, has a canonical model over

the reflex field, and extends in a natural way to the integral model SKra, as

we now explain.

Let pA0, Aq be the universal object over SKra, let FA Ă LiepAq be the

universal subsheaf of Krämer’s moduli problem, and let

FKA Ă F 0HdR
1 pAq

be the orthogonal to FA under the pairing (2.2.1). It is a rank one OSKra
-

module local direct summand on which Ok acts through the structure mor-

phism Ok Ñ OSKra
. Define the line bundle of weight one modular forms on

SKra by

ω “ HompLiepA0q,FKA q,
or, equivalently, ω´1 “ LiepA0q b LiepAq{FA.

Proposition 2.4.2. — The line bundle ω on SKra just defined restricts to

the already defined ωan in the complex fiber. Moreover, on the complement of

the exceptional locus Exc Ă SKra we have

ω “ HompLiepA0q, εF
0HdR

1 pAqq.

Proof. — The equality FKA “ εF 0HdR
1 pAq on the complement of Exc follows

from the characterization

FA “ kerpε : LiepAq Ñ LiepAqq

of Theorem 2.3.4, and all of the claims follow easily from this and examination

of the proof of Proposition 2.2.1.

The line bundle ω does not descend to SPap, but it is closely related to

another line bundle that does. This is the content of the following theorem,

whose proof will occupy the remainder of §2.4. The result will be strengthened

in Theorem 2.6.3.

Theorem 2.4.3. — There is a unique line bundle ΩPap on SPap whose re-

striction to the nonsingular locus (2.3.3) is isomorphic to ω2. We denote by

ΩKra its pullback via SKra Ñ SPap.
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Proof. — Let pA0, Aq be the universal object over SPap, and recall the short

exact sequence

0 Ñ F 0HdR
1 pAq Ñ HdR

1 pAq
q
ÝÑ LiepAq Ñ 0

of vector bundles on SPap. As HdR
1 pAq is a locally free Ok bZ OSPap

-module

of rank n, the quotient HdR
1 pAq{εHdR

1 pAq is a rank n vector bundle.

Define a line bundle

PPap “ Hom
´

ľn
HdR

1 pAq{εHdR
1 pAq,

ľn
LiepAq

¯

on SPap, and denote by PKra its pullback via SKra Ñ SPap. Let

ψ : HdR
1 pAq bHdR

1 pAq Ñ OSPap

be the alternating pairing induced by the principal polarization on A. If a and

b are local sections of HdR
1 pAq, define a local section Pabb of PPap by

Pabbpe1 ^ ¨ ¨ ¨ ^ enq “
n
ÿ

k“1

p´1qk`1 ¨ ψpεa, ekq ¨ qpεbq ^ qpe1q ^ ¨ ¨ ¨ ^ qpenq
loooooooooomoooooooooon

omit qpekq

.

Remark 2.4.4. — To see that Pabb is well-defined, one must check that

modifying any ek by a section of εHdR
1 pAq leaves the right hand side unchanged.

This is an easy consequence of the vanishing of
ľ2

ε :
ľ2

LiepAq Ñ
ľ2

LiepAq

imposed in the moduli problem defining SPap.

Lemma 2.4.5. — The morphism

(2.4.2) P : HdR
1 pAq bHdR

1 pAq Ñ PPap

defined by ab b ÞÑ Pabb factors through a morphism

P : LiepAq b LiepAq Ñ PPap.

After pullback to SKra there is a further factorization

(2.4.3) P : LiepAq{FA b LiepAq{FA Ñ PKra,

and this map becomes an isomorphism after restriction to SKra r Exc .

Proof. — Let a and b be local sections of HdR
1 pAq.

Assume first that a is contained in F 0HdR
1 pAq. As F 0HdR

1 pAq is isotropic

under the pairing ψ, Pabb factors through a map
ľn

LiepAq{εLiepAq Ñ
ľn

LiepAq.
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In the generic fiber of SPap, the sheaf LiepAq{εLiepAq is a vector bundle of

rank n ´ 1. This proves that Pabb is trivial over the generic fiber. As Pabb
is a morphism of vector bundles on a flat Ok-stack, we deduce that Pabb “ 0

identically on SPap.

If instead b is contained in F 0HdR
1 pAq then qpεbq “ 0, and again Pabb “ 0.

These calculations prove that P factors through LiepAq b LiepAq.

Now pullback to SKra. We need to check that Pabb vanishes if either of a

or b lies in FA. Once again it suffices to check this in the generic fiber, where

it is clear from

(2.4.4) FA “ kerpε : LiepAq Ñ LiepAqq.

Over SKra we now have a factorization (2.4.3), and it only remains to check

that its restriction to (2.3.3) is an isomorphism. For this, it suffices to verify

that (2.4.3) is surjective on the fiber at any geometric point

s “ SpecpFq Ñ SKra r Exc.

First suppose that charpFq is prime to D. In this case ε, ε P Ok bZ F are

(up to scaling by Fˆ) orthogonal idempotents, FAs “ εLiepAsq, and we may

choose an Ok bZ F-basis e1, . . . , en P H
dR
1 pAsq in such a way that

εe1, εe2, . . . , εen P F
0HdR

1 pAsq

and

qpεe1q, qpεe2q, . . . , qpεenq P LiepAsq

are F-bases. This implies that

Pe1be1pe1 ^ ¨ ¨ ¨ ^ enq “ ψpεe1, εe1q ¨ qpεe1q ^ qpεe2q ^ ¨ ¨ ¨ ^ qpεenq ‰ 0,

and so

Pe1be1 P Hom
`

ľn
HdR

1 pAsq{εH
dR
1 pAsq,

ľn
LiepAsq

˘

is a generator. Thus P is surjective in the fiber at z.

Now suppose that charpFq divides D. In this case there is an isomorphism

Frxs{px2q
x ÞÑε“ε
ÝÝÝÝÑ Ok bZ F.

By Theorem 2.3.4 the relation (2.4.4) holds in an étale neighborhood of s, and

it follows that we may choose an Ok bZ F-basis e1, . . . , en P H
dR
1 pAsq in such

a way that

e2, εe2, εe3, . . . , εen P F
0HdR

1 pAsq

and

qpe1q, qpεe1q, qpe3q . . . , qpenq P LiepAsq
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are F-bases. This implies that

Pe1be1pe1 ^ ¨ ¨ ¨ ^ enq “ ψpεe1, e2q ¨ qpεe1q ^ qpe1q ^ qpe3q ^ ¨ ¨ ¨ ^ qpenq ‰ 0,

and so, as above, P is surjective in the fiber at z.

We now complete the proof of Theorem 2.4.3. To prove the existence part

of the claim, we define ΩPap by

Ω´1
Pap “ LiepA0q

b2 b PPap,

and let ΩKra be its pullback via SKra Ñ SPap. Tensoring both sides of (2.4.3)

with LiepA0q
b2 defines a morphism

ω´2 Ñ Ω´1
Kra,

whose restriction to SKra rExc is an isomorphism. In particular ω2 and ΩPap

are isomorphic over (2.3.3).

The uniqueness of ΩPap is clear: as Sing Ă SPap is a codimension ě 2 closed

substack of a normal stack, any line bundle on the complement of Sing admits

at most one extension to all of SPap.

2.5. Special divisors. — Suppose S is a connected Ok-scheme, and

pA0, Aq P SPappSq.

Imitating the construction of (2.1.5), there is a positive definite hermitian form

on HomOk
pA0, Aq defined by

(2.5.1) xx1, x2y “ x_2 ˝ x1 P EndOk
pA0q – Ok,

where

HomOk
pA0, Aq

x ÞÑx_
ÝÝÝÝÑ HomOk

pA,A0q

is the Ok-conjugate-linear isomorphism induced by the principal polarizations

on A0 and A.

For any positive m P Z, define the Ok-stack ZPappmq as the moduli stack

assigning to a connected Ok-scheme S the groupoid of triples pA0, A, xq, where

– pA0, Aq P SPappSq,

– x P HomOk
pA0, Aq satisfies xx, xy “ m.
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Define a stack ZKrapmq in exactly the same way, but replacing SPap by SKra.

Thus we obtain a cartesian diagram

ZKrapmq //

��

SKra

��
ZPappmq // SPap,

in which the horizontal arrows are relatively representable, finite, and unram-

ified.

Each ZKrapmq is, étale locally on SKra, a disjoint union of Cartier divisors.

More precisely, around any geometric point of SKra one can find an étale

neighborhood U with the property that the morphism ZKrapmqU Ñ U restricts

to a closed immersion on every connected component Z Ă ZKrapmqU , and

Z Ă U is defined locally by one equation; this is [How15, Proposition 3.2.3],

but a cleaner argument (working on the Rapoport-Zink space corresponding to

SKra) can be found in [How19, Proposition 4.3]. Summing over all connected

components Z allows us to view ZKrapmqU as a Cartier divisor on U , and

glueing as U varies over an étale cover defines a Cartier divisor on SKra, which

we again denote by ZKrapmq.

Remark 2.5.1. — It follows from (2.3.3) and the paragraph above that

ZPappmq is locally defined by one equation away from the singular locus, and

so defines a Cartier divisor on SPap r Sing. This Cartier divisor does not

extend to all of SPap.

Remark 2.5.2. — We can make the specal divisors more explicit in the

complex fiber, as in [KR14, Proposition 3.5] or [How12, §3.8]. Recall from

§2.1 that the Q-vector space V “ HomkpW0,W q carries a quadratic form.

Using the description

D –
 

z P εV pCq : rz, zs ă 0
(

{Cˆ Ă PpεV pCqq

of Remark 2.1.2, every x P V with Qpxq ą 0 determines an analytic divisor

Dpxq “ tz P D : rz, xs “ 0u.

A choice of g P GpAf q determines a connected component

pGpQq X gKg´1qzD z ÞÑpz,gq
ÝÝÝÝÝÑ GpQqzD ˆGpAf q{K – SKrapCq,

and if we set

L “ HomOk
pga0, gaq Ă V
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the restriction of ZKrapmqpCq Ñ SKrapCq to this component is

pGpQq X gKg´1qz
ğ

xPL
Qpxq“m

Dpxq Ñ pGpQq X gKg´1qzD.

The following theorem, whose proof will occupy the remainder of §2.5, shows

that ZKrapmq is closely related to another Cartier divisor on SKra that descends

to SPap. This result will be strengthened in Theorem 2.6.3.

Theorem 2.5.3. — For every m ą 0 there is a unique Cartier divisor

YPappmq on SPap whose restriction to SPap r Sing agrees with 2ZPappmq. In

particular its pullback YKrapmq via SKra Ñ SPap agrees with 2ZKrapmq over

SKra r Exc.

Proof. — The map ZPappmq Ñ SPap is finite, unramified, and relatively rep-

resentable. It follows that every geometric point of SPap admits an étale

neighborhood U Ñ SPap such that U is a scheme, and the morphism

ZPappmqU Ñ U

restricts to a closed immersion on every connected component

Z Ă ZPappmqU .

We will construct a Cartier divisor on any such U , and then glue them together

as U varies over an étale cover to obtain the divisor YPappmq.

Fix Z as above, let I Ă OU be its ideal sheaf, and let Z 1 be the closed

subscheme of U defined by the ideal sheaf I2. Thus we have closed immersions

Z Ă Z 1 Ă U,

the first of which is a square-zero thickening.

By the very definition of ZPappmq, along Z there is a universal Ok-linear

map x : A0Z Ñ AZ . This map does not extend to a map A0Z1 Ñ AZ1 ,

however, by deformation theory [Lan13, Chapter 2.1.6] the induced Ok-linear

morphism of vector bundles

x : HdR
1 pA0Zq Ñ HdR

1 pAZq

admits a canonical extension to

(2.5.2) x1 : HdR
1 pA0Z1q Ñ HdR

1 pAZ1q.

Recalling the morphism (2.4.2), define Y Ă Z 1 as the largest closed sub-

scheme over which the composition

(2.5.3) HdR
1 pA0Z1q bH

dR
1 pA0Z1q

x1bx1
ÝÝÝÑ HdR

1 pAZ1q bH
dR
1 pAZ1q

P
ÝÑ PPap|Z1
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vanishes.

Lemma 2.5.4. — If U Ñ SPap factors through SPap r Sing, then Y “ Z 1.

Proof. — Lemma 2.4.5 provides us with a commutative diagram

HdR
1 pA0Z1q

b2 x1bx1 //

p2.5.3q
,,

HdR
1 pAZ1q

b2 qbq //
`

LiepAZ1q{FAZ1
˘b2

–

��
PPap|Z1 ,

where

FAZ1 “ kerpε : LiepAZ1q Ñ LiepAZ1qq

as in Theorem 2.3.4.

By deformation theory, Z Ă Z 1 is characterized as the largest closed sub-

scheme over which (2.5.2) respects the Hodge filtrations. Using Remark 2.3.5,

it is easily seen that Z Ă Z 1 can also be characterized as the largest closed

subscheme over which

H1pA0Z1q
q˝x1
ÝÝÑ LiepAZ1q{FAZ1

vanishes identically. As Z Ă Z 1 is a square zero thickening, it follows first that

the horizontal composition in the above diagram vanishes identically, and then

that (2.5.3) vanishes identically. In other words Y “ Z 1.

Lemma 2.5.5. — The closed subscheme Y Ă U is defined locally by one

equation.

Proof. — Fix a closed point y P Y of characteristic p, let OU,y be the local

ring of U at y, and let m Ă OU,y be the maximal ideal. For a fixed k ą 0, let

U “ SpecpOU,y{m
kq Ă U

be the kth-order infinitesimal neighborhood of y in U . The point of passing

to the infinitesimal neighborhood is that p is nilpotent in OU , and so we may

apply Grothendieck-Messing deformation theory.

By construction we have closed immersions

Y

��
Z // Z 1 // U.
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Applying the fiber product ˆUU throughout the diagram, we obtain closed

immersions

Y

��
Z // Z 1 // U

of Artinian schemes. As k is arbitrary, it suffices to prove that Y Ă U is

defined by one equation.

First suppose that p - D. In this case U Ñ U Ñ SPap factors through the

nonsingular locus (2.3.3). It follows from Remark 2.5.1 that Z Ă U is defined

by one equation, and Z 1 is defined by the square of that equation. By Lemma

2.5.4, Y Ă U is also defined by one equation.

For the remainder of the proof we assume that p | D. In particular p ą 2.

Consider the closed subscheme Z2 ãÑ U with ideal sheaf I3, so that we have

closed immersions Z Ă Z 1 Ă Z2 Ă U. Taking the fiber product with U , the

above diagram extends to

Y

��
Z // Z 1 // Z2 // U .

As p ą 2, the cube zero thickening Z Ă Z2 admits divided powers extending

the trivial divided powers on Z Ă Z 1. Therefore, by Grothendieck-Messing

theory, the restriction of (2.5.2) to

x1 : HdR
1 pA0Z1q Ñ HdR

1 pAZ1q.

admits a canonical extension to

x2 : HdR
1 pA0Z2q Ñ HdR

1 pAZ2q.

Define Y 1 Ă Z2 as the largest closed subscheme over which

(2.5.4) HdR
1 pA0Z2q bH

dR
1 pA0Z2q

x2bx2
ÝÝÝÝÑ HdR

1 pAZ2q bH
dR
1 pAZ2q

P
ÝÑ PPap|Z2

vanishes identically, so that there are closed immersions

Y

��

// Y 1

��
Z // Z 1 // Z2 // U .

We pause the proof of Lemma 2.5.5 for a sub-lemma.

Lemma 2.5.6. — We have Y “ Y 1.
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Proof. — As in the proof of Lemma 2.5.4, we may characterize Z Ă Z2 as

the largest closed subscheme along which x2 respects the Hodge filtrations.

Equivalently, by Remark 2.3.5, Z Ă Z2 is the largest closed subscheme over

which the composition

HdR
1 pA0Z2q

x2˝ε
ÝÝÝÑ HdR

1 pAZ2q
q
ÝÑ LiepAZ2q

vanishes identically. This implies that Z 1 Ă Z2 is the largest closed subscheme

over which

(2.5.5) HdR
1 pA0Z2q

b2 px2˝εqb2

ÝÝÝÝÝÑ HdR
1 pAZ2q

b2 qb2

ÝÝÑ LiepAZ2q
b2

vanishes identically.

It follows directly from the definitions that Y “ Y 1 X Z 1, and hence it

suffices to show that Y 1 Ă Z 1. In other words, it suffices to show that the

vanishing of (2.5.4) implies the vanishing of (2.5.5).

For local sections a and b of H1pAZ2q, define

Qabb : F 0HdR
1 pAZ2q b

ľn´1
LiepAZ2q Ñ

ľn
LiepAZ2q

by

Qabbpe1 b qpe2q ^ ¨ ¨ ¨ ^ qpenqq “ ψpa, e1q ¨ qpbq ^ qpe2q ^ ¨ ¨ ¨ ^ qpenq.

It is clear that Qabb depends only on the images of a and b in LiepAZ2q, and

that this construction defines an isomorphism

(2.5.6)

LiepAZ2q
b2 Q
ÝÑ Hom

´

F 0HdR
1 pAZ2q b

ľn´1
LiepAZ2q,

ľn
LiepAZ2q

¯

.

It is related to the map

LiepAZ2q
b2 P
ÝÑ Hom

´

ľn
HdR

1 pAZ2q{εH
dR
1 pAZ2q,

ľn
LiepAZ2q

¯

of Lemma 2.4.5 by

Pabbpe1 ^ ¨ ¨ ¨ ^ enq “ Qεabεbpe1 b qpe2q ^ ¨ ¨ ¨ ^ qpenqq

for any local section e1 b e2 b ¨ ¨ ¨ b en of

F 0HdR
1 pAZ2q bH

dR
1 pAZ2q b ¨ ¨ ¨ bH

dR
1 pAZ2q.

Putting everything together, if (2.5.4) vanishes, then Px2pa0qbx2pb0q “ 0 for

all local sections a0 and b0 of HdR
1 pA0Z2q. Therefore

Qx2pεa0qbx2pεb0q “ 0

for all local sections a0 and b0, which implies, as (2.5.6) is an isomorphism,

that (2.5.5) vanishes. This proves that Y 1 Ă Z 1, and hence Y “ Y 1.
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Returning to the proof of Lemma 2.5.5, the map (2.5.4), whose vanishing

defines Y 1 Ă Z2, factors through a morphism of line bundles

HdR
1 pA0Z2q{εH

dR
1 pA0Z2q bH

dR
1 pA0Z2q{εH

dR
1 pA0Z2q Ñ PPap|Z2 ,

and hence Y “ Y 1 is defined inside of Z2 locally by one equation. In other

words, if we denote by I Ă OU and J Ă OU the ideal sheaves of Z Ă U and

Y Ă U , respectively, then I3 is the ideal sheaf of Z2 Ă U , and

J “ pfq ` I3

for some f P OU . But Y Ă Z 1 implies that I2 Ă J , and hence I3 Ă IJ . It

follows that the image of f under the composition

J {I3 Ñ J {IJ Ñ J {mJ

is an OU -module generator, and J is principal by Nakayama’s lemma.

At last we can complete the proof of Theorem 2.5.3. For each connected

component Z Ă ZPappmqU we have now defined a closed subscheme Y Ă Z 1.

By Lemma 2.5.5 it is an effective Cartier divisor, and summing these Cartier

divisors as Z varies over all connected components yields an effective Cartier

divisor YPappmqU on U . Letting U vary over an étale cover and applying étale

descent defines an effective Cartier divisor YPappmq on SPap.

The Cartier divisor YPappmq just defined agrees with 2ZPappmq on SPap r
Sing. This is clear from Lemma 2.5.4 and the definition of YPappmq. The

uniqueness claim follows from the normality of SPap, exactly as in the proof

of Theorem 2.4.3.

2.6. Pullbacks of Cartier divisors. — After Theorem 2.4.3 we have two

line bundles ΩKra and ω2 on SKra, which agree over the complement of the ex-

ceptional locus Exc. We wish to pin down more precisely the relation between

them.

Similarly, after Theorem 2.5.3 we have Cartier divisors YKrapmq and

2ZKrapmq. These agree on the complement of Exc, and again we wish to pin

down more precisely the relation between them.

Denote by π0pSingq the set of connected components of the singular lo-

cus Sing Ă SPap. For each s P π0pSingq there is a corresponding irreducible

effective Cartier divisor

Excs “ ExcˆSPap
s ãÑ SKra



MODULARITY OF UNITARY GENERATING SERIES 37

supported in a single characteristic dividing D. These satisfy

Exc “
ğ

sPπ0pSingq

Excs.

Remark 2.6.1. — As Sing is a reduced 0-dimensional stack of finite type

over Ok{d, each s P π0pSingq can be realized as the stack quotient

s – GszSpecpFsq

for a finite field Fs of characteristic p | D acted on by a finite group Gs.

Fix a geometric point SpecpFq Ñ s, and set p “ charpFq. By mild abuse of

notation this geometric point will again be denoted simply by s. It determines

a pair

(2.6.1) pA0,s, Asq P SPappFq,

and hence a positive definite hermitian Ok-module

Ls “ HomOk
pA0,s, Asq

as in (2.5.1). This hermitian lattice depends only on s P π0pSingq, not on the

choice of geometric point above it.

Proposition 2.6.2. — For each s P π0pSingq the abelian varieties A0s and

As are supersingular, and there is an Ok-linear isomorphism of p-divisible

groups

(2.6.2) Asrp
8s – A0srp

8s ˆ ¨ ¨ ¨ ˆA0srp
8s

looooooooooooooomooooooooooooooon

n times

identifying the polarization on the left with the product polarization on the

right. Moreover, the hermitian Ok-module Ls is self-dual of rank n.

Proof. — Certainly A0s is supersingular, as p is ramified in Ok Ă EndpA0sq.

Denote by p Ă Ok be the unique prime above p. Let W “ W pFq be the

Witt ring of F, and let Fr P AutpW q be the unique continuous lift of the

p-power Frobenius on F. Let DpW q denote the covariant Dieudonné module

of As, endowed with its operators F and V satisfying FV “ p “ V F . The

Dieudonné module is free of rank n over OkbZW , and the short exact sequence

0 Ñ F 0HdR
1 pAsq Ñ HdR

1 pAsq Ñ LiepAsq Ñ 0

of F-modules is identified with

0 Ñ V DpW q{pDpW q Ñ DpW q{pDpW q Ñ DpW q{V DpW q Ñ 0.
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As D is odd, the element δ P Ok fixed in §1.7 satisfies ordppδq “ 1. This

implies that

δ ¨ DpW q “ V DpW q.
Indeed, by Theorem 2.3.2 the Lie algebra LiepAsq is annihilated by δ, and

hence δ ¨ DpW q Ă V DpW q. Equality holds as

dimF
`

DpW q{δ ¨ DpW q
˘

“ n “ dimF
`

DpW q{V DpW q
˘

.

Denote by N Ă DpW q the set of fixed points of the Fr-semilinear bijection

V ´1 ˝ δ : DpW q Ñ DpW q.

It is a free Ok,p-module of rank n endowed with an isomorphism

DpW q – N bZp W

identifying V “ δbFr´1. Moreover, the alternating form ψ on DpW q induced

by the polarization on As has the form

ψpn1 b w1, n2 b w2q “ w1w2 ¨ Trk{Q

ˆ

hpn1, n2q

δ

˙

for a perfect hermitian pairing h : N ˆ N Ñ Ok,p. By diagonalizing this

hermitian form, we obtain an orthogonal decomposition of N into rank one

hermitian Ok,p-modules, and tensoring this decomposition with W yields a

decomoposition of DpW q as a direct sum of principally polarized Dieudonné

modules, each of height 2 and slope 1{2. This corresponds to a decomposition

(2.6.2) on the level of p-divisible groups.

In particular, As is supersingular, and hence is isogenous to n copies of

A0s. Using the Noether-Skolem theorem, this isogeny may be chosen to be

Ok-linear. It follows first that Ls has Ok-rank n, and then that the natural

map

Ls bZ Zq – HomOk
pA0srq

8s, Asrq
8sq

is an isomorphism of hermitian Ok,q-modules for every rational prime q. It is

easy to see, using (2.6.2) when q “ p, that the hermitian module on the right

is self-dual, and hence the same is true for Ls bZ Zq.

The remainder of §2.6 is devoted to proving the following result.

Theorem 2.6.3. — There is an isomorphism

ω2 – ΩKra bOpExcq

of line bundles on SKra, as well as an equality

2ZKrapmq “ YKrapmq `
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs
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of Cartier divisors.

Proof. — Recall from the proof of Theorem 2.4.3 the morphism

ω´2 Ω´1
Kra

LiepA0q
b2 b pLiepAq{FAqqb2

p2.4.3q // LiepA0q
b2 b PKra,

whose restriction to SKra r Exc is an isomorphism. If we view this morphism

as a global section

(2.6.3) σ P H0pSKra,ω
2 bΩ´1

Kraq,

then

(2.6.4) divpσq “
ÿ

sPπ0pSingq

`sp0q ¨ Excs

for some integers `sp0q ě 0, and hence

(2.6.5) ω2 bΩ´1
Kra –

â

sPπ0pSingq

OpExcsq
b`sp0q.

We must show that each `sp0q “ 1.

Similarly, suppose m ą 0. It follows from Theorem 2.5.3 that

(2.6.6) 2ZKrapmq “ YKrapmq `
ÿ

sPπ0pSingq

`spmq ¨ Excs

for some integers `spmq. Moreover, it is clear from the construction of YKrapmq

that 2ZKrapmq ´ YKrapmq is effective, and so `spmq ě 0. We must show that

`spmq “ #tx P Ls : xx, xy “ mu.

Fix s P π0pSingq, and let SpecpFq Ñ s, p “ charpFq, and pA0s, Asq P SPappFq
be as in (2.6.1). Let W “W pFq be the Witt ring of F, and set W “ OkbZW .

It is a complete discrete valuation ring of absolute ramification degree 2. Fix

a uniformizer $ PW. As p is odd, the quotient map

W ÑW{$W “ F

admits canonical divided powers.

Denote by D0 and D the Grothendieck-Messing crystals of A0s and As,

respectively. Evaluation of the crystalsp5q along the divided power thicken-

ing W Ñ F yields free Ok bZ W-modules D0pWq and DpWq endowed with

p5qIf p “ 3, the divided powers on W Ñ F are not nilpotent, and so we cannot evaluate the

usual Grothendieck-Messing crystals on this thickening. However, Proposition 2.6.2 implies
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alternating W-bilinear forms ψ0 and ψ, and Ok-linear isomorphisms

D0pWq{$D0pWq – D0pFq – HdR
1 pA0sq

and

DpWq{$DpWq – DpFq – HdR
1 pAsq.

The W -modules D0pW q and DpW q are canonically identified with the co-

variant Dieudonné modules of A0s and As, respectively. The operators F and

V on these Dieudonné modules induce operators, denoted the same way, on

D0pWq – D0pW q bW W, DpWq – DpW q bW W.

