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Abstract. — We form generating series, valued in the Chow group and the
arithmetic Chow group, of special divisors on the compactified integral model
of a Shimura variety associated to a unitary group of signature (n —1,1), and
prove their modularity. The main ingredient in the proof is the calculation of
vertical components appearing in the divisor of a Borcherds product on the
integral model.

Résumé (Modularité des séries génératrices de diviseurs sur les
variétés de Shimura unitaires)

Nous formons des séries génératrices, a valeurs dans le groupe de Chow
et dans le groupe de Chow arithmétique, formées des diviseurs spéciaux sur
le modele intégral compact d’une variété de Shimura associée a un groupe
unitaire de signature (n — 1,1), et prouvons leur modularité. L’ingrédient
principal de la preuve est le calcul des composantes verticales apparaissantes
dans le diviseur d’'un produit de Borcherds sur le modele intégral.
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1. Introduction

The goal of this paper is to prove the modularity of a generating series
of special divisors on the compactified integral model of a Shimura variety
associated to a unitary group of signature (n — 1,1). The special divisors in
question were first studied on the open Shimura variety in | s 1,
and then on the toroidal compactification in [ ].

This generating series is an arithmetic analogue of the classical theta kernel
used to lift modular forms from U(2) and U(n). In a similar vein, our modular
generating series can be used to define a lift from classical cuspidal modular
forms of weight n to the codimension one Chow group of the unitary Shimura
variety.

1.1. Statement of the main result. — Fix a quadratic imaginary field
k < C of odd discriminant disc(k) = —D. We are concerned with the arith-
metic of a certain unitary Shimura variety, whose definition depends on the
choices of k-hermitian spaces Wy and W of signature (1,0) and (n —1,1), re-
spectively, where n > 3. We assume that Wy and W each admit an Og-lattice
that is self-dual with respect to the hermitian form.

Attached to this data is a reductive algebraic group

(1.1.1) G < GU(Wp) x GU(W)

over (Q, defined as the subgroup on which the unitary similitude characters
are equal, and a compact open subgroup K < G(Ay) depending on the above
choice of self-dual lattices. As explained in §2, there is an associated hermitian
symmetric domain D, and a Deligne-Mumford stack Sh(G,D) over k whose
complex points are identified with the orbifold quotient

Sh(G,D)(C) = G(Q\D x G(Aj)/K.

This is the unitary Shimura variety of the title.
The stack Sh(G, D) can be interpreted as a moduli space of pairs (Ag, A)
in which A is an elliptic curve with complex multiplication by Ok, and A is
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a principally polarized abelian scheme of dimension n endowed with an O-
action. The pair (Ag, A) is required to satisfy some additional conditions,
which need not concern us in the introduction.

Using the moduli interpretation, one can construct an integral model of
Sh(G, D) over Ok. In fact, following work of Pappas and Kréamer, we explain
in §2.3 that there are two natural integral models related by a morphism
Skra — Spap- Fach integral model has a canonical toroidal compactification
whose boundary is a disjoint union of smooth Cartier divisors, and the above
morphism extends uniquely to a morphism

(1.1.2) Stera — Sf:xiap

of compactifications.

Each compactified integral model has its own desirable and undesirable
properties. For example, Si . is regular, while S;ap is not. On the other
hand, every vertical (i.e. supported in nonzero characteristic) Weil divisor
on Sp,, has nonempty intersection with the boundary, while Sg,, has certain
exceptional divisors in characteristics p | D that do not meet the boundary.
An essential part of our method is to pass back and forth between these two
models in order to exploit the best properties of each. For simplicity, we will
state our main results in terms of the regular model Sf. ..

In §2 we define a distinguished line bundle w on Sk;a, called the line bundle
of weight one modular forms, and a family of Cartier divisors Zk;,(m) indexed
by integers m > 0. These special divisors were introduced in | R I,
and studied further in | , , |. For the purposes of the
introduction, we note only that one should regard the divisors as arising from
embeddings of smaller unitary groups into G.

Denote by

Ch(b (szra) = PiC(szra) 7z Q

the Chow group of rational equivalence classes of divisors with Q coeflicients.
Each special divisor Zk;a(m) can be extended to a divisor on the toroidal
compactification simply by taking its Zariski closure, denoted Zf . (m). The
total special divisor is defined as

(113) th(orta(m) = Z;éra(m) + BKra(m) € Ch(l@(‘s}ﬂéra)

where the boundary contribution is defined, as in (5.3.3), by

Bira(m) = % N #{z e Lo (w,a) = m} - Sfipa(®).
]
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The notation here is the following: The sum is over the equivalence classes
of proper cusp label representatives ® as defined in §3.1. These index the
connected components S, (®) < 0Sf,, of the boundary!!). Inside the sum,
(Lo, {:,-») is a hermitian Og-module of signature (n — 2,0), which depends on
.

The line bundle of modular forms w admits a canonical extension to the
toroidal compactification, denoted the same way. For the sake of notational
uniformity, we extend (1.1.3) to m = 0 by setting

(1.1.4) ZiEE(0) = w ™! + Exc € Chy(Si,).

Here Exc is the exceptional divisor of Theorem 2.3.4. It is a reduced effective
divisor supported in characteristics p | D, disjoint from the boundary of the
compactification. The following result appears in the text as Theorem 7.1.5.

Theorem A. — Let xg : (Z/DZ)* — {£1} be the Dirichlet character deter-
mined by k/Q. The formal generating series

>} Zih(m) - g™ e Chyy(Si,)[[al]

m=0
is modular of weight n, level I'g(D), and character x}. in the following sense:
for every Q-linear functional o : Chb( Kra) — C, the series

D a(Zigh(m) - ™ e C[[q]]

m=0
s the g-expansion of a classical modular form of the indicated weight, level,
and character.

We can prove a stronger version of Theorem A. Denote by @5(8;;%) the
Gillet-Soulé | | arithmetic Chow group of rational equivalence classes of
pairs Z = (Z,Gr), where Z is a divisor on Sf,, with rational coefficients,
and Gr is a Green function for Z. We allow the Green function to have
additional log-log singularities along the boundary, as in the more general
theory developed in [ |. See also | , ]

In §7.3 we use the theory of regularized theta lifts to construct Green func-
tions for the special divisors Z{2' (m), and hence obtain arithmetic divisors

A~ —~1 "
f(orta(m) € ChQ(SKra>

() After base change to C, each Sif,. (®) decomposes into h connected components, where h
is the class number of k.
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for m > 0. We also endow the line bundle w with a metric, and the resulting
metrized line bundle & defines a class

~ . ~1
Kra(0) = &7 + (Exc, —log(D)) € Chg(Sisa),

where the vertical divisor Exc has been endowed with the constant Green
function —log(D). The following result is Theorem 7.3.1 in the text.

Theorem B. — The formal generating series
~ A~ o m = 1
d(r) = > Zi&k(m) - ¢ € Chy(Sik,a)[[q]]
m=0

is modular of weight n, level T'o(D), and character X, where modularity is
understood in the same sense as Theorem A.

Remark 1.1.1. — As this article was being revised for publication, Wei
Zhang announced a proof of his arithmetic fundamental lemma, conjectured
in [ ]. Although the statement is a purely local result concerning inter-
sections of cycles on unitary Rapoport-Zink spaces, Zhang’s proof uses global
calculations on unitary Shimura varieties, and makes essential use of the mod-
ularity result of Theorem B. See | ]-

Remark 1.1.2. — Theorem B implies that the Q-span of the classes é\fgrta(m)
is finite dimensional. See Remark 7.1.2.

Remark 1.1.3. — There is a second method of constructing Green functions
for the special divisors, based on the methods of [ |, which gives rise to
a non-holomorphic variant of <$(T) It is a recent theorem of Ehlen-Sankaran
[ | that Theorem B implies the modularity of this non-holomorphic gen-
erating series. See §7.4.

One motivation for the modularity result of Theorem B is that it allows one
to construct arithmetic theta lifts. If g(7) € S,,(I'g(D), x}) is a classical scalar
valued cusp form, we may form the Petersson inner product

def

0(9) 2 (4. g)per € Che(Sti)
as in [ ]. One expects, as in [loc. cit.], that the arithmetic intersection
pairing of g(g) against other cycle classes should be related to derivatives of
L-functions, providing generalizations of the Gross-Zagier and Gross-Kohnen-
Zagier theorems. Specific instances in which this expectation is fulfilled can
be deduced from | , , ]. This will be explained in the
companion paper | .
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As this paper is rather long, we explain in the next two subsections the
main ideas that go into the proof of Theorem A. The proof of Theorem B is
exactly the same, but one must keep track of Green functions.

1.2. Sketch of the proof, part I: the generic fiber. — In this subsection
we sketch the proof of modularity only in the generic fiber. That is, the
modularity of

(1.2.1) D Ziu(m) k- ¢ € Chyy(Sitya ) [[a]]-
m=0
The key to the proof is the study of Borcherds products | , ].

A Borcherds product is a meromorphic modular form on an orthogonal
Shimura variety, whose construction depends on a choice of weakly holomor-
phic input form, typically of negative weight. In our case the input form is
any

(1.2.2) Fr)y= D elm)g™ e My% (D, xj72),

m>»>—0o0

where the superscripts ! and oo indicate that the weakly holomorphic form
f(7) of weight 2 — n and level T'y(D) is allowed to have a pole at the cusp oo,
but must be holomorphic at all other cusps. We assume also that all ¢(m) € Z.

Our Shimura variety Sh(G,D) admits a natural map to an orthogonal
Shimura variety. Indeed, the k-vector space

V = Homk(Wo, W)

admits a natural hermitian form (-, -) of signature (n — 1,1), induced by the
hermitian forms on Wy and W. The natural action of G on V determines an
exact sequence

(1.2.3) 1 — Resp/qGm — G - U(V) — 1

of reductive groups over Q.

We may also view V' as a Q-vector space endowed with the quadratic form
Q(z) = {x,x) of signature (2n — 2,2), and so obtain a homomorphism G —
SO(V). This induces a map from Sh(G, D) to the Shimura variety associated
with the group SO(V).

After possibly replacing f by a nonzero integer multiple, Borcherds con-
structs a meromorphic modular form on the orthogonal Shimura variety, which
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can be pulled back to a meromorphic modular form on Sh(G, D)(C). The re-
sult is a meromorphic section 1 (f) of w”, where the weight

(1.2.4) E=> 7 -c(0)eZ
r|D

is the integer defined in §5.3. The constant ~, = Hp‘r p is a 4™ root of unity
(with 1 = 1) and ¢,(0) is the constant term of f at the cusp

w0, = € Do(D)\P!(Q),
in the sense of Definition 4.1.1.

Initially, 1(f) is characterized by specifying — log [ (f)||, where | - | is the
Petersson norm on w”. In particular, +(f) is only defined up to rescaling
by a complex number of absolute value 1 on each connected component of
Sh(G,D)(C). We prove that, after a suitable rescaling, ¥(f) is the analytifi-
cation of a rational section of the line bundle w* on Sh(G, D). In other words,
the Borcherds product is algebraic and defined over the reflex field k. This
allows us to view #(f) as a rational section of w* both on the integral model
Skra, and on its toroidal compactification.

We compute the divisor of ¥(f) on the generic fiber of the toroidal com-
pactification S I and find

(1.2.5) div(ep(f)) i = Z c(—m) - Z&i(m) .
m>0
The calculation of the divisor on the interior Sk, follows immediately from
the corresponding calculations of Borcherds on the orthogonal Shimura variety.
The multiplicities of the boundary components are computed using the results
of | ], which describe the structure of the Fourier-Jacobi expansions of
1(f) along the various boundary components.
The equality of divisors (1.2.5) implies the relation

k-w= 2 c(=m) - Zi8(m) i,

m>0

in the Chow group Ch@(Sf’;ra/k). The cusp o0 = 1/D is I'g(D)-equivalent to
the usual cusp at o0, and so ¢1(0) = ¢(0). Substituting the expression (1.2.4)

for k into the left hand side and using (1.1.4) therefore yields the relation

(1.2.6) D () w = Y7 e(=m) - Zi&(m) k

r|D m=0
r>1
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in Chb(Sf’;m /k). In §4.2 we construct for each r | D an Eisenstein series

En(1) = Z er(m) - q™ € Mn(D, x3),

mz=0
which, by a simple residue calculation, satisfies
er(0) = = D e(=m)er(m).
m>0

Substituting this expression into (1.2.6) yields

27 0= e(=m)- (ZRhm)k + Y] vrer(m) - w),
m=0 r|D
r>1

where we have also used the relation e,(0) = 0 for r > 1.
We now invoke a variant of the modularity criterion of [ |, which is

our Theorem 4.2.3: if a formal g-expansion

Y, d(m)q™ € C[[q]]

m=0
satisfies 0 = >, ~qc(—m)d(m) for every input form (1.2.2), then it must be
the g-expansion of a modular form of weight n, level I'y(D), and character xj.
It follows immediately from this and (1.2.7) that the formal g-expansion

> (Zf&ta(m)/k + 3 e (m) .w> g

mz=0 r|D
r>1

is modular in the sense of Theorem A. Rewriting this as
Z thgja(m)/k q"+ Z VB (1) - w

m=0 r|D
r>1

and using the modularity of each Eisenstein series E,.(7), we deduce that
(1.2.1) is modular.

1.3. Sketch of the proof, part II: vertical components. — In order to
extend the arguments of §1.2 to prove Theorem A, it is clear that one should
attempt to compute the divisor of the Borcherds product (f) on the integral
model S, and hope for an expression similar to (1.2.5). Indeed, the bulk of
this paper is devoted to precisely this problem.

The subtlety is that both div(¢(f)) and Z{2 (m) will turn out to have
vertical components supported in characteristics dividing D. Even worse, in
these bad characteristics the components of the exceptional divisor Exc < Si..,
do not intersect the boundary, and so the multiplicities of these components
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in the divisor of 9(f) cannot be detected by examining its Fourier-Jacobi
expansion.

This is where the second integral model Sf‘iap plays an essential role. The
morphism (1.1.2) sits in a cartesian diagram

*
Exc —— 8%,

_

Sing —— Sp,,p,,
where the singular locus Sing < Sf—f,ap is the reduced closed substack of points
at which the structure morphism Sg,, — Spec(Ok) is not smooth. It is 0-
dimensional and supported in characteristics dividing D. The right vertical
arrow restricts to an isomorphism

(1.3.1) Skra ~ Exc = Sf, )\ Sing.
For each connected component s € m(Sing) the fiber
Excs = Exc xS;:ap s

is a smooth, irreducible, vertical Cartier divisor on Sf,,, and Exc = | |, Exc.

As the Og-stack Sl’:“,ap is proper and normal with normal fibers, every irre-
ducible vertical divisor on it is the reduction, modulo some prime of O, of
an entire connected (=irreducible) component. From this it follows that every
vertical divisor meets the boundary. Thus one could hope to use (1.3.1) to
view 1 ( f) as a rational section on Spap: compute its divisor there by examining
Fourier-Jacobi expansions, and then pull that calculation back to S, .

This is essentially what we do, but there is an added complication. The
line bundle w on (1.3.1) does not extend to Sf,,
Z .(m) on (1.3.1) cannot be extended across the singular locus to a Cartier
divisor on Sf—",ap. However, if you square the line bundle and the divisors, they
have much better behavior. This is the content of the following result, which
is an amalgamation of Theorems 2.4.3, 2.5.3, 2.6.3, and 3.7.1 of the text.

and similarly the divisor

Theorem C. — There is a unique line bundle Qp,, on Sf’iap whose restriction

2

to (1.3.1) is isomorphic to w”. Denoting by Qxra its pullback to S ., there

is an isomorphism

w? =~ Qe ® O(Exc).
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Similarly, there is a unique Cartier divisor yf)‘;tp(m) on Sg,, whose restriction

to (1.3.1) is equal to 222 (m). Its pullback Vit (m) to Sf;,, satisfies

QZIt(Orta( ) ylt(orta( ) Z #{37 € Ls: <Jf7$> = m} - Excg.

semp(Sing)

Here Ly is a positive definite self-dual hermitian lattice of rank n associated
to the singular point s, and (- ,-) is its hermitian form.

Setting yf%tp( ) = Qpap, we obtain a formal generating series

Viap(m) - q™ € Chyy(Sp)[[g]]

m=0

whose pullback via Sg ., — Sp, is twice the generating series of Theorem

ap
A, up to an error term coming from the exceptional divisors. More precisely,

Theorem C shows that the pullback is

2 3 2t (m) - D1 9(7) - Exc, € Chy(Ska)[lal],

m=0 semp(Sing)

where each ¥4(7) is the classical theta function whose coefficients count points
in the positive definite hermitian lattice L.

Over (1.3.1) we have w? = Q’f,a , which allows us to view ¥(f)? as a
rational section of the line bundle Qpap on Sg,,. We examine its Fourier-
Jacobi expansions along the boundary components and are able to compute
its divisor completely (it happens to include nontrivial vertical components).
We then pull this calculation back to S, and find that 4(f), when viewed
as a rational section of w®, has divisor

aiv(p(f) = 3 e=m) - 24 m) + X3 (0) - (8 4 Y Sy, )

m=>0 r|D plr
Z #{x e L, :{(x,x) =m} - Excs
m>0 semp (Sing)
— k- div(9)

where 0 € O is a square root of —D, p < Oy is the unique prime above p | D,
and S JF, is the mod p fiber of S, viewed as a divisor. This is stated in
the text as Theorem 5.3.3. Passing to the generic fiber recovers (1.2.5), as it
must.
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As in the argument leading to (1.2.7), this implies the relation

0= e )(zfg;a( )—% D #{xeLs:<x,m>=m}-EXCS>

m=0 semp (Sing)
EXC "
+ Z c(—m Z Yrer(m) | w— —— — ZSKra/IFp
m=0 r|D
r>1

in the Chow group of S, and the modularity criterion implies that

ra’

Z Zit (m —% Z Us(T) - Excs

m=0 semo (Sing)
Exc
+ Z VTET‘(T) ’ (LU T T Z Kra/Fp>
r|D plr
r>1

is a modular form. As each theta series ¥s(7) and Eisenstein series E,(7) is
m

modular, so is >} Z{£ (m) - ¢™. This completes the outline of the proof of

Theorem A.

1.4. The structure of the paper. — We now briefly describe the contents
of the various sections of the paper.

In §2 we introduce the unitary Shimura variety associated to the group G of
(1.1.1), and explain its realization as a moduli space of pairs (A4, A) of abelian
varieties with extra structure. We then review the integral models constructed
by Pappas and Kramer, and the singular and exceptional loci of these models.
These are related by a cartesian diagram

Exc —> Skra

|

Sing — Spap,

where the vertical arrow on the right is an isomorphism outside of the 0-
dimensional singular locus Sing. We also define the line bundle of modular
forms w on Sk;a.

The first main result of §2 is Theorem 2.4.3, which asserts the existence of

a line bundle Qp,, on Spy, restricting to w? over

Skra \ Exc = Sp,p, \ Sing.
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We then define the Cartier divisor Zk;a(m) on Skra and prove Theorem 2.5.3,
which asserts the existence of a Cartier divisor Vpap(m) on Sp,p whose restric-
tion to Spap N\ Sing coincides with 2Zk;,(m). Up to error terms supported on
the exceptional locus Exc, the pullbacks of Qpa;, and Vpap (m) to Skra are there-
fore equal to w? and 2Zk.,(m), respectively. The error terms are computed in
Theorem 2.6.3, which is the analogue of Theorem C for the noncompactified
Shimura varieties.

In §3 we describe the canonical toroidal compactifications Sf,, — l’iap,
and the structure of their formal completions along the boundary. In §3.1
and §3.2 we introduce the cusp labels ® that index the boundary components,
and their associated mixed Shimura varieties. In §3.3 we construct smooth
integral models Cg of these mixed Shimura varieties, following the general
recipes of the theory of arithmetic toroidal compactification, as moduli spaces
of 1-motives. In §3.4 we give a second moduli interpretation of these integral
models. This is one of the key technical steps in our work, and allows us
to compare Fourier-Jacobi expansions on our unitary Shimura varieties to
Fourier-Jacobi expansions on orthogonal Shimura varieties. See the remarks
at the beginning of §3 for further discussion. In §3.5 and §3.6 we construct the
line bundle of modular forms and the special divisors on the mixed Shimura
varieties Cy. Theorem 3.7.1 describes the canonical toroidal compactifications
Sk and Sf,ap and their properties. In §3.8 we describe the Fourier-Jacobi
expansions of sections of w* on Skya in algebraic language, and in §3.9 we
explain how to express these Fourier-Jacobi coeflicients in classical complex
analytic coordinates.