For any elements y1, . . . , yk in an Ok bZ W-module, let xy1, . . . , yky be the

Ok bZ W-submodule generated by them. Recall from §1.7 the elements

ε, ε P Ok bZ W.

Lemma 2.6.4. — There is an Ok bZ W-basis e0 P D0pWq such that

F D0pWq
def
“ xεe0y Ă D0pWq

is a totally isotropic W-module direct summand lifting the Hodge filtration on

D0pFq, and such that V e0 “ δe0.

Similarly, there is an Ok bZ W-basis e1, . . . , en P DpWq such that

F DpWq def
“ xεe1, εe2, . . . , εeny Ă DpWq

is a totally isotropic W-module direct summand lifting the Hodge filtration on

DpFq. This basis may be chosen so that V ek`1 “ δek, where the indices are

understood in Z{nZ, and also so that

ψ
`

xeiy, xejy
˘

“

#

W if i “ j

0 otherwise.

Proof. — As in the proof of Proposition 2.6.2, we may identify

D0pW q – N0 bZp W

for some free Ok,p-module N0 of rank 1, in such a way that V “ δ b Fr´1,

and the alternating form on D0pW q arises as the W -bilinear extension of an

alternating form ψ0 on N0. Any Ok,p-generator e0 P N0 determines a generator

of the Ok,p bZp W-module

D0pWq – N0 bZp W,

that the p-divisible groups of A0s and As are formal, and Zink’s theory of displays [Zin02]

can be used as a substitute.
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which, using Remark 2.3.5 has the desired properties.

Now set N “ N0 ‘ ¨ ¨ ¨ ‘N0 (n copies), so that, by Proposition 2.6.2, there

is an isomorphism

DpW q – N bZp W

identifying V “ δ b Fr´1, and the alternating bilinear form on DpW q arises

from an alternating form ψ on N . Let Zpn ĂW be the ring of integers in the

unique unramified degree n extension of Qp, and fix an action

ι : Zpn Ñ EndOk,p
pNq

in such a way that ψpιpαqx, yq “ ψpx, ιpαqyq for all α P Zpn .

There is an induced decomposition

DpW q –
à

kPZ{nZ
DpW qk,

where

DpW qk “ te P DpW q : @α P Zpn , ιpαq ¨ e “ Frkpαq ¨ eu

is free of rank one over OkbZW . Now pick any Zpn-module generator e P N ,

view it as an element of DpW q, and let ek P DpW qk be its projection to the kth

summand. This gives an Ok bZW -basis e1, . . . , en P DpW q, which determines

an Ok bZ W-basis of DpWq with the required properties.

By the Serre-Tate theorem and Grothendieck-Messing theory, the lifts of

the Hodge filtrations specified in Lemma 2.6.4 determine a lift

(2.6.7) pÃ0s, Ãsq P SPappWq

of the pair pA0s, Asq. These come with canonical identifications

HdR
1 pÃ0sq – D0pWq, HdR

1 pÃsq – DpWq

under which the Hodge filtrations correspond to the filtrations chosen in

Lemma 2.6.4. In particular, the Lie algebra of Ãs is

LiepÃsq – DpWq{F DpWq “ xe1, e2, . . . , eny{xεe1, εe2, . . . , εeny.

The W-module direct summand

FÃs “ xe2, . . . , eny{xεe2, . . . , εeny

satisfies Krämer’s condition (§2.3), and so determines a lift of (2.6.7) to

pÃ0s, Ãsq P SKrapWq.
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To summarize: starting from a geometric point SpecpFq Ñ s, we have used

Lemma 2.6.4 to construct a commutative diagram

(2.6.8) SpecpFq

��

// Excs

��

// s

��
SpecpWq // SKra

// SPap.

Lemma 2.6.5. — The pullback of the map (2.4.3) via SpecpWq Ñ SKra

vanishes identically along the closed subscheme SpecpW{$Wq, but not along

SpecpW{$2Wq.

Proof. — The W-submodule of

(2.6.9) LiepÃsq – DpWq{xεe1, εe2, . . . , εeny

generated by e1 is Ok-stable. The action of Ok bZ W on this W-line is via

Ok bZ W αbx ÞÑiW pαqx
ÝÝÝÝÝÝÝÝÝÑW

(where iW : Ok ÑW is the inclusion), and this map sends ε to a uniformizer

of W; see §1.7. Thus the quotient map q : DpWq Ñ LiepÃsq satisfies qpεe1q “

$qpe1q up to multiplication by an element of Wˆ. It follows that

Pe1be1pe1 ^ ¨ ¨ ¨ ^ enq “ $ ¨ ψpεe1, e1q ¨ qpe1q ^ qpe2q ^ ¨ ¨ ¨ ^ qpenq

up to scaling by Wˆ.

We claim that ψpεe1, e1q P Wˆ. Indeed, as qpe1q generates a W-module

direct summand of (2.6.9), there is some

x P F DpWq “ xεe1, εe2, . . . , εeny Ă DpWq

such that ψpx, e1q P Wˆ. We chose our basis in Lemma 2.6.4 in such a way

that ψpεei, e1q “ 0 for i ą 1. It follows that ψpεe1, e1q is a unit, and hence the

same is true for ψpεe1, e1q “ ψpe1, εe1q “ ´ψpεe1, e1q.

We have now proved that

Pe1be1pe1 ^ ¨ ¨ ¨ ^ enq “ $ ¨ qpe1q ^ qpe2q ^ ¨ ¨ ¨ ^ qpenq

up to scaling by Wˆ, from which it follows that

Pe1be1pe1 ^ ¨ ¨ ¨ ^ enq P
ľn

LiepÃsq

is divisible by $, but not by $2.

The quotient

HdR
1 pÃsq{εH

dR
1 pÃsq – DpWq{xεe1, . . . , εeny
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is generated as a W-module by e1, . . . , en. From the calculation of the previous

paragraph, it now follows that Pe1be1 P PKra|SpecpWq is divisible by $ but not

by $2. The quotient

LiepÃsq{FÃs – DpWq{xεe1, e2, . . . , eny

is generated as a W-module by the image of e1, and we at last deduce that

P P Hom
`

pLiepAq{FAqb2,PKra

˘

|SpecpWq

is divisible by $ but not by $2.

Recall the global section σ of (2.6.3). It follows immediately from Lemma

2.6.5 that its pullback via SpecpWq Ñ SKra has divisor SpecpW{$Wq, and

hence

SpecpWq ˆSKra
divpσq “ SpecpW{$Wq,

Comparison with (2.6.4) proves both that `sp0q “ 1, and that

(2.6.10) SpecpWq ˆSKra
Excs “ SpecpW{$Wq.

Recalling (2.6.5), this completes the proof that

ω2 – ΩKra bOpExcq.

It remains to prove the second claim of Theorem 2.6.3. Given any x P

Ls “ HomOk
pA0s, Asq, denote by kpxq the largest integer such that x lifts to

a morphism

Ã0s bW W{p$kpxqq Ñ Ãs bW W{p$kpxqq.

Lemma 2.6.6. — As Cartier divisors on SpecpWq, we have

ZKrapmq ˆSKra
SpecpWq “

ÿ

xPLs
xx,xy“m

SpecpW{$kpxqWq.

Proof. — Each x P Ls with xx, xy “ m determines a geometric point

(2.6.11) pA0z, Az, xq P ZKrapmqpFq.

and surjective morphisms

OSKra,x

xx ##
OZKrapmq,x W,
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where OZKrapmq,x is the étale local ring at (2.6.11), OSKra,x is the étale local

ring at the point below it, and the arrow on the right is induced by the map

SpecpWq Ñ SKra of (2.6.8). There is an induced isomorphism of W-schemes

OZKrapmq,x bOSKra,x
W –W{p$kpxqq,

and the claim follows by summing over x.

Lemma 2.6.7. — As Cartier divisors on SpecpWq, we have

YKrapmq ˆSKra
SpecpWq “

ÿ

xPLs
xx,xy“m

SpecpW{$2kpxq´1Wq.

Proof. — Each x P Ls “ HomOk
pA0s, Asq with xx, xy “ m induces a mor-

phism of crystals D0 Ñ D, and hence a map

D0pWq
x
ÝÑ DpWq

respecting the F and V operators. By Grothendieck-Messing deformation

theory, the integer kpxq is characterized as the largest integer such that the

composition

F 0HdR
1 pÃ0sq

Ă // HdR
1 pÃ0sq

x // HdR
1 pÃsq

q // LiepÃsq

εD0pWq
Ă // D0pWq

x // DpWq // DpWq
xεe1,εe2,...,εeny

.

vanishes modulo $kpxq. In other words the composition

HdR
1 pÃ0sq

x˝ε
ÝÝÑ HdR

1 pÃsq
q
ÝÑ LiepÃsq

vanishes modulo $kpxq, but not modulo $kpxq`1.

Using the bases of Lemma 2.6.4, we expand

xpe0q “ a1e1 ` ¨ ¨ ¨ ` anen

with a1, . . . , an P Ok bZ W. The condition that x respects V implies that

a1 “ ¨ ¨ ¨ “ an. Let us call this common value a, so that

qpxpεe0qq “ ε ¨ qpae1 ` ¨ ¨ ¨ ` aenq “ aε ¨ qpe1q

in LiepÃsq. By the previous paragraph, this element is divisible by $kpxq but

not by $kpxq`1, and so

(2.6.12) qpaεe1q “ $kpxqqpe1q

up to scaling by Wˆ.
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On the other hand, the submodule of LiepÃsq generated by qpe1q is isomor-

phic to pOk bZ Wq{xεy – W, and ε acts on this quotient by a uniformizer in

W. Thus

(2.6.13) εqpe1q “ $qpe1q

up to scaling by Wˆ.

Combining (2.6.12) and (2.6.13) shows that, up to scaling by Wˆ,

aε “ $kpxq´1ε

in the quotient pOk bZ Wq{xεy. By the injectivity of the quotient map xεy Ñ

pOk bZ Wq{xεy, this same equality holds in xεy Ă Ok bZ W. Using this and

(2.6.12), we compute

Pxpe0qbxpe0qpe1 ^ ¨ ¨ ¨ ^ enq

“ ψpaεe1, e1q ¨ qpaεe1q ^ qpe2q ^ ¨ ¨ ¨ ^ qpenq

“ $2kpxq´1 ¨ ψpεe1, e1q ¨ qpe1q ^ qpe2q ^ ¨ ¨ ¨ ^ qpenq

“ $2kpxq´1 ¨ qpe1q ^ qpe2q ^ ¨ ¨ ¨ ^ qpenq

up to scaling by Wˆ. Here, as in the proof of Lemma 2.6.5, we have used

ψpεe1, e1q PWˆ.

This calculation shows that the composition

HdR
1 pÃ0sq

b2 xbx // HdR
1 pÃsq

b2 P // P|SpecpWq

vanishes modulo $2kpxq´1, but not modulo $2kpxq, and the remainder of the

proof is the same as that of Lemma 2.6.6: comparing with the definition of

YKrapmq, see especially (2.5.3), shows that

OYKrapmq,x bOSKra,x
W –W{p$2kpxq´1q,

and summing over all x proves the claim.

Combining Lemmas 2.6.6 and 2.6.7 shows that

SpecpWq ˆSKra

`

2ZKrapmq ´ YKrapmq
˘

“
ÿ

xPLs
xx,xy“m

SpecpW{$Wq

as Cartier divisors on SpecpWq. We know from (2.6.10) that

SpecpWq ˆSKra
Exct “

#

SpecpW{$Wq if t “ s

0 if t ‰ s,

and comparison with (2.6.6) shows that

`spmq “ #tx P Ls : xx, xy “ mu,
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completing the proof of Theorem 2.6.3.

3. Toroidal compactification

In this section we describe canonical toroidal compactifications

SKra
//

��

S˚Kra

��
SPap

// S˚Pap,

and the structure of their formal completions along the boundary. Using this

description, we define Fourier-Jacobi expansions of modular forms.

The existence of toroidal compactifications with reasonable properties is not

a new result. In fact the proof of Theorem 3.7.1, which asserts the existence

of good compactifications of SPap and SKra, simply refers to [How15]. Of

course [loc. cit.] is itself a very modest addition to the established literature

[FC90, Lan13, Lar92, Rap78]. Because of this, the reader is perhaps owed

a few words of explanation as to why §3 is so long.

It is well-known that the boundary charts used to construct toroidal com-

pactifications of PEL-type Shimura varieties are themselves moduli spaces of

1-motives (or, what is nearly the same thing, degeneration data in the sense

of [FC90]). This moduli interpretation is explained in §3.3.

It is a special feature of our particular Shimura variety ShpG,Dq that the

boundary charts have a second, very different, moduli interpretation. This

second moduli interpretation is explained in §3.4. In some sense, the main

result of §3 is not Theorem 3.7.1 at all, but rather Proposition 3.4.4, which

proves the equivalence of the two moduli problems.

The point is that our goal is to eventually study the integrality and ratio-

nality properties of Fourier-Jacobi expansions of Borcherds products on the

integral models of ShpG,Dq. A complex analytic description of these Fourier-

Jacobi expansions can be deduced from [Kud16], but it is not a priori clear

how to deduce integrality and rationality properties from these purely complex

analytic formulas.

To do so, we will exploit the fact that the formulas of [Kud16] express

the Fourier-Jacobi coefficients in terms of the classical Jacobi theta function.

The Jacobi theta function can be viewed as a section of a line bundle on the

universal elliptic curve fibered over the modular curve, and when interpreted in
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this way it has known integrality and rationality properties (this is explained

in §5.1).

By converting the moduli interpretation of the boundary charts from 1-

motives to an interpretation that makes explicit reference to the universal

elliptic curve and the line bundles that live over it, the integrality and ratio-

nality properties of the Fourier-Jacobi coefficients can be deduced, ultimately,

from those of the classical Jacobi theta function.

3.1. Cusp label representatives. — Recall that W0 and W are k-

hermitian spaces of signatures p1, 0q and pn ´ 1, 1q, respectively, with n ě 2.

Tautologically, the subgroup

G Ă GUpW0q ˆGUpW q

acts on both W0 and W . If J Ă W is an isotropic k-line, its stabilizer P “

StabGpJq in G is a parabolic subgroup. This establishes a bijection between

isotropic k-lines in W and proper parabolic subgroups of G. If n ą 2 then

such isotropic k-lines always exist.

Definition 3.1.1. — A cusp label representative for pG,Dq is a pair Φ “

pP, gq in which g P GpAf q and P Ă G is a parabolic subgroup. If P “ StabGpJq

for an isotropic k-line J Ă W , we call Φ a proper cusp label representative. If

P “ G we call Φ an improper cusp label representative.

For each cusp label representative Φ “ pP, gq there is a distinguished normal

subgroup QΦ C P . If P “ G we simply take QΦ “ G. If P “ StabGpJq for an

isotropic k-line J Ă W then, following the recipe of [Pin89, §4.7], we define

QΦ as the fiber product

(3.1.1) QΦ
νΦ //

��

Resk{QGm

aÞÑpa,Nmpaq,a,idq
��

P // GUpW0q ˆGLpJq ˆGUpJK{Jq ˆGLpW {JKq.

The morphism G Ñ GUpW q restricts to an injection QΦ ãÑ GUpW q, as the

action of QΦ on JK{J determines its action on W0.

Let K Ă GpAf q be the compact open subgroup (2.1.3). Any cusp label

representative Φ “ pP, gq determines compact open subgroups

KΦ “ gKg´1 XQΦpAf q, K̃Φ “ gKg´1 X P pAf q,

and a finite group

(3.1.2) ∆Φ “
`

P pQq XQΦpAf qK̃Φ

˘

{QΦpQq.
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Definition 3.1.2. — Two cusp label representatives Φ “ pP, gq and Φ1 “

pP 1, g1q are K-equivalent if there exist γ P GpQq, h P QΦpAf q, and k P K such

that

pP 1, g1q “ pγPγ´1, γhgkq.

One may easily verify that this is an equivalence relation. Obviously, there is

a unique K-equivalence class of improper cusp label representatives.

From now through §3.6, we fix a proper cusp label representative Φ “ pP, gq,

with P Ă G the stabilizer of an isotropic k-line J Ă W . There is an induced

weight filtration wtiW ĂW defined by

0 Ă J Ă JK Ă W

wt´3W Ă wt´2W Ă wt´1W Ă wt0W,

and an induced weight filtration on V “ HomkpW0,W q defined by

HomkpW0, 0q Ă HomkpW0, Jq Ă HomkpW0, J
Kq Ă HomkpW0,W q

wt´2V Ă wt´1V Ă wt0V Ă wt1V ,

It is easy to see that wt´1V is an isotropic k-line, whose orthogonal with

respect to (2.1.5) is wt0V . Denote by griW “ wtiW {wti´1W the graded

pieces, and similarly for V .

The Ok-lattice ga ĂW determines an Ok-lattice

gripgaq “
`

gaX wtiW
˘

{
`

gaX wti´1W
˘

Ă griW.

The middle graded piece gr´1pgaq is endowed with a positive definite self-dual

hermitian form, inherited from the self-dual hermitian form on ga appearing

in the proof of Proposition 2.1.1. The outer graded pieces

(3.1.3) m “ gr´2pgaq, n “ gr0pgaq

are projective rank one Ok-modulesp6q, endowed with a perfect Z-bilinear pair-

ing m bZ n Ñ Z inherited from the perfect symplectic form on ga appearing

in the proof of Proposition 2.2.1.

p6qIn fact m – n as Ok-modules, but identifying them can only lead to confusion.
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Remark 3.1.3. — The isometry class of ga as a hermitian lattice is deter-

mined by the isomorphism classes of m and n as Ok-modules and the isometry

class of gr´1pgaq as a hermitian lattice. This follows from the proof of [How15,

Proposition 2.6.3], which shows that one can find a splittingp7q

ga – gr´2pgaq ‘ gr´1pgaq ‘ gr0pgaq,

in such a way that the outer summands are totally isotropic, and each is

orthogonal to the middle summand.

Exactly as in (2.1.4), there is a k-conjugate linear isomorphism

HomkpW0, gr´1W q
x ÞÑx_
ÝÝÝÝÑ Homkpgr´1W,W0q.

If we define

L0 “ HomOk
pga0, gr´1pgaqq(3.1.4)

Λ0 “ HomOk
pgr´1pgaq, ga0q,

then x ÞÑ x_ restricts to an Ok-conjugate linear isomorphism L0 – Λ0. These

are, in a natural way, positive definite self-dual hermitian lattices. For x1, x2 P

L0 the hermitian form on L0 is defined, as in (2.1.5), by

xx1, x2y “ x_1 ˝ x2 P EndOk
pga0q – Ok,

while the hermitian form on Λ0 is defined by

xx_2 , x
_
1 y “ xx1, x2y.

Lemma 3.1.4. — Two proper cusp label representatives Φ and Φ1 are K-

equivalent if and only if Λ0 – Λ10 as hermitian Ok-modules and n – n1 as

Ok-modules. Moreover, the finite group (3.1.2) satisfies

(3.1.5) ∆Φ – UpΛ0q ˆGLOk
pnq.

Proof. — The first claim is an elementary exercise, left to the reader. For

the second claim we only define the isomorphism (3.1.5), and again leave the

details to the reader. The group P pQq acts on bothW0 andW , preserving their

weight filtrations, and so acts on both the hermitian space Homkpgr´1W,W0q

and the k-vector space gr0W . The subgroup P pQqXQΦpAf qK̃Φ preserves the

lattices

Λ0 Ă Homkpgr´1W,W0q

and n Ă gr0W , inducing (3.1.5).

p7qThis uses our standing assumption that k has odd discriminant.
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3.2. Mixed Shimura varieties. — The subgroup QΦpRq Ă GpRq acts on

DΦpW q “ tk-stable R-planes y ĂW pRq : W pRq “ JKpRq ‘ yu,

and so also acts on

DΦ “ DpW0q ˆDΦpW q.

The hermitian domain of (2.1.2) satisifies DpW q Ă DΦpW q, and hence there

is a canonical QΦpRq-equivariant inclusion D Ă DΦ.

The mixed Shimura variety

(3.2.1) ShpQΦ,DΦqpCq “ QΦpQqzDΦ ˆQΦpAf q{KΦ

admits a canonical model ShpQΦ,DΦq over k by the general results of [Pin89].

By rewriting the double quotient as

ShpQΦ,DΦqpCq – QΦpQqzDΦ ˆQΦpAf qK̃Φ{K̃Φ,

we see that (3.2.1) admits an action of the finite group ∆Φ of (3.1.2), induced

by the action of P pQqXQΦpAf qK̃Φ on both factors of DΦˆQΦpAf qK̃Φ. This

action descends to an action on the canonical model.

Proposition 3.2.1. — The morphism νΦ of (3.1.1) induces a surjection

ShpQΦ,DΦqpCq
pz,hqÞÑνΦphq
ÝÝÝÝÝÝÝÝÑ kˆzpkˆ{ pOˆk

with connected fibers. This map is ∆Φ-equivariant, where ∆Φ acts trivially on

the target. In particular, the number of connected components of (3.2.1) is

equal to the class number of k, and the same is true of its orbifold quotient by

the action of ∆Φ.

Proof. — The space DΦ is connected, and the kernel of νΦ : QΦ Ñ Resk{QGm

is unipotent (so satisfies strong approximation). Therefore

π0

`

ShpQΦ,DΦqpCq
˘

– QΦpQqzQΦpAf q{KΦ – k
ˆzpkˆ{νΦpKΦq,

and an easy calculation shows that νΦpKΦq “ pOˆk .

It will be useful to have other interpretations of DΦ.

Remark 3.2.2. — Any point y P DΦpW q determines a mixed Hodge struc-

ture on W whose weight filtration wtiW Ă W was defined above, and whose

Hodge filtration is defined exactly as in Remark 2.1.3. As in [PS08, p. 64]

or [Pin89, Proposition 1.2] there is an induced bigrading W pCq “
À

W pp,qq,

and this bigrading is induced by a morphism SC Ñ GUpW qC taking values

in the stabilizer of JpCq. The product of this morphism with the morphism
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SC Ñ GUpW0qC of Remark 2.1.3 defines a map z : SC Ñ QΦC, and this realizes

DΦ Ă HompSC, QΦCq.

Remark 3.2.3. — Imitating the construction of Remark 2.1.2 identifies

DΦ –
 

w P εV pCq : V pCq “ wt0V pCq ‘ Cw ‘ Cw
(

{Cˆ Ă PpεV pCqq

as an open subset of projective space.

3.3. The first moduli interpretation. — Using the pair pΛ0, nq defined in

§3.1, we now construct a smooth integral model of the mixed Shimura variety

(3.2.1). Following the general recipes of the theory of arithmetic toroidal

compactifications, as in [FC90, How15, Madb, Lan13], this integral model

will be defined as the top layer of a tower of morphisms

CΦ Ñ BΦ Ñ AΦ Ñ SpecpOkq,

smooth of relative dimensions 1, n´ 2, and 0, respectively.

Recall from §2.3 the smooth Ok-stack

Mp1,0q ˆOk
Mpn´2,0q Ñ SpecpOkq

of relative dimension 0 parametrizing certain pairs pA0, Bq of polarized abelian

schemes over S with Ok-actions. The étale sheaf HomOk
pB,A0q on S is locally

constant; this is a consequence of [BHY15, Theorem 5.1].

Define AΦ as the moduli space of triples pA0, B, %q over Ok-schemes S, in

which pA0, Bq is an S-point of Mp1,0q ˆOk
Mpn´2,0q, and

% : Λ0 – HomOk
pB,A0q

is an isomorphism of étale sheaves of hermitian Ok-modules.

Define BΦ as the moduli space of quadruples pA0, B, %, cq over Ok-schemes

S, in which pA0, B, %q is an S-point of AΦ, and c : n Ñ B is an Ok-linear

homomorphism of group schemes over S. In other words, if pA0, B, %q is the

universal object over AΦ, then

BΦ “ HomOk
pn, Bq.

Suppose we fix µ, ν P n. For any scheme U and any morphism U Ñ

BΦ, there is a corresponding quadruple pA0, B, %, cq over U . Evaluating the

morphism of U -group schemes c : n Ñ B at µ and ν determines U -points

cpµq, cpνq P BpUq, and hence determines a morphism of U -schemes

U
cpµqˆcpνq
ÝÝÝÝÝÝÑ B ˆB – B ˆB_.
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Denote by Lpµ, νqU the pullback of the Poincaré bundle via this morphism.

As U varies, these line bundles are obtained as the pullback of a single line

bundle Lpµ, νq on BΦ.

It follows from standard bilinearity properties of the Poincaré bundle that

Lpµ, νq depends, up to canonical isomorphism, only on the image of µb ν in

SymΦ “ Sym2
Zpnq{

@

pxµq b ν ´ µb pxνq : x P Ok, µ, ν P n
D

.

Thus we may associate to every χ P SymΦ a line bundle Lpχq on BΦ, and there

are canonical isomorphisms

Lpχq b Lpχ1q – Lpχ` χ1q.

Our assumption that D is odd implies that SymΦ is a free Z-module of rank

one. Moreover, there is positive cone in SymΦ bZ R uniquely determined by

the condition µ b µ ě 0 for all µ P n. Thus all of the line bundles Lpχq are

powers of the distinguished line bundle

(3.3.1) LΦ “ Lpχ0q

determined by the unique positive generator χ0 P SymΦ.

At last, define BΦ-stacks

CΦ “ IsopLΦ,OBΦ
q, C˚Φ “ HompLΦ,OBΦ

q.

In other words, C˚Φ is the total space of the line bundle L´1
Φ , and CΦ is the

complement of the zero section BΦ ãÑ C˚Φ. In slightly fancier language,

CΦ “ SpecBΦ

´

à

`PZ
L`Φ

¯

, C˚Φ “ SpecBΦ

´

à

`ě0

L`Φ
¯

,

and the zero section BΦ ãÑ C˚Φ is defined by the ideal sheaf
À

`ą0 L`Φ.

Remark 3.3.1. — When n “ 2 the situation is a bit degenerate. In this

case

BΦ “ AΦ “Mp1,0q,

LΦ is the trivial bundle, and CΦ Ñ BΦ is the trivial Gm-torsor.

Remark 3.3.2. — Using the isomorphism of Lemma 3.1.4, the group ∆Φ

acts on BΦ via

pu, tq ‚ pA0, B, %, cq “ pA0, B, % ˝ u
´1, c ˝ t´1q,

for pu, tq P UpΛ0q ˆGLOk
pnq. The line bundle LΦ is invariant under ∆Φ, and

hence the action of ∆Φ lifts to both CΦ and C˚Φ.
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Proposition 3.3.3. — There is a ∆Φ-equivariant isomorphism

ShpQΦ,DΦq – CΦ{k.

Proof. — This is a special case of the general fact that mixed Shimura varieties

appearing at the boundary of PEL Shimura varieties are themselves moduli

spaces of 1-motives endowed with polarizations, endomorphisms, and level

structure. The core of this is Deligne’s theorem [Del74, §10] that the category

of 1-motives over C is equivalent to the category of integral mixed Hodge

structures of types p´1,´1q, p´1, 0q, p0,´1q, p0, 0q. See [Madb], where this is

explained for Siegel modular varieties, and also [Bry83]. A good introduction

to 1-motives is [ABV05].

To make this a bit more explicit in our case, denote by XΦ the Ok-stack

whose functor of points assigns to an Ok-scheme S the groupoid XΦpSq of

principally polarized 1-motives A consisting of diagrams

n

��
0 // mbZ Gm

// B // B // 0

in which B P Mpn´2,0qpSq, B is an extension of B by the rank two torus

mbZGm in the category of group schemes with Ok-action, and the arrows are

morphisms of fppf sheaves of Ok-modules.

To explain what it means to have a principal polarization of such a 1-motive

A, set m_ “ Hompm,Zq and n_ “ Hompn,Zq, and recall from [Del74, §10]

that A has a dual 1-motive A_ consisting of a diagram

m_

��
0 // n_ bZ Gm

// B_ // B_ // 0.

A principal polarization is an Ok-linear isomorphism B – B_ compatible with

the given polarization B – B_, and with the isomorphisms m – n_ and

n – m_ determined by the perfect pairing mbZ nÑ Z defined after (3.1.3).

Using the “description plus symétrique” of 1-motives [Del74, (10.2.12)],

the Ok-stack CΦ defined above can be identified with the moduli space whose

S-points are triples pA0, A, %q in which

– pA0, Aq PMp1,0qpSq ˆ XΦpSq,

– % : Λ0 – HomOk
pB,A0q is an isomorphism of étale sheaves of hermitian

Ok-modules, where B PMpn´2,0qpSq is the abelian scheme part of A.
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To verify that ShpQΦ,DΦq has the same functor of points, one uses Re-

mark 3.2.2 to interpret ShpQΦ,DΦqpCq as a moduli space of mixed Hodge

structures on W0 and W , and uses the theorem of Deligne cited above to

interpret these mixed Hodge structures as 1-motives. This defines an isomor-

phism ShpQΦ,DΦqpCq – CΦpCq. The proof that it descends to the reflex field

is identical to the proof for Siegel mixed Shimura varieties [Madb].

We remark in passing that any triple pA0, A, %q as above automatically sat-

isfies (2.2.4) for every prime `. Indeed, both sides of (2.2.4) are now endowed

with weight filtrations, analogous to the weight filtration on HomkpW0,W q de-

fined in §3.1. The isomorphism % induces an isomorphism (as hermitian Ok,`-

lattices) between the gr0 pieces on either side. The gr´1 and gr1 pieces have

no structure other then projective Ok,`-modules of rank 1, so are isomorphic.

These isomorphisms of graded pieces imply the existence of an isomorphism

(2.2.4), exactly as in Remark 3.1.3.

3.4. The second moduli interpretation. — In order to make explicit

calculations, it will be useful to interpret the moduli spaces

CΦ Ñ BΦ Ñ AΦ Ñ SpecpOkq

in a different way.

Suppose E Ñ S is an elliptic curve over any base scheme, and denote by

PE the Poincaré bundle on

E ˆS E – E ˆS E
_.

If U is any S-scheme and a, b P EpUq, we obtain an OU -module PEpa, bq by

pulling back the Poincare bundle via

U
pa,bq
ÝÝÝÑ E ˆS E – E ˆS E

_.

The notation is intended to remind the reader of the bilinearity properties of

the Poincaré bundle, as expressed by canonical OU -module isomorphisms

PEpa` b, cq – PEpa, cq b PEpb, cq(3.4.1)

PEpa, b` cq – PEpa, bq b PEpa, cq
PEpa, bq – PEpb, aq,

along with PEpe, bq – OU – PEpa, eq. Here e P EpUq is the zero section.

Let E ÑMp1,0q be the universal elliptic curve with complex multiplication

by Ok. Its Poincaré bundle satisfies, for all α P Ok, the additional relation

PEpαa, bq – PEpa, αbq.
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Recall the positive definite self-dual hermitian lattice L0 of (3.1.4). Using

Serre’s tensor construction, we define an abelian scheme

(3.4.2) E b L0 “ E bOk
L0

over Mp1,0q. As explained in detail in [AK18], the principal polarization

on E and the hermitian form on L0 can be combined to define a principal

polarization on E b L0, and we denote by PEbL0 the Poincaré bundle on

pE b L0q ˆMp1,0q
pE b L0q – pE b L0q ˆMp1,0q

pE b L0q
_.

The Poincaré bundle PEbL0 can be expressed in terms of PE . If U is a scheme,

a morphism

U Ñ pE b L0q ˆMp1,0q
pE b L0q

is given by a pair of U -valued points

c “
ÿ

si b xi P EpUq b L0, c1 “
ÿ

s1j b x
1
j P EpUq b L0,

and the pullback of PEbL0 to U is

PEbL0pc, c
1q “

â

i,j

PEpxxi, x1jysi, s1jq.

Define QEbL0 to be the line bundle on E b L0 whose restriction to the

U -valued point c “
ř

si b xi is

(3.4.3) QEbL0pcq “
â

iăj

PEpxxi, xjysi, sjq b
â

i

PEpγxxi, xiysi, siq,

where

γ “
1` δ

2
P Ok.

It is related to PEbL0 by canonical isomorphisms

PEbL0pa, bq – QEbL0pa` bq bQEbL0paq
´1 bQEbL0pbq

´1(3.4.4)

PEbL0pa, aq – QEbL0paq
b2.

for all U -valued points a, b P EpUq b L0.

Remark 3.4.1. — As in the constructions of [Lan13, §1.3.2] or [MFK94,

§6.2], the line bundle QEbL0 determines a morphism E b L0 Ñ pE b L0q
_.

The relations (3.4.4) amount to saying that this morphism is the principal

polarization constructed in [AK18].

Remark 3.4.2. — The line bundle PEbL0pδa, aq is canonically trivial. This

follows by comparing

PEbL0pγa, aq
b2 – PEbL0pa, aq b PEbL0pδa, aq
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with

PEbL0pγa, aq
b2 – PEbL0pγa, aq b PEbL0pγa, aq – PEbL0pa, aq.

Remark 3.4.3. — In the slightly degenerate case of n “ 2, E b L0 is the

trivial group scheme over Mp1,0q, and PEbL0 is the trivial bundle on Mp1,0q.

Proposition 3.4.4. — As above, let E Ñ Mp1,0q be the universal object.

There are canonical isomorphisms

CΦ
//

–

��

BΦ
//

–

��

AΦ

–

��
IsopQEbL0 ,OEbL0q

// E b L0
//Mp1,0q,

and the middle vertical arrow identifies LΦ – QEbL0.

Proof. — Define a morphism AΦ Ñ Mp1,0q by sending a triple pA0, B, %q to

the CM elliptic curve

(3.4.5) E “ HomOk
pn, A0q.

To show that this map is an isomorphism we will construct the inverse.

If S is any Ok-scheme and E PMp1,0qpSq, we may define pA0, B, %q P AΦpSq

by setting

A0 “ E bOk
n, B “ HomOk

pΛ0, A0q,

and taking for % : Λ0 – HomOk
pB,A0q the tautological isomorphism. The

principal polarization on B is defined using the Ok-linear isomorphism

A0 bOk
L0

abx ÞÑx ¨ ,x_ya
ÝÝÝÝÝÝÝÝÝÑ HomOk

pΛ0, A0q

and the principal polarization on A0bOk
L0 constructed in [AK18], exactly as

in the discussion following (3.4.2). The construction E ÞÑ pA0, B, %q is inverse

to the above morphism AΦ ÑMp1,0q.

Now identify AΦ – Mp1,0q using the above isomorphism, and denote by

pA0, B, %q and E the universal objects on the source and target. They are
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related by canonical isomorphisms

(3.4.6) BΦ “ HomOk
pn, Bq

HomOk
pnbOk

Λ0, A0q

–
44

– **
HomOk

pΛ0, Eq.

Combining this with the Ok-linear isomorphism

E b L0
abx ÞÑx ¨ ,x_ya
ÝÝÝÝÝÝÝÝÝÑ HomOk

pΛ0, Eq

defines BΦ – E b L0. All that remains is to prove that this isomorphism

identifies LΦ with QEbL0 , which amounts to carefully keeping track of the

relations between the three Poincaré bundles PB, PE , and PA0 .

Any fractional ideal b Ă k admits a unique positive definite self-dual her-

mitian form, given explicitly by xb1, b2y “ b1b2{Npbq. It follows that any rank

one projective Ok-module admits a unique positive definite self-dual hermitian

form. For the Ok-module HomOk
pn,Okq, this hermitian form is

x`1, `2y “ `1pµq`2pνq ` `1pνq`2pµq,

where µb ν “ χ0 P SymΦ is the positive generator appearing in (3.3.1).

The relation (3.4.5) implies a relation between the line bundles PE and PA0 .

If U is any AΦ-scheme and we are given points

s, s1 P EpUq “ HomOk
pn, A0U q

of the form s “ `p¨qa and s1 “ `1p¨qa1 with `, `1 P HomOk
pn,Okq and a, a1 P

A0pUq, then

PEps, s1q – PA0

`

x`, `1ya, a1
˘

PEpγs, sq – PA0

`

`pµqa, `pνqa
˘

.

Similarly, the isomorphism B – HomOk
pΛ0, A0q implies a relation between

PB and PA0 . If U is an S-scheme, a morphism U Ñ B ˆAΦ
B is given by a

pair of points

b, b1 P BpUq “ HomOk
pΛ0, A0U q

of the form b “ x¨, λya and b1 “ x¨, λ1ya1 with λ, λ1 P Λ0 and a, a1 P A0pUq. The

pullback of PB to U is the line bundle

PBpb, b1q “ PA0pa, xλ, λ
1ya1q.
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Using the isomorphisms (3.4.6), a point c P BΦpUq admits three different

interpretations. In one of them, c has the form

c “
ÿ

`ip¨qx¨, λiyai P HomOk
pnbOk

Λ, A0U q.

By setting

bi “ x¨, λiyai P HomOk
pΛ0, A0U q “ BpUq

si “ `ip¨qai P HomOk
pn, A0U q “ EpUq,

we find the other two interpretations

c “
ÿ

`ip¨qbi P HomOk
pn, BU q

c “
ÿ

x¨, λiysi P HomOk
pΛ0, EU q.

The above relations between PB, PE , and PA0 imply

PBpcpµq, cpνqq
–

â

i,j

PBp`ipµqbi, `jpνqbjq

–
â

i,j

PA0p`ipµqai, xλi, λjy`jpνqajq

–
â

iăj

PA0px`i, `jyai, xλi, λjyajq b
â

i

PA0p`ipµqai, `ipνqxλi, λiyaiq

–
â

iăj

PEpsi, xλi, λjysjq b
â

i

PEpγsi, xλi, λiysiq.

Now write λi “ x_i with xi P L0, and use the relation

PEpsi, xλi, λjysjq “ PEpxλj , λiysi, sjq “ PEpxxi, xjysi, sjq

to obtain an isomorphism PBpcpµq, cpνqq – QEbL0pcq. The line bundle on the

left is precisely the pullback of LΦ via c, and letting c vary we obtain an

isomorphism LΦ – QEbL0 .

3.5. The line bundle of modular forms. — We now define a line bundle

of weight one modular forms on our mixed Shimura variety, analogous to the

one on the pure Shimura variety defined in §2.4.

The holomorphic line bundle ωan on D defined in §2.4 admits a canonical

extension to

DΦ “ DpW0q ˆDΦpW q,

which we denote by ωanΦ . Indeed, recalling that DpW0q “ ty0u is a one-point

set, an element z P DΦ is represented by a pair py0, yq in which y is a k-stable
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R-plane in W pRq such that W pRq “ JKpRq ‘ y. The fiber of ωanΦ at z is the

line

HomCpW0pCq{εW0pCq,prεpyqq Ă εV pCq,

exactly as in Remark 2.1.2 and (2.4.1).

If we embed DΦ into projective space over εV pCq as in Remark 3.2.3, then

ωanΦ is simply the restriction of the tautological bundle. There is an obvious

action of QΦpRq on the total space of ωanΦ , lifting the natural action on DΦ,

and so ωanΦ determines a holomorphic line bundle on the complex orbifold

ShpQΦ,DΦqpCq.
As in §2.4, the holomorphic line bundle ωanΦ is algebraic and descends to

the canonical model ShpQΦ,DΦq. In fact, it admits a canonical extension to

the integral model CΦ, as we now explain.

Recalling the Ok-modules m and n of (3.1.3), define rank two vector bundles

on AΦ by

M “ mbZ OAΦ
, N “ nbZ OAΦ

.

Each is locally free of rank one over OkbZOAΦ
, and the perfect pairing between

m and n defined after (3.1.3) induces a perfect bilinear pairing MbNÑ OAΦ
.

Using the almost idempotents ε, ε P Ok bZ OAΦ
of §1.7, there is an induced

isomorphism of line bundles

pM{εMq b pεNq – OAΦ
.

Recalling that AΦ carries over it a universal triple pA0, B, %q, in which A0

is an elliptic curve with Ok-action, we now define a line bundle on AΦ by

ωΦ “ HompLiepA0q, εNq,

or, equivalently,

ω´1
Φ “ LiepA0q bOAΦ

M{εM.

Denote in the same way its pullback to any step in the tower

C˚Φ Ñ BΦ Ñ AΦ.

The above definition of ωΦ is a bit unmotivated, and so we explain why

ωΦ is analogous to the line bundle ω on SKra defined in §2.4. Recall from the

proof of Proposition 3.3.3 that CΦ carries over it a universal 1-motive A. This

1-motive has a de Rham realization HdR
1 pAq, defined as the Lie algebra of the

universal vector extension of A, as in [Del74, (10.1.7)]. It is a rank 2n-vector

bundle on CΦ, locally free of rank n over Ok bZ OCΦ
, and sits in a diagram of
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vector bundles

0

��

0

��
F 0HdR

1 pBq

��

M

��
0 // F 0HdR

1 pAq //

��

HdR
1 pAq // LiepAq //

��

0

N

��

LiepBq

��
0 0

with exact rows and columns. The polarization on A induces a perfect sym-

plectic form on HdR
1 pAq. This induces a perfect pairing

(3.5.1) F 0HdR
1 pAq b LiepAq Ñ OCΦ

as in (2.2.1), which is compatible (in the obvious sense) with the pairings

F 0HdR
1 pBq b LiepBq Ñ OCΦ

and NbMÑ OCΦ
that we already have.

The signature condition on B implies that εF 0HdR
1 pBq “ 0 and εLiepBq “ 0.

Using this, and arguing as in [How15, Lemma 2.3.6], it is not difficult to see

that

FA “ kerpε : LiepAq Ñ LiepAqq

is the unique codimension one local direct summand of LiepAq satisfying

Kramer’s condition as in §2.3, and that its orthogonal under the pairing (3.5.1)

is FKA “ εF 0HdR
1 pAq. Moreover, the natural maps

M{εMÑ LiepAq{FA, FKA Ñ εN

are isomorphisms. These latter isomorphisms allow us to identify

ωΦ “ HompLiepA0q,FKA q, ω´1
Φ “ LiepA0q b LiepAq{FA

in perfect analogy with §2.4.

Proposition 3.5.1. — The isomorphism

CΦpCq – ShpQΦ,DΦqpCq
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of Proposition 3.3.3 identifies the analytification of ωΦ with the already defined

ωanΦ . Moreover, the isomorphism AΦ –Mp1,0q of Proposition 3.4.4 identifies

ωΦ – d ¨ LiepEq´1 Ă LiepEq´1

where d “ δOk is the different of Ok, and E ÑMp1,0q is the universal elliptic

curve with CM by Ok.

Proof. — Any point z “ py0, yq P DΦ determines, by Remarks 2.1.3 and 3.2.2,

a pure Hodge structure on W0 and a mixed Hodge structure on W , these

induce a mixed Hodge structure on V “ HomkpW0,W q, and the fiber of ωanΦ

at z is

ωanΦ,z “ F 1V pCq “ HomCpW0pCq{εW0pCq, εF 0W pCqq.

On the other hand, we have just seen that

ωΦ “ HompLiepA0q,FKA q “ HompLiepA0q, εF
0HdR

1 pAqq.

With these identifications, the proof of the first claim amounts to carefully

tracing through the construction of the isomorphism of Proposition 3.3.3.

For the second claim, the isomorphism A0 – E bOk
n induces a canonical

isomorphism

LiepA0q – LiepEq bOk
n – LiepEq bN{εN,

where we have used the fact that n bOk
OAΦ

“ N{εN is the largest quotient

of N on which Ok acts via the structure morphism Ok Ñ OAΦ
. Thus

ωΦ “ HompLiepAq, εNq

– HompLiepEq bN{εN, εNq

– LiepEq´1 bOAΦ
HompN{εN, εNq.

Now recall the ideal sheaf pεq Ă Ok bZ OAΦ
of §1.7. There are canonical

isomorphisms of line bundles

dOAΦ
– pεq – HompN{εN, εNq,

where the first is (1.7.1) and the second is the tautological isomorphism sending

ε to the multiplication-by-ε map N{εNÑ εN. These constructions determine

the desired isomorphism

ωΦ – LiepEq´1 bOAΦ
dOAΦ

.
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3.6. Special divisors. — Let Y0pDq be the moduli stack over Ok

parametrizing cyclic D-isogenies of elliptic curves over Ok-schemes, and

let E Ñ E 1 be the universal object. See [KM85, Chapter 3] for the defini-

tions.

Let pA0, B, %, cq be the universal object over BΦ. Recalling the Ok-conjugate

linear isomorphism L0 – Λ0 defined after (3.1.4), each x P L0 defines a mor-

phism

n
c
ÝÑ B

%px_q
ÝÝÝÑ A0

of sheaves of Ok-modules on BΦ. Define ZΦpxq Ă BΦ as the largest closed

substack over which this morphism is trivial. We will see in a moment that

this closed substack is defined locally by one equation. For any m ą 0 define

a stack over BΦ by

(3.6.1) ZΦpmq “
ğ

xPL0
xx,xy“m

ZΦpxq.

We also view ZΦpmq as a divisor on BΦ, and denote in the same way the

pullback of this divisor via C˚Φ Ñ BΦ.

Remark 3.6.1. — In the slightly degenerate case n “ 2 we have L0 “ 0,

and every special divisor ZΦpmq is empty.

We will now reformulate the definition of ZΦpxq in terms of the moduli

problem of §3.4. Recalling the isomorphisms of Proposition 3.4.4, every x P L0

determines a commutative diagram

BΦ
– //

��

E b L0
x¨,xy //

��

E //

��

E

��
AΦ

– //Mp1,0q Mp1,0q
// Y0pDq,

where Mp1,0q Ñ Y0pDq sends E to the cyclic D-isogeny

E Ñ E bOk
d´1,

and the rightmost square is cartesian. The upper and lower horizontal com-

positions are denoted jx and j, giving the diagram

(3.6.2) BΦ
jx //

��

E

��
AΦ

j // Y0pDq.
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Proposition 3.6.2. — For any nonzero x P L0, the closed substack ZΦpxq Ă

BΦ is equal to the pullback of the zero section along jx. It is an effective Cartier

divisor, flat over AΦ. In particular, as AΦ is flat over Ok, so is each divisor

ZΦpxq.

Proof. — Recall the isomorphisms

E – HomOk
pn, A0q, B – HomOk

pΛ0, A0q

from the proof of Proposition 3.4.4. If we identify A0 bOk
L0 – B using

A0 bOk
L0

abx ÞÑx¨,x_ya
ÝÝÝÝÝÝÝÝÑ HomOk

pΛ0, A0q – B,

we obtain a commutative diagram of AΦ-stacks

E bOk
L0

//

x¨,xy

��

HomOk
pn, A0 bOk

L0q // HomOk
pn, Bq “ BΦ

%px_q

��
E // HomOk

pn, A0q,

in which all horizontal arrows are isomorphisms. The first claim follows im-

mediately.

The remaining claims now follow from the cartesian diagram

ZΦpxq //

��

Mp1,0q

e

��
BΦ

– // E b L0
x¨,xy // E.

The zero section e : Mp1,0q ãÑ E is locally defined by a single nonzero equation

[KM85, Lemma 1.2.2], and so the same is true of its pullback ZΦpxq ãÑ BΦ.

Composition along the bottom row is flat by [MFK94, Lemma 6.12], and

hence so is the top horizontal arrow.

Remark 3.6.3. — For those who prefer the language of 1-motives: As in

the proof of Proposition 3.3.3, there is a universal triple pA0, A, %q over CΦ in

which A0 is an elliptic curve with Ok-action and A is a principally polarized 1-

motive with Ok-action. The functor of points of ZΦpmq assigns to any scheme

S Ñ CΦ the set

ZΦpmqpSq “ tx P HomOk
pA0,S , ASq : xx, xy “ mu,

where the positive definite hermitian form x¨, ¨y is defined as in (2.5.1). Thus

our special divisors are the exact analogues of the special divisors on SKra

defined in §2.5.
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3.7. The toroidal compactification. — We describe the canonical

toroidal compactification of the integral models SKra Ñ SPap of §2.3.

Theorem 3.7.1. — Let S� denote either SKra or SPap. There is a canonical

toroidal compactification S� ãÑ S˚�, flat over Ok of relative dimension n´ 1.

It admits a stratification

S˚� “
ğ

Φ

S˚�pΦq

as a disjoint union of locally closed substacks, indexed by the K-equivalence

classes of cusp label representatives (defined in §3.1).

1. The Ok-stack S˚Kra is regular.

2. The Ok-stack S˚Pap is Cohen-Macaulay and normal, with Cohen-

Macaulay fibers. If n ą 2 its fibers are geometrically normal.

3. The open dense substack S� Ă S˚� is the stratum indexed by the unique

equivalence class of improper cusp label representatives. Its complement

BS˚� “
ğ

Φ proper

S˚�pΦq

is a smooth divisor, flat over Ok.

4. For each proper Φ the stratum S˚�pΦq is closed. All components of

S˚�pΦq{C are defined over the Hilbert class field kHilb, and they are per-

muted simply transitively by GalpkHilb{kq. Moreover, there is a canonical

identification of Ok-stacks

∆ΦzBΦ

��

S˚�pΦq

��
∆ΦzC˚Φ S˚�

such that the two stacks in the bottom row become isomorphic after com-

pletion along their common closed substack in the top row. In other

words, there is a canonical isomorphism of formal stacks

(3.7.1) ∆ΦzpC˚Φq^BΦ
– pS˚�q^S˚�pΦq.

5. The morphism SKra Ñ SPap extends uniquely to a stratum preserving

morphism of toroidal compactifications. This extension restricts to an

isomorphism

(3.7.2) S˚Kra r Exc – S˚Pap r Sing,

compatible with (3.7.1) for any proper Φ.
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6. The line bundle ω on SKra defined in §2.4 admits a unique extension

(denoted the same way) to the toroidal compactification in such a way that

(3.7.1) identifies it with the line bundle ωΦ on C˚Φ. A similar statement

holds for ΩKra, and these two extensions are related by

ω2 – ΩKra bOpExcq.

7. The line bundle ΩPap on SPap defined in §2.4 admits a unique extension

(denoted the same way) to the toroidal compactification, in such a way

that (3.7.1) identifies it with ω2
Φ.

8. For any m ą 0, define Z˚Krapmq as the Zariski closure of ZKrapmq in S˚Kra.

The isomorphism (3.7.1) identifies it with the Cartier divisor ZΦpmq on

C˚Φ.

9. For any m ą 0, define Y˚Pappmq as the Zariski closure of YPappmq in

S˚Pap. The isomorphism (3.7.1) identifies it with 2ZΦpmq. Moreover, the

pullback of Y˚Pappmq to S˚Kra, denoted Y˚Krapmq, satisfies

2Z˚Krapmq “ Y˚Krapmq `
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs.

Proof. — Briefly, in [How15, §2] one finds the construction of a canonical

toroidal compactification

M�
pn´1,1q ãÑM�,˚

pn´1,1q.

Using the open and closed immersion

S� ãÑMp1,0q ˆM�
pn´1,1q,

the toroidal compactification S˚� is defined as the Zariski closure of S� in

Mp1,0qˆM�,˚
pn´1,1q. All of the claims follow by examination of the construction

of the compactification, along with Theorem 2.6.3.

Remark 3.7.2. — If W is anisotropic, so that pG,Dq has no proper cusp

label representatives, the only new information in the theorem is that SPap

and SKra are already proper over Ok, so that

SPap “ S˚Pap, SKra “ S˚Kra.

Corollary 3.7.3. — Assume that n ą 2. The Cartier divisor Y˚Pappmq on

S˚Pap is Ok-flat, as is the restriction of Z˚Krapmq to S˚Kra r Exc.

Proof. — Fix a prime p Ă Ok, and let Fp be its residue field. To prove the

first claim, it suffices to show that the support of the Cartier divisor Y˚Pappmq

contains no irreducible components of the reduction S˚Pap{Fp
.
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By way of contradiction, suppose Ep Ă S˚Pap{Fp
is an irreducible compo-

nent contained in Y˚Pappmq, and let E Ă S˚Pap be the connected component

containing it. Properness of S˚Pap over Ok,p implies that the reduction E{Fp

is connected [FGI`05, Corollary 8.2.18]. The reduction E{Fp
is normal by

Theorem 3.7.1 and our assumption that n ą 2, and hence is irreducible. Thus

Ep “ E{Fp
.

Our assumption that n ą 2 also guarantees that W contains a nonzero

isotropic vector, from which it follows that the boundary

BC “ C X BS˚Pap

is nonempty (one can check this in the complex fiber).

Proposition 3.6.2 implies that ZΦpmq is Ok-flat for every proper cusp label

representative Φ, and so it follows from Theorem 3.7.1 that Y˚Pappmq is Ok-flat

when restricted to some étale neighborhood U Ñ C of BC. On the other hand,

the closed immersion

U{Fp
– Cp ˆS˚Pap

U Ñ Y˚Pappmq ˆS˚Pap
U

shows that the divisor Y˚Pappmq|U Ñ U contains the special fiber U{Fp
, so is

not Ok-flat. This contradiction completes the proof that Y˚Pappmq is flat.

As the isomorphism (3.7.2) identifies Y˚Pappmq with 2Z˚Krapmq, it follows

that the restriction of Z˚Krapmq to the complement of Exc is also flat.

3.8. Fourier-Jacobi expansions. — We now define Fourier-Jacobi expan-

sions of sections of the line bundle ωk of weight k modular forms on S˚Kra.

Fix a proper cusp label representative Φ “ pP, gq. Suppose ψ is a rational

function on S˚Kra, regular on an open neighborhood of the closed stratum

S˚KrapΦq. Using the isomorphism (3.7.1) we obtain a formal function, again

denoted ψ, on the formal completion

pC˚Φq^BΦ
“ SpfBΦ

´

ź

`ě0

L`Φ
¯

.