In the short §4 we introduce the weakly holomorphic modular forms that
will be used as inputs for the construction of Borcherds products. We also
state in Theorem 4.2.3 a variant of the modularity criterion of Borcherds.

In §5 we consider the unitary Borcherds products associated to weakly holo-
morphic forms

i —
(1.4.1) feMy” (D, xy™?).

Ultimately, the integrality properties of the unitary Borcherds products will be
deduced from an analysis of their Fourier-Jacobi expansions. These expansions
involve certain products of Jacobi theta functions, and so, in §5 we review
facts about the arithmetic theory of Jacobi forms. For us, Jacobi forms will
be sections of a suitable line bundle J} ,,, on the universal elliptic curve living
over the moduli stack (over Z) of all elliptic curves. The key point is to have
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a precise description of the divisor of the canonical section
0% e H(E, Jo.12)

of Proposition 5.1.4. In §5.2 we prove Borcherds quadratic identity, allowing
us to relate Jp 1 to a certain line bundle (determined by a Borcherds product)
on the boundary component Bg associated to a cusp label ®.

After these technical preliminaries, we come to the statements of our main
results about unitary Borcherds products. Theorem 5.3.1 asserts that, for
each weakly holomorphic form (1.4.1) satisfying integrality conditions on the
Fourier coefficients ¢(m) with m < 0, there is a rational section 1( f) of the line
bundle w” on Skra With explicit divisor on the generic fiber and prescribed
zeros and poles along each boundary component. Moreover, for each cusp
label @, the leading Fourier-Jacobi coefficient of t(f) has an expression as
a product of three factors, two of which, P§*"* and Pgo”, are constructed in

terms of ©24. Theorem 5.3.3 gives the precise divisor of ¥(f) on Skpas and

ra’
Theorem 5.3.4 gives an analogous formula on Sg, . An essential ingredient in
the calculation of these divisors is the calculation of the divisors of the factors
PEe and Pfg‘”’, which is done in §5.4.

In §6 we prove the main results stated in §5.3. In §6.1 we construct a vector
valued form f from (1.4.1), and give expressions for its Fourier coefficients in
terms of those of f. The vector valued form f defines a Borcherds product
1,5( f) on the symmetric space D for the orthogonal group of the quadratic
space (V, Q) and, in §6.2, we define the unitary Borcherds product 1 (f) as its
pullback to D. In §6.3 we determine the analytic Fourier-Jacobi expansion of
1 (f) at the cusp ® by pulling back the product formula for 7,[3( f) computed
in | | along a one-dimensional boundary component of D. In §6.4 we
show that the unitary Borcherds product constructed analytically arises from
a rational section of w® and that, after rescaling by a constant of absolute
value 1, this section is defined over k. This is Proposition 6.4.4. In §6.5 we
complete the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

In §7 we use the calculation of the divisors of Borcherds products to prove
the modularity results discussed in detail earlier in the introduction.

In §8 we provide some supplementary technical calculations.

1.5. The case n = 2. — Throughout the introduction we have assumed
that n > 3, but one could ask if similar results hold for n = 2. This seems to
be a delicate question.
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The assumption that n > 3 guarantees that W contains an isotropic k-
line, which implies that Sh(G, D) has no compact (meaning proper over k)
components. When n = 2 the Shimura variety Sh(G, D) is essentially a union
of classical modular curves (if W contains an isotropic k-line) or of compact
quaternionic Shimura curves (if W contains no isotropic k-line).

When n = 2 one could still construct Borcherds products on Sh(G, D) as
pullbacks from orthogonal Shimura varies, and use the results of | ] to
prove that they are defined over the reflex field k. Analyzing their divisors
on the integral models Skya — Spap seems quite difficult. The compact case
falls well outside the reach of our arguments, which rely in an essential way
on the anaysis of Fourier-Jacobi expansions near the boundary of a toroidal
compactification.

However, even in the noncompact n = 2 case there are some technical issues
that we do not know how to resolve. Foremost among these is that when n = 2
the reduction of Sp,p at a prime of Of, above D is not normal, and so (as in
the familiar case of modular curves) the reduction of an irreducible component
need not remain irreducible. This causes the proof of Proposition 6.5.2 to
break down in a serious way. In essence, we do not know how to exclude the
possibility that constants ke appearing in Proposition 6.4.1 contribute some
nontrivial error term to the divisor of the Borcherds product.

In §2 and §3 we assume n > 2, but from §5 onwards we restrict to n > 3
(the integer n plays no role in the short §4).

1.6. Thanks. — The results of this paper are the outcome of a long term
project, begun initially in Bonn in June of 2013, and supported in a crucial
way by three weeklong meetings at AIM, in Palo Alto (May of 2014) and San
Jose (November of 2015 and 2016), as part of their AIM SQuaRE’s program.
The opportunity to spend these periods of intensely focused efforts on the
problems involved was essential. We would like to thank the University of
Bonn and AIM for their support.

1.7. Notation. — Throughout the paper, k c C is a quadratic imaginary

field of odd discriminant disc(k) = —D. Denote by § = v/—D € k the unique

choice of square root with Im(d) > 0, and by 9 = §O the different of O.
Fix a m € O satisfying O = Z + Zn. If S is any Og-scheme, define

€S=7T®1—1®i5(f)60k®205
€S=f®1—1®i5(7)60k®203,
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where ig : O — Og is the structure map. The ideal sheaves generated by
these sections are independent of the choice of 7, and sit in exact sequences
of free Og-modules

a®z—is(a)

0 — (€s) = Or ®z Os %, 05— 0

and
a®z—ig(@)x

0 — (es) = Or ®z Os Og — 0.
It is easy to see that €g-€s = 0, and that the images of (eg) and (€g) under

a®z—ig(a)x

O ®z Os

Os

a®z—ig(@)x

O ®z Os

respectively, are both equal to the sub-sheaf 90g. This defines isomorphisms
of Og-modules

(1.7.1) (es) = 00g = (€g).

If N is an Oy ®7 Og-module then N /egN is the maximal quotient of N on
which O acts through the structure morphism ig : O — Og, and N/egN is
the maximal quotient on which Oy acts through the complex conjugate of the
structure morphism. If D € (’)g< then more is true: there is a decomposition

(1.7.2) N =egN @egN,

Os,

and the summands are the maximal submodules on which Oy acts through
the structure morphism and its conjugate, respectively. From this discussion
it is clear that one should regard eg and €g as integral substitutes for the
orthogonal idempotents in k®q C = C x C. The Og-scheme S will usually be
clear from context, and we abbreviate e¢g and €g to € and €.

Let k*" — C be the maximal abelian extension of k in C, and let

art : kX\k* — Gal(k*/k)
be the Artin map of class field theory, normalized as in | , §11]. As usual,
S = Resc/rG, is Deligne’s torus.

For a prime p < o we write (a,b), for the Hilbert symbol of a,b € Q.
Recall that the invariant of a hermitian space V' over k, = k®q Q, is defined
by
(1.7.3) inv, (V) = (det V, —D),,

where det V' is the determinant of the matrix of the hermitian form with
respect to a kj,-basis. If p < o0 then V is determined up to isomorphism by
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its k,-rank and invariant. If p = oo then V' is determined up to isomorphism
by its signature (7, s), and its invariant is inve, (V) = (—1)%.
The term stack always means Deligne-Mumford stack.

2. Unitary Shimura varieties

In this section we define a unitary Shimura variety Sh(G,D) over our
quadratic imaginary field k < C and describe its moduli interpretation. We
then recall the work of Pappas and Kramer, which provides us with two inte-
gral models related by a surjection Skra — Spap. This surjection becomes an
isomorphism after restriction to Og[1/D]. We define a line bundle of weight
one modular forms w and a family of Cartier divisors Zk;,(m), m > 0, on
SKraa

The line bundle w and the divisors Zk;a(m) do not descend to Sp,p, and
the main original material in §2 is the construction of suitable substitutes on
Spap- These substitutes consist of a line bundle Qp,, that agrees with w?
after restricting to Og[1/D], and Cartier divisors Vpap(m) that agree with
2Zkya(m) after restricting to Og[1/D].

2.1. The Shimura variety. — Let Wy and W be k-vector spaces endowed
with hermitian forms Hy and H of signatures (1,0) and (n—1, 1), respectively.
We always assume that n > 2. Abbreviate

WR)=W®R, W(C)=W®C, W(A;) =W®gqAy,

and similarly for Wy. In particular, Wy(R) and W (R) are hermitian spaces
over C = k®q R.

We assume the existence of Og-lattices ag < Wy and a < W, self-dual with
respect to the hermitian forms Hy and H. As the inverse of 6 = v/—D € k
generates the inverse different of k/Q, this is equivalent to self-duality with
respect to the symplectic forms

(211) w(](waw/) = TI'k/QI—IO((S_lwvwl>7 w(%w/) = Trk/QH((S_lw?w,)'

This data will remain fixed throughout the paper.

Asin (1.1.1), let G € GU(Wj) x GU(W) be the subgroup of pairs for which
the similitude factors are equal. We denote by v : G — G,, the common
similitude character, and note that v(G(R)) < R>Y.

Let D(Wp) = {yo} be a one-point set, and define

(2.1.2) D(W) = {negative definite C-planes y < W (R)},
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so that G(R) acts on the connected hermitian domain
D =D(Wy) x D(W).

The lattices ag and a determine a maximal compact open subgroup
(2.1.3) K ={geG(Ay) : gag = dp and ga = a} < G(Ay),
and the orbifold quotient

Sh(G,D)(C) = G(Q)\D x G(As)/K
is the space of complex points of a smooth k-stack of dimension n— 1, denoted
Sh(G, D).

The symplectic forms (2.1.1) determine a k-conjugate-linear isomorphism
(2.1.4) Homy(Wo, W) 2225 Homy (W, W),
characterized by 1 (xwp,w) = ¥o(wp, ¥ w). The k-vector space
V = Homy (W, W)

carries a hermitian form of signature (n — 1, 1) defined by
(2.1.5) {(r1,29) = x5 0x1 € Endg(Wy) = k.

The group G acts on V' in a natural way, defining an exact sequence (1.2.3).
The hermitian form on V induces a quadratic form Q(z) = (z,z), with
associated Q-bilinear form

(2.1.6) [z, y] = Trg/plz, y)-
In particular, we obtain a representation G — SO(V).
Proposition 2.1.1. — The stack Sh(G,D),c has 21=o(DIp2 connected com-

ponents, where h is the class number of k and o(D) is the number of prime
divisors of D.

Proof. — Each g € G(Ay) determines Op-lattices
gag = Wy ngag, ga=W nga.

The hermitian forms Hy and H need not be Og-valued on these lattices. How-
ever, if rat(v(g)) denotes the unique positive rational number such that

I/(g) 7 X
rat(v(g) <

then the rescaled hermitian forms rat(v(g))~*Hy and rat(v(g)) "' H make gag
and ga into self-dual hermitian lattices.
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As D is connected, the components of Sh(G, D) ¢ are in bijection with the
set G(Q)\G(Ay)/K. The function g — (gag, ga) establishes a bijection from
G(Q)\G(A})/K to the set of isometry classes of pairs of self-dual hermitian O-
lattices (af), a’) of signatures (1, 0) and (n—1, 1), respectively, for which the self-
dual hermitian lattice Homp, (ag, @’) lies in the same genus as Homoe, (ag, a) <
V.

Using the fact that SU(V') satisfies strong approximation, one can show that
there are exactly 21—0(D)
each isometry class arises from exactly h isometry classes of pairs (af,a’). O

h isometry classes in the genus of Homp, (ag, a), and

It will be useful at times to have other interpretations of the hermitian
domain D. The following remarks provide alternate points of view. Recalling
the idempotents €, € € k®qgC of §1.7, define isomorphisms of real vector spaces

(2.1.7) pr.: W(R) = eW(C), pre: W(R) = el (C)
as, respectively, the compositions
W(R) — W(C) = eW (C) @eW (C) 2% e (C)
W(R) — W(C) = W (C) ®@eW (C) 22 e (C).
Remark 2.1.2. — Each pair z = (yo,y) € D determines a line pr.(y) <
W (C), and hence a line
z = Homc(Wo(C)/eWy(C), pr(y)) < eV (C).
This construction identifies
D= {zeeV(C):[z,2] <0}/C* < P(eV(C))
as an open subset of projective space.
Remark 2.1.3. — Define a Hodge structure
F'Wo(C) =0, F°W,(C) =eWy(C), F'Wy(C) = Wy(C)

on Wy(C), and identify the unique point yy € D(Wy) with the corresponding
morphism S — GU(Wp)r. Every y € D(W) defines a Hodge structure

F'W(C)=0, F'W(C)=pr(y)@®pre(y"), F 'W(C)=W(C)

on W(C). If we identify y € D(W) with the corresponding morphism S —
GU(W)g, then for any point z = (yo,y) € D the product morphism

Yo X Y : S — GU(WO)R X GU(W)R

takes values in Gg. This realizes D < Hom(S, Ggr) as a G(R)-conjugacy class.
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Remark 2.1.4. — In fact, the discussion above shows that Sh(G,D) ad-
mits a map to the Shimura variety defined the group U(V') together with the
homomorphism

hGross : S — U(V)(R), z — diag(l,...,1,2/2).

Here we have chosen a basis for V' (R) for which the hermitian form has matrix
diag(1,—1, —1). Note that, for analogous choices of bases for Wj(R) and W (R),
the corresponding map is

h:S— G(R), z— (z) x diag(z, ...,z 2),

which, under composition with the homomorphism G(R) — U(V)(R), gives
haross- The existence of this map provides an answer to a question posed by
Gross: how can one explicitly relate the Shimura variety defined by the unitary
group U(V'), as opposed to the Shimura variety defined by the similitude group
GU(V), to a moduli space of abelian varieties? Our answer is that Gross’s
unitary Shimura variety is a quotient of our Sh(G, D), whose interpretation as
a moduli space is explained in the next section.

2.2. Moduli interpretation. — We wish to interpret Sh(G, D) as a moduli
space of pairs of abelian varieties with additional structure. First, we recall
some generalities on abelian schemes.

For an abelian scheme m : A — S over an arbitrary base S, define the
first relative de Rham cohomology sheaf HéR(A) = RIW*Q;‘/S as the rela-
tive hypercohomology of the de Rham complex 2% /s The relative de Rham
homology

H{™(A) = Hom(H}g(4), Og)
is a locally free Og-module of rank 2 - dim(A), sitting in an exact sequence
0— FOHfR(A) — H?R(A) — Lie(A) — 0.

Any polarization of A induces an Og-valued alternating pairing on H{F(A),
which in turn induces a pairing
(2.2.1) FOHIR(A) ® Lie(A) — Os.
If the polarization is principal then both pairings are perfect. When S =
Spec(C), Betti homology satisfies Hy(A(C),C) = H{R(A), and
A(C) = Hi(A(C), Z)\H{™(A)/FOH™ (A).
For any pair of nonnegative integers (s,t), define an algebraic stack M p

over k as follows: for any k-scheme S let M, ;)(S) be the groupoid of triples
(A, %) in which
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— A — S is an abelian scheme of relative dimension s + ¢,
— ¢ : O — End(A) is an action such that the locally free summands
Lie(A) = eLie(A) @ €eLie(A)

of (1.7.2) have Og-ranks s and ¢, respectively,
— 1 : A — AY is a principal polarization, such that the induced Rosati
involution 1 on End®(A) satisfies ¢(a)! = +(@) for all a € O.

We usually omit ¢ and 9 from the notation, and just write A € M) (S).

Proposition 2.2.1. — The Shimura variety Sh(G, D) is isomorphic to an
open and closed substack
(222) Sh(G,D) c M(l,O) X M(n—l,l)'

More precisely, Sh(G,D)(S) classifies, for any k-scheme S, pairs
(223) (AO,A) € M(I,O)(S) X M(n—l,l)(s)

for which there exists, at every geometric point s — S, an isomorphism of
hermitian Oy g-modules

(2.2.4) HOm(gk (TgA(),S, TgAS) = HOm(gk (ao, a) ® Zg

for every prime £. Here the hermitian form on the right hand side of (2.2.4)
is the restriction of the hermitian form (2.1.5) on Homg(Wo, W) ® Qp. The
hermitian form on the left hand side is defined similarly, replacing the sym-
plectic forms (2.1.1) on Wy and W with the Weil pairings on the Tate modules
TyAo,s and TpAs.

Proof. — As this is routine, we only describe the open and closed immersion
on complex points. Fix a point

(z,9) € Sh(G,D)(C).

The component g determines Og-lattices gag < Wy and ga < W, which are
self-dual with respect to the symplectic forms

rat(v(g)) "o and  rat(v(g)) 'Y

of (2.1.1), rescaled as in the proof of Proposition 2.1.1.

By Remark 2.1.3 the point z € D determines Hodge structures on Wy and
W, and in this way (z,g) determines principally polarized complex abelian
varieties

Ao(C) = gag\Wo(C)/F°(Wo)
A(C) = ga\W (C)/F*(W)
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with actions of Ok. One can easily check that the pair (A, A) determines a
complex point of M o) X M,_11), and this construction defines (2.2.2) on
complex points. ]

The following lemma will be needed in §2.3 for the construction of integral
models for Sh(G, D).

Lemma 2.2.2. — Fiz a k-scheme S, a geometric point s — S, a prime p,
and a point (2.2.3). If the relation (2.2.4) holds for all £ # p, then it also
holds for £ = p.

Proof. — As the stack Sh(G, D) is of finite type over k, we may assume that
s = Spec(C). The polarizations on Ay and A induce symplectic forms on the
first homology groups Hi(Ag s(C),Z) and H(As(C),Z), and the construction
(2.1.5) makes

LBe (AO,s> As) = HomOk (HI(AO,S ((C>7 Z), H, (AS((C), Z))
into a self-dual hermitian Oy-lattice of signature (n — 1, 1), satisfying
Lpe(Ao,s, As) ®z Z¢ = Homoe, (11 Ao, s, Ty As)

for all primes £.

If the relation (2.2.4) holds for all primes ¢ # p, then Lpe(Ags, As) ® Q
and Homg (W, W) are isomorphic as k-hermitian spaces everywhere locally
except at p, and so they are isomorphic at p as well. In particular, for every
¢ (including ¢ = p) both sides of (2.2.4) are isomorphic to self-dual lattices
in the hermitian space Homy(Wy, W) ®q Q. By the results of Jacobowitz
[ | all self-dual lattices in this local hermitian space are isomorphic?,
and so (2.2.4) holds for all 4. O

Remark 2.2.3. — For any positive integer m define
K(m) = ker(K — Auto, (do/may) x Auto, (d/ma)).

For a k-scheme S, a K(m)-structure on (Ao, A) € Sh(G,D)(S) is a triple
(@0, @, ¢) in which ¢ : piy, = Z/mZ is an isomorphism of S-group schemes, and
ap : Aglm] = ag/may, a: Alm]=~a/ma
are Op-linear isomorphisms identifying the Weil pairings on Ag[m] and A[m]
with the Z/mZ-valued symplectic forms on ag/mag and a/ma deduced from
the pairings (2.1.1). The Shimura variety G(Q)\D x G(Ay)/K(m) admits a
canonical model over k, parametrizing K (m)-structures on points of Sh(G, D).

()This uses our standing hypothesis that D is odd.
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2.3. Integral models. — In this subsection we describe two integral models
of Sh(G, D) over O, related by a morphism Siya — Spap-

The first step is to construct an integral model of the moduli space My g).
More generally, we will construct an integral model of M, ¢ for any s > 0.
Define an O-stack M, ) as the moduli space of triples (4,¢,1) over O-
schemes S such that

— A — S is an abelian scheme of relative dimension s,

— ¢ : O — End(A) is an action such eLie(A) = 0, or, equivalently, such
that the induced action of O on the Og-module Lie(A) is through the
structure map ig : O — Og,

— 1 : A— AV is a principal polarization whose Rosati involution satisfies
(o)t = u(@) for all a € O.