Tautologically, there is a formal Fourier-Jacobi expansion

(3.8.1) ψ “
ÿ

`ě0

FJ`pψq ¨ q
`

with coefficients FJ`pψq P H
0pBΦ,L`Φq. In the same way, any rational section ψ

of ωk on S˚Kra, regular on an open neighborhood of S˚KrapΦq, admits a Fourier-

Jacobi expansion (3.8.1), but now with coefficients

FJ`pψq P H
0pBΦ,ω

k
Φ b L`Φq.
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Remark 3.8.1. — Let π : C˚Φ Ñ BΦ be the natural map. The formal symbol

q can be understood as follows. As C˚Φ is the total space of the line bundle

L´1
Φ , there is a tautological section

q P H0pC˚Φ, π˚L´1
Φ q

whose divisor is the zero section BΦ ãÑ C˚Φ. Any FJ` P H
0pBΦ,L`Φq pulls back

to a section of π˚L`Φ, and so defines a function FJ` ¨ q
` on C˚Φ.

3.9. Explicit coordinates. — Once again, let Φ “ pP, gq be a proper cusp

label representative. The algebraic theory of §3.8 realizes the Fourier-Jacobi

coefficients of

(3.9.1) ψ P H0pS˚Kra,ω
kq

as sections of line bundles on the stack

BΦ – E b L0.

Here E Ñ Mp1,0q is the universal CM elliptic curve, the tensor product is

over Ok, and we are using the isomorphism of Proposition 3.4.4. Our goal is

to relate this to the classical analytic theory of Fourier-Jacobi expansions by

choosing explicit complex coordinates, so as to identify each coefficient FJ`pψq

with a holomorphic function on a complex vector space satisfying a particular

transformation law.

The point of this discussion is to allow us, eventually, to show that the

Fourier-Jacobi coefficients of Borcherds products, expressed in the classical

way as holomorphic functions satisfying certain transformation laws, have al-

gebraic meaning. More precisely, the following discussion will be used to de-

duce the algebraic statement of Proposition 6.4.1 from the analytic statement

of Proposition 6.3.1.

Consider the commutative diagram

ShpQΦ,DΦqpCq
– //

��

CΦpCq // BΦpCq // AΦpCq

–

��
kˆzpkˆ{ pOˆk

aÞÑEpaq
//Mp1,0qpCq.

Here the isomorphisms are those of Propositions 3.3.3 and 3.4.4, and the ver-

tical arrow on the left is the surjection of Proposition 3.2.1. The bottom

horizontal arrow is defined as the unique function making the diagram com-

mute. It is a bijection, and is given explicitly by the following recipe: recalling
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the Ok-module n of (3.1.3), each a P pkˆ determines a projective Ok-module

b “ a ¨HomOk
pn, ga0q

of rank one, and the elliptic curve Epaq has complex points

(3.9.2) EpaqpCq “ bzpbbOk
Cq.

For each a P pkˆ there is a cartesian diagram

Epaq b L0
//

��

E b L0

��
SpecpCq Epaq //Mp1,0q.

Now suppose we have a section ψ as in (3.9.1). Using the isomorphisms

BΦ – E b L0 and ωΦ – d ¨ LiepEq´1 of Propositions 3.4.4 and 3.5.1, we view

its Fourier-Jacobi coefficients

FJ`pψq P H
0pBΦ,ω

k
Φ b L`Φq

as sections

FJ`pψq P H
0
`

E b L0, d
k ¨ LiepEq´k bQ`

EbL0

˘

,

which we pull back along the top map in the above diagram to obtain a section

(3.9.3) FJ
paq
` pψq P H

0
`

Epaq b L0,LiepEpaqq´k bQ`
EpaqbL0

˘

.

Remark 3.9.1. — Recalling that d “ δOk is the different of k, we are using

the inclusion dk Ă k Ă C to identify

dk ¨ LiepEpaqq´k – LiepEpaqq´k.

In particular, this isomorphism is not multiplication by δ´k.

The explicit coordinates we will use to express (3.9.3) as a holomorphic

function arise from a choice of Witt decomposition of the hermitian space

V “ HomkpW0,W q. The following lemma will allow us to choose this decom-

position in a particularly nice way.

Lemma 3.9.2. — The homomorphism νΦ of (3.1.1) admits a section

QΦ νΦ

// Resk{QGm.

s

uu
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This section may be chosen so that sp pOˆk q Ă KΦ, and such a choice determines

a decomposition

(3.9.4)
ğ

aPkˆzpkˆ{ pOˆk

pQΦpQq X spaqKΦspaq
´1qzDΦ – ShpQΦ,DΦqpCq,

where the isomorphism is z ÞÑ pz, spaqq on the copy of DΦ indexed by a.

Proof. — Fix an isomorphism of hermitian Ok-modules

ga0 ‘ ga – ga0 ‘ gr´2pgaq ‘ gr´1pgaq ‘ gr0pgaq

as in Remark 3.1.3. After tensoring with Q, we let kˆ act on the right hand side

by a ÞÑ pa,Nmpaq, a, 1q. This defines a morphism kˆ Ñ GpQq, which, using

(3.1.1), is easily seen to take values in the subgroup QΦpQq. This defines the

desired section s, and the decomposition (3.9.4) is immediate from Proposition

3.2.1.

Fix a section s as in Lemma 3.9.2. Recall from §3.1 the weight filtration

wtiV Ă V whose graded pieces

gr´1V “ HomkpW0, gr´2W q

gr0V “ HomkpW0, gr´1W q

gr1V “ HomkpW0, gr0W q

have k-dimensions 1, n ´ 2, and 1, respectively. Recalling (3.1.1), which

describes the action of QΦ on the graded pieces of V , the section s determines

a splitting V “ V´1 ‘ V0 ‘ V1 of the weight filtration by

V´1 “ tv P V : @ a P kˆ, spaqv “ avu

V0 “ tv P V : @ a P kˆ, spaqv “ vu

V1 “ tv P V : @ a P kˆ, spaqv “ a´1vu.

The summands V´1 and V1 are isotropic k-lines, and V0 is the orthogonal

complement of V´1`V1 with respect to the hermitian form on V . In particular,

the restriction of the hermitian form to V0 Ă V is positive definite.

Fix an a P pkˆ and define an Ok-lattice

L “ HomOk
pspaqga0, spaqgaq Ă V.

Using the assumption sp pOˆk q Ă KΦ, we obtain a decomposition

L “ L´1 ‘ L0 ‘ L1
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with Li “ LX Vi. The images of the lattices Li in the graded pieces griV are

given by

L´1 “ a ¨HomOk
pga0, gr´2pgaqq

L0 “ HomOk
pga0, gr´1pgaqq

L1 “ a´1 ¨HomOk
pga0, gr0pgaqq.

In particular, L0 is independent of a and agrees with (3.1.4).

Choose a Z-basis e´1, f´1 P L´1, and let e1, f1 P d´1L1 be the dual basis

with respect to the (perfect) Z-bilinear pairing

r ¨ , ¨ s : L´1 ˆ d´1L1 Ñ Z

obtained by restricting (2.1.6). This basis may be chosen so that

(3.9.5)

L´1 “ Ze´1 ` Zf´1 d´1L´1 “ Ze´1 `D
´1Zf´1

L1 “ Ze1 `DZf1 d´1L1 “ Ze1 ` Zf1.

As εV1pCq Ă V1pCq is a line, there is a unique τ P C satisfying

(3.9.6) τe1 ` f1 P εV1pCq.

After possibly replacing both e1 and e´1 by their negatives, we may assume

that Impτq ą 0.

Proposition 3.9.3. — The Z-lattice b “ Zτ `Z is contained in k, and is a

fractional Ok-ideal. The elliptic curve

(3.9.7) EpaqpCq “ bzC

is isomorphic to (3.9.2), and there is an Ok-linear isomorphism of complex

abelian varieties

(3.9.8) EpaqpCq b L0 – bL0zV0pRq.

Under this isomorphism the inverse of the line bundle (3.4.3) has the form

(3.9.9) Q´1
EpaqpCqbL0

– bL0zpV0pRq ˆ Cq,

where the action of y0 P bL0 on V0pRq ˆ C is

y0 ¨ pw0, qq “
`

w0 ` εy0, q ¨ e
πi
xy0,y0y

Npbq e
´π

xw0,y0y
Impτq

´π
xy0,y0y
2Impτq

˘

.

Proof. — Consider the Q-linear map

(3.9.10) V´1
αe´1`βf´1 ÞÑατ`β
ÝÝÝÝÝÝÝÝÝÝÝÝÑ C.
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Its C-linear extension V´1pCq Ñ C kills the vector e´1 ´ τ f´1 P εV´1pCq, and

hence factors through an isomorphism V´1pCq{εV´1pCq – C. This implies that

(3.9.10) is k-conjugate linear. As this map identifies L´1 – b, we find that

the Z-lattice b Ă C is Ok-stable. From 1 P b we then deduce that b Ă k, and

is a fractional Ok-ideal. Moreover, we have just shown that

(3.9.11) L´1
αe´1`βf´1 ÞÑατ`β
ÝÝÝÝÝÝÝÝÝÝÝÝÑ b.

is an Ok-conjugate linear isomorphism.

Exactly as in (2.1.4), the self-dual hermitian forms on ga0 and ga induce an

Ok-conjugate-linear isomorphism

HomOk
pga0, gr´2pgaqq – HomOk

pgr0pgaq, ga0q,

and hence determine an Ok-conjugate-linear isomorphism

L´1 “ a ¨HomOk
pga0, gr´2pgaqq

– a ¨HomOk
pgr0pgaq, ga0q

“ a ¨HomOk
pn, ga0q.

The composition

a ¨HomOk
pn, ga0q – L´1

p3.9.11q
ÝÝÝÝÑ b

is an Ok-linear isomorphism, which identifies the fractional ideal b with the

projective Ok-module used in the definition of (3.9.2). In particular it identifies

the elliptic curves (3.9.2) and (3.9.7), and also identifies

EpaqpCq b L0 “ pbzCq b L0 – pbb L0qzpCb L0q.

Here, and throughout the remainder of the proof, all tensor products are over

Ok. Identifying Cb L0 – V0pRq proves (3.9.8).

It remains to explain the isomorphism (3.9.9). First consider the Poincaré

bundle on the product

EpaqpCq ˆ EpaqpCq – pbˆ bqzpCˆ Cq.

Using classical formulas, the space of this line bundle can be identified with

the quotient

PEpaqpCq “ pbˆ bqzpCˆ Cˆ Cq,
where the action is given by

pb1, b2q ¨ pz1, z2, qq “
´

z1 ` b1, z2 ` b2, q ¨ e
πHτ pz1,b2q`πHτ pz2,b1q`πHτ pb1,b2q

¯

,

and we have set Hτ pw, zq “ wz{Impτq for complex numbers w and z.
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Directly from the definition, the line bundle (3.4.3) on

EpaqpCq b L0 – pbb L0qzpCb L0q

is given by

QEpaqpCqbL0
– pbb L0qz

`

pCb L0q ˆ C
˘

,

where the action of bbL0 on pCbL0qˆC is given as follows: Choose any set

x1, . . . , xn P L0 of Ok-module generators, and extend the Ok-hermitian form

on L0 to a C-hermitian form on Cb L0. If

y0 “
ÿ

i

bi b xi P bb L0

and

w0 “
ÿ

i

zi b xi P Cb L0

then

y0 ¨ pw0, qq “ pw0 ` y0, q ¨ e
πX`πY q,

where the factors X and Y are

X “
ÿ

iăj

´

Hτ pxxi, xjyzi, bjq `Hτ pzj , xxi, xjybiq `Hτ pxxi, xjybi, bjq
¯

“
1

Impτq

ÿ

i‰j

xzi b xi, bj b xjy `
1

Impτq

ÿ

iăj

xbi b xi, bj b xjy

and, recalling γ “ p1` δq{2,

Y “
ÿ

i

´

Hτ pγxxi, xiyzi, biq `Hτ pzi, γxxi, xiybiq `Hτ pγxxi, xiybi, biq
¯

“
1

Impτq

ÿ

i

xzi b xi, bi b xiy `
1

Impτq

ÿ

i

γxbi b xi, bi b xiy.

For elements y1, y2 P bb L0, we abbreviate

αpy1, y1q “
xy1, y2y

δNpbq
´
xy2, y1y

δNpbq
P Z.
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Using 2iImpτq “ δNpbq, some elementary calculations show that

πX ` πY ´
πxw0, y0y

Impτq

“
2πi

δNpbq

ÿ

iăj

xbi b xi, bj b xjy `
2πi

δNpbq

ÿ

i

xγbi b xi, bi b xiy

“
π

2Impτq

ÿ

i,j

xbi b xi, bj b xjy ´
πi

Npbq

ÿ

i,j

xbi b xi, bj b xjy

`2πi
ÿ

iăj

αpγbi b xi, bj b xjq `
2πi

Npbq

ÿ

i

xbi b xi, bi b xiy.

All terms in the final line lie in 2πiZ, and so

eπX`πY “ e
πxw0,y0y

Impτq e
πxy0,y0y
2Impτq e

´
πixy0,y0y

Npbq .

The relation (3.9.9) follows immediately.

Proposition 3.9.3 allows us to express Fourier-Jacobi coefficients explicitly

as functions on V0pRq satisfying certain transformation laws. Suppose we start

with a global section

(3.9.12) ψ P H0
`

S˚Kra{C,ω
k
˘

.

For each a P pkˆ and ` ě 0 we have the algebraically defined Fourier-Jacobi

coefficient

(3.9.13) FJ
paq
` pψq P H

0
`

Epaq b L0,Q`
EpaqbL0

˘

of (3.9.3), where we have trivialized LiepEpaqq using (3.9.7). The isomorphism

(3.9.9) now identifies (3.9.13) with a function on V0pRq satisfying the trans-

formation law

(3.9.14) FJ
paq
` pψqpw0 ` y0q “ FJ

paq
` pψqpw0q ¨ e

iπ`
xy0,y0y

Npbq e
π`
xw0,y0y
Impτq

`π`
xy0,y0y
2Impτq

for all y0 P bL0.

Remark 3.9.4. — If we use the isomorphism prε : V0pRq – εV0pCq of (2.1.7)

to view (3.9.13) as a function of w0 P εV0pCq, the transformation law can be

expressed in terms of the C-bilinear form r¨, ¨s as

FJ
paq
` pψqpw0 ` prεpy0qq “ FJ

paq
` pψqpw0q ¨ e

iπ`
Qpy0q
Npbq e

π`
rw0,y0s
Impτq

`π`
Qpy0q
2Impτq
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for all y0 P bL0. This uses the (slightly confusing) commutativity of

V0pRq
prε //

x¨,y0y

��

εV0pCq
Ă // V0pCq

r¨,y0s

��
k bQ R C.

In order to give another interpretation of our explicit coordinates, let NΦ Ă

QΦ be the unipotent radical, and let UΦ Ă NΦ be its center. The unipotent

radical may be characterized as the kernel of the morphism νΦ of (3.1.1), or,

equivalently, as the largest subgroup acting trivially on all graded pieces griV .

Proposition 3.9.5. — There is a commutative diagram

(3.9.15) pUΦpQq X spaqKΦspaq
´1qzDΦ

z ÞÑpw0,qq //

��

εV0pCq ˆ Cˆ

��
pNΦpQq X spaqKΦspaq

´1qzDΦ
// bL0zpεV0pCq ˆ Cˆq

in which the horizontal arrows are holomorphic isomorphisms, and the action

of bL0 on

εV0pCq ˆ Cˆ – V0pRq ˆ Cˆ

is the same as in Proposition 3.9.3.

Proof. — Recall from Remark 3.2.3 the isomorphism

DΦ –
 

w P εV pCq : εV pCq “ εV´1pCq ‘ εV0pCq ‘ Cw
(

{Cˆ.

As εV pCq is totally isotropic with respect to r¨, ¨s, a simple calculation shows

that every line w P DΦ has a unique representative of the form

´ξpe´1 ´ τ f´1q ` w0 ` pτe1 ` f1q P εV´1pCq ‘ εV0pCq ‘ εV1pCq

with ξ P C and w0 P εV0pCq “ V0pRq. These coordinates define an isomorphism

of complex manifolds

(3.9.16) DΦ
w ÞÑpw0,ξq
ÝÝÝÝÝÝÑ εV0pCq ˆ C.

The action of G on V restricts to a faithful action of NΦ, allowing us to

express elements of NΦpQq as matrices

npφ, φ˚, uq “

¨

˝

1 φ˚ u` 1
2φ
˚ ˝ φ

1 φ

1

˛

‚P NΦpQq



MODULARITY OF UNITARY GENERATING SERIES 75

for maps

φ P HomkpV1, V0q, φ˚ P HomkpV0, V´1q, u P HomkpV1, V´1q

satisfying the relations

0 “ xφpx1q, y0y ` xx1, φ
˚py0qy

0 “ xupx1q, y1y ` xx1, upy1qy

for xi, yi P Vi. The subgroup UΦpQq is defined by φ “ 0 “ φ˚.

The group UΦpQq X spaqKΦspaq
´1 is cyclic, and generated by the element

np0, 0, uq defined by

upx1q “
xx1, ay

rL´1 : Okas
¨ δa

for any a P L´1. In terms of the bilinear form, this can be rewritten as

upx1q “ ´rx1, f´1se´1 ` rx1, e´1sf´1.

In the coordinates of (3.9.16), the action of np0, 0, uq on DΦ becomes

pw0, ξq ÞÑ pw0, ξ ` 1q,

and setting q “ e2πiξ defines the top horizontal isomorphism in (3.9.15).

Let V ´1 “ V´1 with its conjugate action of k. There are group isomor-

phisms

(3.9.17) NΦpQq{UΦpQq – V ´1 bk V0 – V0.

The first sends

npφ, φ˚, uq ÞÑ y´1 b y0,

where y´1 and y0 are defined by the relation φpx1q “ xx1, y´1y ¨ y0, and the

second sends

pαe´1 ` βf´1q b y0 ÞÑ pατ ` βqy0.

Compare with (3.9.11).

A slightly tedious calculation shows that (3.9.17) identifies

pNΦpQq X spaqKΦspaq
´1q{pUΦpQq X spaqKΦspaq

´1q – bL0,

defining the bottom horizontal arrow in (3.9.15), and that the resulting action

of bL0 on εV0pCq ˆ Cˆ agrees with the one defined in Proposition 3.9.3. We

leave this to the reader.

Any section (3.9.12) may now be pulled back via

pNΦpQq X spaqKΦspaq
´1qzD z ÞÑpz,spaqgq

ÝÝÝÝÝÝÝÑ ShpG,DqpCq
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to define a holomorphic section of pωanqk, the kth power of the tautological

bundle on

D –
 

w P εV pCq : rw,ws ă 0
(

{Cˆ.
The tautological bundle admits a natural NΦpRq-equivariant trivialization:

any line w P D must satisfy rw, f´1s ‰ 0, yielding an isomorphism

r ¨ , f´1s : ωan – OD.

This trivialization allows us to identify ψ with a holomorphic function on

D Ă DΦ, which then has an analytic Fourier-Jacobi expansion

(3.9.18) ψ “
ÿ

`

FJ
paq
` pψqpw0q ¨ q

`

defined using the coordinates of Proposition 3.9.5. The fact that the coeffi-

cients here agree with (3.9.13) is a special case of the main results of [Lan12],

which compare algebraic and analytic Fourier-Jacobi coefficients on general

PEL-type Shimura varieties.

4. Classical modular forms

Throughout §4 we let D be any odd squarefree positive integer, and abbre-

viate Γ “ Γ0pDq. Let k be any positive integer.

4.1. Weakly holomorphic forms. — The positive divisors of D are in

bijection with the cusps of the complex modular curve X0pDqpCq, by sending

r | D to

8r “
r

D
P ΓzP1pQq.

Note that r “ 1 corresponds to the usual cusp at infinity, and so we sometimes

abbreviate 8 “ 81.

Fix a positive divisor r | D, set s “ D{r and choose

Rr “

ˆ

α β

sγ rδ

˙

P Γ0psq

with α, β, γ, δ P Z. The corresponding Aktin-Lehner operator is defined by

the matrix

Wr “

ˆ

rα β

Dγ rδ

˙

“ Rr

ˆ

r

1

˙

.

The matrix Wr normalizes Γ, and so acts on the cusps of X0pDqpCq. This

action satisfies Wr ¨ 8 “ 8r.
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Let χ be a quadratic Dirichlet character modulo D, and let

χ “ χr ¨ χs

be the unique factorization as a product of quadratic Dirichlet characters χr
and χs modulo r and s, respectively. Write

MkpD,χq ĂM !
kpD,χq

for the spaces of holomorphic modular forms and weakly holomorphic modular

forms of weight k, level Γ, and character χ. We assume that χp´1q “ p´1qk,

since otherwise M !
kpD,χq “ 0.

Denote by GL`2 pRq Ă GL2pRq the subgroup of elements with positive de-

terminant. It acts on functions on the upper half plane by the usual weight k

slash operator

pf |k γqpτq “ detpγqk{2pcτ ` dq´kfpγτq, γ “

ˆ

a b

c d

˙

P GL`2 pRq,

and f ÞÑ f |k Wr defines an endomorphism of M !
kpD,χq satisfying

f |k W
2
r “ χrp´1qχsprq ¨ f.

In particular, Wr is an involution when χ is trivial.

Any weakly holomorphic modular form

fpτq “
ÿ

m"´8

cpmq ¨ qm PM !
kpD,χq

determines another weakly holomorphic modular form

χrpβqχspαq ¨ pf |k Wrq PM
!
kpD,χq,

which is easily seen to be independent of the choice of parameters α, β, γ, δ

in the definition of Wr. This second modular form has a q-expansion at 8,

denoted

(4.1.1) χrpβqχspαq ¨ pf |k Wrq “
ÿ

m"´8

crpmq ¨ q
m.

Definition 4.1.1. — We call (4.1.1) the q-expansion of f at 8r. Of special

interest is crp0q, the constant term of f at 8r.

Remark 4.1.2. — If χ is nontrivial, the coefficients of (4.1.1) need not lie

in the subfield of C generated by the Fourier coefficients of f .



78 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

4.2. Eisenstein series and the modularity criterion. — Fix an integer

k ě 2. Denote by

M !,8
2´kpD,χq ĂM !

2´kpD,χq

the subspace of weakly holomorphic forms that are holomorphic outside the

cusp 8, and by

M8
k pD,χq ĂMkpD,χq

the subspace of holomorphic modular forms that vanish at all cusps different

from 8.

If k ą 2 there is a decomposition

M8
k pD,χq “ CE ‘ SkpD,χq,

where E is the Eisenstein series

E “
ÿ

γPΓ8zΓ

χpdq ¨ p1 |k γq PMkpD,χq.

Here Γ8 Ă Γ is the stabilizer of 8 P P1pQq, and γ “
`

a b
c d

˘

P Γ.

We also define the (normalized) Eisenstein series for the cusp 8r by

Er “ χrp´βqχspαrq ¨ pE |k Wrq PMkpD,χq.

It is independent of the choice of the parameters in Wr, and we denote by

Erpτq “
ÿ

mě0

erpmq ¨ q
m

its q-expansion at 8.

Remark 4.2.1. — Our notation for the q-expansion of Er is slightly at odds

with (4.1.1), as the q-expansion of E at 8r is not
ř

erpmqq
m. Instead, the

q-expansion of E at 8r is χrp´1qχsprq
ř

erpmqq
m, while the q-expansion of

Er at 8r is
ř

e1pmqq
m. In any case, what matters most is that

constant term of Er at 8s “

#

1 if s “ r

0 otherwise.

The constant terms of weakly holomorphic modular forms in M !,8
2´kpD,χq

can be computed using the above Eisenstein series.

Proposition 4.2.2. — Assume k ą 2. Suppose r | D and

fpτq “
ÿ

m"´8

cpmq ¨ qm PM !,8
2´kpD,χq.
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The constant term of f at the cusp 8r, in the sense of Definition 4.1.1, sat-

isfies

crp0q `
ÿ

mą0

cp´mqerpmq “ 0.

Proof. — The meromorphic differential form fpτqErpτq dτ on X0pDqpCq is

holomorphic away from the cusps 8 and 8r. Summing its residues at these

cusps gives the desired equality.

Theorem 4.2.3 (Modularity criterion). — Suppose k ě 2. For a formal

power series

(4.2.1)
ÿ

mě0

dpmqqm P Crrqss,

the following are equivalent.

1. The relation
ř

mě0 cp´mqdpmq “ 0 holds for every weakly holomorphic

form
ÿ

m"´8

cpmq ¨ qm PM !,8
2´kpD,χq.

2. The formal power series (4.2.1) is the q-expansion of a modular form in

M8
k pD,χq.

Proof. — As we assume k ě 2, that the map sending a weakly holomorphic

modular form f to its principal part at 8 identifies

M !,8
2´kpD,χq Ă Crq´1s.

On the other hand, the map sending a holomorphic modular form to its q-

expansion identifies

M8
k pD,χq Ă Crrqss.

A slight variant of the modularity criterion of [Bor99, Theorem 3.1] shows

that each subspace is the exact annihilator of the other under the bilinear

pairing Crq´1sbCrrqss ÝÑ C sending P bg to the constant term of P ¨g. The

claim follows.

5. Unitary Borcherds products

The goal of §5 is to state Theorems 5.3.1, 5.3.3, and 5.3.4, which assert the

existence of Borcherds products on S˚Kra and S˚Pap having prescribed divisors

and prescribed leading Fourier-Jacobi coefficients. These theorems are the

technical core of this work, and their proofs will occupy all of §6.

We assume n ě 3 throughout §5.
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5.1. Jacobi forms. — In this section we recall some of the rudiments of the

arithmetic theory of Jacobi forms. A more systematic treatment can be found

in the work of Kramer [Kra91, Kra95].