The stack M, o) is smooth of relative dimension 0 over O by | , Propo-
sition 2.1.2], and its generic fiber is the stack M, ) defined earlier.

Remark 2.3.1. — The stack M(,,_5) will play an important role in §3.
In the degenerate case n = 2, we interpret this as Mgy = Spec(Og). The
universal abelian scheme over it should be understood as the 0 group scheme.

The question of integral models for M(,_; ) is more subtle, but well-
understood after work of Pappas and Kramer. The first integral model was
defined by Pappas | ]. Let

M?;:,l) — Spec(Ok)

be the stack whose functor of points assigns to an Og-scheme S the groupoid
of triples (A, t,%) in which

— A — S is an abelian scheme of relative dimension n,

— 1: O — End(A) is an action satisfying the determinant condition

det(T — () | Lie(A)) = (T — a)" 1 (T — @) € O5[T]

for all a € O,

— 1 : A— AV is a principal polarization whose Rosati involution satisfies
(o) = u(@) for all a € O,

— viewing the elements eg and €g of §1.7 as endomorphisms of Lie(A), the
induced endomorphisms

/\n €5 : /\n Lie(A) — /\n Lie(A)
Nes: N Lie(d) > A Lie(4)

are trivial (Pappas’s wedge condition).
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It is clear that the generic fiber of M?SEI 1 is isomorphic to the moduli space
M;,—1,1) defined earlier. Denote by

. P
Sing(,_1,1) © M(r?—pl,l)

the singular locus: the reduced substack of points at which the structure

morphism to O is not smooth.

Theorem 2.3.2 (Pappas). — The stack /\/lzjfl 1 is flat over Oy, of relative

dimension n — 1, and is Cohen-Macaulay and normal. Moreover:
1. For any prime p < Ok, the reduction ME?EM)/]FP is Cohen-Macaulay. If
n > 2 the reduction is geometrically normal.
2. The singular locus is a 0-dimensional stack, finite over O, and supported
i characteristics dividing D. It is the reduced substack underlying the

closed substack defined by ¢ - Lie(A) = 0.

Proof. — When n > 2 all of this is proved in | | using the theory of local
models, and it is straightforward to check that the arguments carry over® to
the case n = 2. The only change is that if p € Oy lies above p | D, the stack
./\/lPap) JOnp is étale locally isomorphic to

(1,1
Spec(Okplz, y]/(zy — p)),
whose special fiber is not normal. ]

The stack Mgffl 1 is not regular, but has a natural resolution of singular-

ities. This leads us to our second integral model of M(,_; 1). As in the work
of Kramer | |, define

MG 1y = Spec(Og,)

to be the stack whose functor of points assigns to an Og-scheme S the groupoid
of quadruples (A, ¢,1, F4) in which

— A — S is an abelian scheme of relative dimension n,

— 1 : O — End(A) is an action of O,

— 4 : A — AV is a principal polarization satisfying ¢(a)" = (@) for all
Q€ Ok,

®)When n = 2, the Op-stack /\/lf;:fl 1 admits a canonical descent to Z, and Pappas analyzes

the structure of this descent. The descent is regular, but the regularity is destroyed by base
change to Ox.
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— Fa < Lie(A) is an Og-stable Og-module local direct summand of rank
n — 1 satisfying Krdmer’s condition: Op acts on F4 via the structure
map O — Og, and acts on the line bundle Lie(A)/F4 via the complex
conjugate of the structure map.

There is a proper morphism

ra Pa
(2.3.1) MG )y — M2
defined by forgetting the subsheaf F4, and we define the exceptional locus
(2.3.2) Exc(,_1,1) © M{rt )

by the Cartesian diagram

EXC(n_Ll) — M{;YELD

| |

Sing(p—1,1) — szfl,l)‘
Theorem 2.3.3 (Kramer). — The Og-stack M{gfm) is regular and flat
with reduced fibers, and satisfies the following properties:
1. The exceptional locus (2.53.2) is a disjoint union of smooth Cartier divi-
sors. Its fiber over a geometric point s — Sing,_y 1y is isomorphic to
the projective space P*~1 over k(s).
2. The morphism (2.3.1) is proper and surjective, and restricts to an iso-

morphism
K -~ A4P :
M(nril,l) ~N EXC(nfl,l) = M('r?—pl,l) N Slng(n_l’l).
For an Og-scheme S, the inverse of this isomorphism endows

Ae (Mpapm) ~ Sing(n—l,l))(s)

(n—

with the subsheaf Fa = ker(€ : Lie(A) — Lie(A)).

Proof. — When n > 2 all of this is proved in | | using the theory of local
models, and it is straightforward to check that nearly everything*) carries over

“When n > 2, the statement of [ , Theorem 4.4] asserts that the special fiber of the
local model of Mgﬁm) is the union of two smooth and geometrically irreducible varieties
of dimension n — 1, whose intersection is smooth and geometrically irreducible of dimension
n—2. When n = 2, the structure of the local model is slightly different: its geometric special
fiber is a union X3 U X2 U X3 of three irreducible varieties, each isomorphic to IP’l, intersecting
in such a way that X1 n X2 and X2 n X3 are distinct reduced points. The difference between
the two cases occurs because the scheme Q defined in the proof of [ , Theorem 4.4],
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to the case n = 2. In particular, if n = 2 and p < O, lies above p | D, the same

arguments used in [loc. cit.] show that M{{fi‘) JOus is étale locally isomorphic

to the regular scheme

Spec(Oplz, yl/(zy — 7)),

for any uniformizer 7 € Op. O

Recalling (2.2.2), we define our first integral model

Spap © M0 X MG )

as the Zariski closure of Sh(G, D) in the fiber product on the right, which, like
all fiber products below, is taken over over Spec(Og). Using Lemma 2.2.2,
one can show that it is characterized as the open and closed substack whose
functor of points assigns to any Og-scheme S the groupoid of pairs

(Ao, A) € M(1,0)(S) x M2, 1(S5)

(n—1,1

such that, at any geometric point s — S, the relation (2.2.4) holds for all
primes ¢ # char(k(s)).
Our second integral model of Sh(G, D) is defined as the cartesian product

Skra > M(l,O) X M%Zril,l)
SPap = M) X M?ﬁm)‘

The singular locus Sing < Sp,p and exceptional locus Exc < Sk, are defined
by the cartesian squares

Exc SKra
Sing SPap

| |

M1,0) X Sing(,_1,1) —> M(1,0) ¥ MP

(n_l’l)'

Both loci are proper over O, and supported in characteristics dividing D.

which parametrizes isotropic lines in a quadratic space of dimension n over a finite field, is
geometrically irreducible only when n > 2.
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Theorem 2.3.4 (Pappas, Kramer). — The Og-stack Sk is regular and
flat with reduced fibers. The Og-stack Spap is Cohen-Macaulay and normal,
with Cohen-Macaulay fibers. Furthermore:

1. If n > 2, the geometric fibers of Spap are normal.

2. The exceptional locus Exc € Skra s a disjoint union of smooth Cartier
divisors. The singular locus Sing < Spap 15 a reduced closed stack of
dimension 0, supported in characteristics dividing D.

3. The fiber of Exc over a geometric point s — Sing is isomorphic to the
projective space P! over k(s).

4. The morphism Sira — Spap 15 surjective, and restricts to an isomorphism

(2.3.3) Skra \ Exc = Spyp \ Sing.
For an Og-scheme S, the inverse of this isomorphism endows
(Ao, A) € (Spap  Sing)(S)
with the subsheaf Fa = ker(e : Lie(4) — Lie(A)).

Proof. — All of this follows from Theorems 2.3.2 and 2.3.3, along with the
fact that M q gy — Spec(Og) is finite étale. O

Remark 2.3.5. — Let (Ag, A) be the universal pair over Spap. The vector
bundle H ?R(Ao) is locally free of rank one over O ®z Os;,,, and, by definition
of the moduli problem defining Spay,, its quotient Lie(Ap) is annihilated by €.
From this it is not hard to see that

FOHR(Ag) = eHIR(A).

2.4. The line bundle of modular forms. — We now construct a line bun-
dle of modular forms w on Sk;,, and consider the subtle question of whether
or not it descends to Sp,p. The short answer is that it doesn’t, but a more
complete answer can be found in Theorems 2.4.3 and 2.6.3.

By Remark 2.1.3, every point z € D determines Hodge structures on Wy
and W of weight —1, and hence a Hodge structure of weight 0 on V =
Homyg (Wy, W). Consider the holomorphic line bundle w®* on D whose fiber
at z is the complex line w?" = F'V(C) determined by this Hodge structure.

Remark 2.4.1. — It is useful to interpret w®" in the notation of Remark
2.1.2. The fiber of w® at z = (yo,y) is the line

(2.4.1) wy" = Homg (Wy(C)/eWy(C), pr.(y)) < eV(C),
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and hence w?" is simply the restriction of the tautological bundle via the
inclusion

D= {weeV(C): [w,w] <0}/C* < P(eV(C)).

There is a natural action of G(R) on the total space of w®", lifting the
natural action on D, and so w®" descends to a line bundle on the complex
orbifold Sh(G,D)(C). This descent is algebraic, has a canonical model over
the reflex field, and extends in a natural way to the integral model Sk;a, as
we now explain.

Let (Ag, A) be the universal object over Skya, let F4 < Lie(A) be the
universal subsheaf of Kramer’s moduli problem, and let

Fi < FOH{R(A)
be the orthogonal to F4 under the pairing (2.2.1). It is a rank one Og,,.-
module local direct summand on which Oy acts through the structure mor-
phism O — Osy,,. Define the line bundle of weight one modular forms on
SKra by
w = Hom(Lie(Ao), Fz),
or, equivalently, w™! = Lie(A4) ® Lie(A)/F4.

Proposition 2.4.2. — The line bundle w on Skya just defined restricts to
the already defined w®* in the complex fiber. Moreover, on the complement of
the exceptional locus Exc © Skra we have

w = Hom(Lie(Ag), eFOHIR(A)).

Proof. — The equality i = eF°H{®(A) on the complement of Exc follows
from the characterization

Fa = ker(e: Lie(A) — Lie(A))

of Theorem 2.3.4, and all of the claims follow easily from this and examination
of the proof of Proposition 2.2.1. O

The line bundle w does not descend to Spap, but it is closely related to
another line bundle that does. This is the content of the following theorem,
whose proof will occupy the remainder of §2.4. The result will be strengthened
in Theorem 2.6.3.

Theorem 2.4.3. — There is a unique line bundle 2p,, on Spa, whose re-
striction to the nonsingular locus (2.5.3) is isomorphic to w?. We denote by
Qira 1ts pullback via Skra — Spap-
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Proof. — Let (Ap, A) be the universal object over Sp,p, and recall the short
exact sequence

0— FOHE(A) - HE(A) L Lie(A) — 0

of vector bundles on Sp,,. As H fR(A) is a locally free O ®z Osp,,-module
of rank n, the quotient H{®(A)/eH{®(A) is a rank n vector bundle.
Define a line bundle

Ppap = Hom ( A" HR () e 4), \ Lie(A))
on Spap, and denote by Pk, its pullback via Skra — Spap. Let
,QD : H?R(A) ®H?R(A) - OSPap

be the alternating pairing induced by the principal polarization on A. If a and
b are local sections of H{®(A), define a local section P,g; of Ppap by

_

~~

Pagp(er n---nen) = ) (=D g(Ea, er) - g(eb) A gler) A - A glen)
k=1

omit g(ey)

Remark 2.4.4. — To see that P,gy is well-defined, one must check that
modifying any ey by a section of eH{®(A) leaves the right hand side unchanged.
This is an easy consequence of the vanishing of

N N Lie(4) » A’ Lie(4)

imposed in the moduli problem defining Spap.
Lemma 2.4.5. — The morphism
(2.4.2) P HR(A) @ H®(A) — Ppap
defined by a ® b — Pygy factors through a morphism

P : Lie(A) ® Lie(A) — Ppap.-
After pullback to Skra there is a further factorization
(2.4.3) P : Lie(A)/Fa ® Lie(A)/Fa — Pkra,
and this map becomes an isomorphism after restriction to Skra ~ Exc .

Proof. — Let a and b be local sections of H{F(A).
Assume first that a is contained in FOH{®(A). As FOHIR(A) is isotropic
under the pairing 9, P,gp factors through a map

/\" Lie(4)/eLie(A) — /\" Lie(A).



MODULARITY OF UNITARY GENERATING SERIES 29

In the generic fiber of Spap,, the sheaf Lie(A)/eLie(A) is a vector bundle of
rank n — 1. This proves that P,gj is trivial over the generic fiber. As P,gp
is a morphism of vector bundles on a flat O-stack, we deduce that P,g, = 0
identically on Spap.

If instead b is contained in FOH{R(A) then q(éb) = 0, and again P,y = 0.
These calculations prove that P factors through Lie(A) ® Lie(A).

Now pullback to Skra. We need to check that P,gp vanishes if either of a
or b lies in F4. Once again it suffices to check this in the generic fiber, where
it is clear from

(2.4.4) F4 = ker(e: Lie(A) — Lie(A)).
Over Sk;a we now have a factorization (2.4.3), and it only remains to check

that its restriction to (2.3.3) is an isomorphism. For this, it suffices to verify
that (2.4.3) is surjective on the fiber at any geometric point

s = Spec(F) — Skra  Exc.

First suppose that char(FF) is prime to D. In this case ¢,€ € O ®z F are
(up to scaling by F*) orthogonal idempotents, F4, = eLie(As), and we may
choose an Oy ®7, F-basis e1, . .., e, € HIF(A) in such a way that

€eq, €€, ..., €, € FOHfR(AS)
and
q(€e1), qleez), . .., q(eey,) € Lie(Ay)
are F-bases. This implies that
P.ge (61 A+ Aen) =1(€er,eeq) - q(€er) A qleea) A -+ A qleey) # 0,

and so
P.yge, € Hom( " H{®(A,) eH{™(A,), /\" Lie(A,))

is a generator. Thus P is surjective in the fiber at z.
Now suppose that char(F) divides D. In this case there is an isomorphism

Fl]/(2%) *==5 Ok @z F.
By Theorem 2.3.4 the relation (2.4.4) holds in an étale neighborhood of s, and

it follows that we may choose an O ®z F-basis e1,...,e, € HfR(AS) in such
a way that

€9,€€9,€€3,...,€Ey € FOHfR(AS)
and

q(e1),q(eer),q(es) ..., q(e,) € Lie(As)
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are F-bases. This implies that

Peygei(e1 Ao Aen) = (eer, e2) - qleer) A gler) A gqles) A+ A qlen) # 0,

and so, as above, P is surjective in the fiber at z. ]

We now complete the proof of Theorem 2.4.3. To prove the existence part
of the claim, we define Qp,;, by

Qp., = Lie(49)®* ® Ppap,

and let Qk;, be its pullback via Skya — Spap. Tensoring both sides of (2.4.3)
with Lie(A40)®? defines a morphism

-2 -1
w - QKra’

whose restriction to Skra ~ Exc is an isomorphism. In particular w? and Qpap
are isomorphic over (2.3.3).

The uniqueness of £2p,j, is clear: as Sing < Spap, is a codimension > 2 closed
substack of a normal stack, any line bundle on the complement of Sing admits
at most one extension to all of Spyp.

O

2.5. Special divisors. — Suppose S is a connected Og-scheme, and
(A(), A) € Spap(5>.

Imitating the construction of (2.1.5), there is a positive definite hermitian form
on Homp, (Ao, A) defined by

(2.5.1) {x1,x9) = x5 021 € Endp, (Ao) = O,

where
Homo, (Ag, A) 2225 Homo, (4, A)
is the Og-conjugate-linear isomorphism induced by the principal polarizations
on Ag and A.
For any positive m € Z, define the Og-stack Zp,,(m) as the moduli stack
assigning to a connected Og-scheme S the groupoid of triples (Ay, A, z), where

— (Ao, A) € Spap(9),
— z € Homp, (Ao, A) satisfies (z, z) = m.
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Define a stack Zia(m) in exactly the same way, but replacing Spap by Skra-
Thus we obtain a cartesian diagram

ZKra(m) — SKra

L]

ZPap (m) — SPapa

in which the horizontal arrows are relatively representable, finite, and unram-
ified.

Each Zkya(m) is, étale locally on Skya, a disjoint union of Cartier divisors.
More precisely, around any geometric point of Sk, one can find an étale
neighborhood U with the property that the morphism Zx,,(m)y — U restricts
to a closed immersion on every connected component Z < Zgp(m)y, and
Z < U is defined locally by one equation; this is | , Proposition 3.2.3],
but a cleaner argument (working on the Rapoport-Zink space corresponding to
Skra) can be found in | , Proposition 4.3]. Summing over all connected
components Z allows us to view Zk;.(m)y as a Cartier divisor on U, and
glueing as U varies over an étale cover defines a Cartier divisor on Skya, which
we again denote by Zkya(m).

Remark 2.5.1. — Tt follows from (2.3.3) and the paragraph above that
Zpap(m) is locally defined by one equation away from the singular locus, and
so defines a Cartier divisor on Sp,p \ Sing. This Cartier divisor does not
extend to all of Spap.

Remark 2.5.2. — We can make the specal divisors more explicit in the
complex fiber, as in | , Proposition 3.5] or [ , §3.8]. Recall from
§2.1 that the Q-vector space V' = Homyg(Wy, W) carries a quadratic form.
Using the description

D= {zeeV(C):[z,7] <0}/C* < P(eV(C))
of Remark 2.1.2, every x € V with Q(z) > 0 determines an analytic divisor

D(z) ={2€D:|z,z] =0}.

A choice of g € G(Ay) determines a connected component

)

(G(Q) A gKg~N\D =2, GQ\D x G(As)/K = Skra(C),

and if we set

L = Homp, (g9ap,ga) = V
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the restriction of Zkya(m)(C) — Skya(C) to this component is
(GQ ngKg™)\ || D) — (GQ) ngKg")\D.

xeLl

Q(z)=m

The following theorem, whose proof will occupy the remainder of §2.5, shows
that Zkya(m) is closely related to another Cartier divisor on Sk;, that descends
to Spap. This result will be strengthened in Theorem 2.6.3.

Theorem 2.5.3. — For every m > 0 there is a unique Cartier divisor
YVpap(m) on Spap whose restriction to Spap \ Sing agrees with 2Zpap(m). In
particular its pullback Ykra(m) via Skra — Spap agrees with 2Zkya(m) over
Skra ~ Exc.

Proof. — The map Zp,p(m) — Spap is finite, unramified, and relatively rep-
resentable. It follows that every geometric point of Sp,, admits an étale
neighborhood U — Spy;, such that U is a scheme, and the morphism

Zpap(m)y = U
restricts to a closed immersion on every connected component
Z C Zpap (m)U

We will construct a Cartier divisor on any such U, and then glue them together
as U varies over an étale cover to obtain the divisor Vp,p(m).

Fix Z as above, let Z < Oy be its ideal sheaf, and let Z’ be the closed
subscheme of U defined by the ideal sheaf Z?. Thus we have closed immersions

Zc7Z cU,

the first of which is a square-zero thickening.
By the very definition of Zp,,(m), along Z there is a universal Og-linear
map x : Agz — Az. This map does not extend to a map Agz — Az,

however, by deformation theory | , Chapter 2.1.6] the induced Og-linear
morphism of vector bundles

x: Hi®(Ayy) - HE(Ay)
admits a canonical extension to
(252) $/ . H?R(AOZI) — H?R(AZ/).

Recalling the morphism (2.4.2), define Y < Z’ as the largest closed sub-
scheme over which the composition

(25.3)  H{®(Ayz) @ H™(Aoz) =25 H{M(A2) @ H™ (A7) ©> Pyl
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vanishes.
Lemma 2.5.4. — If U — Spap factors through Spap ~ Sing, then Y = Z'.

Proof. — Lemma 2.4.5 provides us with a commutative diagram

q®q

H{R(Ag7)®2 — 227 o HIR(A,)®? (Lie(Az)/Fa,)®

(2.5.3) l;
PPap|Z/u

where
’FAZ’ = ker(€ : Lie(AZ/) - Lie(AZ/))

as in Theorem 2.3.4.