Let Y be the moduli stack over Z classifying elliptic curves, and let π : E Ñ
Y be the universal elliptic curve. Abbreviate Γ “ SL2pZq, and let H be the

complex upper half-plane. The groups Γ and Z2 each act on Hˆ C by
ˆ

a b

c d

˙

¨ pτ, zq “

ˆ

aτ ` b

cτ ` d
,

z

cτ ` d

˙

,

„

α

β



¨ pτ, zq “ pτ, z ` ατ ` βq ,

and this defines an action of the semi-direct product Γ˚ “ Γ˙Z2. We identify

the commutative diagrams (of complex orbifolds)

(5.1.1) ΓzpHˆ Cq

�� %%

LiepEpCqq

exp

�� %%
Γ˚zpHˆ Cq // ΓzH EpCq // YpCq

by sending pτ, zq P Hˆ C to the vector z in the Lie algebra of C{pZτ ` Zq.
Define a line bundle Opeq on E as the inverse ideal sheaf of the zero section e :

Y Ñ E . The Lie algebra LiepEq is (by definition) e˚Opeq, and ωY “ LiepEq´1

is the usual line bundle of weight one modular forms on Y (see Remark 5.1.3

below). In particular, the line bundle

Q “ Opeq b π˚ωY

on E is canonically trivialized along the zero section. By the constructions of

[Lan13, §1.3.2] and [MFK94, §6.2], this line bundle induces a homomorphism

(5.1.2) E Ñ E_,

which is none other than the unique principal polarization of E (one can verify

this fiber-by-fiber over geometric points of Y, reducing the claim to standard

properties of elliptic curves over fields). Denote by P the pullback of the

Poincaré bundle via

E ˆY E – E ˆY E_.
For a scheme U and points a, b P EpUq, denote by Qpaq the pullback of Q

via a : U Ñ E , and by Ppa, bq the pullback of P via pa, bq : U Ñ EˆY E . There

are canonical isomorphisms

Ppa, bq – Qpa` bq bQpaq´1 bQpbq´1

and

Ppa, aq – Qpaq bQpaq.
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Given the way that (5.1.2) is constructed from Q, the first isomorphism is

essentially a tautology. The second is a consequence of the isomorphisms

Qp2aq – Qpaqb3 bQp´aq – Qpaqb4,

which follow from the theorem of the cube [FC90, Theorem I.1.3] and the

invariance of Q under pullback by r´1s : E Ñ E , respectively.

Definition 5.1.1. — The diagonal restriction

J0,1 “ pdiagq˚P – Q2

is the line bundle of Jacobi forms of weight 0 and index 1 on E . More generally,

Jk,m “ Jm
0,1 b π

˚ωkY

is the line bundle of Jacobi forms of weight k and index m on E .

The isomorphism of the following proposition is presumably well-known.

We include the proof in order to make explicit the normalization of the iso-

morphism (see Remark 5.1.3 below, for example).

Proposition 5.1.2. — Let p : H ˆ C Ñ EpCq be the quotient map. The

holomorphic line bundle J an
k,m on EpCq is isomorphic to the holomorphic line

bundle whose sections over an open set U Ă EpCq are holomorphic functions

F pτ, zq on p´1pU q satisfying the transformation laws

F

ˆ

aτ ` b

cτ ` d
,

z

cτ ` d

˙

“ F pτ, zq ¨ pcτ ` dqk ¨ e2πimcz2{pcτ`dq

and

(5.1.3) F pτ, z ` ατ ` βq “ F pτ, zq ¨ e´2πimpα2τ`2αzq.

Proof. — Let Jk,m be the holomorphic line bundle on EpCq defined by the

above transformation laws.

By identifying the diagrams (5.1.1), a function f , defined on a Γ-invariant

open subset of H and satisfying the transformation law

f

ˆ

aτ ` b

cτ ` d

˙

“ fpτq ¨ pcτ ` dq´1

of a weight ´1 modular form, defines a section τ ÞÑ pτ, fpτqq of the line bundle

ΓzpHˆ Cq – LiepEpCqq – pωanY q´1

on ΓzH. This determines an isomorphism J1,0 – J an
1,0 . It now suffices to

construct an isomorphism J0,1 – J an
0,1 , and then take tensor products.
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Fix τ P H, set Eτ “ C{pZτ ` Zq, and restrict both J an
0,1 and J0,1 to line

bundles on Eτ Ă EpCq. The imaginary part of the hermitian form

Hτ pz1, z2q “
z1z2

Impτq

on C restricts to a Riemann form on Zτ ` Z. Using classical formulas for

the Poincaré bundle on complex abelian varieties, as found in the proof of

[BL04, Theorem 2.5.1], the restriction of J an
0,1 to the fiber Eτ is isomorphic

to the holomorphic line bundle determined by the Appell-Humbert data 2Hτ

and the trivial character Zτ ` Z Ñ Cˆ. The sections of this holomorphic

line bundle are, by definition, holomorphic functions gτ on C satisfying the

transformation law

gτ pz ` `q “ gτ pzq ¨ e
2πHτ pz,`q`πHτ p`,`q

for all ` P Zτ ` Z. If we set

F pτ, zq “ gτ pzq ¨ e
´πHτ pz,zq,

this transformation law becomes (5.1.3).

The above shows that J an
0,1 and J0,1 are isomorphic when restricted to the

fiber over any point of YpCq, but such an isomorphism is only determined up

to scaling by Cˆ. To pin down the scalars, and to get an isomorphism over

the total space, use the fact that both J an
0,1 and J0,1 come (by construction)

with canonical trivializations along the zero section. By the Seesaw Theorem

[BL04, Appendix A], there is a unique isomorphism J an
0,1 – J0,1 compatible

with these trivializations.

Remark 5.1.3. — The proof of Proposition 5.1.2 identifies a classical modu-

lar form fpτq “
ř

cpmqqm of weight k and level Γ with a holomorphic section

of pωanY q
k, again denoted f , satisfying an additional growth condition at the

cusp. Under our identification, the q-expansion principle takes the following

form: if R Ă C is any subring, then f is the analytification of a global section

f P H0pY{R,ωkY{Rq if and only if cpmq P p2πiqkR for all m.

For τ P H and z P C, we denote by

ϑ1pτ, zq “
ÿ

nPZ
eπipn`

1
2q

2
τ`2πipn` 1

2qpz´
1
2q

the classical Jacobi theta function, and by

ηpτq “ eπiτ{12
8
ź

n“1

p1´ e2nπiτ q
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Dedekind’s eta function. Set

Θpτ, zq
def
“ i

ϑ1pτ, zq

ηpτq
“ q1{12pζ1{2 ´ ζ´1{2q

8
ź

n“1

p1´ ζqnqp1´ ζ´1qnq

where q “ e2πiτ and ζ “ e2πiz.

Proposition 5.1.4. — The Jacobi form Θ24 defines a global section

Θ24 P H0pE ,J0,12q

with divisor 24e, while p2πiη2q12 determines a nowhere vanishing section

p2πiη2q12 P H0pY,ω12
Y q.

Proof. — It is a classical fact that p2πiη2q12 is a nowhere vanishing modular

form of weight 12. Noting Remark 5.1.3, the q-expansion principle shows that

it descends to a section on Y{Q, and thus may be viewed as a rational section

on Y. Another application of the q-expansion principle shows that its divisor

has no vertical components. Thus its divisor is trivial.

Classical formulas show that Θ24 defines a holomorphic section of J an
0,12 with

divisor 24e, and so the problem is to show that Θ24 is defined over Q, and

extends to a section on the integral model with the stated divisor. One could

presumably deduce this from the q-expansion principle for Jacobi forms as in

[Kra91, Kra95]. We instead borrow an argument from [Sch98, §1.2], which

requires only the more elementary q-expansion principle for functions on E .

Let d be any positive integer. The bilinear relations (3.4.1) imply that the

line bundle J d2

0,1 b rds
˚J ´1

0,1 on E is canonically trivial, and so

θ24
d “ Θ24d2

b rds˚Θ´24

defines a meromorphic function on EpCq. The crucial point is that θ24
d is

actually a rational function defined over Q, and extends to a rational function

on the integral model E with divisor

(5.1.4) divpθ24
d q “ 24

`

d2Er1s ´ Erds
˘

.

As in [Sch98, p. 387], this follows by computing the divisor first in the complex

fiber, then using the explicit formula

θ24
d pτ, zq “ q2pd2´1qζ´12dpd´1q

˜

ź

ně0

p1´ qnζqd
2

1´ qnζd

ź

ną0

p1´ qnζ´1qd
2

1´ qnζ´d

¸24

and the q-expansion principle on E to see that the divisor has no vertical

components.
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The line bundle ω12
Y is trivial, and hence there are isomorphisms

J0,12 – Q24 – Opeq24 b π˚ω12
Y – Opeq24.

Thus there is some Θ̃24 P H0pE ,J0,12q with divisor 24e, and the rational

function

θ̃24
d “ Θ̃24d2

b rds˚Θ̃´24

on E also has divisor (5.1.4).

Consider the meromorphic function ρ “ Θ24{Θ̃24 on EpCq. By comput-

ing the divisor in the complex fiber, we see that ρ is a nowhere vanishing

holomorphic function, and hence is constant. But this implies that

ρd
2´1 “ θ24

d {θ̃
24
d .

By what was said above, the right hand side is (the analytification of) a

nowhere vanishing function on E . This implies that ρd
2´1 “ ˘1, and the only

way this can hold for all d ą 1 is if ρ “ ˘1.

Now consider the tower of stacks

Y1pDq Ñ Y0pDq Ñ Y

over SpecpZq parametrizing elliptic curves with Drinfeld Γ1pDq-level structure,

Γ0pDq-level structure, and no level structure, respectively. See [KM85, Chap-

ter 3] or [DR73] for the definitions. We denote by E the universal elliptic curve

over any one of these bases, and view the line bundle of Jacobi forms J0,12 as

a line bundle on any one of the three universal elliptic curves. Similarly, we

view the Jacobi forms Θ24 and p2πiη2q12 of Proposition 5.1.4 as being defined

over any one of these bases.

The following lemma will be needed in §5.3.

Lemma 5.1.5. — Let Q : Y1pDq Ñ E be the universal D-torsion point. For

any r | D the line bundle

(5.1.5)
â

bPZ{DZ
b‰0
rb“0

pbQq˚J0,12

on Y1pDq is canonically trivial, and its section

F 24
r “

â

bPZ{DZ
b‰0
rb“0

pbQq˚Θ24

admits a canonical descent, denoted the same way, to a section of the trivial

bundle on Y0pDq.
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Proof. — If x1, . . . , xr are integers representing the r-torsion subgroup of

Z{DZ, then 6
ř

x2
i ” 0 pmod Dq. The bilinear relations (3.4.1) therefore

provide a canonical isomorphism
â

bPZ{DZ
b‰0
rb“0

PpbQ, bQqb12 –
â

bPZ{DZ
b‰0
rb“0

PpQ, 12b2Qq – PpQ, eq – OY1pDq

of line bundles on Y1pDq. This is the desired trivialization of (5.1.5). The

section F 24
r is obviously invariant under the action of the diamond operators

on Y1pDq, and so descends to Y0pDq.

5.2. Borcherds’ quadratic identity. — For the remainder of §5 we denote

by χk : pZ{DZqˆ Ñ t˘1u the Dirichlet character determined by the extension

k{Q, abbreviate

(5.2.1) χ “ χn´2
k ,

and fix a weakly holomorphic form

(5.2.2) fpτq “
ÿ

m"´8

cpmqqm PM !,8
2´npD,χq

with cpmq P Z for all m ď 0.

For a proper cusp label representative Φ as in Definition 3.1.1, recall the

self-dual hermitian Ok-lattice L0 of signature pn ´ 2, 0q defined by (3.1.4).

The hermitian form on L0 determines a quadratic form Qpxq “ xx, xy, with

associated Z-bilinear form rx1, x2s “ Trk{Qxx1, x2y of signature p2n´ 4, 0q.

The modularity criterion of Theorem 4.2.3 implies the following identity of

quadratic forms on L0 b R.

Proposition 5.2.1 (Borcherds’ quadratic identity)

For all u P L0 b R,

ÿ

xPL0

cp´Qpxqq ¨ ru, xs2 “
ru, us

2n´ 4

ÿ

xPL0

cp´Qpxqq ¨ rx, xs.

Proof. — The homogeneous polynomial

P pu, vq “ ru, vs2 ´
ru, us ¨ rv, vs

2n´ 4

on L0 b R is harmonic in both variables u and v. For any fixed u P L0 b R
there is a corresponding theta series

θpτ, u, P q “
ÿ

xPL0

P pu, xq ¨ qQpxq P SnpD,χq.



86 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

The modularity criterion of Theorem 4.2.3 therefore shows that

ÿ

mą0

cp´mq
ÿ

xPL0
Qpxq“m

ˆ

ru, xs2 ´
ru, us ¨ rx, xs

2n´ 4

˙

“ 0

for all u P L0 b R. This implies the assertion.

Recall from (3.6.2) that every x P L0 determines a diagram

(5.2.3) BΦ
jx //

��

E

��
AΦ

j // Y0pDq,

where, changing notation slightly from §5.1, Y0pDq is now the open modular

curve over Ok. Recall also that BΦ carries a distinguished line bundle LΦ

defined by (3.3.1), used to define the Fourier-Jacobi expansions of (3.8.1). We

will use Borcherds’ quadratic identity to relate the line bundle LΦ to the line

bundle J0,1 of Jacobi forms on E .

Proposition 5.2.2. — The rational number

(5.2.4) multΦpfq “
ÿ

mą0

m ¨ cp´mq

n´ 2
¨#tx P L0 : Qpxq “ mu

lies in Z, and there is a canonical isomorphism

L2¨multΦpfq
Φ –

â

mą0

â

xPL0
Qpxq“m

j˚xJ
cp´mq
0,1

of line bundles on BΦ.

Proof. — Proposition 5.2.1 implies the equality of hermitian forms
ÿ

xPL0

cp´Qpxqq ¨ xu, xy ¨ xx, vy “
xu, vy

2n´ 4

ÿ

xPL0

cp´Qpxqq ¨ rx, xs

“ xu, vy ¨multΦpfq

for all u, v P L0. As L0 is self-dual, we may choose u and v so that xu, vy “ 1,

and the integrality of multΦpfq follows from the integrality of cp´mq.

Set E “ E ˆY0pDq AΦ, and use Proposition 3.4.4 to identify BΦ – E b L0.

The pullback of the line bundle
â

mą0

â

xPL0
Qpxq“m

j˚xJ
bcp´mq
0,1 –

â

xPL0

j˚xJ
bcp´Qpxqq
0,1
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via any T -valued point a “
ř

ti b yi P EpT q b L0 is, in the notation of §3.4,

â

xPL0

PE
´

ÿ

i

xyi, xyti,
ÿ

j

xyj , xytj

¯bcp´Qpxqq

–
â

i,j

â

xPL0

PE
`

cp´Qpxqq ¨ xyi, xy ¨ xx, yjy ¨ ti, tj
˘

–
â

i,j

PE
`

xyi, yjy ¨ ti, tj
˘bmultΦpfq

– PEbL0pa, aq
bmultΦpfq

– QEbL0paq
b2¨multΦpfq.

This, along with the isomorphism QEbL0 – LΦ of Proposition 3.4.4, proves

that

L2¨multΦpfq
Φ – Q2¨multΦpfq

EbL0
–

â

mą0

â

xPL0
Qpxq“m

j˚xJ
cp´mq
0,1 .

5.3. The unitary Borcherds product. — We now state our main results

on Borcherds products.

For a prime p dividing D define

(5.3.1) γp “ ε´np ¨ pD, pqnp ¨ invppVpq P t˘1,˘iu,

where invppVpq is the invariant of Vp “ HomkpW0,W q bQ Qp in the sense of

(1.7.3), and

εp “

#

1 if p ” 1 pmod 4q

i if p ” 3 pmod 4q.

It is equal to the local Weil index of the Weil representation of SL2pZpq on

SLp Ă SpVpq, where Vp is viewed as a quadratic space as in (2.1.6). This is

explained in more detail in §8.1. For any r dividing D we define

(5.3.2) γr “
ź

p|r

γp.

Let crp0q denote the constant term of f at the cusp 8r, as in Definition

4.1.1, and define

k “
ÿ

r|D

γr ¨ crp0q.

We will see later in Corollary 6.1.4 that all γr ¨ crp0q P Q.
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For every m ą 0 define a divisor

(5.3.3) BKrapmq “
m

n´ 2

ÿ

Φ

#tx P L0 : xx, xy “ mu ¨ S˚KrapΦq

with rational coefficients on S˚Kra. Here the sum is over all K-equivalence

classes of proper cusp label representatives Φ in the sense of §3.2, L0 is the

hermitian Ok-module of signature pn ´ 2, 0q defined by (3.1.4), and S˚KrapΦq

is the boundary divisor of Theorem 3.7.1. It follows immediately from the

definition (5.2.4) that
ÿ

mą0

cp´mq ¨ BKrapmq “
ÿ

Φ

multΦpfq ¨ S˚KrapΦq.

For m ą 0 define the total special divisor

Ztot
Krapmq “ Z˚Krapmq ` BKrapmq,

where Z˚Krapmq is the special divisor defined on the open Shimura variety in

§2.5, and extended to the toroidal compactification in Theorem 3.7.1.

The following theorems assert the existence of Borcherds products on S˚Kra

and S˚Pap having prescribed divisors and prescribed leading Fourier-Jacobi co-

efficients. Their proofs will occupy all of §6.

Theorem 5.3.1. — After possibly replacing the form f of (5.2.2) by a posi-

tive integer multiple, there is a rational section ψpfq of the line bundle ωk on

S˚Kra with the following properties.

1. In the generic fiber, the divisor of ψpfq is

divpψpfqq{k “
ÿ

mą0

cp´mq ¨ Ztot
Krapmq{k.

2. For every proper cusp label representative Φ, the Fourier-Jacobi expan-

sion of ψpfq, in the sense of (3.8.1), along the boundary divisor

∆ΦzBΦ – S˚KrapΦq

has the form

ψpfq “ qmultΦpfq
ÿ

`ě0

ψ` ¨ q
`,

where ψ` is a rational section of ωkΦ b LmultΦpfq``
Φ over BΦ.

3. For any Φ as above, the leading coefficient ψ0 admits a factorization

ψ0 “ P ηΦ b P
hor
Φ b P vertΦ ,

where the three terms on the right are defined as follows.
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(a) Proposition 3.5.1 provides us with an isomorphism

d´1ωΦ – j˚ωY

of line bundles on AΦ, where j : AΦ Ñ Y0pDq is the morphism of

(5.2.3), and ωY “ LiepEq´1 is the pullback via Y0pDq Ñ Y of the

line bundle of weight one modular forms. Pulling back the modular

form p2πiη2q12 of Proposition 5.1.4 defines a nowhere vanishing

section

j˚p2πiη2qk P H0pAΦ, d
´kωkΦq.

Using the canonical inclusion ωΦ Ă d´1ωΦ, define

P ηΦ “ j˚p2πiη2qk,

but viewed as a rational section of ωkΦ over AΦ. Denote in the

same way its pullback to BΦ.

(b) Recalling the function

F 24
r “

â

bPZ{DZ
b‰0
rb“0

pbQq˚Θ24

on Y0pDq of Lemma 5.1.5, define a rational function

P vertΦ “
â

r|D
rą1

j˚F γrcrp0qr

on AΦ, and again pull back to BΦ.

(c) Using Proposition 5.2.2, define a rational section

P horΦ “
â

mą0

â

xPL0
xx,xy“m

j˚xΘcp´mq

of the line bundle LmultΦpfq
Φ on BΦ.

These properties determine ψpfq uniquely.

Remark 5.3.2. — In replacing f by a positive integer multiple, we are tacitly

assuming that the constants γrcrp0q and cp´mq are integer multiples of 24 for

all r | D and all m ą 0. This is necessary in order to guarantee k P 12Z, and

to make sense of the three factors p2πiη2
Φq
k, P horΦ , and P vertΦ .

In fact, we can strengthen Theorem 5.3.1 by computing precisely the divisor

of ψpfq on the integral model S˚Kra.
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Theorem 5.3.3. — The rational section ψpfq of ωk has divisor

divpψpfqq “
ÿ

mą0

cp´mq ¨ Ztot
Krapmq

` k ¨

ˆ

Exc

2
´ divpδq

˙

`
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Kra{Fp

´
ÿ

mą0

cp´mq

2

ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs,

where p Ă Ok is the unique prime above p, Ls is the self-dual Hermitian

Ok-lattice defined in §2.6, and Excs Ă Exc is the fiber over the component

s P π0pSingq. Recall that δ “
?
´D P k.

It is possible to give a statement analogous to Theorem 5.3.3 for the integral

model S˚Pap. To do this we first define, exactly as in (5.3.3), a Cartier divisor

Ytot
Pappmq “ Y˚Pappmq ` 2BPappmq

with rational coefficients on S˚Pap. Here Y˚Pappmq is the Cartier divisor of

Theorem §3.7.1, and

BPappmq “
m

n´ 2

ÿ

Φ

#tx P L0 : xx, xy “ mu ¨ S˚PappΦq.

It is clear from Theorem 3.7.1 that

(5.3.4) 2 ¨ Ztot
Krapmq “ Ytot

Krapmq `
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs,

where Ytot
Krapmq denotes the pullback of Ytot

Pappmq via S˚Kra Ñ S˚Pap.

The isomorphism

ω2 – ΩKra bOpExcq

of Theorem 3.7.1 identifies ω2k – Ωk
Kra in the generic fiber of S˚Kra, allowing us

to view ψpfq2 as a rational section of Ωk
Kra. As S˚Kra Ñ S˚Pap is an isomorphism

in the generic fiber, this section descends to a rational section of the line bundle

Ωk
Pap on S˚Pap.

Theorem 5.3.4. — When viewed as a rational section of Ωk
Pap, the

Borcherds product ψpfq2 has divisor

divpψpfq2q “
ÿ

mą0

cp´mq ¨ Ytot
Pappmq

´ 2k ¨ divpδq ` 2
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Pap{Fp
.
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These three theorems will be proved simultaneously in §6. Briefly, we will

map our unitary Shimura variety ShpG,Dq to an orthogonal Shimura variety,

where a meromorphic Borcherds product is already known to exist. If we pull

back this Borcherds product to ShpG,DqpCq, the leading coefficient in its an-

alytic Fourier-Jacobi expansion is known from [Kud16], up to multiplication

by some unknown constants of absolute value 1.

By converting this analytic Fourier-Jacobi expansion into algebraic lan-

guage, we will deduce the existence of a Borcherds product ψpfq satisfying

all of the properties stated in Theorem 5.3.1, up to some unknown constants

in the leading Fourier-Jacobi coefficient. These unknown constants are the

κΦ’s appearing in Proposition 6.4.1. We then rescale the Borcherds product

to make many κΦ “ 1 simultaneously.

After such a rescaling, the divisor of ψpfq2 on S˚Pap can be computed from

the Fourier-Jacobi expansions, and agrees with the divisor written in Theo-

rem 5.3.4. Pulling back that divisor calculation via S˚Kra Ñ S˚Pap, and using

Theorem 2.6.3, yields the divisor of Theorem 5.3.3.

Using the above divisor calculations, we prove that all κΦ are roots of unity.

Thus, after replacing f by a multiple, which replaces ψpfq by a power, we can

force all κΦ “ 1, completing the proofs.

5.4. A divisor calculation at the boundary. — Let Φ be a proper cusp

label representative for pG,Dq. The following proposition is a key ingredient

in the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

Proposition 5.4.1. — The rational sections P ηΦ, P horΦ , and P vertΦ of the line

bundles ωkΦ, LmultΦpfq
Φ , and OBΦ

, respectively, have divisors

divpP ηΦq “ ´k ¨ divpδq

divpP horΦ q “
ÿ

mą0

cp´mqZΦpmq

divpP vertΦ q “
ÿ

r|D

γrcrp0q
ÿ

p|r

BΦ{Fp
.

In particular, the divisor of P horΦ is purely horizontal (Proposition 3.6.2), while

the divisors of P ηΦ and P vertΦ are purely vertical.

Proof. — By Proposition 5.1.4 the section

j˚p2πiη2qk P H0pAΦ, d
´kωkΦq – H0pY0pDq,ω

k
Yq
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has trivial divisor. When we use the inclusion ωΦ Ă d´1ωΦ to view it instead

as a rational section P ηΦ of ωkΦ, its divisor becomes divpδ´kq. This proves the

first equality.

To prove the remaining two equalities, let E Ñ Y0pDq be the universal

elliptic curve, and denote by e : Y0pDq Ñ E the 0-section. It is an effective

Cartier divisor on E .

Directly from the definition of P horΦ we have the equality

divpP horΦ q “
ÿ

mą0

cp´mq

24

ÿ

xPL0
xx,xy“m

divpj˚xΘ24q.

Combining Proposition 5.1.4 with (3.6.1) shows that
ÿ

xPL0
xx,xy“m

divpj˚xΘ24q “
ÿ

xPL0
xx,xy“m

24j˚xpeq “
ÿ

xPL0
xx,xy“m

24ZΦpxq “ 24ZΦpmq,

and the first equality follows immediately.

Recall the morphism j : AΦ Ñ Y0pDq of §3.6. For the second equality

it suffices to prove that the function F 24
r on Y0pDq defined in Lemma 5.1.5

satisfies

(5.4.1) divpj˚F 24
r q “ 24

ÿ

p|r

AΦ{Fp
.

Let C Ă E be the universal cyclic subgroup scheme of order D. For each

s | D denote by Crss Ă C the s-torsion subgroup, and by Crssˆ Ă Crss the

closed subscheme of generators. This is defined as follows. Noting that

Crss “
ź

p|s

Crps,

we define

Crssˆ “
ź

p|s

Crpsˆ,

where Crpsˆ denotes the closed subscheme of generators of Crps as in [HR12,

§3.3]. Note that Crpsˆ coincides with the subscheme of points of exact order

p Z (see [HR12, Remark 3.3.2]) which allows the comparison with the formu-

lation of the moduli problem in [KM85, Chapter 3]. Here and in the sequel,

we are using [HR12, §3.3] as a convenient summary of Oort-Tate theory (see

also [GT05]) and of facts from [KM85] and [DR73].
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There is an equality of Cartier divisors

1

24
divpF 24

r q “
`

Crrs ´ e
˘

ˆE,e Y0pDq “
ÿ

s|r
s‰1

`

Crssˆ ˆE,e Y0pDq
˘

on Y0pDq. Indeed, one can check this after pullback to Y1pDq, where it is

clear from Proposition 5.1.4, which asserts that the divisor of the section Θ24

appearing in the definition of F 24
r is equal to 24e. If s is divisible by two

distinct primes then
`

Crssˆ ˆE,e Y0pDq
˘

“ 0,

and hence

divpF 24
r q “ 24

ÿ

p|r

`

Crpsˆ ˆE,e Y0pDq
˘

.

Now pull back this equality of Cartier divisors by j. Recall that j is defined

as the composition

AΦ –Mp1,0q
i
ÝÑ Y0pDq,

where the isomorphism is the one provided by Proposition 3.4.4, and the arrow

labeled i endows the universal CM elliptic curve E Ñ Mp1,0q with its cyclic

subgroup scheme Erδs. Thus

(5.4.2) i˚divpF 24
r q “ 24

ÿ

p|r

`

Erpsˆ ˆE,e Mp1,0q

˘

,

where p denotes the unique prime ideal in Ok over p.

Fix a geometric point z : SpecpFalg
p q Ñ Mp1,0q, and view z also as a geo-

metric point of E or E using

Mp1,0q
e
ÝÑ E

i
ÝÑ E .

Let OE,z and OE,z denote the completed étale local rings of E and E at z.

There is an isomorphism

OE,z –W rrX,Y, Zss{pXY ´ wpq

for some uniformizer wp in the Witt ringW “W pFalg
p q. Compare with [HR12,

Theorem 3.3.1]. Under this isomorphism the 0-section of E is defined by the

equation Z “ 0, and the divisor Crpsˆ is defined by Zp´1´X “ 0. Moreover,

noting that the completed étale local ring of Mp1,0q at z can be identified with

Ok bW , the natural map OE,z Ñ OE,z is identified with the quotient map

W rrX,Y, Zss{pXY ´ wpq ÑW rrX,Y, Zss{pXY ´ wp, X ´ uY q

for some u PWˆ.
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Under these identifications, the closed immersion

Erpsˆ ˆE,e Mp1,0q ãÑMp1,0q

corresponds, on the level of completed local rings, to the quotient map

OMp1,0q,z W rrX,Y, Zss{pXY ´ wp, X ´ uY, Zq

��
Falg
p W rrX,Y, Zss{pXY ´ wp, X ´ uY, Z, Z

p´1 ´Xq.

This implies that

Erpsˆ ˆE,e Mp1,0q “M
p1,0q{Falg

p
.

The equality (5.4.1) is clear from this and (5.4.2).

6. Calculation of the Borcherds product divisor

In this section we prove Theorems 5.3.1, 5.3.3, and 5.3.4. We assume

throughout that n ě 3.

Throughout §6 we keep f as in (5.2.2), and again assume that cp´mq P Z
for all m ě 0. Recall that V “ HomkpW0,W q is endowed with the hermitian

form xx, yy of (2.1.5), as well as the Q-bilinear form rx, ys of (2.1.6). The

associated quadratic form is

Qpxq “ xx, xy “
rx, xs

2
.

6.1. Vector-valued modular forms. — Let L Ă V be any Ok-lattice, self-

dual with respect to the hermitian form. The dual lattice of L with respect to

the bilinear form r¨, ¨s is L1 “ d´1L.

Let ω be the restriction to SL2pZq of the Weil representation of SL2ppQq
(associated with the standard additive character of A{Q) on the Schwartz-

Bruhat functions on L bZ Af . The restriction of ω to SL2pZq preserves the

subspace SL “ CrL1{Ls of Schwartz-Bruhat functions that are supported on
pL1 and invariant under translations by pL. We obtain a representation

ωL : SL2pZq Ñ AutpSLq.

For µ P L1{L, we denote by φµ P SL the characteristic function of µ.

Remark 6.1.1. — The conjugate representation ωL on SL, defined by

ωLpγqpφq “ ωLpγqpφq

for φ P SL, is the representation denoted ρL in [Bor98, Bru02, BF04].
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Recall the scalar valued modular form

fpτq “
ÿ

m"´8

cpmq ¨ qm PM !,8
2´npD,χq

of (5.2.2), and continue to assume that cpmq P Z for all m ď 0. We will convert

f into a CrL1{Ls-valued modular form f̃ , to be used as input for Borcherds’

construction of meromorphic modular forms on orthogonal Shimura varieties.

The restriction of ωL to Γ0pDq acts on the line C¨φ0 via the character χ “ χn´2
k ,

and hence the induced function

f̃pτq “
ÿ

γPΓ0pDqzSL2pZq
pf |2´n γqpτq ¨ ωLpγq

´1φ0(6.1.1)

is an SL-valued weakly holomorphic modular form for SL2pZq of weight 2´ n

with representation ωL. Its Fourier expansion is denoted

(6.1.2) f̃pτq “
ÿ

m"´8

c̃pmq ¨ qm,

and we denote by c̃pm,µq the value of c̃pmq P SL at a coset µ P L1{L.

For any r | D let γr P t˘1,˘iu be as in (5.3.2), and let crpmq be the mth

Fourier coefficient of f at the cusp 8r as in (4.1.1). For any µ P L1{L define

rµ | D by

(6.1.3) rµ “
ź

µp‰0

p,

where µp P L
1
p{Lp is the p-component of µ.

Proposition 6.1.2. — For all m P Q the coefficients c̃pmq P SL satisfy

c̃pm,µq “

#

ř

rµ|r|D
γr ¨ crpmrq if m ” ´Qpµq pmod Zq,

0 otherwise.

Moreover, for m ă 0 we have

c̃pm,µq “

#

cpmq if µ “ 0,

0 if µ ‰ 0,

and the constant term of f̃ is given by

c̃p0, µq “
ÿ

rµ|r|D

γr ¨ crp0q.

Proof. — The first formula is a special case of results of Scheithauer [Sch09,

Section 5]. For the reader’s benefit we provide a direct proof in §8.2.



96 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

The formula for the m “ 0 coefficient is immediate from the general formula.

So is the formula for m ă 0, using the fact that the singularities of f are

supported at the cusp at 8.

Remark 6.1.3. — The first formula of Proposition 6.1.2 actually also holds

for f in the larger space M !
2´npD,χq.

Corollary 6.1.4. — The coefficients cpmq and c̃pmq satisfy the following:

1. The cpmq are rational for all m.

2. The c̃pm,µq are rational for all m and µ, and are integral if m ă 0.

3. For all r | D we have γr ¨ crp0q P Q. In particular

c̃p0, 0q “
ÿ

r|D

γr ¨ crp0q P Q.

Proof. — For the first claim, fix any σ P AutpC{Qq. The form fσ ´ f PM !,8
2´n

is holomorphic at all cusps other than 8, and vanishes at the cusp 8 by

the assumption that as cpmq P Z for m ď 0. Hence fσ ´ f is a holomorphic

modular form of weight 2´n ă 0, and therefore vanishes identically. It follows

that cpmq P Q for all m.

Now consider the second claim. In view of the Proposition 6.1.2 the coeffi-

cients c̃pm,µq of f̃ with m ă 0 are integers. Hence, for any σ P AutpC{Qq, the

function f̃σ ´ f̃ is a holomorphic modular form of weight 2´ n ă 0, which is

therefore identically 0. Therefore f̃ has rational Fourier coefficients.

The third claim follows from the second claim and the formula for the

constant term of f̃ given in Proposition 6.1.2.

6.2. Construction of the Borcherds product. — We now construct the

Borcherds product ψpfq of Theorem 5.3.1 as the pullback of a Borcherds

product on the orthogonal Shimura variety defined by the quadratic space

pV,Qq. Useful references here include [Bor98, Bru02, Kud03, Hof14].

After Corollary 6.1.4 we may replace f by a positive integer multiple in

order to assume that cp´mq P 24Z for all m ě 0, and that γrcrp0q P 24Z for

all r | D. In particular the rational number

k “ c̃p0, 0q

of Corollary 6.1.4 is an integer. Compare with Remark 5.3.2.

Define a hermitian domain

(6.2.1) D̃ “ tw P V pCq : rw,ws “ 0, rw,ws ă 0u{Cˆ.
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Let ω̃an be the tautological bundle on D̃, whose fiber at w is the line Cw Ă
V pCq. The group of real points of SOpV q acts on (6.2.1), and this action lifts

to an action on ω̃an.

As in Remark 2.1.2, any point z P D determines a line Cw Ă εV pCq. This

construction defines a closed immersion

(6.2.2) D ãÑ D̃,

under which ω̃an pulls back to the line bundle ωan of §2.4. The hermitian

domain D̃ has two connected components. Let D̃` Ă D̃ be the connected

component containing D.

For a fixed g P GpAf q, we apply the constructions of §6.1 to the input form

f and the self-dual hermitian Ok-lattice

L “ HomOk
pga0, gaq Ă V.

The result is a vector-valued modular form f̃ of weight 2´n and representation

ωL : SL2pZq Ñ SL. The form f̃ determines a Borcherds product Ψpf̃q on D̃`;

see [Bor98, Theorem 13.3] and Theorem 7.2.4. For us it is more convenient

to use the rescaled Borcherds product

(6.2.3) ψ̃gpfq “ p2πiq
c̃p0,0qΨp2f̃q

determined by 2f̃ . It is a meromorphic section of pω̃anqk.

The subgroup SOpLq` Ă SOpLq of elements preserving the component D̃`
acts on ψ̃gpfq through a finite order character [Bor00]. Replacing f by mf

has the effect of replacing ψ̃gpfq by ψ̃gpfq
m, and so after replacing f by a

multiple we assume that ψ̃gpfq is invariant under this action.

Denote by ψgpfq the pullback of ψ̃gpfq via the map

pGpQq X gKg´1qzD Ñ SOpLq`zD̃`

induced by (6.2.2). It is a meromorphic section of pωanqk on the connected

component

pGpQq X gKg´1qzD z ÞÑpz,gq
ÝÝÝÝÝÑ ShpG,DqpCq.

By repeating the construction for all g P GpQqzGpAf q{K, we obtain a mero-

morphic section ψpfq of the line bundle pωanqk on

ShpG,DqpCq – SKrapCq.

After rescaling on every connected component by a complex constant of ab-

solute value 1, this will be the section whose existence is asserted in Theorem

5.3.1.
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Proposition 6.2.1. — The divisor of ψpfq is

divpψpfqq “
ÿ

mą0

cp´mq ¨ ZKrapmqpCq.

Proof. — The divisor of ψ̃gpfq on D̃` was computed by Borcherds in terms

of the Fourier coefficients c̃p´mq of f̃ , and from this it is easy to obtain a

formula for the divisor of ψgpfq on D. See [Bru02, Theorem 3.22] and [Hof14,

Theorem 8.1] for the details. The claim therefore follows by using Proposition

6.1.2 to rewrite this formula in terms of the cp´mq, and comparing with the

explicit description of ZKrapmqpCq stated in Remark 2.5.2.

6.3. Analytic Fourier-Jacobi coefficients. — We return to the notation

of §3.9. Thus Φ “ pP, gq is a proper cusp label representative for pG,Dq, we

have chosen

s : Resk{QGm Ñ QΦ

as in Lemma 3.9.2, and have fixed a P pkˆ. This data determines a lattice

L “ HomOk
pspaqga0, spaqgaq,

and Witt decompositions

V “ V´1 ‘ V0 ‘ V1, L “ L´1 ‘ L0 ‘ L1.

Choose bases e´1, f´1 P L´1 and e1, f1 P L1 as in §3.9.

Imitating the construction of (3.9.16) yields a commutative diagram

D
p6.2.2q //

w ÞÑpw0,ξq
��

D̃`

w ÞÑpτ,w0,ξq
��

εV0pCq ˆ C // Hˆ V0pCq ˆ C

in which the vertical arrows are open immersions, and the horizontal arrows

are closed immersions. The vertical arrow on the right is defined as follows:

Any w P D̃ pairs nontrivially with the isotropic vector f´1, and so may be

scaled so that rw, f´1s “ 1. This allows us to identify

D̃ “ tw P V pCq : rw,ws “ 0, rw,ws ă 0, rw, f´1s “ 1u.

Using this model, any w P D̃` has the form

w “ ´ξe´1 ` pτξ ´Qpw0qqf´1 ` w0 ` τe1 ` f1

with τ P H, w0 P V0pCq, and ξ P C. The bottom horizontal arrow is pw0, ξq ÞÑ

pτ, w0, ξq, where τ is determined by the relation (3.9.6).
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The construction above singles out a nowhere vanishing section of ω̃an,

whose value at an isotropic line Cw is the unique vector in that line with

rw, f´1s “ 1. As in the discussion leading to (3.9.18), we obtain a trivialization

r ¨ , f´1s : ω̃an – OD̃` .

Now consider the Borcherds product ψ̃spaqgpfq on D̃` determined by the

lattice L above (that is, replace g by spaqg throughout §6.2). It is a meromor-

phic section of pω̃anqk, and we use the trivialization above to identify it with

a meromorphic function. In a neighborhood of the rational boundary com-

ponent associated to the isotropic plane V´1 Ă V , this meromorphic function

has a product expansion.

Proposition 6.3.1 ([Kud16]). — There are positive constants A and B

with the following property: For all points w P D̃` satisfying

Impξq ´
QpImpw0qq

Impτq
ą A Impτq `

B

Impτq
,

there is a factorization

ψ̃spaqgpfq “ κ ¨ p2πiqk ¨ η2kpτq ¨ e2πiIξ ¨ P0pτq ¨ P1pτ, w0q ¨ P2pτ, w0, ξq

in which κ P Cˆ has absolute value 1, η is the Dedekind η-function, and

I “
1

12

ÿ

bPZ{DZ
c̃

ˆ

0,´
b

D
f´1

˙

´ 2
ÿ

mą0

ÿ

xPL0

cp´mq ¨ σ1pm´Qpxqq.

The factors P0 and P1 are defined by

P0pτq “
ź

bPZ{DZ
b‰0

Θ

ˆ

τ,
b

D

˙c̃p0, b
D

f´1q

and

P1pτ, w0q “
ź

mą0

ź

xPL0
Qpxq“m

Θ
`

τ, rw0, xs
˘cp´mq

.

The remaining factor is

P2pτ, w0, ξq “
ź

xPδ´1L0
aPZ

bPZ{DZ
cPZą0

´

1´ e2πicξe2πiaτe2πib{De´2πirx,w0s
¯2¨c̃pac´Qpxq,µq

,

where µ “ ´ae´1 ´
b
D f´1 ` x` ce1 P δ

´1L{L.
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Proof. — This is just a restatement of [Kud16, Corollary 2.3], with some

simplifications arising from the fact that the vector-valued form f̃ used to

define the Borcherds product is induced from a scalar-valued form via (6.1.1).

A more detailed description of how these expressions arise from the general

formulas in [Kud16] is given in the appendix.

If we pull back the formula for the Borcherds product ψ̃spaqgpfq found in

Proposition 6.3.1 via the closed immersion (6.2.2), we obtain a formula for the

Borcherds product ψspaqgpfq on the connected component

pGpQq X spaqgKg´1spaq´1qzD z ÞÑpz,spaqgq
ÝÝÝÝÝÝÝÑ ShpG,DqpCq,

from which we can read off the leading analytic Fourier-Jacobi coefficient.

Corollary 6.3.2. — The analytic Fourier-Jacobi expansion of ψpfq, in the

sense of (3.9.18), has the form

ψspaqgpfq “
ÿ

`ěI

FJ
paq
` pψpfqqpw0q ¨ q

`,

where I is the integer of Proposition 6.3.1. The leading coefficient FJ
paq
I pψpfqq,

viewed as a function on V0pRq as in the discussion leading to (3.9.14), is given

by

(6.3.1) FJ
paq
I pψpfqqpw0q “ κ ¨ p2πiqk ¨ ηpτq2k ¨ P0pτq ¨ P1pτ, w0q,

where τ P H is determined by (3.9.6),

P0pτq “
ź

r|D

ź

bPZ{DZ
b‰0
rb“0

Θ

ˆ

τ,
b

D

˙γrcrp0q

and

P1pτ, w0q “
ź

mą0

ź

xPL0
Qpxq“m

Θ
`

τ, xw0, xy
˘cp´mq

.

The constant κ P C, which depends on both Φ and a, has absolute value 1.

Proof. — Using Proposition 6.3.1, the pullback of ψ̃spaqgpfq via (6.2.2) factors

as a product

ψspaqgpfq “ κ ¨ p2πiqk ¨ η2kpτq ¨ e2πiξI ¨ P0pτqP1pτ, w0qP2pτ, w0, ξq,
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where ξ P Cˆ and w0 P V pRq – εV pCq. The parameter τ P H is now fixed,

determined by (3.9.6). The equality

ź

bPZ{DZ
b‰0

Θ

ˆ

τ,
b

D

˙c̃p0, b
D

f´1q

“
ź

r|D

ź

bPZ{DZ
b‰0
rb“0

Θ

ˆ

τ,
b

D

˙γrcrp0q

follows from Proposition 6.1.2, and allows us to rewrite P0 in the stated form.

To rewrite the factor P1 in terms of x¨, ¨y instead of r¨, ¨s, use the commutative

diagram of Remark 3.9.4. Finally, as Impξq Ñ 8, so q “ e2πiξ Ñ 0, the factor

P2 converges to 1. This P2 does not contribute to the leading Fourier-Jacobi

coefficient.

Proposition 6.3.3. — The integer I defined in Proposition 6.3.1 is equal to

the integer multΦpfq defined by (5.2.4), and the product (6.3.1) satisfies the

transformation law (3.9.14) with ` “ multΦpfq.

Proof. — The Fourier-Jacobi coefficient FJ
paq
I pψpfqq appearing on the left

hand side of (6.3.1) is, by definition, a section of the line bundle QI
EpaqbL

on Epaq b L. When viewed as a function of the variable w0 P V0pRq using our

explicit coordinates, it therefore satisfies the transformation law (3.9.14) with

` “ I.

Now consider the right hand side of (6.3.1), and recall that τ is fixed, de-

termined by (3.9.6). In our explicit coordinates the function Θpτ, xw0, xyq
24 of

w0 P V0pRq is identified with a section of the line bundle j˚xJ0,12 on Epaq b L;

this is clear from the definition of jx in (3.6.2), and Proposition 5.1.4. Thus

P1pτ, w0q, and hence the entire right hand side of (6.3.1), defines a section of

the line bundle
â

mą0

â

xPL0
Qpxq“m

j˚xJ
cp´mq{2
0,1 – L2¨multΦpf{2q

Φ – QmultΦpfq

EpaqbL
,

where the isomorphisms are those of Proposition 5.2.2 and Proposition 3.4.4.

This implies that the right hand side of (6.3.1) satisfies the transformation law

(3.9.14) with ` “ multΦpfq.

A function on V0pRq cannot satisfy the transformation law (3.9.14) for two

different values of `, and hence I “ multΦpfq. Note that we are using here the

standing hypothesis n ą 2; if n “ 2 then V0pRq “ 0, and the transformation

law (3.9.14) is vacuous.

For a more direct proof of the proposition, see §8.4.



102 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

6.4. Algebraization and descent. — The following weak form of Theo-

rem 5.3.1 shows that ψpfq is algebraic, and provides an algebraic interpreta-

tion of its leading Fourier-Jacobi coefficients.

Proposition 6.4.1. — The meromorphic section ψpfq is the analytification

of a rational section of the line bundle ωk on SKra{C. This rational section

satisfies the following properties:

1. When viewed as a rational section over the toroidal compactification,

divpψpfqq “
ÿ

mą0

cp´mq ¨ Z˚Krapmq{C `
ÿ

Φ

multΦpfq ¨ S˚KrapΦq{C.

2. For every proper cusp label representative Φ, the Fourier-Jacobi expan-

sion of ψpfq along S˚KrapΦq{C, in the sense of §3.8, has the form

ψpfq “ qmultΦpfq
ÿ

`ě0

ψ` ¨ q
`.

3. The leading coefficient ψ0, a rational section of ωkΦbLmultΦpfq
Φ over BΦ{C,

factors as

ψ0 “ κΦ b P
η
Φ b P

hor
Φ b P vertΦ

for a unique section

κΦ P H
0pAΦ{C,OˆAΦ{Cq.

This section satisfies |κΦpzq| “ 1 at every complex point z P AΦpCq. (The

other factors appearing on the right hand side were defined in Theorem

5.3.1.)

Proof. — Using Corollary 6.3.2 and Proposition 6.3.3, one sees that ψpfq

extends to a meromorphic section of ωk over the toroidal compactification

S˚KrapCq, vanishing to order I “ multΦpfq along the closed stratum

S˚KrapΦq{C Ă S˚Kra{C

indexed by a proper cusp label representative Φ.

The calculation of the divisor of ψpfq over the open Shimura variety SKrapCq
is Proposition 6.2.1. The algebraicity claim now follows from GAGA (using the

fact that the divisor is already known to be algebraic), proving all parts of the

first claim. The second and third claims are just a translation of Corollary 6.3.2

into the algebraic language of Theorem 5.3.1, using the explicit coordinates of

§3.9 and the change of notation p2πiη2qk “ P ηΦ, P0 “ P vertΦ and P1 “ P horΦ .
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We now prove that ψpfq, after minor rescaling, descends to k. This can be

deduced from the analogous statement about Borcherds products on orthog-

onal Shimura varieties proved in [HMP], but in the unitary case there is a

much more elementary proof. This will require the following two lemmas.

Lemma 6.4.2. — The geometric components of ShpG,Dq are defined over

the Hilbert class field kHilb of k, and each such component has trivial stabilizer

in GalpkHilb{kq.

Proof. — One could prove this using Deligne’s reciprocity law for connected

components of Shimura varieties [Mil05, §13], but it also follows easily from

the theory of toroidal compactification.

Our assumption that n ą 2 guarantees that every connected component of

S˚Kra{C contains some connected component of the boundary. It is a partp8q of

Theorem 3.7.1 that all such boundary components are defined over the Hilbert

class field, and it follows that the same is true for components of S˚Kra{C. The

same is therefore true for the components of the interior

SKra{C – ShpG,Dq{C.

The claim about stabilizers follows from the open and closed immersion

ShpG,Dq ĂMp1,0q ˆk Mpn´1,1q

of (2.2.2), along with the classical fact (from the theory of complex multiplica-

tion of elliptic curves) that the geometric components of Mp1,0q form a simply

transitive GalpkHilb{kq-set.

The lemma allows us to choose a set of connected components

tXiu Ă π0

`

ShpG,Dq{kHilbq

in such a way that

ShpG,Dq{kHilb “
ğ

i

ğ

σPGalpkHilb{kq

σpXiq.

For each index i, pick gi P GpAf q in such a way that XipCq is equal to the

image of

pGpQq X giKg´1
i qzD

z ÞÑpz,giq
ÝÝÝÝÝÑ ShpG,DqpCq.

Choose an isotropic k-line J Ă W , let P Ă G be its stabilizer, and define a

proper cusp label representative Φi “ pP, giq. The above choices pick out one

p8qThis particular part of Theorem 3.7.1 follows from the reciprocity law for the boundary

components of MPap
pn´1,1q proved in [How15, Proposition 2.6.2].
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boundary component on every component of the toroidal compactification, as

the following lemma demonstrates.

Lemma 6.4.3. — The natural maps

Ů

i S˚KrapΦiq //

–

��

S˚Kra

��

Ů

iAΦi

Ů

i BΦi

88

&&

oo

Ů

i S˚PappΦiq // S˚Pap

induce bijections on connected components. The same is true after base change

to k or C.

Proof. — Let X˚i Ă S˚PappCq be the closure of Xi. By examining the com-

plex analytic construction of the toroidal compactification [How15, Lan12,

Pin89], one sees that some component of the divisor S˚PappΦiqpCq lies on X˚i .

Recall from Theorem 3.7.1 that the components of S˚PappΦiqpCq are defined

over kHilb, and that the action of GalpkHilb{kq is simply transitive. It follows

immediately that

S˚PappΦiqpCq Ă
ğ

σPGalpkHilb{kq

σpX˚i q,

and the inclusion induces a bijection on components. By Proposition 3.2.1

and the isomorphism of Proposition 3.3.3, the quotient map

CΦpCq Ñ ∆ΦizCΦipCq

induces a bijection on connected components, and both maps CΦ Ñ BΦ Ñ AΦ

have geometrically connected fibers (the first is a Gm-torsor, and the second

is an abelian scheme). We deduce that all maps in

AΦipCq Ð BΦipCq Ñ ∆ΦizBΦipCq – S˚KrapΦiqpCq – S˚PappΦiqpCq

induce bijections on connected components.

The above proves the claim over C, and the claim over k follows formally

from this. The claim for integral models follows from the claim in the generic

fiber, using the fact that all integral models in question are normal and flat

over Ok.
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Proposition 6.4.4. — After possibly rescaling by a constant of absolute

value 1 on every connected component of S˚Kra{C, the Borcherds product ψpfq

is defined over k, and the sections of Proposition 6.4.1 satisfy

κΦ P H
0pAΦ{k,OˆAΦ{k

q

for all proper cusp label representatives Φ. Furthermore, we may arrange that

κΦi “ 1 for all i.

Proof. — Lemma 6.4.3 establishes a bijection between the connected compo-

nents of S˚KrapCq and the finite set
Ů

iAΦipCq. On the component indexed by

z P AΦipCq, rescale ψpfq by κΦipzq
´1. For this rescaled ψpfq we have κΦi “ 1

for all i.

Suppose σ P AutpC{kq. The first claim of Proposition 6.4.1 implies that

the divisor of ψpfq, when computed on the compactification S˚Kra{C, is defined

over k. Therefore σpψpfqq{ψpfq has trivial divisor, and so is constant on every

connected component.

By the third claim of Proposition 6.4.1, the leading coefficient in the Fourier-

Jacobi expansion of ψpfq along the boundary stratum S˚KrapΦiq is

ψ0 “ P ηΦi b P
hor
Φi b P

vert
Φi ,

which is defined over k. From this it follows that σpψpfqq{ψpfq is identically

equal to 1 on every connected component of S˚Kra{C meeting this boundary

stratum. Varying i and using Lemma 6.4.3 shows that σpψpfqq “ ψpfq.

This proves that ψpfq is defined over k, hence so are all of its Fourier-

Jacobi coefficients along all boundary strata S˚KrapΦq. Appealing again to the

calculation of the leading Fourier-Jacobi coefficient of Proposition 6.4.1, we

deduce finally that κΦ is defined over k for all Φ.

6.5. Calculation of the divisor, and completion of the proof. — The

Borcherds product ψpfq on S˚Kra{k of Proposition 6.4.4 may be viewed as a

rational section of ωk on the integral model S˚Kra.

Let Φ be any proper cusp label representative. Combining Propositions

6.4.1 and 6.4.4 shows that the leading Fourier-Jacobi coefficient of ψpfq along

the boundary divisor S˚KrapΦq is

(6.5.1) ψ0 “ κΦ b P
η
Φ b P

hor
Φ b P vertΦ .
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Recall that this is a rational section of ωkΦ b LmultΦpfq
Φ on BΦ. Here, by mild

abuse of notation, we are viewing κΦ as a rational function on AΦ, and denot-

ing in the same way its pullback to any step in the tower

C˚Φ
π
ÝÑ BΦ Ñ AΦ.

Lemma 6.5.1. — Recall that π has a canonical section BΦ ãÑ C˚Φ, realizing

BΦ as a divisor on C˚Φ. If we use the isomorphism (3.7.1) to view ψpfq as

a rational section of the line bundle ωkΦ on the formal completion pC˚Φq^BΦ
, its

divisor satisfies

divpψpfqq “ divpδ´kκΦq `multΦpfq ¨ BΦ

`
ÿ

mą0

cp´mqZΦpmq `
ÿ

r|D

γrcrp0q
ÿ

p|r

π˚pBΦ{Fp
q.

Proof. — The key step is to prove that the divisor of ψpfq can be computed

from the divisor of its leading Fourier-Jacobi coefficient ψ0 by the formula

(6.5.2) divpψpfqq “ π˚divpψ0q `multΦpfq ¨ BΦ.

Recalling the tautological section q with divisor BΦ from Remark 3.8.1, con-

sider the rational section

R “ q´multΦpfq ¨ψpfq “
ÿ

iě0

ψi ¨ q
i

of ωkΦ b π
˚LmultΦpfq

Φ on the formal completion pC˚Φq^BΦ
.