By deformation theory, Z < Z’ is characterized as the largest closed sub-
scheme over which (2.5.2) respects the Hodge filtrations. Using Remark 2.3.5,
it is easily seen that Z < Z’ can also be characterized as the largest closed
subscheme over which

Hl(AOZI) qo—$> Lie(Azl)/]:AZ,

vanishes identically. As Z < Z' is a square zero thickening, it follows first that
the horizontal composition in the above diagram vanishes identically, and then
that (2.5.3) vanishes identically. In other words Y = Z’. O

Lemma 2.5.5. — The closed subscheme Y < U is defined locally by one
equation.

Proof. — Fix a closed point y € Y of characteristic p, let Oy, be the local
ring of U at y, and let m < Oy, be the maximal ideal. For a fixed k > 0, let

U = Spec(Oy,/mF) c U

be the k*"-order infinitesimal neighborhood of y in U. The point of passing
to the infinitesimal neighborhood is that p is nilpotent in Oy, and so we may
apply Grothendieck-Messing deformation theory.

By construction we have closed immersions

Y

|

7 —7'—=U.
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Applying the fiber product xyU throughout the diagram, we obtain closed
immersions

Y

|

zZ——27 ——U
of Artinian schemes. As k is arbitrary, it suffices to prove that Y < U is
defined by one equation.

First suppose that p { D. In this case U — U — Sp,p, factors through the
nonsingular locus (2.3.3). It follows from Remark 2.5.1 that Z < U is defined
by one equation, and Z’ is defined by the square of that equation. By Lemma
2.5.4,Y c U is also defined by one equation.

For the remainder of the proof we assume that p | D. In particular p > 2.
Consider the closed subscheme Z” < U with ideal sheaf 73, so that we have
closed immersions Z < Z' < Z" < U. Taking the fiber product with U, the
above diagram extends to

Y
Z VA z" U.
As p > 2, the cube zero thickening Z < Z” admits divided powers extending
the trivial divided powers on Z < Z’. Therefore, by Grothendieck-Messing

theory, the restriction of (2.5.2) to
' Hi%(Aoz) — Hi " (Az).
admits a canonical extension to
S HIR (Agg) — (A7),
Define Y/ < Z” as the largest closed subscheme over which
(25.4) B (Aozr) @ H{™ (Aozr) 2% H{™(Azn) @ H{™ (Azn) &> Pouylzr

vanishes identically, so that there are closed immersions

Y —Y'
Z Z' yAd U.

We pause the proof of Lemma 2.5.5 for a sub-lemma.

Lemma 2.5.6. — We haveY =Y.
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Proof. — As in the proof of Lemma 2.5.4, we may characterize Z < Z” as
the largest closed subscheme along which z” respects the Hodge filtrations.
Equivalently, by Remark 2.3.5, Z < Z” is the largest closed subscheme over
which the composition

AR(Ag20) L% HIR(A ) L Lie(Agn)

vanishes identically. This implies that Z’ < Z” is the largest closed subscheme
over which

e ®2 ®2
(2.5.5) HIR (A 50)®2 07, R (4,,)82 97 Lio( A @2
vanishes identically.

It follows directly from the definitions that Y = Y’ n Z’, and hence it
suffices to show that Y’ < Z’. In other words, it suffices to show that the
vanishing of (2.5.4) implies the vanishing of (2.5.5).

For local sections a and b of Hy(Azw), define

—1
Qa@b : FOHflR(AZ//) ® /\n Lie(AZ//) - /\n Lie(AZ//)
by
Qazp(e1 ®qle2) A A qlen)) = P(a,er) - q(b) A glez) A+ A glen).

It is clear that Qugp depends only on the images of a and b in Lie(Az~), and
that this construction defines an isomorphism
(2.5.6)

Lie(Az)®2 % m<FOH (Az)® A" Lie(Az), N\ Lie(AZu)).

It is related to the map
Lie(Az)®* £> Hom( /\" B (Az0) el (Azn), \" Lie(Az))
of Lemma 2.4.5 by
Pagi(e1 A -+ A en) = Qegen(e1 @ qlez) A -+ A gqlen))
for any local section e; ® es ® - - - ® e, of
FOH{™(Agn) ® HM(Az) @ - @ H{ " (Agn).

Putting everything together, if (2.5.4) vanishes, then P (q.\@a7(5,) = 0 for

all local sections ag and by of H fR(AO z»). Therefore
Qaz”(an)®$”(Ebo) =0

for all local sections ag and by, which implies, as (2.5.6) is an isomorphism,
that (2.5.5) vanishes. This proves that Y’/ < Z’, and hence Y =Y. O
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Returning to the proof of Lemma 2.5.5, the map (2.5.4), whose vanishing
defines Y’ < Z”, factors through a morphism of line bundles

HR(Agzn) /e HR(Agzn) @ HIR (Agzn) /e HIR (Agzn) — Ppapzr,

and hence Y = Y’ is defined inside of Z” locally by one equation. In other
words, if we denote by Z < Oy and J < Oy the ideal sheaves of Z < U and
Y < U, respectively, then Z? is the ideal sheaf of Z” U, and

J=()+T°

for some f € Opy. But Y < Z’ implies that Z? < J, and hence T? ¢ TJ. It
follows that the image of f under the composition

JT - T/TT — T /mT

is an Oy-module generator, and J is principal by Nakayama’s lemma. O

At last we can complete the proof of Theorem 2.5.3. For each connected
component Z < Zp,p(m)y we have now defined a closed subscheme Y < Z’.
By Lemma 2.5.5 it is an effective Cartier divisor, and summing these Cartier
divisors as Z varies over all connected components yields an effective Cartier
divisor Ypap(m)y on U. Letting U vary over an étale cover and applying étale
descent defines an effective Cartier divisor Ypap(m) on Spap.

The Cartier divisor Vpap(m) just defined agrees with 2Zp,,(m) on Spap
Sing. This is clear from Lemma 2.5.4 and the definition of Vpap(m). The
uniqueness claim follows from the normality of Spap, exactly as in the proof
of Theorem 2.4.3. O

2.6. Pullbacks of Cartier divisors. — After Theorem 2.4.3 we have two
line bundles Qkr, and w? on Skra, which agree over the complement of the ex-
ceptional locus Exc. We wish to pin down more precisely the relation between
them.

Similarly, after Theorem 2.5.3 we have Cartier divisors Ykra(m) and
2Zkra(m). These agree on the complement of Exc, and again we wish to pin
down more precisely the relation between them.

Denote by m(Sing) the set of connected components of the singular lo-
cus Sing < Sp,p. For each s € mo(Sing) there is a corresponding irreducible
effective Cartier divisor

Excs = Exc xgsp,, 8§ < Skra



MODULARITY OF UNITARY GENERATING SERIES 37

supported in a single characteristic dividing D. These satisfy

Exc = |_| Excs.

semp(Sing)

Remark 2.6.1. — As Sing is a reduced 0-dimensional stack of finite type
over Ok/0, each s € my(Sing) can be realized as the stack quotient

s = Gs\Spec(Fs)
for a finite field Iy of characteristic p | D acted on by a finite group G.
Fix a geometric point Spec(F) — s, and set p = char(F). By mild abuse of

notation this geometric point will again be denoted simply by s. It determines
a pair

(2.6.1) (Ao,s, As) € Spap(F),
and hence a positive definite hermitian Og-module
Ly = Homop, (Ao, As)
as in (2.5.1). This hermitian lattice depends only on s € m(Sing), not on the

choice of geometric point above it.

Proposition 2.6.2. — For each s € mo(Sing) the abelian varieties Ags and
As are supersingular, and there is an Op-linear isomorphism of p-divisible
groups

(2.6.2) AL[p™] = Aalp™] % - x Ags[p”]

~~

n times

identifying the polarization on the left with the product polarization on the
right. Moreover, the hermitian Oy-module Lg is self-dual of rank n.

Proof. — Certainly Ay is supersingular, as p is ramified in Ok < End(Ays).

Denote by p < O be the unique prime above p. Let W = W(F) be the
Witt ring of F, and let Fr € Aut(W) be the unique continuous lift of the
p-power Frobenius on F. Let D(W) denote the covariant Dieudonné module
of Ay, endowed with its operators F' and V satisfying FV = p = VF. The
Dieudonné module is free of rank n over O, ®z W, and the short exact sequence

0— FOH?R(AS) — H?R(As) — Lie(A;s) — 0
of F-modules is identified with
0 — VD(W)/pD(W) — D(W)/pD(W) — D(W)/VD(W) — 0.
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As D is odd, the element § € Oy, fixed in §1.7 satisfies ord,(d) = 1. This
implies that
§-D(W) =VD(W).
Indeed, by Theorem 2.3.2 the Lie algebra Lie(Ay) is annihilated by §, and
hence § - D(W) < VD(W). Equality holds as

dimp (D(W)/6 - D(W)) = n = dimg (D(W)/VD(W)).
Denote by N < D(WW) the set of fixed points of the Fr-semilinear bijection
Vios: D(W) - D(W).
It is a free O p-module of rank n endowed with an isomorphism
D(W) = N®z, W

identifying V = § ® Fr—!. Moreover, the alternating form ) on D(W) induced
by the polarization on A has the form

h
Y(n1 @ wi, n2 ®wa) = wiws - Try/q <W>

1)

for a perfect hermitian pairing h : N x N — Og,. By diagonalizing this
hermitian form, we obtain an orthogonal decomposition of N into rank one
hermitian O p-modules, and tensoring this decomposition with W yields a
decomoposition of D(W) as a direct sum of principally polarized Dieudonné
modules, each of height 2 and slope 1/2. This corresponds to a decomposition
(2.6.2) on the level of p-divisible groups.

In particular, A, is supersingular, and hence is isogenous to n copies of
Aps. Using the Noether-Skolem theorem, this isogeny may be chosen to be
Og-linear. It follows first that L, has Og-rank n, and then that the natural
map

Ls ®z Zq = Homp,, (AOS [qooL Asg [qoo])
is an isomorphism of hermitian O ;-modules for every rational prime ¢. It is
easy to see, using (2.6.2) when g = p, that the hermitian module on the right
is self-dual, and hence the same is true for L; ®7 Zj. O

The remainder of §2.6 is devoted to proving the following result.

Theorem 2.6.3. — There is an isomorphism
w? = Qkra ® O(Exc)
of line bundles on Skra, as well as an equality

2Zkra(m) = Ykra(m) + Z #{r e Ls:{(x,x)y =m} Excg

semp (Sing)
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of Cartier divisors.

Proof. — Recall from the proof of Theorem 2.4.3 the morphism
w v,

Lie(A0)®? ® (Lie(A)/F4))®? Lie(40)®* ® Pkra;

whose restriction to Sk;a ~\ Exc is an isomorphism. If we view this morphism

(2.4.3)

as a global section

(2.6.3) 0 € H(Skra, w? ® Q)

then

(2.6.4) div(e) = > £5(0) - Exc,
semo(Sing)

for some integers ¢5(0) = 0, and hence
(2.6.5) WAL = X O(Exc,)® O,
semo(Sing)

We must show that each £,(0) = 1.
Similarly, suppose m > 0. It follows from Theorem 2.5.3 that

(2.6.6) 2Zkea(m) = Vicra(m) + Y. Ls(m) - Excy
semp(Sing)

for some integers £5(m). Moreover, it is clear from the construction of Vkya(m)
that 22k (m) — Ykra(m) is effective, and so £5(m) > 0. We must show that

ls(m) = #{x € Ly : {x,x) = m}.

Fix s € mp(Sing), and let Spec(F) — s, p = char(FF), and (Aos, As) € Spap(F)
be as in (2.6.1). Let W = W(F) be the Witt ring of F, and set W = O, ®z W.
It is a complete discrete valuation ring of absolute ramification degree 2. Fix
a uniformizer w € W. As p is odd, the quotient map

W-oW/wW=F

admits canonical divided powers.

Denote by Dy and D the Grothendieck-Messing crystals of Ags and Ag,
respectively. Evaluation of the crystals’®) along the divided power thicken-
ing W — F yields free O ®z W-modules Dy(W) and D(W) endowed with

®)1f p = 3, the divided powers on W — F are not nilpotent, and so we cannot evaluate the
usual Grothendieck-Messing crystals on this thickening. However, Proposition 2.6.2 implies
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alternating YW-bilinear forms vy and %, and Og-linear isomorphisms
Do(W)/wDo(W) = Dy(F) = H{R(Ag,)
and
DOW)/wD(W) = D(F) = HIE(A,).
The W-modules Do(WW) and D(W) are canonically identified with the co-

variant Dieudonné modules of Ags and Ag, respectively. The operators F' and
V' on these Dieudonné modules induce operators, denoted the same way, on

Do(W) = Do(W) @w W, D(W) = D(W) @ W.

For any elements yy, ...,y in an O ®z W-module, let {(y1,...,yx) be the
O, ®7 W-submodule generated by them. Recall from §1.7 the elements

€, €€ Oz W.
Lemma 2.6.4. — There is an O ®z W-basis ey € Do(W) such that
FDo(W) ¥ (eeg) = Dy(W)

1s a totally isotropic YW-module direct summand lifting the Hodge filtration on
Dy (F), and such that Vey = deg.

Similarly, there is an O ®z W-basis e1, ..., e, € D(W) such that
FDOW) % (eey, zea, . . ., 2en) = DOW)

1s a totally isotropic VWW-module direct summand lifting the Hodge filtration on
D(F). This basis may be chosen so that Veyxy1 = dey, where the indices are
understood in Z/nZ, and also so that

(e es)) = {gv vi=

otherwise.

Proof. — As in the proof of Proposition 2.6.2, we may identify
]DQ(W) ~ Ny ®Zp w

for some free O p-module Ny of rank 1, in such a way that V = § ® Fr— 1,
and the alternating form on Dy(WW) arises as the W-bilinear extension of an
alternating form 1 on No. Any Oy ,-generator ey € Ny determines a generator
of the Oy p ®z, YW-module

]D)()(W) >~ Ny ®Zp W,

that the p-divisible groups of Aps and A, are formal, and Zink’s theory of displays [ ]
can be used as a substitute.
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which, using Remark 2.3.5 has the desired properties.
Now set N = No@ - -- @ Ny (n copies), so that, by Proposition 2.6.2, there
is an isomorphism

D(W) = N ®z, W

identifying V = § ® Fr™!, and the alternating bilinear form on D(W) arises
from an alternating form ) on N. Let Z,» = W be the ring of integers in the
unique unramified degree n extension of @, and fix an action

L1 Zyn — Endg,, ,(N)

in such a way that ¢ (c(a)z,y) = ¥(z, (a)y) for all a € Zpn.
There is an induced decomposition

DW)= @ D(W),
keZ/nZ

where
D(W) = {e e D(W) : Ya € Zyn, 1() - e = Frf(a) - e}

is free of rank one over O ®z W. Now pick any Z,»-module generator e € IV,
view it as an element of D(W), and let e}, € D(W)y, be its projection to the k"
summand. This gives an Oy ®z W-basis ey, ..., e, € D(W), which determines
an O ®z W-basis of D(W) with the required properties. O

By the Serre-Tate theorem and Grothendieck-Messing theory, the lifts of
the Hodge filtrations specified in Lemma 2.6.4 determine a lift

(2.6.7) (Aos, As) € Spap(W)
of the pair (Ags, As). These come with canonical identifications
H{™(Ag,) = Do(W), HIR(A,) = DOW)

under which the Hodge filtrations correspond to the filtrations chosen in
Lemma 2.6.4. In particular, the Lie algebra of A, is

Lie(Ay) = DOW)/FDW) = {e1,ea, ..., e,/ ee1, €, ... En)d.
The W-module direct summand
]:As ={ea,...,eny/{Cea,... Eepn)

satisfies Kramer’s condition (§2.3), and so determines a lift of (2.6.7) to

(AO& As) € SKra(W)'
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To summarize: starting from a geometric point Spec(F) — s, we have used
Lemma 2.6.4 to construct a commutative diagram

(2.6.8) Spec(F) Excs I
Spec(W) Skra Spap-

Lemma 2.6.5. — The pullback of the map (2.4.3) via Spec(W) — Skra
vanishes identically along the closed subscheme Spec(W/wW), but not along
Spec(W/w*W).

Proof. — The W-submodule of

(2.6.9) Lie(As) = D(W)/{ee, €eq, ... €epn)
generated by ey is Og-stable. The action of O ®z VW on this W-line is via

a@z—iy (@)z
—

Or @z W V4%

(where iy : O — W is the inclusion), and this map sends € to a uniformizer

of W; see §1.7. Thus the quotient map ¢ : D(W) — Lie(As) satisfies g(€ée1) =
wq(e1) up to multiplication by an element of W*. It follows that
P.ge,(e1 A+ Nep) =w-P(€er,er) - qler) A glea) A+ A qlen)

up to scaling by W*.
We claim that i (€ej,e1) € W*. Indeed, as g(e1) generates a WW-module
direct summand of (2.6.9), there is some

x € FD(W) = {eey, e, ..., eeny < D(W)

such that ¢(x,e;) € W*. We chose our basis in Lemma 2.6.4 in such a way
that v (€e;, e1) = 0 for i > 1. It follows that ¢(ee1, e1) is a unit, and hence the
same is true for ¥ (éey,e1) = ¥(e, eer) = —(ee,eq).
We have now proved that
Pei@ei(€1 Ao nen) =w-qler) Aglez) A A qlen)

up to scaling by W*, from which it follows that
Poge (€1 A Aep)€E /\n Lie(A,)

is divisible by w, but not by w?.
The quotient

HIR(A,) /e HIR(A,) =~ DW)/(eer, . .., Een)



MODULARITY OF UNITARY GENERATING SERIES 43

is generated as a WW-module by ey, ..., e,. From the calculation of the previous
paragraph, it now follows that Pe e, € Pkralspec(w) is divisible by @ but not
by w?. The quotient

Lie(zzls)/}"~5 ~ D(W)/{eer, e, ... en)
is generated as a YW-module by the image of e;, and we at last deduce that
P ¢ Hom ((Lie(A)/F4)®%, Pira) lspecow)

is divisible by @ but not by w?. O

Recall the global section o of (2.6.3). It follows immediately from Lemma
2.6.5 that its pullback via Spec(W) — Skra has divisor Spec(W/@wW), and
hence

Spec(W) X sy, div(o) = Spec(W/wW),
Comparison with (2.6.4) proves both that ¢5(0) = 1, and that
(2.6.10) Spec(W) xs,. Excs = Spec(W/wW).
Recalling (2.6.5), this completes the proof that
w? = Qkpa ® O(Exc).

It remains to prove the second claim of Theorem 2.6.3. Given any z €
Ly = Homp, (Aos, As), denote by k(x) the largest integer such that x lifts to
a morphism

Ags @ W/(@")) — A, @ W/ (")),
Lemma 2.6.6. — As Cartier divisors on Spec(W), we have

Zira(m) X s, Spec(W) = Z Spec(W/w"@W).

<:chae:>L:Sm
Proof. — Each x € Ls with {(x,z) = m determines a geometric point
(2.6.11) (Aoz, Az, @) € Zira(m)(F).
and surjective morphisms

Osgrae
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where Oz, (m). is the étale local ring at (2.6.11), Osy,, » is the étale local

ring at the point below it, and the arrow on the right is induced by the map

Spec(W) — Skia of (2.6.8). There is an induced isomorphism of W-schemes
OZKra(m),m ®OSKra’x W = W/(wk(w))a

and the claim follows by summing over . O

Lemma 2.6.7. — As Cartier divisors on Spec(W), we have

Vira(1m) X sy SPEC(W) = > Spec(W/@ @~ 1Ww).
x€L g
{z,x)y=m
Proof. — Each z € Ly = Homp, (Ags, As) with {(z,z) = m induces a mor-
phism of crystals Dy — D, and hence a map

Do(W) = D(W)

respecting the F' and V operators. By Grothendieck-Messing deformation
theory, the integer k(x) is characterized as the largest integer such that the
composition

FOH{R(Ay) == HIR(Ay,) ——= HIR Lie(Ay)

Dy (W) < a P(W)

{ee1,€ea,....€en) "

k()

vanishes modulo w™\*). In other words the composition

AR (Aoe) 25 HIR(A,) L Lie(A,)
vanishes modulo @*®) | but not modulo wwk@)+1,
Using the bases of Lemma 2.6.4, we expand
x(eg) = are; + -+ + apen
with a1,...,a, € O ®z W. The condition that x respects V implies that
ay = --- = ay. Let us call this common value a, so that
q(z(€ep)) =€-qlaey + -+ + ae,) = ae - q(ey)

in Lie(A,). By the previous paragraph, this element is divisible by @*®) but

k(=)+1 and so

not by w
(2.6.12) q(ager) = @) g(eq)

up to scaling by W*.
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On the other hand, the submodule of Lie(As) generated by ¢(e;) is isomor-
phic to (O ®z W)/{e) = W, and € acts on this quotient by a uniformizer in
W. Thus

(2.6.13) €q(e1) = wq(er)

up to scaling by W*.