We claim that divpRq “ π˚∆ for some divisor ∆ on BΦ. Indeed, whatever

divpRq is, it may decomposed as a sum of horizontal and vertical components.

We know from Theorem 3.7.1 and Proposition 6.4.1 that the horizontal part

is a linear combination of the divisors ZΦpmq on C˚Φ defined by (3.6.1); these

divisors are, by construction, pullbacks of divisors on BΦ. On the other hand,

the morphism C˚Φ Ñ BΦ is the total space of a line bundle, and hence is smooth

with connected fibers. Thus every vertical divisor on C˚Φ, and in particular the

vertical part of divpRq, is the pullback of some divisor on BΦ.

Denoting by i : BΦ ãÑ C˚Φ the zero section, we compute

∆ “ i˚π˚∆ “ i˚divpRq “ divpi˚Rq “ divpψ0q.

Pulling back by π proves that divpRq “ π˚divpψ0q, and (6.5.2) follows.

We now compute the divisor of ψ0 on BΦ using (6.5.1). The divisors of P ηΦ,

P horΦ , and P vertΦ were computed in Proposition 5.4.1, which shows that on BΦ
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we have the equality

divpψ0q “ divpδ´kκΦq `
ÿ

mą0

cp´mqZΦpmq `
ÿ

r|D

γrcrp0q
ÿ

p|r

BΦ{Fp
.

Combining this with (6.5.2) completes the proof.

Proposition 6.5.2. — When viewed as a rational section of ωk on S˚Kra, the

Borcherds product ψpfq has divisor

divpψpfqq “
ÿ

mą0

cp´mq ¨ Z˚Krapmq `
ÿ

Φ

multΦpfq ¨ S˚KrapΦq

` divpδ´kq `
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Kra{Fp
(6.5.3)

up to a linear combination of irreducible components of the exceptional divi-

sor Exc Ă S˚Kra. Moreover, each section κΦ of Proposition 6.4.4 has finite

multiplicative order, and extends to a section κΦ P H
0pAΦ,OˆAΦ

q.

Proof. — Recall from Lemma 6.4.3 that the natural maps
Ů

i BΦi
//

��

Ů

i S˚PappΦiq // S˚Pap

Ů

iAΦi

induce bijections on connected components, as well as on connected compo-

nents of the generic fibers.

All stacks in the diagram are proper over Ok, and have normal fibers. (For

S˚Pap this follows from Theorem 3.7.1 and our assumption that n ą 2. The

other stacks appearing in the diagram are smooth over Ok.) It follows from

this and [FGI`05, Corollary 8.2.18] that all arrows in the diagram induce bi-

jections between the irreducible (=connected) components modulo any prime

p Ă Ok.

Deleting the (0-dimensional) singular locus Sing Ă S˚Pap does not change

the irreducible components of S˚Pap or its fibers, and so if we define

U def
“ S˚Pap r Sing – S˚Kra r Exc

then the natural maps
Ů

i BΦi
//

��

Ů

i S˚PappΦiq // U

Ů

iAΦi
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induce bijections on irreducible components, as well as on irreducible compo-

nents modulo any prime p Ă Ok.

Suppose Φ is any proper cusp label representative, and let UΦ Ă U be the

union of all irreducible components that meet S˚PappΦq. If we interpret divpκΦq

as a divisor on U using the bijection

tvertical divisors on AΦu – tvertical divisors on UΦu,

then the equality of divisors (6.5.3) holds after pullback to UΦ, up to the

error term divpκΦq. Indeed, this equality holds in the generic fiber of UΦ

by Proposition 6.4.1, and it holds over an open neighborhood of S˚PappΦq by

Lemma 6.5.1 and the isomorphism of formal completions (3.7.1). As the union

of the generic fiber with this open neighborhood is an open substack whose

complement has codimension ě 2, the stated equality holds over all of UΦ.

Letting Φ vary over the Φi and using κΦi “ 1, we see from the paragraph

above that (6.5.3) holds over
Ů

i UΦi “ U . With this in hand, we may reverse

the argument to see that the error term divpκΦq vanishes for every Φ. It

follows that κΦ extends to a global section of OˆAΦ
.

It only remains to show that each κΦ has finite order. Choose a finite

extension L{k large enough that every elliptic curve over C with complex

multiplication by Ok admits a model over L with everywhere good reduction.

Choosing such models determines a faithfully flat morphism
ğ

SpecpOLq ÑMp1,0q – AΦ,

and the pullback of κΦ is represented by a tuple of units px`q P
ś

OˆL . Each x`
has absolute value 1 at every complex embedding of L (this follows from the

final claim of Proposition 6.4.1), and is therefore a root of unity. This implies

that κΦ has finite order.

Proof of Theorem 5.3.1. — Start with a weakly holomorphic form (5.2.2). As

in §6.2, after possibly replacing f by a positive integer multiple, we obtain

a Borcherds product ψpfq. This is a meromorphic section of pωanqk. By

Proposition 6.4.1 it is algebraic, and by Proposition 6.4.4 it may be rescaled

by a constant of absolute value 1 on each connected component in such a way

that it descends to k.

Now view ψpfq as a rational section of ωk over S˚Kra. By Proposition 6.5.2

we may replace f by a further positive integer multiple, and replace ψpfq by

a corresponding tensor power, in order to make all κΦ “ 1. Having trivialized

the κΦ, the existence part of Theorem 5.3.1 now follows from Proposition 6.4.1.

For uniqueness, suppose ψ1pfq also satisfies the conditions of that theorem.
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The quotient of the two Borcherds products is a rational function with trivial

divisor, which is therefore constant on every connected component of S˚KrapCq.
As the leading Fourier-Jacobi coefficients of ψ1pfq and ψpfq are equal along

every boundary stratum, those constants are all equal to 1.

Proof of Theorem 5.3.4. — As in the statement of the theorem, we now view

ψpfq2 as a rational section of the line bundle Ωk
Pap on S˚Pap. Combining

Proposition 6.5.2 with the isomorphism

S˚Kra r Exc – S˚Pap r Sing,

of (3.7.2), and recalling from Theorem 3.7.1 that this isomorphism identifies

ω2k – Ωk
Kra – Ωk

Pap,

we deduce the equality

divpψpfq2q “
ÿ

mą0

cp´mq ¨ Y˚Pappmq ` 2
ÿ

Φ

multΦpfq ¨ S˚PappΦq

` divpδ´2kq ` 2
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Pap{Fp
(6.5.4)

of Cartier divisors on S˚Pap r Sing. As S˚Pap is normal and Sing lies in codi-

mension ě 2, this same equality must hold on the entirety of S˚Pap.

Proof of Theorem 5.3.3. — If we pull back via S˚Kra Ñ S˚Pap and view ψpfq2

as a rational section of the line bundle

Ωk
Kra – ω

2k bOpExcq´k,

the equality (6.5.4) on S˚Pap pulls back to

divpψpfq2q “
ÿ

mą0

cp´mq ¨ Y˚Krapmq ` 2
ÿ

Φ

multΦpfq ¨ S˚KrapΦq

` divpδ´2kq ` 2
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Kra{Fp
.

Theorem 2.6.3 allows us to rewrite this as

divpψpfq2q “ 2
ÿ

mą0

cp´mq ¨ Z˚Krapmq ` 2
ÿ

Φ

multΦpfq ¨ S˚KrapΦq

` divpδ´2kq ` 2
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Kra{Fp

´
ÿ

mą0

cp´mq
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs.
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If we instead view ψpfq2 as a rational section of ω2k, this becomes

divpψpfq2q “ 2
ÿ

mą0

cp´mq ¨ Z˚Krapmq ` 2
ÿ

Φ

multΦpfq ¨ S˚KrapΦq

` divpδ´2kq ` 2
ÿ

r|D

γrcrp0q
ÿ

p|r

S˚Kra{Fp

´
ÿ

mą0

cp´mq
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs

` k ¨ Exc

as desired.

7. Modularity of the generating series

Now armed with the modularity criterion of Theorem 4.2.3 and the arith-

metic theory of Borcherds products provided by Theorems 5.3.1, 5.3.3, and

5.3.4, we prove our main results: the modularity of generating series of di-

visors on the integral models S˚Kra and S˚Pap of the unitary Shimura variety

ShpG,Dq. The strategy follows that of [Bor99], which proves modularity of

the generating series of divisors on the complex fiber of an orthogonal Shimura

variety.

Throughout §7 we assume n ě 3.

7.1. The modularity theorems. — Denote by

Ch1
QpS˚Kraq – PicpS˚Kraq bZ Q

the Chow group of rational equivalence classes of Cartier divisors on S˚Kra with

Q coefficients, and similarly for S˚Pap. There is a natural pullback map

Ch1
QpS˚Papq Ñ Ch1

QpS˚Kraq.

Let χ “ χnk be the quadratic Dirichlet character (5.2.1).

Definition 7.1.1. — If V is any Q-vector space, a formal q-expansion

(7.1.1)
ÿ

mě0

dpmq ¨ qm P V rrqss

is modular of level D, weight n, and character χ if for any Q-linear map

α : V Ñ C the q-expansion
ÿ

mě0

αpdpmqq ¨ qm P Crrqss

is the q-expansion of an element of MnpD,χq.
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Remark 7.1.2. — If (7.1.1) is modular then its coefficients dpmq span a

subspace of V of dimension ď dimMnpD,χq. We leave the proof as an exercise

for the reader.

We also define the notion of the constant term of (7.1.1) at a cusp 8r,

generalizing Definition 4.1.1.

Definition 7.1.3. — Suppose a formal q-expansion g P V rrqss is modular

of level D, weight n, and character χ. For any r | D, a vector v P V pCq is

said to be the constant term of g at the cusp 8r if, for every linear functional

α : V pCq Ñ C, αpvq is the constant term of αpgq at the cusp 8r in the sense

of Definition 4.1.1.

For m ą 0 we have defined in §5.3 effective Cartier divisors

Ytot
Pappmq ãÑ S˚Pap, Ztot

Krapmq ãÑ S˚Kra

related by (5.3.4). We have defined in §3.7 line bundles

ΩPap P PicpS˚Papq, ω P PicpS˚Kraq

extending the line bundles on the open integral models defined in §2.4. For

notational uniformity, we define

Ytot
Papp0q “ Ω´1

Pap, Ztot
Krap0q “ ω

´1 bOpExcq.

Theorem 7.1.4. — The formal q-expansion
ÿ

mě0

Ytot
Pappmq ¨ q

m P Ch1
QpS˚Papqrrqss,

is a modular form of level D, weight n, and character χ. For any r | D, its

constant term at the cusp 8r is

γr ¨
´

Ytot
Papp0q ` 2

ÿ

p|r

S˚Pap{Fp

¯

P Ch1
QpS˚Papq bQ C.

Here γr P t˘1,˘iu is defined by (5.3.2), p Ă Ok is the unique prime above

p | r, and Fp is its residue field.

Proof. — Let f be a weakly holomorphic form as in (5.2.2), and assume again

that cpmq P Z for all m ď 0. The space M !,8
2´npD,χq is spanned by such forms.

The Borcherds product ψpfq of Theorem 5.3.1 is a rational section of the line

bundle

ωk “
â

r|D

ωγrcrp0q,
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on S˚Kra. If we view ψpfq2 as a rational section of the line bundle

Ωk
Pap –

â

r|D

Ω
γrcrp0q
Pap

on S˚Pap, exactly as in Theorem 5.3.4, then

divpψpfq2q “ ´
ÿ

r|D

γrcrp0q ¨ Ytot
Papp0q

holds in the Chow group of S˚Pap. Comparing this with the calculation of the

divisor of ψpfq2 found in Theorem 5.3.4 shows that

(7.1.2) 0 “
ÿ

mě0

cp´mq ¨ Ytot
Pappmq `

ÿ

r|D
rą1

γrcrp0q ¨ pYtot
Papp0q ` 2Vrq,

where we abbreviate Vr “
ř

p|r S˚Pap{Fp
.

For each r | D we have defined in §4.2 an Eisenstein series

Erpτq “
ÿ

mě0

erpmq ¨ q
m PMnpD,χq,

and Proposition 4.2.2 allows us to rewrite the above equality as

0 “
ÿ

mě0

cp´mq ¨
”

Ytot
Pappmq ´

ÿ

r|D
rą1

γrerpmq ¨ pYtot
Papp0q ` 2Vrq

ı

.

Note that we have used erp0q “ 0 for r ą 1, a consequence of Remark 4.2.1.

The modularity criterion of Theorem 4.2.3 now shows that
ÿ

mě0

Ytot
Pappmq ¨ q

m ´
ÿ

r|D
rą1

γrEr ¨ pYtot
Papp0q ` 2Vrq

is a modular form of level D, weight n, and character χ, whose constant term

vanishes at every cusp different from 8.

The theorem now follows from the modularity of each Er, together with the

description of their constant terms found in Remark 4.2.1.

Theorem 7.1.5. — The formal q-expansion
ÿ

mě0

Ztot
Krapmq ¨ q

m P Ch1
QpS˚Kraqrrqss,

is a modular form of level D, weight n, and character χ.
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Proof. — Recall from Theorems 2.6.3 and 3.7.1 that pullback via S˚Kra Ñ S˚Pap

sends

Ytot
Pappmq ÞÑ 2 ¨ Ztot

Krapmq ´
ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu ¨ Excs

for all m ą 0. This relation also holds for m “ 0, as those same theorems

show that

Ytot
Papp0q “ Ω´1

Pap ÞÑ ω´2 bOpExcq “ 2 ¨ Ztot
Krap0q ´ Exc.

Pulling back the relation (7.1.2) shows that

0 “
ÿ

mě0

cp´mq ¨
´

Ztot
Krapmq ´

ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu

2
¨ Excs

¯

`
ÿ

r|D
rą1

γrcrp0q ¨
´

Ztot
Krap0q ´

1

2
¨ Exc` Vr

¯

in Ch1
QpS˚Kraq for any input form (5.2.2), where we now abbreviate

Vr “
ÿ

p|r

S˚Kra{Fp
.

Using Proposition 4.2.2 we rewrite this as

0 “
ÿ

mě0

cp´mq ¨
´

Ztot
Krapmq ´

ÿ

sPπ0pSingq

#tx P Ls : xx, xy “ mu

2
¨ Excs

¯

´
ÿ

mě0

cp´mq
ÿ

r|D
rą1

γrerpmq
´

Ztot
Krap0q ´

1

2
¨ Exc` Vr

¯

,

where we have again used the fact that erp0q “ 0 for r ą 1.

The modularity criterion of Theorem 4.2.3 now implies the modularity of
ÿ

mě0

Ztot
Krapmq ¨ q

m ´
1

2

ÿ

sPπ0pSingq

ϑspτq ¨ Excs

´
ÿ

r|D
rą1

γrErpτq ¨
´

Ztot
Krap0q ´

1

2
¨ Exc` Vr

¯

.

The theorem follows from the modularity of the Eisenstein series Erpτq and

the theta series

ϑspτq “
ÿ

xPLs

qxx,xy PMnpD,χq.
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7.2. Green functions. — Here we construct Green functions for special

divisors on S˚Kra as regularized theta lifts of harmonic Maass forms.

Recall from Section 2 the isomorphism of complex orbifolds

SKrapCq – ShpG,DqpCq “ GpQqzD ˆGpAf q{K.

We use the uniformization on the right hand side and the regularized theta

lift to construct Green functions for the special divisors

Ztot
Krapmq “ Z˚Krapmq ` BKrapmq

on S˚Kra. The construction is a variant of the ones in [BF04] and [BHY15],

adapted to our situation.

We now recall some of the basic notions of the theory of harmonic Maass

forms, as in [BF04, Section 3]. Let H82´npD,χq denote the space of harmonic

Maass forms f of weight 2´ n for Γ0pDq with character χ such that

– f is bounded at all cusps of Γ0pDq different from the cusp 8,

– f has polynomial growth at 8, in sense that there is a

Pf “
ÿ

mă0

c`pmqqm P Crq´1s

such that f ´ Pf is bounded as q goes to 0.

A harmonic Maass form f P H82´npD,χq has a Fourier expansion of the form

fpτq “
ÿ

mPZ
m"´8

c`pmqqm `
ÿ

mPZ
mă0

c´pmq ¨ Γ
`

n´ 1, 4π|m| Impτq
˘

¨ qm,(7.2.1)

where

Γps, xq “

ż 8

x
e´tts´1dt

is the incomplete gamma function. The first summand on the right hand side

of (7.2.1) is denoted by f` and is called the holomorphic part of f , the second

summand is denoted by f´ and is called the non-holomorphic part.

If f P H82´npD,χq then (6.1.1) defines an SL-valued harmonic Maass form

for SL2pZq of weight 2´n with representation ωL. Proposition 6.1.2 extends to

such lifts of harmonic Maass forms, giving the same formulas for the coefficients

c̃`pm,µq of the holomorphic part f̃` of f̃ . In particular, if m ă 0 we have

c̃`pm,µq “

#

c`pmq if µ “ 0,

0 if µ ‰ 0,
(7.2.2)
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and the constant term of f̃ is given by

c̃`p0, µq “
ÿ

rµ|r|D

γr ¨ c
`
r p0q.

The formula of Proposition 4.2.2 for the contant terms c`r p0q of f at the other

cusps also extends.

As before, we consider the hermitian self-dual Ok-lattice L “ HomOk
pa0, aq

in V “ HomkpW0,W q. The dual lattice of L with respect to the bilinear form

r¨, ¨s is L1 “ d´1L. Let

SL Ă SpV pAf qq

be the space of Schwartz-Bruhat functions that are supported on pL1 and in-

variant under translations by pL.

Recall from Remark 2.1.2 that we may identify

D – tw P εV pCq : rw,ws ă 0u{Cˆ,

and also

D – tnegative definite k-stable R-planes z Ă V pRqu.

For any x P V and z P D, let xz be the orthogonal projection of x to the plane

z Ă V pRq, and let xzK be the orthogonal projection to zK.

For pτ, z, gq P HˆD ˆGpAf q and ϕ P SL, we define a theta function

θpτ, z, g, ϕq “
ÿ

xPV

ϕpg´1xq ¨ ϕ8pτ, z, xq,

where the Schwartz function at 8,

ϕ8pτ, z, xq “ v ¨ e2πiQpx
zK
qτ`2πiQpxzqτ̄ ,

is the usual Gaussian involving the majorant associated to z. We may view

θ as a function H ˆ D ˆ GpAf q Ñ S_L . As a function in pz, gq it is invariant

under the left action of GpQq. Under the right action of K it satisfies the

transformation law

θpτ, z, gk, ϕq “ θpτ, z, g, ωLpkqϕq, k P K,

where ωL denotes the action of K on SL by the Weil representation and v “

Impτq. In the variable τ P H it transforms as a S_L -valued modular form of

weight n´ 2 for SL2pZq.
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Fix an f P H82´npD,χq with Fourier expansion as in (7.2.1), and assume

that c`pmq P Z for m ď 0. We associate to f the divisors

ZKrapfq “
ÿ

mą0

c`p´mq ¨ ZKrapmq

Ztot
Krapfq “

ÿ

mą0

c`p´mq ¨ Ztot
Krapmq

on SKra and S˚Kra, respectively. As the actions of SL2pZq and K via the Weil

representation commute, the associated SL-valued harmonic Maass form f̃ is

invariant under K. Hence the natural pairing SL ˆ S_L Ñ C gives rise to a

scalar valued function pf̃pτq, θpτ, z, gqq in the variables pτ, z, gq P HˆDˆGpAf q,
which is invariant under the right action of K and the left action of GpQq.
Hence it descends to a function on SL2pZqzHˆ ShpG,DqpCq.

We define the regularized theta lift of f as

Θregpz, g, fq “

ż reg

SL2pZqzH

`

f̃pτq, θpτ, z, gq
˘ du dv

v2
.

Here the regularization of the integral is defined as in [Bor98, BF04,

BHY15]. We extend the incomplete Gamma function

(7.2.3) Γp0, tq “

ż 8

t
e´v

dv

v

to a function on Rě0 by setting

rΓp0, tq “

#

Γp0, tq if t ą 0,

0 if t “ 0.

Theorem 7.2.1. — The regularized theta lift Θregpz, g, fq defines a smooth

function on SKrapCq r ZKrapfqpCq. For g P GpAf q and z0 P D, there exists a

neighborhood U Ă D of z0 such that

Θregpz, g, fq ´
ÿ

xPgL
xKz0

c`p´xx, xyq ¨ rΓ
`

0, 4π|xxz, xzy|
˘

is a smooth function on U .

Proof. — Note that the sum over x P gL X zK0 is finite. Since ShpG,DqpCq
decomposes into a finite disjoint union of connected components of the form

pGpQq X gKg´1qzD,

where g P GpAf q, it suffices to consider the restriction of Θregpfq to these

components.
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On such a component, Θregpz, g, fq is the regularized theta lift considered

in [BHY15, Section 4] of the vector valued form f̃ for the lattice

gL “ gpLX V “ HomOk
pga0, gaq Ă V,

and hence the assertion follows from (7.2.2) and [BHY15, Theorem 4.1].

Remark 7.2.2. — Let ∆D denote the UpV qpRq-invariant Laplacian on D.

There exists a non-zero real constant c (which only depends on the normal-

ization of ∆D and which is independent of f), such that

∆DΘregpz, g, fq “ c ¨ degZKrapfqpCq

on the complement of the divisor ZKrapfqpCq.

Using the fact that

Γp0, tq “ ´ logptq ` Γ1p1q ` optq

as tÑ 0, Theorem 7.2.1 implies that Θregpfq is a (sub-harmonic) logarithmic

Green function for the divisor ZKrapfqpCq on the non-compactified Shimura

variety SKrapCq. These properties, together with an integrability condition,

characterize it uniquely up to addition of a locally constant function [BHY15,

Theorem 4.6]. The following result describes the behavior of Θregpfq on the

toroidal compactification.

Theorem 7.2.3. — On S˚KrapCq, the function Θregpfq is a logarithmic Green

function for the divisor Ztot
KrapfqpCq with possible additional log-log singularities

along the boundary in the sense of [BGKK07].

Proof. — As in the proof of Theorem 7.2.1 we reduce this to showing that

Θregpfq has the correct growth along the boundary of the connected compo-

nents of S˚KrapCq. Then it is a direct consequence of [BHY15, Theorem 4.10]

and [BHY15, Corollary 4.12].

Recall that ωan is the tautological bundle on

D –
 

w P εV pCq : rw,ws ă 0
(

{Cˆ.

We define the Petersson metric } ¨ } on ωan by

}w}2 “ ´
rw,ws

4πeγ
,

where γ “ ´Γ1p1q denotes Euler’s constant. This choice of metric on ωan

induces a metric on the line bundle ω on SKrapCq defined in §2.4, which ex-

tends to a metric over S˚KrapCq with log-log singularities along the boundary
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[BHY15, Proposition 6.3]. We obtain a hermitian line bundle on S˚Kra, de-

noted

pω “ pω, } ¨ }q.

If f is actually weakly holomorphic, that is, if it belongs toM !,8
2´npD,χq, then

Θregpfq is given by the logarithm of a Borcherds product. More precisely, we

have the following theorem, which follows immediately from [Bor98, Theorem

13.3] and our construction of ψpfq as the pullback of a Borcherds product,

renormalized by (6.2.3), on an orthogonal Shimura variety.

Theorem 7.2.4. — Let f P M !,8
2´npD,χq be as in (5.2.2). The Borcherds

product ψpfq of Theorem 5.3.1 satisfies

Θregpfq “ ´ log }ψpfq}2.

7.3. Generating series of arithmetic special divisors. — We can now

define arithmetic special divisors on S˚Kra, and prove a modularity result for

the corresponding generating series in the codimension one arithmetic Chow

group. This result extends Theorem 7.1.5.

Recall our hypothesis that n ą 2, and let m be a positive integer. As in

[BF04, Proposition 3.11], or using Poincaré series, it can be shown that there

exists a unique fm P H
8
2´npD,χq whose Fourier expansion at the cusp 8 has

the form

fm “ q´m `Op1q

as q Ñ 0. According to Theorem 7.2.3, its regularized theta lift Θregpfmq is a

logarithmic Green function for Ztot
Krapmq.

Denote by xCh
1

QpS˚Kraq the arithmetic Chow group [GS90] of rational equiv-

alence classes of arithmetic divisors with Q-coefficients. We allow the Green

functions of our arithmetic divisors to have possible additional log-log error

terms along the boundary of S˚KrapCq, as in the theory of [BGKK07]. For

m ą 0 define an arithmetic special divisor

pZtot
Krapmq “ pZtot

Krapmq,Θ
regpfmqq P xCh

1

QpS˚Kraq

on S˚Kra, and for m “ 0 set

pZtot
Krap0q “ pω´1 ` pExc,´ logpDqq P xCh

1

QpS˚Kraq.

In the theory of arithmetic Chow groups one usually works on a regular

scheme such as S˚Kra. However, the codimension one arithmetic Chow group

of S˚Pap makes perfect sense: one only needs to specify that it consists of
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rational equivalence classes of Cartier divisors on S˚Pap endowed with a Green

function.

With this in mind one can use the equality

Ytot
PappmqpCq “ 2Ztot

KrapmqpCq

in the complex fiber S˚PappCq “ S˚KrapCq to define arithmetic divisors

pYtot
Pappmq “ pYtot

Pappmq, 2Θregpfmqq P xCh
1

QpS˚Papq

for m ą 0. For m “ 0 we define

pYtot
Papp0q “

pΩ´1 ` p0,´2 logpDqq P xCh
1

QpS˚Papq,

where the metric on Ω is induced from that on ω, again using Ω – ω2 in the

complex fiber.

Theorem 7.3.1. — The formal q-expansions

pφpτq “
ÿ

mě0

pZtot
Krapmq ¨ q

m P xCh
1

QpS˚Kraqrrqss(7.3.1)

and
ÿ

mě0

pYtot
Pappmq ¨ q

m P xCh
1

QpS˚Papqrrqss

are modular forms of level D, weight n, and character χ.

Proof. — For any input form f P M !,8
2´npD,χq as in (5.2.2), the relation in

the Chow group given by the Borcherds product ψpfq is compatible with the

Green functions, in the sense that

´ log }ψpfq}2 “
ÿ

mą0

cp´mq ¨Θregpfmq.

Indeed, this directly follows from f “
ř

mą0 cp´mqfm and Theorem 7.2.4.