Combining (2.6.12) and (2.6.13) shows that, up to scaling by W*,

ae = wh®~1e
in the quotient (O ®z W)/{e). By the injectivity of the quotient map (€) —
(O ®z W)/{€), this same equality holds in (¢) € O ®z W. Using this and
(2.6.12), we compute
Px(eg)@x(eo) (61 ATRA en)
= (acer,e1) - qlacer) A qle2) A+ A qlen)
@O y(eer,en) - gler) A glea) Ao+ A glen)

(J})—l . Q(el) A q(62) Ao A q(en)
up to scaling by W*. Here, as in the proof of Lemma 2.6.5, we have used
w(Eel, 61) e Wx.

This calculation shows that the composition

ka

T QT 5 P
H?R(AOS)@)Q - H?R(As)®2 - P|Spec(W)

2k(x) k(x)

, and the remainder of the
proof is the same as that of Lemma 2.6.6: comparing with the definition of

Vkra(m), see especially (2.5.3), shows that
Oyyra(m)s ®0s,,.. W = W/ (w71,

and summing over all x proves the claim. O

vanishes modulo w ~1 but not modulo w?

Combining Lemmas 2.6.6 and 2.6.7 shows that
Spec(W) Xsn (2Zkra(m) — Vira(m)) = Z Spec(W/wW)

x€Ll
{z,x)=m

as Cartier divisors on Spec(W). We know from (2.6.10) that

S W/wW) ift=
Spec(W) xSKraEch{ pec(W/@W) ift=s
if t # s,

and comparison with (2.6.6) shows that

ls(m) =F#{x € Ls:{x,x) =m},
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completing the proof of Theorem 2.6.3. ]

3. Toroidal compactification

In this section we describe canonical toroidal compactifications

SKra > Sltra

o

SPap - S;ap’
and the structure of their formal completions along the boundary. Using this
description, we define Fourier-Jacobi expansions of modular forms.

The existence of toroidal compactifications with reasonable properties is not
a new result. In fact the proof of Theorem 3.7.1, which asserts the existence

of good compactifications of Spy, and Skqa, simply refers to | ]. Of
course [loc. cit.] is itself a very modest addition to the established literature
[ , , , ]. Because of this, the reader is perhaps owed

a few words of explanation as to why §3 is so long.

It is well-known that the boundary charts used to construct toroidal com-
pactifications of PEL-type Shimura varieties are themselves moduli spaces of
1-motives (or, what is nearly the same thing, degeneration data in the sense
of | |). This moduli interpretation is explained in §3.3.

It is a special feature of our particular Shimura variety Sh(G,D) that the
boundary charts have a second, very different, moduli interpretation. This
second moduli interpretation is explained in §3.4. In some sense, the main
result of §3 is not Theorem 3.7.1 at all, but rather Proposition 3.4.4, which
proves the equivalence of the two moduli problems.

The point is that our goal is to eventually study the integrality and ratio-
nality properties of Fourier-Jacobi expansions of Borcherds products on the
integral models of Sh(G, D). A complex analytic description of these Fourier-
Jacobi expansions can be deduced from | |, but it is not a priori clear
how to deduce integrality and rationality properties from these purely complex
analytic formulas.

To do so, we will exploit the fact that the formulas of | | express
the Fourier-Jacobi coefficients in terms of the classical Jacobi theta function.
The Jacobi theta function can be viewed as a section of a line bundle on the
universal elliptic curve fibered over the modular curve, and when interpreted in
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this way it has known integrality and rationality properties (this is explained
in §5.1).

By converting the moduli interpretation of the boundary charts from 1-
motives to an interpretation that makes explicit reference to the universal
elliptic curve and the line bundles that live over it, the integrality and ratio-
nality properties of the Fourier-Jacobi coefficients can be deduced, ultimately,
from those of the classical Jacobi theta function.

3.1. Cusp label representatives. — Recall that Wy and W are k-
hermitian spaces of signatures (1,0) and (n — 1,1), respectively, with n > 2.
Tautologically, the subgroup

G < GU(Wp) x GU(W)

acts on both Wy and W. If J ¢ W is an isotropic k-line, its stabilizer P =
Stabg(J) in G is a parabolic subgroup. This establishes a bijection between
isotropic k-lines in W and proper parabolic subgroups of G. If n > 2 then
such isotropic k-lines always exist.

Definition 3.1.1. — A cusp label representative for (G,D) is a pair ¢ =
(P, g) in which g € G(Af) and P < G is a parabolic subgroup. If P = Stabg(J)
for an isotropic k-line J < W, we call ® a proper cusp label representative. If
P = G we call & an improper cusp label representative.

For each cusp label representative ® = (P, g) there is a distinguished normal
subgroup Qg < P. If P = G we simply take Q¢ = G. If P = Stabg(J) for an
isotropic k-line J < W then, following the recipe of [ , §4.7], we define
Qo as the fiber product

(3.1.1) Qo o Resy, /G
l la»—»(a,Nm(a),a,id)
P —— GU(Wp) x GL(J) x GU(JL/J) x GL(W/JL).

The morphism G — GU(W) restricts to an injection Q¢ — GU(W), as the
action of Qg on J*/J determines its action on Wy.

Let K < G(Ay) be the compact open subgroup (2.1.3). Any cusp label
representative ® = (P, g) determines compact open subgroups

Kg = gf{gf1 N Q@(Af), fﬂp = gf{gf1 N P(Af),

and a finite group

(3.1.2) Ag = (P(Q) n Qa(Af)Ka)/Qa(Q).
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Definition 3.1.2. — Two cusp label representatives ® = (P, g) and &' =
(P',g") are K-equivalent if there exist v € G(Q), h € Qa(Ay), and k € K such
that

(P',g") = (vPy~ ', vhgk).

One may easily verify that this is an equivalence relation. Obviously, there is
a unique K-equivalence class of improper cusp label representatives.

From now through §3.6, we fix a proper cusp label representative ® = (P, g),
with P < G the stabilizer of an isotropic k-line J < W. There is an induced
weight filtration wt;W < W defined by

0 c J c Ji c w

Wt73W < Wt72W < Wt71W < WtoW,

and an induced weight filtration on V' = Homg (W, W) defined by

Homyg (Wy,0) < Homg(Wo,J) < Homy(Wy,J+) < Homg(Wo, W)

Wt,QV < Wt,1V < WtoV < thv,

It is easy to see that wt_;V is an isotropic k-line, whose orthogonal with
respect to (2.1.5) is wtoV. Denote by gr,W = wt,W/wt;_1W the graded
pieces, and similarly for V.

The Op-lattice ga € W determines an Og-lattice

gri(ga) = (ga nwt;W)/(ga n wti W) < gr;W.

The middle graded piece gr_;(ga) is endowed with a positive definite self-dual
hermitian form, inherited from the self-dual hermitian form on ga appearing
in the proof of Proposition 2.1.1. The outer graded pieces

(3.1.3) m = gr_,(ga), n=gry(ga)

are projective rank one Og-modules'®), endowed with a perfect Z-bilinear pair-
ing m ®z n — Z inherited from the perfect symplectic form on ga appearing
in the proof of Proposition 2.2.1.

©In fact m > n as Op-modules, but identifying them can only lead to confusion.
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Remark 3.1.3. — The isometry class of ga as a hermitian lattice is deter-
mined by the isomorphism classes of m and n as Og-modules and the isometry
class of gr_; (ga) as a hermitian lattice. This follows from the proof of [ ,
Proposition 2.6.3], which shows that one can find a splitting(”)
ga = gr_s(ga) ® gr_;(ga) ®gro(ga),
in such a way that the outer summands are totally isotropic, and each is
orthogonal to the middle summand.
Exactly as in (2.1.4), there is a k-conjugate linear isomorphism
Homy, (Wo, gr_, W) 2225 Homy(gr_, W, Wo).
If we define

(3.1.4) Lo = Homo, (gao, gr_1(ga))
AO = HOHlOk (grfl(ga)v ga(])a

then x — xV restricts to an Og-conjugate linear isomorphism Ly =~ Ag. These
are, in a natural way, positive definite self-dual hermitian lattices. For x1,x9 €
Lg the hermitian form on Lg is defined, as in (2.1.5), by

<1‘1,$2> = J}i/ ox9 € Endok (gao) = Ok,
while the hermitian form on Ag is defined by
<$§/ ’ l’i/> = <l’1, I‘2>.

Lemma 3.1.4. — Two proper cusp label representatives ® and ® are K-
equivalent if and only if Ao = A as hermitian Og-modules and n = v’ as
Og-modules. Moreover, the finite group (3.1.2) satisfies

(3.1.5) Ag = U(Ag) x GL@k(n).

Proof. — The first claim is an elementary exercise, left to the reader. For
the second claim we only define the isomorphism (3.1.5), and again leave the
details to the reader. The group P(Q) acts on both Wy and W, preserving their
weight filtrations, and so acts on both the hermitian space Homy (gr_, W, Wy)
and the k-vector space gryW. The subgroup P(Q) n Qs (A f)f(q) preserves the
lattices

AO e Homk(gr,lw, Wo)

and n < groW, inducing (3.1.5). O

(") This uses our standing assumption that k has odd discriminant.
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3.2. Mixed Shimura varieties. — The subgroup Q¢(R) < G(R) acts on
De(W) = {k-stable R-planes y < W(R) : W(R) = J-(R) @y},
and so also acts on
Do = D(Wy) x Do(W).
The hermitian domain of (2.1.2) satisifies D(W) < Dg (W), and hence there

is a canonical Q¢ (R)-equivariant inclusion D < Dg.
The mixed Shimura variety

(3.2.1) Sh(Qe,Ds)(C) = Qa(Q)\De x Qa(Af)/Ke

admits a canonical model Sh(Qg, Dy ) over k by the general results of | ]
By rewriting the double quotient as

Sh(Qs,De)(C) = Qa(Q)\De x Qa(Af)Kae/Ko,

we see that (3.2.1) admits an action of the finite group Ag of (3.1.2), induced
by the action of P(Q) n Qa(Af)Ke on both factors of De x Qo (Af)Ke. This
action descends to an action on the canonical model.

Proposition 3.2.1. — The morphism ve of (3.1.1) induces a surjection

z,h)—vg(h oA
Sh(Qa, D) (C) 212, o o /5

with connected fibers. This map is Ag-equivariant, where Ag acts trivially on
the target. In particular, the number of connected components of (3.2.1) is
equal to the class number of k, and the same is true of its orbifold quotient by
the action of Ag.

Proof. — The space Dy is connected, and the kernel of v : Qo — ResgoGm
is unipotent (so satisfies strong approximation). Therefore

70 (Sh(Qa, D) (C)) = Qa(Q)\Qu(Ay)/ Ko = K™*\k* /va(Ke),
and an easy calculation shows that ve(Ke) = (’3,: O

It will be useful to have other interpretations of Dg.

Remark 3.2.2. — Any point y € Dg(W) determines a mixed Hodge struc-
ture on W whose weight filtration wt;/W < W was defined above, and whose
Hodge filtration is defined exactly as in Remark 2.1.3. As in | , p. 64]
or | , Proposition 1.2] there is an induced bigrading W (C) = @ W ®9),
and this bigrading is induced by a morphism S¢ — GU(W)¢ taking values
in the stabilizer of J(C). The product of this morphism with the morphism
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Sc¢ — GU(W)y)c of Remark 2.1.3 defines a map z : S¢ — Qac, and this realizes
Dy < Hom(Sc, Qac).

Remark 3.2.3. — Imitating the construction of Remark 2.1.2 identifies
Dy =~ {w eeV(C): V(C) =wtyV(C)d Cwd C@}/(CX c P(eV(C))

as an open subset of projective space.

3.3. The first moduli interpretation. — Using the pair (Ag, n) defined in
§3.1, we now construct a smooth integral model of the mixed Shimura variety
(3.2.1). Following the general recipes of the theory of arithmetic toroidal
compactifications, as in | , , , |, this integral model
will be defined as the top layer of a tower of morphisms

C@ i Bq> i Acp i Spec((’)k),

smooth of relative dimensions 1, n — 2, and 0, respectively.
Recall from §2.3 the smooth Op-stack

M1,0) X0, M(n—2,0) = Spec(Ok)

of relative dimension 0 parametrizing certain pairs (Ag, B) of polarized abelian
schemes over S with Og-actions. The étale sheaf Hom, (B, Ag) on S is locally
constant; this is a consequence of | , Theorem 5.1].

Define Ag as the moduli space of triples (Ag, B, p) over Og-schemes S, in
which (Ao, B) is an S-point of My ) X0, M(n—2,), and

0: AO ;@Ok(BaAO)

is an isomorphism of étale sheaves of hermitian Og-modules.

Define Bg as the moduli space of quadruples (A, B, 9, ¢) over Og-schemes
S, in which (Ag, B, 0) is an S-point of A, and ¢ : n — B is an Og-linear
homomorphism of group schemes over S. In other words, if (Ag, B, 0) is the
universal object over Ag, then

By = Hom, (n, B).

Suppose we fix u,v € n. For any scheme U and any morphism U —
Bg, there is a corresponding quadruple (A, B, 0,c¢) over U. Evaluating the
morphism of U-group schemes ¢ : n — B at p and v determines U-points
c(p),c(v) € B(U), and hence determines a morphism of U-schemes

U p o B~BxB.
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Denote by L(u,v)y the pullback of the Poincaré bundle via this morphism.
As U varies, these line bundles are obtained as the pullback of a single line
bundle £(u,v) on Be.
It follows from standard bilinearity properties of the Poincaré bundle that
L(u,v) depends, up to canonical isomorphism, only on the image of 1 ® v in
Symg = Symd(w)/{(ep) @ v — p® (7v) : v € Op, p,v € ).

Thus we may associate to every x € Symg a line bundle £(x) on Bg, and there
are canonical isomorphisms

Lx)® LX) = L(x + X))

Our assumption that D is odd implies that Symg is a free Z-module of rank
one. Moreover, there is positive cone in Symg ®z R uniquely determined by
the condition p® p = 0 for all 1 € n. Thus all of the line bundles L(x) are
powers of the distinguished line bundle

(3.3.1) Lo = L(x0)

determined by the unique positive generator xo € Symg.
At last, define Bg-stacks

C<1> = @(ﬁ@, OBq,)a C&i = Hom(ﬁcp, OB(?).

In other words, Cj is the total space of the line bundle £q_>1, and Cg is the
complement of the zero section By — Cj. In slightly fancier language,

Co = Spec, <<—B£é), Cy = Spec, ((—Bﬁfb),
* N ez "N z0
and the zero section By < Cj is defined by the ideal sheaf @, L5.

Remark 3.3.1. — When n = 2 the situation is a bit degenerate. In this
case

By = Ap = M1,0),

L is the trivial bundle, and Cy — Bg is the trivial G,,-torsor.

Remark 3.3.2. — Using the isomorphism of Lemma 3.1.4, the group Ag
acts on Bg via

(U,t) d (A()?B?Qv C) = <A07B7QOU_17COt_1)7

for (u,t) € U(Ag) x GLo, (n). The line bundle L is invariant under Ag, and
hence the action of Ag lifts to both Co and Cj.
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Proposition 3.3.3. — There is a Ag-equivariant isomorphism
Sh(Q@,'D@) = Cq)/k.

Proof. — This is a special case of the general fact that mixed Shimura varieties
appearing at the boundary of PEL Shimura varieties are themselves moduli
spaces of 1-motives endowed with polarizations, endomorphisms, and level

structure. The core of this is Deligne’s theorem | , §10] that the category
of 1-motives over C is equivalent to the category of integral mixed Hodge
structures of types (—1,—1), (—1,0), (0,—1), (0,0). See [ |, where this is
explained for Siegel modular varieties, and also | ]. A good introduction

to 1-motives is | ]

To make this a bit more explicit in our case, denote by Xp the Op-stack
whose functor of points assigns to an Og-scheme S the groupoid Xg(S) of
principally polarized 1-motives A consisting of diagrams

n

i

0*>111®sz B B 0

in which B € M,_20)(S), B is an extension of B by the rank two torus
m®yz G,, in the category of group schemes with Og-action, and the arrows are
morphisms of fppf sheaves of Og-modules.

To explain what it means to have a principal polarization of such a 1-motive
A, set m¥ = Hom(m,Z) and n¥ = Hom(n,Z), and recall from | , §10]
that A has a dual 1-motive A consisting of a diagram

m\/

|

00— 1" ®z G, Bv BY 0.

A principal polarization is an Og-linear isomorphism B =~ BY compatible with
the given polarization B =~ BY, and with the isomorphisms m =~ n“ and
n =~ m" determined by the perfect pairing m ®z n — Z defined after (3.1.3).

Using the “description plus symétrique” of 1-motives | , (10.2.12)],
the Op-stack Cg defined above can be identified with the moduli space whose
S-points are triples (Ag, 4, 0) in which

— (Ao, A) € M(1)(S) x Xo(5),

— 0: Ay = Homp, (B, Ap) is an isomorphism of étale sheaves of hermitian

Og-modules, where B € M(,,_5)(S5) is the abelian scheme part of A.
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To verify that Sh(Qs, D) has the same functor of points, one uses Re-
mark 3.2.2 to interpret Sh(Qe,Ds)(C) as a moduli space of mixed Hodge
structures on Wy and W, and uses the theorem of Deligne cited above to
interpret these mixed Hodge structures as 1-motives. This defines an isomor-
phism Sh(Qs,Ds)(C) = Co(C). The proof that it descends to the reflex field
is identical to the proof for Siegel mixed Shimura varieties | ]-

We remark in passing that any triple (Ag, A4, o) as above automatically sat-
isfies (2.2.4) for every prime ¢. Indeed, both sides of (2.2.4) are now endowed
with weight filtrations, analogous to the weight filtration on Homg (Wp, W) de-
fined in §3.1. The isomorphism o induces an isomorphism (as hermitian O ¢-
lattices) between the gry pieces on either side. The gr_; and gr; pieces have
no structure other then projective O j-modules of rank 1, so are isomorphic.
These isomorphisms of graded pieces imply the existence of an isomorphism
(2.2.4), exactly as in Remark 3.1.3. O

3.4. The second moduli interpretation. — In order to make explicit
calculations, it will be useful to interpret the moduli spaces

Cq> i B@ - .A@ i Spec((’)k)

in a different way.
Suppose F — S is an elliptic curve over any base scheme, and denote by
Pr the Poincaré bundle on

ExsE=~FExgE".
If U is any S-scheme and a,b € F(U), we obtain an Oy-module Pg(a,b) by
pulling back the Poincare bundle via

Ul By ExExgEY,

The notation is intended to remind the reader of the bilinearity properties of
the Poincaré bundle, as expressed by canonical Opy-module isomorphisms
(3.4.1) Pr(a+b,c) = Pr(a,c) ® Pe(b,c)
Pe(a,b+ c¢) = Pg(a,b) ® Pr(a,c)
Pr(a,b) =~ Pgr(b,a),
along with Pg(e,b) = Oy = Pg(a,e). Here e € E(U) is the zero section.
Let E — My ) be the universal elliptic curve with complex multiplication

by Og. Its Poincaré bundle satisfies, for all a € Oy, the additional relation
Pr(aa,b) = Pg(a,ab).
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Recall the positive definite self-dual hermitian lattice Lo of (3.1.4). Using
Serre’s tensor construction, we define an abelian scheme

(3.4.2) E® Ly = E®o, Lo

over M ). As explained in detail in | ], the principal polarization
on F and the hermitian form on Ly can be combined to define a principal
polarization on E ® Ly, and we denote by Pgrgr, the Poincaré bundle on

(E® LO) X M1,0) (E®L0) = (E® LO) X M1,0) (E® LO)V'

The Poincaré bundle Pggr,, can be expressed in terms of Pg. If U is a scheme,
a morphism

U— (E@L()) XM(LO) (E@ Lo)
is given by a pair of U-valued points
c=> 5 e BEU)®Ly, =) s ®z)eEU)R L,
and the pullback of Prgr, to U is
PE®LO (Ca C/) = ® PE (<$17 x;~>82‘, 8;)
i?j
Define Qggr, to be the line bundle on E ® Lo whose restriction to the

U-valued point ¢ = >, s; ® x; is

(3.4.3) Qrery (¢) = Q Pr({xi, x)si, 55) ® Q) Pr(v{xi, xi)si, si),
i<j i
where Las
Y= ;_ € Ok
It is related to Prgr, by canonical isomorphisms
(3.4.4) ProLo(a,b) = QrgL,(a +b) ® Quer,(a) ™' ® Qrgry (b))~

ProrLe(a,a) = Qpgr,(a)®?.

for all U-valued points a,b e E(U) ® Lo.
Remark 3.4.1. — As in the constructions of | , §1.3.2] or | ,
§6.2], the line bundle Qpgr, determines a morphism £ ® Ly — (E® Lg)".

The relations (3.4.4) amount to saying that this morphism is the principal
polarization constructed in [ ]

Remark 3.4.2. — The line bundle Pggr,,(da,a) is canonically trivial. This
follows by comparing

PeoL(va,a)®* = PrgL,(a,a) ® PoerL, (6a, a)
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with
2 SN
ProLo(7a,0)%* = Prgr,(va, a) ® PegrL,(Va, a) = Prgr,(a, a).

Remark 3.4.3. — In the slightly degenerate case of n = 2, E ® Lg is the
trivial group scheme over My ), and PrgL, is the trivial bundle on M, g).

Proposition 3.4.4. — As above, let E — M ) be the universal object.
There are canonical isomorphisms

Cq> Bcb A@

1s0(QEeLy, OrgL,) — E ® Lo —— M1 9),

and the middle vertical arrow identifies Lo = QpgL, -

Proof. — Define a morphism Agp — My ¢y by sending a triple (Ao, B, 0) to
the CM elliptic curve

(3.4.5) E = Homg, (1, Ap).

To show that this map is an isomorphism we will construct the inverse.
If S is any Og-scheme and £ € M ¢)(S), we may define (Ag, B, o) € Aa(S5)
by setting

AO = E®(’)k n, B = m@k (A07 A0)>

and taking for o : Ay = Homok(B,Ao) the tautological isomorphism. The
principal polarization on B is defined using the O-linear isomorphism

Ao ®o, Lo @z z7)a

Homy, (Ao, Ao)
and the principal polarization on Ay®p, Lo constructed in | ], exactly as
in the discussion following (3.4.2). The construction E — (Ao, B, p) is inverse
to the above morphism Ag — My o).

Now identify Ag =~ M, ) using the above isomorphism, and denote by
(Ao, B, p) and E the universal objects on the source and target. They are
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related by canonical isomorphisms

(3.4.6) By = Hom, (n, B)

le

Homp, (n®0, Ao, Ao)

12

m@k (A0> E)

Combining this with the Og-linear isomorphism

a®x—{ -,V Ya
—

E ® LO Homok (A(), E)

defines By =~ E ® Lg. All that remains is to prove that this isomorphism
identifies Lo with Qpgr,, which amounts to carefully keeping track of the
relations between the three Poincaré bundles Pp, Pg, and Py,.

Any fractional ideal b < k admits a unique positive definite self-dual her-
mitian form, given explicitly by (b1, b2y = b1ba/N(b). It follows that any rank
one projective Og-module admits a unique positive definite self-dual hermitian
form. For the Og-module Homp, (n, O), this hermitian form is

(b, o) = b () la(v) + i (v)la(p),

where p ® v = xo € Symg is the positive generator appearing in (3.3.1).
The relation (3.4.5) implies a relation between the line bundles Pr and Py, .
If U is any Ag-scheme and we are given points

s,8' € E(U) = Homo, (n, Agu)

of the form s = ¢(-)a and s’ = ¢'(-)a’ with ¢,¢' € Homp, (n,Of) and a,d’ €
Ap(U), then

Pr(s,s) = Pa, (<€, a, a')
Pr(vs,s) = Pa, (U(p)a, £(v)a).

Similarly, the isomorphism B =~ Hom, (Ag, Ag) implies a relation between
Pp and Py,. If U is an S-scheme, a morphism U — B x 4, B is given by a
pair of points

b, b/ € B(U) = Homok (A(), A()U)
of the form b = (-, \ya and V/ = (-, N')a’ with \, X' € Ag and a,a’ € Ap(U). The
pullback of Pg to U is the line bundle

Pp(b, V') = Pa,(a,0 N)a').
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Using the isomorphisms (3.4.6), a point ¢ € Bg(U) admits three different
interpretations. In one of them, ¢ has the form

c= Zf )(-» Aiya; € Homp, (n®o, A, Aov).
By setting
bi = (-, \iya; € Homp, (Ao, Aorr) = B(U)
si = 4;i(-)a; € Homp, (n, Agrr) = E(U),
we find the other two interpretations
c= 26 )b; € Homp, (n, Byr)
c= 2<, Aiys; € Homo, (Ao, Evr).

The above relations between Pp, Pg, and P4, imply

Pr(c(p), (V))
~ @PB 10)bi, £;(1)b;)

®PA0 a17<)‘17)\]>£( ) )

~ @PAO (i, £5ai, i, Ajyas) ®®7>A0 () ai, £:(v) N, Aidag)

1<j

= ®PE 517<)‘27>\ >3] ®®PE 7317<)\17)\z>31)

1<j

lle

Now write \; = x; with x; € Lo, and use the relation
Pr(si, (i, Ajsj) = Pe((Nj, Aipsis s5) = Pe(xi, x)8i, 85)

to obtain an isomorphism Pg(c(u), c(v)) = QrgrL,(c). The line bundle on the
left is precisely the pullback of Lg via ¢, and letting ¢ vary we obtain an
isomorphism Lo = QpgrL,- O]

3.5. The line bundle of modular forms. — We now define a line bundle
of weight one modular forms on our mixed Shimura variety, analogous to the
one on the pure Shimura variety defined in §2.4.

The holomorphic line bundle w®* on D defined in §2.4 admits a canonical
extension to

'D(p = D(Wo) X D@(W),

which we denote by w$". Indeed, recalling that D(Wy) = {yo} is a one-point
set, an element z € Dy is represented by a pair (yo,y) in which y is a k-stable
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R-plane in W (R) such that W(R) = J*(R) @ y. The fiber of wd® at z is the
line
Home (Wo(C)/eWo(C), pr(y)) < eV (C),

exactly as in Remark 2.1.2 and (2.4.1).

If we embed Dg into projective space over €V (C) as in Remark 3.2.3, then
wg" is simply the restriction of the tautological bundle. There is an obvious
action of Qa(R) on the total space of w§", lifting the natural action on Deg,
and so wg" determines a holomorphic line bundle on the complex orbifold
Sh(Qa, Da) (C).

As in §2.4, the holomorphic line bundle wg" is algebraic and descends to
the canonical model Sh(Qg¢,Dg). In fact, it admits a canonical extension to
the integral model Cgp, as we now explain.

Recalling the Og-modules m and n of (3.1.3), define rank two vector bundles
on Ag by

M=m®2 04y, N=1®zOO4,.
Each is locally free of rank one over Or®z0 4, , and the perfect pairing between
m and n defined after (3.1.3) induces a perfect bilinear pairing MEN — O 4,

Using the almost idempotents €,€ € O ®z O, of §1.7, there is an induced
isomorphism of line bundles

(M/eM) @ (eN) = O 4,.

Recalling that Ag carries over it a universal triple (Ag, B, ¢), in which Ag
is an elliptic curve with Og-action, we now define a line bundle on Ag by

wg = Hom(Lie(Ap), eN),
or, equivalently,
wy! = Lie(4y) QR0 .4, M/eM.
Denote in the same way its pullback to any step in the tower
Cy — By — Agp.

The above definition of we is a bit unmotivated, and so we explain why
wg is analogous to the line bundle w on Sk;, defined in §2.4. Recall from the
proof of Proposition 3.3.3 that Cs carries over it a universal 1-motive A. This
I-motive has a de Rham realization H{(A), defined as the Lie algebra of the
universal vector extension of A, as in [ , (10.1.7)]. It is a rank 2n-vector
bundle on Cg, locally free of rank n over O ®z Oc,,, and sits in a diagram of
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vector bundles

FYH{R(B) m

0 —— FOH{R(A) — = H{R(A) —— Lie(A) —=0

N Lie(B)

0 0

with exact rows and columns. The polarization on A induces a perfect sym-
plectic form on H fR(A). This induces a perfect pairing

(3.5.1) FOH{R(A) ® Lie(A) — Oc,
as in (2.2.1), which is compatible (in the obvious sense) with the pairings
FOH?(B) ® Lie(B) — Oc,

and MM — O¢, that we already have.

The signature condition on B implies that e F* H{®(B) = 0 and eLie(B) = 0.
Using this, and arguing as in [ , Lemma 2.3.6], it is not difficult to see
that

Fa = ker(e: Lie(A) — Lie(A))

is the unique codimension one local direct summand of Lie(A) satisfying
Kramer’s condition as in §2.3, and that its orthogonal under the pairing (3.5.1)
is Fi = eFYH{R(A). Moreover, the natural maps

M/eM — Lie(A)/Fa, Fi— eN
are isomorphisms. These latter isomorphisms allow us to identify
we = Hom(Lie(Ag), F1), wg' = Lie(Ag) ® Lie(A)/Fa
in perfect analogy with §2.4.

Proposition 3.5.1. — The isomorphism

Ca(C) = Sh(Qe, Ds)(C)
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of Proposition 3.5.3 identifies the analytification of we with the already defined
wg". Moreover, the isomorphism Ag = M o) of Proposition 3.4.4 identifies

we =0 - Lie(E)™! < Lie(E)™

where 0 = 5Oy is the different of Ok, and E — M, o) is the universal elliptic
curve with CM by O.

Proof. — Any point z = (yo,y) € Dg determines, by Remarks 2.1.3 and 3.2.2,
a pure Hodge structure on Wy and a mixed Hodge structure on W, these
induce a mixed Hodge structure on V' = Homy (Wy, W), and the fiber of w§"
at z is

Wy, = F1V/(C) = Home (Wo(C)/eWp(C), eF'W (C)).
On the other hand, we have just seen that
we = Hom(Lie(Ag), F7) = Hom(Lie(Ap), eF* HIE(A)).

With these identifications, the proof of the first claim amounts to carefully
tracing through the construction of the isomorphism of Proposition 3.3.3.

For the second claim, the isomorphism Ay = E ®p, n induces a canonical
isomorphism

Lie(Ap) = Lie(F) ®o, n = Lie(E) ® 9/eN,
where we have used the fact that n ®o, O4, = 9/éMN is the largest quotient

of 9 on which Oy, acts via the structure morphism Op — O4,. Thus

we = Hom(Lie(A), eN)
~ Hom(Lie(E) ® MN/eN, eN)
~ Lie(E) ™! ®0.4, Hom(9/eN, ).
Now recall the ideal sheaf (¢) € O ®z O, of §1.7. There are canonical
isomorphisms of line bundles

004, = (¢) = Hom(N/eMN, eN),

where the first is (1.7.1) and the second is the tautological isomorphism sending
€ to the multiplication-by-e map 91/é)t — 9. These constructions determine
the desired isomorphism

we = Lie(E)_l @04, 004, O
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3.6. Special divisors. — Let )y(D) be the moduli stack over O
parametrizing cyclic D-isogenies of elliptic curves over Og-schemes, and
let £ — & be the universal object. See [ , Chapter 3] for the defini-
tions.

Let (Ao, B, g, ¢) be the universal object over Bg. Recalling the Og-conjugate
linear isomorphism Ly =~ A( defined after (3.1.4), each x € Ly defines a mor-
phism

n 5 B —M AO
of sheaves of Og-modules on Bg. Define Z3(x) < Bg as the largest closed
substack over which this morphism is trivial. We will see in a moment that
this closed substack is defined locally by one equation. For any m > 0 define
a stack over Bg by

(3.6.1) Zo(m) = || Zel).

x€Lg
{z,x)=m

We also view Zg(m) as a divisor on By, and denote in the same way the
pullback of this divisor via C§ — Bs.

Remark 3.6.1. — In the slightly degenerate case n = 2 we have Ly = 0,
and every special divisor Zg(m) is empty.

We will now reformulate the definition of Z3(z) in terms of the moduli
problem of §3.4. Recalling the isomorphisms of Proposition 3.4.4, every x € Lg
determines a commutative diagram

<',Z‘>

Bs —=E® Ly E £
Ap —> M0y == M1,0) — Jo(D),

where M; gy — Yo(D) sends E to the cyclic D-isogeny
E - E®o, 0!,

and the rightmost square is cartesian. The upper and lower horizontal com-
positions are denoted j, and j, giving the diagram

(3.6.2) By —2" ¢

|,

A —2= Yo (D).
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Proposition 3.6.2. — For any nonzero x € Ly, the closed substack Z¢(x)
Bg is equal to the pullback of the zero section along j;. It is an effective Cartier
divisor, flat over Ag. In particular, as Ag is flat over Ok, so is each divisor

Zp(x).
Proof. — Recall the isomorphisms
E =~ Homg, (n, 49), B = Hom, (Ao, Ao)
from the proof of Proposition 3.4.4. If we identify Ag ®p, Lo = B using

a®z—{-,z" Ha
—_—

A ®o,, Lo

we obtain a commutative diagram of Ag-stacks

m@k (AOa AO) = B7

E ®o, Lo — Homg, (n, Ao ®o,, Lo) — Hom, (n, B) = Bp

<-:x>l J{@(mv)

E HO7H1(9,G (n7 A0)7

in which all horizontal arrows are isomorphisms. The first claim follows im-
mediately.
The remaining claims now follow from the cartesian diagram

Zp() M(l,o)

l o I

Bo ——>E® Lo E.

The zero section e : My gy — F is locally defined by a single nonzero equation
[ , Lemma 1.2.2], and so the same is true of its pullback Zg(z) — Bg.
Composition along the bottom row is flat by | , Lemma 6.12], and
hence so is the top horizontal arrow. ]

Remark 3.6.3. — For those who prefer the language of 1-motives: As in
the proof of Proposition 3.3.3, there is a universal triple (Ag, A, ¢) over Cg in
which Ag is an elliptic curve with Og-action and A is a principally polarized 1-
motive with Og-action. The functor of points of Z¢(m) assigns to any scheme
S — Co the set

Zp(m)(S) = {x € Homp, (Ao,s, As) : {x,x) = m},

where the positive definite hermitian form (:,-) is defined as in (2.5.1). Thus
our special divisors are the exact analogues of the special divisors on Sk;a
defined in §2.5.
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The toroidal compactification. — We describe the canonical

toroidal compactification of the integral models Skra — Spap of §2.3.

Theorem 3.7.1. — Let S denote either Skra o1 Spap. There is a canonical

toroidal compactification Sq — SF, flat over Oy, of relative dimension n — 1.
It admits a stratification

St =1 |st(®)
[0))

as a disjoint union of locally closed substacks, indexed by the K -equivalence

classes of cusp label representatives (defined in §3.1).

1.
2.

3.

The Oy-stack Si.., is regular.
The Op-stack S;ap is Cohen-Macaulay and normal, with Cohen-
Macaulay fibers. If n > 2 its fibers are geometrically normal.
The open dense substack So < S is the stratum indexed by the unique
equivalence class of improper cusp label representatives. Its complement

osy= || sh@

d proper

s a smooth divisor, flat over O,.
For each proper ® the stratum SE(®) is closed. All components of
SE(®) ¢ are defined over the Hilbert class field ETY - and they are per-
muted simply transitively by Gal(k™P /k). Moreover, there is a canonical
identification of Oy-stacks

Ao \Bp =——=S(P)
| !
Ag\C§ Sh

such that the two stacks in the bottom row become isomorphic after com-
pletion along their common closed substack in the top row. In other
words, there is a canonical isomorphism of formal stacks

(3.7.1) Ap\(C3)B, = (SS)fq;(q))-

5.

The morphism Skra — Spap extends uniquely to a stratum preserving
morphism of toroidal compactifications. This extension restricts to an
isomorphism

(3.7.2) Skra ™ Exc = Sp, )\ Sing,

compatible with (3.7.1) for any proper ®.
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6. The line bundle w on Skra defined in §2./ admits a unique extension
(denoted the same way) to the toroidal compactification in such a way that
(3.7.1) identifies it with the line bundle we on Cy. A similar statement
holds for Qkra, and these two extensions are related by

w? = gy ® O(Exc).

7. The line bundle Qp,p on Spap defined in §2.4 admits a unique extension
(denoted the same way) to the toroidal compactification, in such a way
that (3.7.1) identifies it with w3.

8. For anym > 0, define Z%,, (m) as the Zariski closure of Zya(m) in S,
The isomorphism (3.7.1) identifies it with the Cartier divisor Zg(m) on
Cy.

9. For any m > 0, define Y, (m) as the Zariski closure of Ypap(m) in
Spap- The isomorphism (3.7.1) identifies it with 2Z¢(m). Moreover, the
pullback of Y5, ,(m) to S, denoted Vi, (m), satisfies

ra’

QZfzra(m) = yfzra(m) + Z #{.%' €Ls: <1',f13> = m} - Excs.

semo(Sing)

Proof. — Briefly, in | , §2] one finds the construction of a canonical
toroidal compactification
O D?*
M—11) = M@y
Using the open and closed immersion

So = M) % Ml(jn—l,l)’

the toroidal compactification S is defined as the Zariski closure of S in

M1,0) % M(Dn’fl - All of the claims follow by examination of the construction
of the compactification, along with Theorem 2.6.3. 0

Remark 3.7.2. — If W is anisotropic, so that (G,D) has no proper cusp
label representatives, the only new information in the theorem is that Spap
and Skya, are already proper over O, so that

SPap = Sl?’ap7 Skra = Sféra'
Corollary 3.7.3. — Assume that n > 2. The Cartier divisor V§,,(m) on
Spap 18 Ok-flat, as is the restriction of Zj, (m) to Sg,, \ Exc.

Proof. — Fix a prime p < Oy, and let IF, be its residue field. To prove the
first claim, it suffices to show that the support of the Cartier divisor y;;ap(m)
contains no irreducible components of the reduction S;ap JFy
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By way of contradiction, suppose & < SF is an irreducible compo-

ap/Fp
nent contained in yﬁ“,ap(m), and let £ < Sf‘iap be the connected component

containing it. Properness of Sp,, over O, implies that the reduction &/,

is connected | , Corollary 8.2.18]. The reduction £y, is normal by
Theorem 3.7.1 and our assumption that n > 2, and hence is irreducible. Thus
gp - (‘:/Fp

Our assumption that n > 2 also guarantees that W contains a nonzero
isotropic vector, from which it follows that the boundary

0C = C " 0Skyy

is nonempty (one can check this in the complex fiber).

Proposition 3.6.2 implies that Z¢(m) is Og-flat for every proper cusp label
representative @, and so it follows from Theorem 3.7.1 that V5, (m) is Og-flat
when restricted to some étale neighborhood U — C of dC. On the other hand,
the closed immersion

U/]Fp = Cp ngap U - yf;ap(m) ngap U

shows that the divisor Vg, ,(m)[y — U contains the special fiber Uy, , so is
not Og-flat. This contradiction completes the proof that Vg, (m) is flat.