This observation allows us to simply repeat the argument of Theorems 7.1.4

and 7.1.5 on the level of arithmetic Chow groups. Viewing ψpfq2 as a rational

section of the metrized line bundle Ωk
Pap, the arithmetic divisor

xdivpψpfq2q
def
“

`

divpψpfq2q,´2 log }ψpfq}2
˘

P xCh
1

QpS˚Papq

satisfies both

(7.3.2) xdivpψpfq2q “ pΩk
Pap “ ´2k ¨ p0, logpDqq ´

ÿ

r|D

γrcrp0q ¨ pYtot
Papp0q
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and, recalling δ “
?
´D P k,

xdivpψpfq2q

“
ÿ

mą0

cp´mq ¨ pYtot
Pappmq ´ 2k ¨ pdivpδq, 0q ` 2

ÿ

r|D

γrcrp0q ¨ pVr

“
ÿ

mą0

cp´mq ¨ pYtot
Pappmq ´ 2k ¨ p0, logpDqq ` 2

ÿ

r|D

γrcrp0q ¨ pVr,(7.3.3)

where pVr is the the vertical divisor Vr “
ř

p|r S˚Pap{Fp
endowed with the trivial

Green function. Note that in the second equality we have used the relation

0 “ xdivpδq “ pdivpδq,´ log |δ2|q “ pdivpδq, 0q ´ p0, logpDqq

in the arithmetic Chow group. Combining (7.3.2) and (7.3.3), we deduce that

0 “
ÿ

mě0

cp´mq ¨ pYtot
Pappmq `

ÿ

r|D
rą1

γrcrp0q
´

pYtot
Papp0q ` 2 ¨ pVr

¯

.

With this relation in hand, both proofs go through verbatim.

7.4. Non-holomorphic generating series of special divisors. — In

this subsection we discuss a non-holomorphic variant of the generating series

(7.3.1), which is obtained by endowing the special divisors with other Green

functions, namely with those constructed in [How12, How15] following the

method of [Kud97b]. By combining Theorem 7.3.1 with a recent result of

Ehlen and Sankaran [ES16], we show that the non-holomorphic generating

series is also modular.

For every m P Z and v P Rą0 define a divisor

BKrapm, vq “
1

4πv

ÿ

Φ

#tx P L0 : xx, xy “ mu ¨ S˚KrapΦq

with real coefficients on S˚Kra. Here the sum is over all K-equivalence classes of

proper cusp label representatives Φ in the sense of §3.2, L0 is the hermitian Ok-

module of signature pn´ 2, 0q defined by (3.1.4), and S˚KrapΦq is the boundary

divisor of Theorem 3.7.1. Note that BKrapm, vq is trivial for all m ă 0. We

define classes in Ch1
RpS˚Kraq, depending on the parameter v, by

Ztot
Krapm, vq “

$

&

%

Z˚Krapmq ` BKrapm, vq if m ‰ 0

ω´1 ` Exc` BKrap0, vq if m “ 0.
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Following [How12, How15, Kud97b], Green functions for these divisors

can be constructed as follows. For x P V pRq and z P D we put

Rpx, zq “ ´2Qpxzq.

Recalling the incomplete Gamma function (7.2.3), for m P Z and

pv, z, gq P Rą0 ˆD ˆGpAf q

we define a Green function

Ξpm, v, z, gq “
ÿ

xPV rt0u
Qpxq“m

χ
pL
pg´1xq ¨ Γp0, 2πvRpx, zqq,(7.4.1)

where χ
pL
P SL denotes the characteristic function of pL. As a function of the

variable pz, gq, (7.4.1) is invariant under the left action of GpQq and under the

right action of K, and so descends to a function on Rą0 ˆ ShpG,DqpCq. It

was proved in [How15, Theorem 3.4.7] that Ξpm, vq is a logarithmic Green

function for Ztot
Krapm, vq when m ‰ 0. When m “ 0 it is a logarithmic Green

function for BKrap0, vq.

Consequently, we obtain arithmetic special divisors in xCh
1

RpS˚Kraq depending

on the parameter v by putting

pZtot
Krapm, vq “

$

&

%

`

Ztot
Krapm, vq,Ξpm, vq

˘

if m ‰ 0

pω´1 ` pBKrap0, vq,Ξp0, vqq ` pExc,´ logpDvqq if m “ 0.

Note that for m ă 0 these divisors are supported in the archimedian fiber.

Theorem 7.4.1. — The formal q-expansion

pφnon-holpτq “
ÿ

mPZ

pZtot
Krapm, vq ¨ q

m P xCh
1

RpS˚Kraqrrqss,

is a non-holomorphic modular form of level D, weight n, and character χ.

Here q “ e2πiτ and v “ Impτq.

Proof. — Theorem 4.13 of [ES16] states that the difference

(7.4.2) pφnon-holpτq ´ pφpτq

is a non-holomorphic modular form of level D, weight n, and character χ,

valued in xCh
1

CpS˚Kraq. Hence the assertion follows from Theorem 7.3.1.

The meaning of modularity in Theorem 7.4.1 is to be understood as in

[ES16, Definition 4.11]. In our situation it reduces to the statement that
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there is a smooth function spτ, z, gq on H ˆ ShpG,DqpCq with the following

properties:

1. in pz, gq the function spτ, z, gq has at worst log-log-singularities at the

boundary of ShpG,DqpCq (in particular it is a Green function for the

trivial divisor);

2. spτ, z, gq transforms in τ as a non-holomorphic modular form of level D,

weight n, and character χ;

3. the difference pφnon-holpτq ´ spτ, z, gq belongs to the space

MnpD,χq bC xCh
1

CpS˚Kraq ‘ pRn´2Mn´2pD,χqq bC xCh
1

CpS˚Kraq,

where Rn´2 denotes the Maass raising operator as in Section 8.4.

8. Appendix: some technical calculations

We collect some technical arguments and calculations. Strictly speaking,

none of these are essential to the proofs in the body of the text. We explain

the connection between the fourth roots of unity γp defined by (5.3.1) and the

local Weil indices appearing in the theory of the Weil representation, provide

alternative proofs of Propositions 6.1.2 and 6.3.3, and explain in greater detail

how Proposition 6.3.1 is deduced from the formulas of [Kud16].

8.1. Local Weil indices. — In this subsection, we explain how the quantity

γp defined in (5.3.1) is related to the local Weil representation.

Let L Ă V be as in §6.1, and recall that SL “ CrL1{Ls is identified with a

subspace of SpV pAf qq by sending µ P L1{L to the characteristic function φµ
of µ` pL Ă V pAf q.

As dimQ V “ 2n and D is odd, the representation ωL of SL2pZq on SL is

the pullback via

SL2pZq ÝÑ
ź

p|D

SL2pZpq

of the representation

ωL “
â

p|D

ωp,

where ωp “ ωLp is the Weil representation of SL2pZpq on SLp Ă SpVpq. These

Weil representations are defined using the standard global additive character

ψ “ bpψp which is trivial on pZ and on Q and whose restriction to R Ă A is
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given by ψpxq “ expp2πixq. Recall that, for a P Qˆp and b P Qp,

ωppnpbqqφpxq “ ψppbQpxqq ¨ φpxq

ωppmpaqqφpxq “ χnk,ppaq ¨ |a|
n
p ¨ φpaxq

ωppwqφpxq “ γp

ż

Vp

ψpp´rx, ysq ¨ φpyq dy, w “

ˆ

´1

1

˙

,

where γp “ γppLq is the Weil index of the quadratic space Vp with respect to

ψp and χk,p is the quadratic character of Qˆp corresponding to kp. Note that

dy is the self-dual measure with respect to the pairing ψpprx, ysq.

Lemma 8.1.1. — The Weil representation ωp satisfies the following proper-

ties.

1. When restricted to the subspace SLp Ă SpVpq, the action of γ P SL2pZpq
depends only on the image of γ in SL2pFpq.

2. The Weil index is given by

γp “ ε´np ¨ pD, pqnp ¨ invppVpq

where pa, bqp is the Hilbert symbol for Qp and invppVpq is the invariant

of Vp in the sense of (1.7.3).

Proof. — (i) It suffices to check this on the generators. We omit this.

(ii) We can choose an Ok,p-basis for Lp such that the matrix for the hermitian

form is diagpa1, . . . , anq, with aj P Zˆp . The matrix for the bilinear form

rx, ys “ TrKp{Qppxx, yyq is then diagp2a1, . . . , 2an, 2Da1, . . . , 2Danq. Then,

according to the formula for βV in [Kud94, p. 379], we have

γ´1
p “ γQpp

1

2
¨ ψp ˝ V q “

n
ź

j“1

γQppajψpq ¨ γQppDajψpq,

where we note that, in the notation there, xpwq “ 1, and j “ jpwq “ 1. Next

by Proposition A.11 of the Appendix to [RR93], for any α P Zˆp , we have

γQppαψpq “ 1 and

γQppαpψpq “

ˆ

´α

p

˙

¨ εp “ p´α, pqp ¨ εp.

Here note that if η “ αpψp, then the resulting character η̄ of Fp is given by

η̄pāq “ ψppp
´1aq “ ep´p´1aq.

and γFppη̄q “
´

´1
p

¯

¨ εp. Thus

γp “ ε´np ¨ p´D{p, pqnp ¨ pdetpV q, pqp,
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as claimed.

8.2. A direct proof of Proposition 6.1.2. — The proof of Proposi-

tion 6.1.2, which expresses the Fourier coefficients of the vector valued form

f̃ in terms of those of the scalar valued form f P M !
2´npD,χq, appealed to

the more general results of [Sch09]. In some respects, it is easier to prove

Proposition 6.1.2 from scratch than it is to extract it from [loc. cit.]. This is

what we do here.

Recall that f̃ is defined from f by the induction procedure of (6.1.1), and

that the coefficients c̃pm,µq in its Fourier expansion (6.1.2) are indexed by

m P Q and µ P L1{L. Recall that, for r | D, rs “ D,

Wr “

ˆ

rα β

Dγ rδ

˙

“ Rr

ˆ

r

1

˙

, Rr “

ˆ

α β

sγ rδ

˙

P Γ0psq.

Note that

(8.2.1) Γ0pDqzSL2pZq “ Γ0pDqzSL2pZq{ΓpDq »
ź

p|D

BpzSL2pFpq,

so this set has order
ś

p|Dpp` 1q. A set of coset representatives is given by

ğ

r|D
c pmod rq

Rr

ˆ

1 c

1

˙

.

Now, using (4.1.1), we have

ˆ

f
ˇ

ˇ

2´n
Rr

ˆ

1 c

1

˙˙

pτq “

ˆ

f
ˇ

ˇ

2´n
Wr

ˆ

r´1 r´1c

1

˙˙

pτq

“ χrpβqχspαq
ÿ

m"´8

r
n
2
´1crpmq ¨ e

2πimpτ`cq
r .(8.2.2)

On the other hand, the image of the inverse of our coset representative on the

right side of (8.2.1) has components

$

’

’

’

’

&

’

’

’

’

%

˜

1 ´c

1

¸˜

0 ´β

´sγ α

¸

if p | r

˜

1 ´c

1

¸˜

rδ ´β

0 α

¸

if p | s.
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Note that rαδ ´ sβγ “ 1. Then, as elements of SL2pFpq, we have

$

’

’

’

’

&

’

’

’

’

%

˜

1 ´c

1

¸˜

β

β´1

¸˜

´1

1

¸˜

1 αβ

1

¸

if p | r

˜

1 ´c

1

¸˜

α´1

0 α

¸˜

1 ´αβ

1

¸

if p | s.

The element on the second line just multiplies φ0,p by χppαq. For the element

on the first line, the factor on the right fixes φ0 and

ωp

ˆˆ

´1

1

˙˙

φ0 “ γp p
´n

2

ÿ

µPL1p{Lp

φµ.

Thus, the element on the first line carries φ0,p to

χppβqγp p
´n

2

ÿ

µPL1p{Lp

ψpp´cQpµqqφµ.

Recall from (6.1.3) that for µ P L1{L, rµ is the product of the primes p | D

such that µp ‰ 0. Thus

(8.2.3) ωL

ˆ

Rr

ˆ

1 c

1

˙˙´1

φ0 “ χspαqχrpβq γr r
´n

2

ÿ

µPL1{L
rµ|r

e2πicQpµqφµ.

Taking the product of (8.2.2) and (8.2.3) and summing on c and on r, we

obtain

ÿ

r|D

γr ¨ r
´1

ÿ

c pmod rq

ÿ

µPL1{L
rµ|r

e2πicQpµqφµ
ÿ

m"´8

crpmqe
2πimpτ`cq

r

“
ÿ

r|D

γr
ÿ

µPL1{L
rµ|r

φµ
ÿ

m"´8
m
r
`QpµqPZ

crpmq q
m
r

“
ÿ

mPQ
m"´8

ÿ

µPL1{L
m`QpµqPZ

ÿ

r
rµ|r|D

γrcrpmrqφµ q
m

This gives the claimed general expression for c̃pm,µq and completes the proof

of Proposition 6.1.2.
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8.3. A more detailed proof of Proposition 6.3.1. — In this section, we

explain in more detail how to obtain the product formula of Proposition 6.3.1

from the general formula given in [Kud16].

For our weakly holomorphic SL-valued modular form f̃ of weight 2´n, with

Fourier expansion given by (6.1.2), the corresponding meromorphic Borcherds

product Ψpf̃q on D̃` has a product formula [Kud16, Corollary 2.3] in a neigh-

borhood of the 1-dimensional boundary component associated to L´1. It is

given as a product of 4 factors, labeled (a), (b), (c) and (d). We note that, in

our present case, there is a basic simplification in factor (b) due to the restric-

tion on the support of the Fourier coefficients of f̃ . More precisely, for m ą 0,

c̃p´m,µq “ 0 for µ R L, and c̃p´m, 0q “ cp´mq. In particular, if x P L1 with

rx, e´1s “ rx, f´1s “ 0, then Qpxq “ Qpx0q, where x0 is the pL0qQ component

of x. If x0 ‰ 0, then Qpxq ą 0, and c̃p´Qpxq, µq “ 0 for µ R L. The factors

for Ψpf̃q are then given by:

(a)
ź

xPL1
rx,f´1s“0
rx,e´1są0

mod LXQ f´1

`

1´ e´2πirx,ws
˘c̃p´Qpxq,xq

.

(b)

P1pw0, τ1q
def
“

ź

xPL0
rx,W0są0

ˆ

ϑ1p´rx,ws, τ1q

ηpτ1q

˙cp´Qpxqq

,

where W0 is a Weyl chamber in V0pRq, as in [Kud16, §2].

(c)

P0pτ1q
def
“

ź

xPd´1L´1{L´1
x‰0

ˆ

ϑ1p´rx,ws, τ1q

ηpτ1q
eπirx,ws¨rx,e1s

˙c̃p0,xq{2

(d) and

κ ηpτ1q
c̃p0,0q qI02 ,

where κ is a scalar of absolute value 1, and

I0 “ ´
ÿ

m

ÿ

xPL1XpL´1q
K

mod L´1

c̃p´m,xqσ1pm´Qpxqq.

The factors given in Proposition 6.3.1 are for the form

ψ̃gpfq
def
“ p2πiqc̃p0,0qΨp2f̃q

The quantity q2 in [Kud16] is our epξq, and τ1 there is our τ .
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Recall from (3.9.5) that d´1L´1 “ Ze´1 `D´1Zf´1, so that, in factor (c),

the product runs over vectors D´1b f´1, with b pmod Dq nonzero. For these

vectors rx, e1s “ 0. In the formula for I, x runs over vectors of the form

x “ ´
b

D
f´1 ` x0,

with x0 P d
´1L0. But, again, if x0 ‰ 0, Qpxq “ Qpx0q ą 0 and c̃p´Qpxq, xq “ 0

unless b “ 0, and so the sum in that term runs over x0 P L0 x0 ‰ 0 and over

´ b
D f´1’s.

Thus the factors for ψ̃gpfq are given by:

(a)
ź

xPL1
rx,f´1s“0
rx,e´1są0

mod LXQ f´1

`

1´ e´2πirx,ws
˘2 c̃p´Qpxq,xq

,

(b)

P1pw0, τ1q
def
“

ź

x0PL0
x0‰0

ˆ

ϑ1p´rx0, ws, τ1q

ηpτ1q

˙cp´Qpx0qq

,

(c)

P0pτ1q
def
“

ź

bPZ{DZ
b‰0

ˆ

ϑ1p´rx,ws, τ1q

ηpτ1q

˙c̃p0, b
D
f´1q

,

(d) and, setting k “ c̃p0, 0q,

κ2 p 2πi η2pτqqk q2I0
2 ,

where κ is a scalar of absolute value 1, and

I0 “ ´2
ÿ

mą0

ÿ

x0PL0

cp´mqσ1pm´Qpx0qq `
1

12

ÿ

bPZ{DZ
c̃p0,

b

D
f´1q.

Here note that for ψ̃gpfq “ p2πiq
c̃p0,0qΨp2f̃q we have multiplied the previous

expression by 2.

Finally recall

w “ ´ξe´1 ` pτξ ´Qpw0qqf´1 ` w0 ` τe1 ` f1.

If rx, f´1s “ 0, then x has the form

x “ ´ae´1 ´
b

D
f´1 ` x0 ` ce1,
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so that

rx,ws “ ´c ξ ` rx0, w0s ´ aτ ´
b

D
,

and

Qpxq “ ´ac`Qpx0q.

Using these values, the formulas given in Proposition 6.3.1 follow immediately.

8.4. A direct proof of Proposition 6.3.3. — Here we give a direct proof

of Proposition 6.3.3, which does not rely on Corollary 6.3.2. We begin by

recalling some general facts about derivatives of modular forms.

We let q ddq be the Ramanujan theta operator on q-series. Recall that the

image under q ddq of a holomorphic modular form g of weight k is in general

not a modular form. However, the function

Dpgq “ q
dg

dq
´

k

12
gE2(8.4.1)

is a holomorphic modular form of weight k ` 2 (see [BHY15, §4.2]). Here

E2pτq “ ´24
ÿ

mě0

σ1pmqq
m

denotes the non-modular Eisenstein series of weight 2 for SL2pZq. In particular

σ1p0q “ ´ 1
24 . We extend σ1 to rational arguments by putting σ1prq “ 0 if

r R Zě0. If Rk “ 2i B
Bτ `

k
v denotes the Maass raising operator, and

E˚2 pτq “ E2pτq ´
3

πv

is the non-holomorphic (but modular) Eisenstein series of weight 2, we also

have

Dpgq “ ´
1

4π
Rkpgq ´

k

12
gE˚2 .

Proposition 8.4.1. — Let f PM !,8
2´npD,χq as in (5.2.2). The integer

I “
1

12

ÿ

αPd´1L´1{L´1

c̃p0, αq ´ 2
ÿ

mą0

cp´mq
ÿ

xPL0

σ1pm´Qpxqq.

defined in Proposition 6.3.1 is equal to the integer

multΦpfq “
1

n´ 2

ÿ

xPL0

cp´QpxqqQpxq

defined by (5.2.4).
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Proof. — Consider the S_L0
-valued theta function

Θ0pτq “
ÿ

xPL10

qQpxqχ_x`L0
PMn´2pω

_
L0
q.

Applying the above construction (8.4.1) to Θ0 we obtain an S_L0
-valued mod-

ular form

DpΘ0q “
ÿ

xPL10

QpxqqQpxqχ_x`L0
´
n´ 2

12
Θ0E2 PMnpω

_
L0
q

of weight n. For its Fourier coefficients we have

DpΘ0q “
ÿ

νPL10{L0

ÿ

mě0

bpm, νqqmχ_ν

bpm, νq “
ÿ

xPν`L0
Qpxq“m

Qpxq ` 2pn´ 2q
ÿ

xPν`L0

σ1pm´Qpxqq.

As in [BHY15, (4.8)], an SL-valued modular form F induces an SL0-valued

form FL0 . If we denote by Fµ the components of F with respect to the standard

basis pχµq of SL, we have

FL0,ν “
ÿ

αPd´1L´1{L´1

Fν`α(8.4.2)

for ν P L10{L0.

Let f̃ PM !
2´npωLq be the SL-valued form corresponding to f , as in (6.1.1).

Using (8.4.2) we obtain

f̃L0 PM
!
2´npωL0q

with Fourier expansion

f̃L0 “
ÿ

ν,m

ÿ

αPδ´1I{I

c̃pm, ν ` αqqmχν`L0 .

We consider the natural pairing between the SL0-valued modular form f̃L0 of

weight 2´ n and the S_L0
-valued modular form DpΘ0q of weight n,

pf̃L0 , DpΘ0qq PM
!
2pSL2pZqq.

By the residue theorem, the constant term of the q-expansion vanishes, and

so
ÿ

mě0

ÿ

νPL10{L0

αPδ´1I{I

c̃p´m, ν ` αqbpm, νq “ 0.(8.4.3)
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We split this up in the sum over m ą 0 and the contribution from m “ 0.

Employing Proposition 6.1.2, we obtain that the sum over m ą 0 is equal to
ÿ

mą0

cp´mqbpm, 0q.

For the contribution of m “ 0 we notice

bp0, νq “

#

´n´2
12 , ν “ 0 P L10{L0,

0, ν ‰ 0.

Hence this part is equal to

´
n´ 2

12

ÿ

αPd´1L´1{L´1

c̃p0, αq.

Inserting the two contributions into (8.4.3), we obtain

0 “
ÿ

mą0

cp´mqbpm, 0q ´
n´ 2

12

ÿ

αPd´1L´1{L´1

c̃p0, αq

“
ÿ

mą0

cp´mq

ˆ

ÿ

xPL0
Qpxq“m

Qpxq ` 2pn´ 2q
ÿ

xPL0

σ1pm´Qpxqq

˙

´
n´ 2

12

ÿ

αPd´1L´1{L´1

c̃p0, αq

“
ÿ

xPL0

cp´QpxqqQpxq ` 2pn´ 2q
ÿ

mą0

cp´mq
ÿ

xPL0

σ1pm´Qpxqq

´
n´ 2

12

ÿ

αPd´1L´1{L´1

c̃p0, αq

“ pn´ 2qmultΦpfq ´ pn´ 2qI.

This concludes the proof of the proposition.

Now we verify directly the other claim of Proposition 6.3.3: the function

P1pτ, w0q “
ź

mą0

ź

xPL0
Qpxq“m

Θ
`

τ, xw0, xy
˘cp´mq

satisfies the transformation law (3.9.14) with respect to the translation action

of bL0 on the variable w0.

First recall that, for a, b P Z,

Θpτ, z ` aτ ` bq “ exp
`

´ πia2τ ´ 2πiaz ` πipb´ aq
˘

¨Θpτ, zq.
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If we write α “ aτ ` b and τ “ u` iv, then

a “
Impαq

v
“
α´ ᾱ

2iv
, b “ Repαq ´

u

v
Impαq.

Thus

1

2
a2τ ` az `

1

2
pa´ bq “

1

4iv
pα´ ᾱqα`

1

2iv
pα´ ᾱqz `

1

2
pa´ b´ abq.

For z and w in C, write

Rpz, wq “ Rτ pz, wq “ Bτ pz, wq ´Hτ pz, wq “
1

v
zpw ´ w̄q.

Then
1

4v
pα´ ᾱqα`

1

2v
pα´ ᾱqz “

1

2
Rpz, αq `

1

4
Rpα, αq,

and we can write

Θpτ, z ` αq “ expp´πRpz, αq ´
π

2
Rpα, αqq ¨ exppπipa´ b´ abqq´1 Θpτ, zq.

We will consider the contribution of the 1
2pa´ b´ abq term separately.

For β P V0, we have xw0 ` β, xy “ xw0, xy ` xβ, xy. Suppose that for all

x P L0, we have xβ, xy “ aτ ` b for a and b in Z. Writing b “ Z` Zτ , this is

precisely the condition that β P bL0. Then we obtain a factor

exp

¨

˚

˚

˝

´π
ÿ

mą0

ÿ

xPL0
Qpxq“m

cp´mq

«

R
`

xw0, xy, xβ, xy
˘

`
R
`

xβ, xy, xβ, xy
˘

2

ff

˛

‹

‹

‚

.

Expanding the sum and using the hermitian version of Borcherds’ quadratic

identity from the proof of Proposition 5.2.2, we have

ÿ

xPL0

cp´Qpxqq

v

„

xw0, xyxβ, xy ´ xw0, xyxx, βy `
xβ, xyxβ, xy

2
´
xβ, xyxx, βy

2



“ ´
1

v

ˆ

xw0, βy `
1

2
xβ, βy

˙

¨
1

2n´ 4
¨
ÿ

xPL0

cp´Qpxqq rx, xs

“ ´
1

v

ˆ

xw0, βy `
1

2
xβ, βy

˙

¨multΦpfq.

Thus, using I “ multΦpfq, we have a contribution of

exp
´πxw0, βy

v
`
πxβ, βy

2v

¯I

to the transformation law.
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Next we consider the quantity

a´ b´ ab

“
Impαq

v
´ Repαq ´

u Impαq

v
´

Impαq

v

ˆ

Repαq ´
u Impαq

v

˙

“
α´ ᾱ

2iv
´
pα` ᾱq

2
´
upα´ ᾱq

2iv
´
α´ ᾱ

2iv

ˆ

pα` ᾱq

2
´
upα´ ᾱq

2iv

˙

.

This will contribute expp´πiAq, where A is defined as the sum

ÿ

x‰0

cp´Qpxqq

„

α´ ᾱ

2iv
´
α` ᾱ

2
´
upα´ ᾱq

2iv
´
α´ ᾱ

2iv

ˆ

pα` ᾱq

2
´
upα´ ᾱq

2iv

˙

where α “ xβ, xy. Since x and ´x both occur in the sum, the linear terms

vanish and

A “
ÿ

x‰0

cp´Qpxqq

„

´
α´ ᾱ

2iv

ˆ

pα` ᾱq

2
´
upα´ ᾱq

2iv

˙

.

Using the hermitian version of Borcherds quadratic identity, as in the proof of

Proposition 5.2.2, we obtain

A “
uI

2v2
¨ xβ, βy.

Thus we have

P1pτ, w0 ` βq

“ P1pτ, w0q ¨ exp
´π

v
xw0, βy `

π

2v
xβ, βy

¯I
¨ exp

´

´2πiuxβ, βy

4v2

¯I
.

Finally, we recall the conjugate linear isomorphism L´1 – b of (3.9.11)

defined by e´1 ÞÑ τ and f´1 ÞÑ 1. As

d´1L´1 “ Ze´1 `D
´1Zf´1,

we have ´δ´1τ “ aτ `D´1b for some a, b P Z, and hence

τ “ ´D´1bpa` δ´1q´1.

This gives u{v “ aD
1
2 . Also, using

δe´1 “ ´Dae´1 ´ b f´1,

we have

1

2
p1` δq e´1 “

1

2
p1´Daq e´1 ´

1

2
b f´1 P Ze´1 ` Zf´1 “ L´1.
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Thus a is odd and b is even. Recall that Npbq “ 2v{
?
D. Thus

u

4v2
“

aD
1
2

2NpbqD
1
2

,

and, since xβ, βy P Npbq, we have

exp
´

´
2πiuxβ, βy

4v2

¯

“ exp
´

´
πixβ, βy

Npbq

¯

“ ˘1.

The transformation law is then

P1pτ, w0 ` βq “ exp
´π

v
xw0, βy `

π

2v
xβ, βy ´ iπ

xβ, βy

Npbq

¯I
¨ P1pτ, w0q,

as claimed in Proposition 6.3.3.
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