As the isomorphism (3.7.2) identifies V5, (m) with 2Z%  (m), it follows
that the restriction of Zj  (m) to the complement of Exc is also flat. O

3.8. Fourier-Jacobi expansions. — We now define Fourier-Jacobi expan-
sions of sections of the line bundle w* of weight k& modular forms on Skira-
Fix a proper cusp label representative ® = (P, g). Suppose 1 is a rational

function on Sj ,, regular on an open neighborhood of the closed stratum

ra’
Sia(®). Using the isomorphism (3.7.1) we obtain a formal function, again
denoted 1, on the formal completion

(C&;)gé = @B@ (H Eé) :

£=0

Tautologically, there is a formal Fourier-Jacobi expansion
(3.8.1) =Y FI(¥) - ¢
£=0

with coefficients FJ,(v) € H?(Bg, £5). In the same way, any rational section v

of w* on Skira» Tegular on an open neighborhood of Sf,, (®), admits a Fourier-

Jacobi expansion (3.8.1), but now with coefficients

FJ,(¢) € H(Bo, wk @ L£5).
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Remark 3.8.1. — Let m: Cj — Bg be the natural map. The formal symbol
g can be understood as follows. As Cj is the total space of the line bundle
E;l, there is a tautological section

qe HO(C,m"L3")

whose divisor is the zero section By < C%. Any FJ, € H(Bg, £5) pulls back
to a section of 77*[,(%, and so defines a function FJ; - ¢¢ on Cs-

3.9. Explicit coordinates. — Once again, let ® = (P, g) be a proper cusp
label representative. The algebraic theory of §3.8 realizes the Fourier-Jacobi
coeflicients of

(3.9.1) b & (S w¥)
as sections of line bundles on the stack
B(D ~ F X Lo.

Here E — My ) is the universal CM elliptic curve, the tensor product is
over O, and we are using the isomorphism of Proposition 3.4.4. Our goal is
to relate this to the classical analytic theory of Fourier-Jacobi expansions by
choosing explicit complex coordinates, so as to identify each coefficient FJ, (1))
with a holomorphic function on a complex vector space satisfying a particular
transformation law.

The point of this discussion is to allow us, eventually, to show that the
Fourier-Jacobi coefficients of Borcherds products, expressed in the classical
way as holomorphic functions satisfying certain transformation laws, have al-
gebraic meaning. More precisely, the following discussion will be used to de-
duce the algebraic statement of Proposition 6.4.1 from the analytic statement
of Proposition 6.3.1.

Consider the commutative diagram

Sh(Qs,Ds)(C) — Co(C) — Bo(C) —— Ae(C)

| -

kX\k* /O M1,0)(C).

a—E(@)

Here the isomorphisms are those of Propositions 3.3.3 and 3.4.4, and the ver-
tical arrow on the left is the surjection of Proposition 3.2.1. The bottom
horizontal arrow is defined as the unique function making the diagram com-
mute. It is a bijection, and is given explicitly by the following recipe: recalling
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the Og-module n of (3.1.3), each a € k> determines a projective Og-module
b = a - Homo, (n, gap)

of rank one, and the elliptic curve E(®) has complex points

(3.9.2) E@(C) = b\(b ®0, C).

For each a € k* there is a cartesian diagram

EFW®L—=FE® L

|

Spec(C) ———= My g).-

Now suppose we have a section @ as in (3.9.1). Using the isomorphisms
Bs =~ E® Ly and wg = 0 - Lie(E) ™! of Propositions 3.4.4 and 3.5.1, we view
its Fourier-Jacobi coeflicients

FJo(¢) € H(Bs, wh ® LY)
as sections
Fly() € H*(E® Lo, 0" - Lie(E) ™" ® Qper, )

which we pull back along the top map in the above diagram to obtain a section

(3.9.3) FI{ () € H* (B @ Lo, Lie(E@)™* ® Q)0 ).

Remark 3.9.1. — Recalling that 0 = §Oy is the different of k, we are using
the inclusion ¥ < k < C to identify

ok - Lie(E@) ™ ~ Lie(E(®)~*,
In particular, this isomorphism is not multiplication by 6.

The explicit coordinates we will use to express (3.9.3) as a holomorphic
function arise from a choice of Witt decomposition of the hermitian space
V' = Homg (Wp, W). The following lemma will allow us to choose this decom-
position in a particularly nice way.

Lemma 8.9.2. — The homomorphism ve of (3.1.1) admits a section

S

Q(b Resk/QGm.

Ve
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This section may be chosen so that 3(@,:) < Ko, and such a choice determines
a decomposition

(3.9.4) L] (Qe(Q) ns(a)Kes(a)™")\De = Sh(Qs, Da)(C),
(JLek:X\l?:X/(/Q\,;<

where the isomorphism is z — (z, s(a)) on the copy of Dy indexed by a.

Proof. — Fix an isomorphism of hermitian Og-modules

gag ® ga = gag @ gr_s(ga) ® gr_,(ga) ® gro(ga)

as in Remark 3.1.3. After tensoring with Q, we let k* act on the right hand side
by a — (a,Nm(a),a,1). This defines a morphism k* — G(Q), which, using
(3.1.1), is easily seen to take values in the subgroup Q¢ (Q). This defines the
desired section s, and the decomposition (3.9.4) is immediate from Proposition
3.2.1. O

Fix a section s as in Lemma 3.9.2. Recall from §3.1 the weight filtration
wt;V < V whose graded pieces
gr_V = Homg(Wp, gr_oW)
groV = Homg(Wy, gr_; W)
gr1V = Homyg (Wo, groyW)
have k-dimensions 1, n — 2, and 1, respectively. Recalling (3.1.1), which
describes the action of Q¢ on the graded pieces of V, the section s determines
a splitting V = V_1 ® Vo @ V1 of the weight filtration by
Voi={veV:Vaek”™, s(a)v =av}
Vo={veV:Vaek™, s(a)v=v}
Vi={veV:Vaek”, s(a)v=a v}
The summands V_; and Vi are isotropic k-lines, and Vj is the orthogonal
complement of V_;+V] with respect to the hermitian form on V. In particular,

the restriction of the hermitian form to Vy < V is positive definite.
Fix an a € k* and define an Og-lattice

L = Homo, (s(a)gag, s(a)ga) < V.
Using the assumption s((’A),:) c Kg, we obtain a decomposition

L=L 1®Li® Ly
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with L; = L n'V;. The images of the lattices L; in the graded pieces gr;V are
given by
L_y =a-Homo, (gao, gr_s(ga))
LO = Homok (ga(]agrfl(ga))
Ly = a~' - Homp, (ga0, gro(ga))-

In particular, Lg is independent of a and agrees with (3.1.4).
Choose a Z-basis e_1,f_1 € L_q, and let e;,f; € 97'L; be the dual basis
with respect to the (perfect) Z-bilinear pairing

[, ]:L1x0 'L —>Z
obtained by restricting (2.1.6). This basis may be chosen so that

L_{=7e_1+7Zf_4 D_lL_l = Ze_1 + D_lzf_l
(3.9.5)
Ly = Zey + DZf; 1L = Zey + Zf;.

As eV1(C) c V1(C) is a line, there is a unique 7 € C satisfying
(3.9.6) rer + f1 € Vi (C).

After possibly replacing both e; and e_; by their negatives, we may assume
that Im(7) > 0.

Proposition 3.9.3. — The Z-lattice b = Z1 + Z is contained in k, and is a
fractional Og-ideal. The elliptic curve

(3.9.7) E@(C) = b\C

is isomorphic to (3.9.2), and there is an Og-linear isomorphism of complex
abelian varieties

(3.9.8) E(C)® Lo = bLo\Vo(R).

Under this isomorphism the inverse of the line bundle (3./.3) has the form
1 ~

(3.9.9) QE(G)(C@LO ~ bLo\(Vo(R) x C),

where the action of yo € bLoy on V(R) x C is

-{yo.yo> . <wowoy . <¥0.Y0)
Yo - (wo,q) = (wo + €Yo, q- € N® ¢ " Tm(n) T 2m(r) ),

Proof. — Consider the Q-linear map

ae_1+Bf_1—ar+8

(3.9.10) Vo, C.
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Its C-linear extension V_;(C) — C kills the vector e_; — 7f_; € eV_1(C), and
hence factors through an isomorphism V_;(C)/eV_;(C) = C. This implies that
(3.9.10) is k-conjugate linear. As this map identifies L_; =~ b, we find that
the Z-lattice b < C is Op-stable. From 1 € b we then deduce that b — k, and
is a fractional Og-ideal. Moreover, we have just shown that

ae_1+Bf_1—at+

(3.9.11) L, b.

is an Og-conjugate linear isomorphism.
Exactly as in (2.1.4), the self-dual hermitian forms on gag and ga induce an
Opg-conjugate-linear isomorphism
Homo, (gao, gr_s(ga)) = Homo, (gro(ga), gao),

and hence determine an Og-conjugate-linear isomorphism

L_y =a-Homp, (900, gr_s(ga))
~ a - Homo, (gry(ga), gap)
=q- HomOk (na gao)-

The composition

(3.9.11)
B —

a - Hom@k (n, gag) ~L 4 b

is an Og-linear isomorphism, which identifies the fractional ideal b with the
projective Og-module used in the definition of (3.9.2). In particular it identifies
the elliptic curves (3.9.2) and (3.9.7), and also identifies

E@(C)® Ly = (6\C) ® Ly = (b ® Lo)\(C ® Ly).

Here, and throughout the remainder of the proof, all tensor products are over
Of. Identifying C® Lo = Vy(R) proves (3.9.8).

It remains to explain the isomorphism (3.9.9). First consider the Poincaré
bundle on the product

E@(C) x E(C) =~ (b x b)\(C x C).

Using classical formulas, the space of this line bundle can be identified with
the quotient

P (c) = (b x b)\(C x C x C),

where the action is given by
(b1,b2) - (21,22,9) = (21 + b1, 22 + b2, q - €7THT(Z1’bQ)HHT(ZQ’bl)MHT(bl’b2)) )

and we have set H,(w, z) = wz/Im(7) for complex numbers w and z.
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Directly from the definition, the line bundle (3.4.3) on
E@(C)® Ly = (b ® L)\(C® L)
is given by
Qp@ @, = (0® Lo)\((C® Lo) x C),

where the action of b® Ly on (C® Lg) x C is given as follows: Choose any set
T1,...,ZTn € Ly of Og-module generators, and extend the Og-hermitian form
on Lo to a C-hermitian form on C® L. If

vo=>.bi®z€b® Lo

and

wo :Zzi®$i€C®L0

then

Yo - (wo,q) = (wo + yo,q - €™ +™)

9

where the factors X and Y are

X = Z ( <JIZ,1’]>ZZ, ) + HT(zj,<xi,xj>bi) + HT(<a:Z~, (Ej>bz‘, bj))

1<j

1 1

Im(7) i#j i<j

and, recalling v = (1 + 6)/2,
Y = Z ( (V@is Tipzi, bi) + Hr(2i, @i, 2i)bi) + Hy (v{(xi, 2i)bi, bi))

= Z(zz®xz,b ®xz>+ E'y(b ® i, b ® ;).

For elements y1,y2 € b ® Lo, we abbreviate

_yy) 2y <7
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Using 2iIm(7) = dN(b), some elementary calculations show that

X + 7Y — o, Yo)

Im(7)
2 2
- 5N7El) Z<b ® x4, b; ®HZJ>+ i 2<’yb ® xiy b @ ;)
i<j
- 21m Z<b ® i, by @ j) — Z<b ® i, b; @ xj)

+27i ; a(vb @z, bj @ xj) + W szb, ® i, by ® x4 ).
All terms in the final line lie in 27iZ, and so

mwo,y0)  ™Yo.¥0> _ 7iY0.y0)
= e Im(1) ¢ 2Im(7) ¢ N(b)

€7TX+TI'Y

The relation (3.9.9) follows immediately. O

Proposition 3.9.3 allows us to express Fourier-Jacobi coefficients explicitly
as functions on V(R) satisfying certain transformation laws. Suppose we start
with a global section

(3.9.12) b€ H(Skpaycrw").

For each a € kX and £ > 0 we have the algebraically defined Fourier-Jacobi
coefficient

(3.9.13) FI (4) € H(E“ ® Lo, Qi)

of (3.9.3), where we have trivialized Lie(E(®) using (3.9.7). The isomorphism
(3.9.9) now identifies (3.9.13) with a function on Vy(R) satisfying the trans-
formation law

ime¥0:90> o<W0, y0>+ 2$¥0,90)

(3914) FJéa) (w)(wo —+ yo) = FJ§G) (Qp)(wo) . N(b) ¢ Im(7) 2Im(7)

for all yg € bLy.

Remark 3.9.4. — If we use the isomorphism pr, : V(R) = eV,(C) of (2.1.7)
to view (3.9.13) as a function of wy € €V (C), the transformation law can be
expressed in terms of the C-bilinear form [-,-] as

Q(yo) [wo,y0] Qo)
FIE () (w0 + prelyo)) = FIE (1) (wp) - ¢/ N (7 T #7120
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for all yp € bLy. This uses the (slightly confusing) commutativity of

Vo(R) —2> €V (C) —= V5(C)

<'vyo>l l[wyo]

k®gR C.

In order to give another interpretation of our explicit coordinates, let Ng <
Qo be the unipotent radical, and let U < Ng be its center. The unipotent
radical may be characterized as the kernel of the morphism vg of (3.1.1), or,
equivalently, as the largest subgroup acting trivially on all graded pieces gr;V.

Proposition 3.9.5. — There is a commutative diagram

z—(wo,q)

(3.9.15) (Us(Q) N s(a)Kgs(a)™)\Ds eVp(C) x C*
(No(Q) N s(a)Kes(a)™)\De bLo\(eVo(C) x C*)

in which the horizontal arrows are holomorphic isomorphisms, and the action
of bLg on

eVo(C) x C* = Vp(R) x C*
1s the same as in Proposition 3.9.5.
Proof. — Recall from Remark 3.2.3 the isomorphism
Do = {we eV (C): eV(C) = eV_1(C) ®eVy(C) @ Cw}/C*.

As €V(C) is totally isotropic with respect to [-,-], a simple calculation shows
that every line w € Dg has a unique representative of the form

—&(e—1 —7f1) +wo + (1e; + 1) € eV_1(C) @ eVp(C) @ V1 (C)
with € € C and wyg € €V((C) = Vp(R). These coordinates define an isomorphism
of complex manifolds
(3.9.16) Dy 28, () x C.

The action of G on V restricts to a faithful action of Ng, allowing us to
express elements of Ng(Q) as matrices

1 ¢* u+detos
n(¢a ¢*7U) = 1 ¢ € N@(Q)
1
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for maps
¢ € Homy,(V1, Vo), ¢* € Homg(Vo,V-1), u e Homg(Vi,V_1)

satisfying the relations

= {¢(1),90) + {21, 0" (Y0))
= (u(z1),y1) + {1, uly1))

for z;,y; € V;. The subgroup Ug(Q) 1s defined by ¢ = 0 = ¢*.
The group Us(Q) n s(a)Kes(a)™! is cyclic, and generated by the element
n(0,0,u) defined by
<£L‘1, a>
R o S LV
u(@) [L_1: Ogal ¢

for any a € L_1. In terms of the bilinear form, this can be rewritten as
u(ml) = *[xl,ffl]efl + [l’l,efl]ffl.
In the coordinates of (3.9.16), the action of n(0,0,u) on Dg becomes

(’U)O,é.) = (wﬁvé‘ + ]-)7
and setting ¢ = €™ defines the top horizontal isomorphism in (3.9.15).

Let V_; = V_; with its conjugate action of k. There are group isomor-
phisms
(3.9.17) N3(Q)/Us(Q) = V_1 @ Vo = Vp.
The first sends
’I’L((}S, ¢*7 U) = Y1 ® Yo,
where y_; and yo are defined by the relation ¢(z1) = {z1,y-1) - Yo, and the
second sends

(ve_q1 + Bf_1) ® yo — (a7 + B)yo
Compare with (3.9.11).
A slightly tedious calculation shows that (3.9.17) identifies
(Na(Q) N s(a)Kas(a) )/ (Us(Q) N s(a)Kes(a) ™) = bLo,

defining the bottom horizontal arrow in (3.9.15), and that the resulting action
of bLy on €Vp(C) x C* agrees with the one defined in Proposition 3.9.3. We
leave this to the reader. O

Any section (3.9.12) may now be pulled back via

(Ns(Q) n s(a) Kos(a) " N\D =219, g1 D) ()
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to define a holomorphic section of (w®)¥, the k™ power of the tautological

bundle on

D= {weeV(C): [w,w] <0}/C*.
The tautological bundle admits a natural Ng(R)-equivariant trivialization:
any line w € D must satisfy [w,f_1] # 0, yielding an isomorphism

[',f_l] P x> Op.

This trivialization allows us to identify v with a holomorphic function on
D < Dy, which then has an analytic Fourier-Jacobi expansion

(3.9.18) ¥ = DRI (@) (wo) - ¢f
4

defined using the coordinates of Proposition 3.9.5. The fact that the coeffi-
cients here agree with (3.9.13) is a special case of the main results of | I,
which compare algebraic and analytic Fourier-Jacobi coefficients on general
PEL-type Shimura varieties.

4. Classical modular forms

Throughout §4 we let D be any odd squarefree positive integer, and abbre-
viate I' = T'y(D). Let k be any positive integer.

4.1. Weakly holomorphic forms. — The positive divisors of D are in
bijection with the cusps of the complex modular curve Xo(D)(C), by sending
r| D to

50, = % e I\PY(Q).

Note that 7 = 1 corresponds to the usual cusp at infinity, and so we sometimes
abbreviate oo = 007.
Fix a positive divisor r | D, set s = D/r and choose

Ry = (a ﬁ) € To(s)

sy 1rd
with «, 3,7,0 € Z. The corresponding Aktin-Lehner operator is defined by

the matrix
ra f T
w5y ) =5 ("),

The matrix W, normalizes I', and so acts on the cusps of Xo(D)(C). This
action satisfies W, - o0 = o0,
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Let x be a quadratic Dirichlet character modulo D, and let
X = Xr* Xs

be the unique factorization as a product of quadratic Dirichlet characters x,
and s modulo r and s, respectively. Write

My(D, x) = My(D, x)

for the spaces of holomorphic modular forms and weakly holomorphic modular
forms of weight k, level T, and character y. We assume that y(—1) = (—1)F,
since otherwise M} (D, x) = 0.

Denote by GL3 (R) = GLy(R) the subgroup of elements with positive de-
terminant. It acts on functions on the upper half plane by the usual weight &
slash operator

(7 he)) = dett) 2 er + b, 2= (&) e LI

and f — f | W, defines an endomorphism of M. ,L(D, X) satisfying

[k Wr2 = Xr(=1)xs(r) - f.

In particular, W, is an involution when yx is trivial.
Any weakly holomorphic modular form

f(r)= > c(m)-q™e Mj(D,x)

determines another weakly holomorphic modular form

Xr(ﬁ)Xs(Oé> ’ (f ‘k WT) € Ml!c(Dvx%

which is easily seen to be independent of the choice of parameters «, 3,7, d
in the definition of W,. This second modular form has a g-expansion at oo,
denoted

(4.1.1) Xr(B)xs(@) - (f [k W) = Y, en(m)-q™

m>»>—0o0

Definition 4.1.1. — We call (4.1.1) the g-expansion of f at co,. Of special
interest is ¢,(0), the constant term of f at oo,.

Remark 4.1.2. — If x is nontrivial, the coefficients of (4.1.1) need not lie
in the subfield of C generated by the Fourier coefficients of f.
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4.2. Eisenstein series and the modularity criterion. — Fix an integer
k = 2. Denote by
|
My% (D, x) & My_(D,X)
the subspace of weakly holomorphic forms that are holomorphic outside the
cusp oo, and by
M (D, x) = Mk(D,x)
the subspace of holomorphic modular forms that vanish at all cusps different
from oo.
If £ > 2 there is a decomposition

where E is the Eisenstein series
E= > x(d)-(1]x7) e M(D,x).

el \I'

Here I'y, < T is the stabilizer of oo € P1(Q), and v = (¢}) €T
We also define the (normalized) Eisenstein series for the cusp oo, by
Ey = x:(=B)xs(ar) - (E [y W;) € Mg(D, x).
It is independent of the choice of the parameters in W,., and we denote by
E.(r) = ) ex(m)-q"
m=0

its g-expansion at oo.
Remark 4.2.1. — Our notation for the g-expansion of E,. is slightly at odds
with (4.1.1), as the g-expansion of F at o0, is not > e,(m)g™. Instead, the

g-expansion of E at 0o, is x»(—1)xs(r) >, e,(m)g™, while the g-expansion of
E, at 0, is > e1(m)q™. In any case, what matters most is that

1 ifs=r
constant term of F, at oog = )
0 otherwise.

The constant terms of weakly holomorphic modular forms in Mé’fok(D, X)
can be computed using the above Eisenstein series.

Proposition 4.2.2. — Assume k > 2. Suppose r | D and

fr)= > c(m) g™ e My, (D,x).

m>»>—00
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The constant term of f at the cusp ., in the sense of Definition 4.1.1, sat-
isfies
cr(0) + Z c(—m)er(m) = 0.
m>0
Proof. — The meromorphic differential form f(7)E,(7)dr on Xy(D)(C) is
holomorphic away from the cusps oo and co,. Summing its residues at these
cusps gives the desired equality. O

Theorem 4.2.3 (Modularity criterion). — Suppose k > 2. For a formal
power series
(4.2.1) > d(m)q™ e C[q]],
m=0
the following are equivalent.

L. The relation ), -, c(—m)d(m) = 0 holds for every weakly holomorphic
form
Z c(m)-q"e Mz!’iok(D,X).
m>»—a0
2. The formal power series (4.2.1) is the q-expansion of a modular form in
MZF(D,x).

Proof. — As we assume k > 2, that the map sending a weakly holomorphic
modular form f to its principal part at oo identifies

My*(D, x) < Clg'].

On the other hand, the map sending a holomorphic modular form to its ¢-
expansion identifies

M (D, x) = C[[q]]-
A slight variant of the modularity criterion of | , Theorem 3.1] shows
that each subspace is the exact annihilator of the other under the bilinear
pairing C[¢~!]®C[[¢q]] — C sending P®g to the constant term of P-g. The
claim follows. O

5. Unitary Borcherds products

The goal of §5 is to state Theorems 5.3.1, 5.3.3, and 5.3.4, which assert the
existence of Borcherds products on Sf,, and Sf—f‘,ap
and prescribed leading Fourier-Jacobi coefficients. These theorems are the
technical core of this work, and their proofs will occupy all of §6.

We assume n > 3 throughout §5.

having prescribed divisors
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5.1. Jacobi forms. — In this section we recall some of the rudiments of the
arithmetic theory of Jacobi forms. A more systematic treatment can be found
in the work of Kramer | , ]

Let ) be the moduli stack over Z classifying elliptic curves, and let 7 : £ —
Y be the universal elliptic curve. Abbreviate I' = SLy(Z), and let $) be the
complex upper half-plane. The groups I' and Z? each act on $ x C by

a b ar +b z «@
(c d>.(7’2):<cr+d’cr+d)’ [5}'(7,2):(772‘“17‘1'5)7

and this defines an action of the semi-direct product I'* = I" x Z2. We identify
the commutative diagrams (of complex orbifolds)

(5.1.1) I'\($ x C) Lie(£(C))
N
[\(% x C) —=T'\% £(C) Y(C)

by sending (7, z) € $ x C to the vector z in the Lie algebra of C/(Z7 + Z).

Define a line bundle O(e) on £ as the inverse ideal sheaf of the zero section e :
Y — £. The Lie algebra Lie(€) is (by definition) e*O(e), and wy = Lie(&)™*
is the usual line bundle of weight one modular forms on Y (see Remark 5.1.3
below). In particular, the line bundle

Q=0(e) @ wy
on & is canonically trivialized along the zero section. By the constructions of
[ ,§1.3.2] and | , §6.2], this line bundle induces a homomorphism
(5.1.2) E—-EY,

which is none other than the unique principal polarization of £ (one can verify
this fiber-by-fiber over geometric points of ), reducing the claim to standard
properties of elliptic curves over fields). Denote by P the pullback of the
Poincaré bundle via
ExyE=ExyEY.

For a scheme U and points a,b € £(U), denote by Q(a) the pullback of Q
viaa: U — &, and by P(a,b) the pullback of P via (a,b) : U — &€ xy E. There
are canonical isomorphisms

P(a,b) = Qla+b) ® Qa) ' ® Q(b)~*

and

P(a,a) = Q(a) ® Q(a).
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Given the way that (5.1.2) is constructed from Q, the first isomorphism is
essentially a tautology. The second is a consequence of the isomorphisms

Q(2a) = Q(a)*° ® Q(~a) = Q(a)®",

which follow from the theorem of the cube | , Theorem 1.1.3] and the
invariance of Q@ under pullback by [—1]: & — &, respectively.

Definition 5.1.1. — The diagonal restriction
Jo1 = (diag)*P = Q*
is the line bundle of Jacobi forms of weight 0 and index 1 on £. More generally,
Tiean = Tt @ m*wh)
is the line bundle of Jacobi forms of weight k and index m on &.
The isomorphism of the following proposition is presumably well-known.

We include the proof in order to make explicit the normalization of the iso-
morphism (see Remark 5.1.3 below, for example).

Proposition 5.1.2. — Let p : § x C — E(C) be the quotient map. The
holomorphic line bundle Tiim on E(C) is isomorphic to the holomorphic line
bundle whose sections over an open set % < E(C) are holomorphic functions
F(7,2) on p~Y (%) satisfying the transformation laws

at +0b z b 9mimes?
Fl— _~ \_-F . . p2mimez? /(eT+d)
(c¢+d’c¢+d> (r2) (e +d)" - e
and
(513) F(’T, z+ ar + B) — F(T, Z) . G_QWim(O‘QT-’_QOCZ).

Proof. — Let Ji, be the holomorphic line bundle on £(C) defined by the
above transformation laws.

By identifying the diagrams (5.1.1), a function f, defined on a I'-invariant
open subset of $ and satisfying the transformation law

/ (“”") ~ F(r)-(er+a) !

ct+d

of a weight —1 modular form, defines a section 7 — (7, f(7)) of the line bundle

I\($H x C) = Lie(£(C)) = (wﬁl,")_l

on I'\$). This determines an isomorphism Jip = jffg. It now suffices to

construct an isomorphism Jo; = Ji'7, and then take tensor products.
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Fix 7 € 9, set E; = C/(Zr + Z), and restrict both J§'7 and Jo1 to line

bundles on E; < £(C). The imaginary part of the hermitian form
HT(Zl, 2’2) = %

on C restricts to a Riemann form on Z7 + Z. Using classical formulas for
the Poincaré bundle on complex abelian varieties, as found in the proof of
[ , Theorem 2.5.1], the restriction of Jo'1 to the fiber Er is isomorphic
to the holomorphic line bundle determined by the Appell-Humbert data 2H;
and the trivial character Zr + Z — C*. The sections of this holomorphic
line bundle are, by definition, holomorphic functions g, on C satisfying the
transformation law

gr(z +0) = gr(z) - 2 Hr(ZO+mH(00)

for all £ € ZT + Z. If we set
F(Ta Z) = gT(Z) ' e_ﬂHT(ZVE%

this transformation law becomes (5.1.3).

The above shows that j&’f and Jy 1 are isomorphic when restricted to the
fiber over any point of )(C), but such an isomorphism is only determined up
to scaling by C*. To pin down the scalars, and to get an isomorphism over
the total space, use the fact that both J§f and Jo1 come (by construction)
with canonical trivializations along the zero section. By the Seesaw Theorem
[ , Appendix AJ, there is a unique isomorphism Jg'7 = Jo1 compatible
with these trivializations. ]

Remark 5.1.3. — The proof of Proposition 5.1.2 identifies a classical modu-
lar form f(7) = > ¢(m)q™ of weight k and level I with a holomorphic section
of (wg,”)k, again denoted f, satisfying an additional growth condition at the
cusp. Under our identification, the g-expansion principle takes the following
form: if R < C is any subring, then f is the analytification of a global section
fe Ho(y/R,wgf]/R) if and only if c¢(m) € (27i)* R for all m.

For 7 € $ and z € C, we denote by
191(7_, Z) _ Z em‘(n+%)2fr+2m‘<n+%)(z—%)

neZ

the classical Jacobi theta function, and by

o0
77(7—) _ eﬂi7/12 1_[(1 o eeriT)
n=1
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Dedekind’s eta function. Set

o(r,2) 1977(“) — 22— v T = ¢ - ¢e?)

where ¢ = €™ and ¢ = >™%,

n=1

Proposition 5.1.4. — The Jacobi form ©2* defines a global section
0% ¢ HO(E, Jo,12)
with divisor 24e, while (2win?)'2 determines a nowhere vanishing section
(2min®)1% e Ho(y,wif).

Proof. — It is a classical fact that (27in?)'? is a nowhere vanishing modular
form of weight 12. Noting Remark 5.1.3, the g-expansion principle shows that
it descends to a section on Vg, and thus may be viewed as a rational section
on Y. Another application of the g-expansion principle shows that its divisor
has no vertical components. Thus its divisor is trivial.

Classical formulas show that ©2* defines a holomorphic section of Jo'12 with
divisor 24e, and so the problem is to show that ©%* is defined over Q, and
extends to a section on the integral model with the stated divisor. One could
presumably deduce this from the g-expansion principle for Jacobi forms as in
[ , ]. We instead borrow an argument from | , §1.2], which
requires only the more elementary g-expansion principle for functions on £.

Let d be any positive integer. The bilinear relations (3.4.1) imply that the

line bundle jocﬁ ® [d]*jofll on & is canonically trivial, and so
034 _ @24d® ® [d]*®_24

defines a meromorphic function on £(C). The crucial point is that 2% is
actually a rational function defined over Q, and extends to a rational function
on the integral model £ with divisor

(5.1.4) div(63") = 24(d*€[1] — €[d]).

Asin | , p.- 387], this follows by computing the divisor first in the complex
fiber, then using the explicit formula

; 1-qQ" 7 0 -g¢ )™\
924(7_, 2) = q2(d 71)C712d(d71)
and the g-expansion principle on £ to see that the divisor has no vertical
components.
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The line bundle wjlf is trivial, and hence there are isomorphisms
Jop2 = Q* = O(e)* @ m*wy? = O(e)*.

Thus there is some 024 € HO(E,JOJQ) with divisor 24e, and the rational
function
534 — §2Ad® ® [d]*(:)_24
on & also has divisor (5.1.4).
Consider the meromorphic function p = ©2*/6%* on £(C). By comput-
ing the divisor in the complex fiber, we see that p is a nowhere vanishing
holomorphic function, and hence is constant. But this implies that

) _
pt T =03 /03.

By what was said above, the right hand side is (the analytification of) a
nowhere vanishing function on £. This implies that de’1 = +1, and the only
way this can hold for all d > 1 is if p = +1. O

Now consider the tower of stacks
Vi(D) - Wo(D) - Y

over Spec(Z) parametrizing elliptic curves with Drinfeld I'; (D)-level structure,
[y (D)-level structure, and no level structure, respectively. See | , Chap-
ter 3] or | | for the definitions. We denote by £ the universal elliptic curve
over any one of these bases, and view the line bundle of Jacobi forms 7y 12 as
a line bundle on any one of the three universal elliptic curves. Similarly, we
view the Jacobi forms ©%* and (2min?)'? of Proposition 5.1.4 as being defined
over any one of these bases.
The following lemma will be needed in §5.3.

Lemma 5.1.5. — Let Q : Y1(D) — &£ be the universal D-torsion point. For
any v | D the line bundle

(5.1.5) &R (bQ)* To,2

beZ/DZ
b#0
rb=0

on Y1(D) is canonically trivial, and its section
B @ moe”
beZ/DZ.
b#0
rb=0
admits a canonical descent, denoted the same way, to a section of the trivial
bundle on Yy(D).
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Proof. — If x1,...,x, are integers representing the r-torsion subgroup of
Z/DZ, then 6,22 = 0 (mod D). The bilinear relations (3.4.1) therefore

provide a canonical isomorphism

Q) POQ,HQ)®? = K P(Q,120°Q) = P(Q,¢) = Oy, (p)

beZ/DZ beZ/DZ
b#0 b#0
rb=0 rb=0

of line bundles on Y; (D). This is the desired trivialization of (5.1.5). The
section F2* is obviously invariant under the action of the diamond operators
on Vi (D), and so descends to V(D). O

5.2. Borcherds’ quadratic identity. — For the remainder of §5 we denote
by Xk : (Z/DZ)* — {£1} the Dirichlet character determined by the extension
k/Q, abbreviate

-2
(5.2.1) X =Xp *
and fix a weakly holomorphic form
|
(5.2.2) Fr = Y elm)g™ e MY (D,y)
m>»>—0o0

with ¢(m) € Z for all m < 0.

For a proper cusp label representative ® as in Definition 3.1.1, recall the
self-dual hermitian Og-lattice Ly of signature (n — 2,0) defined by (3.1.4).
The hermitian form on Ly determines a quadratic form Q(x) = {(x,z), with
associated Z-bilinear form [z, z2] = Try {71, z2) of signature (2n — 4,0).

The modularity criterion of Theorem 4.2.3 implies the following identity of
quadratic forms on Ly ® R.

Proposition 5.2.1 (Borcherds’ quadratic identity)
For allue Lo QR,

S e(-Q@) - fuaf? = 2 S () - 2]

xGLO (EELO

Proof. — The homogeneous polynomial

[u7 u] ) [va]
P(u,v) = [u,v]? — om—4

on Ly ® R is harmonic in both variables v and v. For any fixed u € Lo ® R
there is a corresponding theta series

O(r,u, P) = Z P(u,z) - ¢9® e S,(D, x).

x€Lg
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The modularity criterion of Theorem 4.2.3 therefore shows that

7;0 c(—=m) IEZLJO ([u, z]? - [u’;T]L _[Z’ m]> =0

Q(z)=m
for all w e Ly ® R. This implies the assertion. O

Recall from (3.6.2) that every x € Ly determines a diagram

(5.2.3) By —2 > ¢
A
A —= Wo(D),

where, changing notation slightly from §5.1, V(D) is now the open modular
curve over Og. Recall also that Bg carries a distinguished line bundle Lg
defined by (3.3.1), used to define the Fourier-Jacobi expansions of (3.8.1). We
will use Borcherds’ quadratic identity to relate the line bundle L4 to the line
bundle Jo 1 of Jacobi forms on £.

Proposition 5.2.2. — The rational number
m - c(—m
(5.2.4) multe(f) = 2 m-e(=m). #{reLy: Q(x) =m}
m>0 n—2

lies in Z, and there is a canonical isomorphism

2multq> ® ® j; C( m)

m>0 zxzelg

Q(z)=m
of line bundles on Bg.
Proof. — Proposition 5.2.1 implies the equality of hermitian forms
<u v>
>, d(—Q()) - (u,x) - a, v=5 Z ) - [2,2]
z€Llg xELo

= <U, U> ’ mlﬂt@(f)
for all u,v € Ly. As Ly is self-dual, we may choose u and v so that {u,v) =1,
and the integrality of multg(f) follows from the integrality of ¢(—m).
Set E = & xy,(p) Ae, and use Proposition 3.4.4 to identify Be =~ £ ® Lo.
The pullback of the line bundle

xR X j;’,fJ s Q) ER ®c( Q)

m>0 xzelg zeLg

Q(z)=m
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via any T-valued point a = > t; ® y; € E(T) ® Ly is, in the notation of §3.4,

®c(—Q(z))
& Pe ( > i oty Y Ly $>75j>
xeLg 1 j
= ) Q) Pe(c(=Q)) - (yi, ) - (x, y5) - iy 1)
ij weLo
=~ Q) Pe({iys) - ti, tj)®mmtq)(f)
,J
~ Pper,(a,a)®mute()

~ QE'@LO (a)®2-multq> (f) )

This, along with the isomorphism Qggr, = L¢ of Proposition 3.4.4, proves
that
£imUIt¢(f) ~ Q%gzloté(f) ~ ® ® j;}kjoi(fm)-

m>0 xzeLg

Q(z)=m
O
5.3. The unitary Borcherds product. — We now state our main results
on Borcherds products.
For a prime p dividing D define
(5.3.1) Yp =€, - (D,p), - invy(V,) € {£1, i},

where inv,(V}) is the invariant of V},, = Homg(Wy, W) ®qg Q, in the sense of
(1.7.3), and
1 ifp=1 (mod4)
@ {2 ifp=3 (mod 4).
It is equal to the local Weil index of the Weil representation of SLy(Z,) on

St, < S(Vp), where V,, is viewed as a quadratic space as in (2.1.6). This is
explained in more detail in §8.1. For any r dividing D we define

(5.3.2) =TT
plr

Let ¢.(0) denote the constant term of f at the cusp oo,, as in Definition
4.1.1, and define
k= Z Yr - ¢ (0).
r|D
We will see later in Corollary 6.1.4 that all 7, - ¢,(0) € Q.
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For every m > 0 define a divisor
(533) BKra(m) = o Z #{l‘ €Lg: <x7 $> = m} : Sféra(q))
n—2 m

with rational coefficients on Sf,,. Here the sum is over all K-equivalence
classes of proper cusp label representatives ® in the sense of §3.2, Lg is the
hermitian Og-module of signature (n — 2,0) defined by (3.1.4), and Sf,,(®)
is the boundary divisor of Theorem 3.7.1. It follows immediately from the
definition (5.2.4) that

Z c(—m) - Bgra(m Z multe (f) - Sipa(P).
m>0

For m > 0 define the total special divisor
ZIt(OI:Ca( ) Zfzra(m> + BKra(m)7

where Z% . (m) is the special divisor defined on the open Shimura variety in
§2.5, and extended to the toroidal compactification in Theorem 3.7.1.

The following theorems assert the existence of Borcherds products on Sy
and Sf’;ap having prescribed divisors and prescribed leading Fourier-Jacobi co-
efficients. Their proofs will occupy all of §6.

Theorem 5.3.1. — After possibly replacing the form f of (5.2.2) by a posi-
tive integer multiple, there is a rational section W (f) of the line bundle w* on
Skpa With the following properties.

1. In the generic fiber, the divisor of ¥ (f) is
div(e () e = D, e(=m) - Zih(m) .
m>0

2. For every proper cusp label representative ®, the Fourier-Jacobi expan-
sion of (f), in the sense of (3.8.1), along the boundary divisor

A‘P\B‘b = SI*(ra(q))

has the form
P(f) = g™ N ey - o

=0

(f)+¢

. . . 1t
where Yy is a rational section of wg & Cgu ® over Bg.

3. For any ® as above, the leading coefficient by admits a factorization
,(po — Pg ®P£or ® Pqi;&?"t’

where the three terms on the right are defined as follows.
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(a) Proposition 3.5.1 provides us with an isomorphism
071w<1> = j*(.c)y

of line bundles on Ag, where j : Ag — Yo(D) is the morphism of
(5.2.3), and wy = Lie(£)~! is the pullback via Yo(D) — Y of the
line bundle of weight one modular forms. Pulling back the modular
form (2win®)'2 of Proposition 5.1.4 defines a nowhere vanishing
section

7*2rin®)* € HO(Ap,07Fwhk).
Using the canonical inclusion we < 0 'we, define
P = " (2rin?)",
but viewed as a rational section of wé, over Ag. Denote in the

same way its pullback to By .

(b) Recalling the function
- ® 006
beZ/DZ
b#0
rb=0

on Yo(D) of Lemma 5.1.5, define a rational function

Pgert _ ®J-*FT%0T(O)

r|D
r>1

on Ag, and again pull back to Bg.
(¢) Using Proposition 5.2.2, define a rational section

Pgor _ ® ® ]; ec(fm)

m>0 x€Lg
{z,xy=m

of the line bundle Egumb(f) on Bg.
These properties determine P (f) uniquely.

Remark 5.3.2. — In replacing f by a positive integer multiple, we are tacitly
assuming that the constants v,.¢,(0) and ¢(—m) are integer multiples of 24 for
all » | D and all m > 0. This is necessary in order to guarantee k € 12Z, and
to make sense of the three factors (2min2)*, Phr, and Pyt

In fact, we can strengthen Theorem 5.3.1 by computing precisely the divisor
of 1(f) on the integral model Sf_, .
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Theorem 5.3.3. — The rational section ¥(f) of w* has divisor
div((f)) = ), c(=m) - 2k (m)

m>0
E
+k- (;‘C —~ div(é)) + 76 (0) Y Sk,
r|D p|r
- Z c(—2m) Z #{x e Ls : {x,x) = m} - Excg,
m>0 semo (Sing)

where p < Ok is the unique prime above p, Lg is the self-dual Hermitian
Oy -lattice defined in §2.6, and Excs < Exc is the fiber over the component
s € mo(Sing). Recall that § = +/—D € k.

It is possible to give a statement analogous to Theorem 5.3.3 for the integral

model S5

Pap- L0 do this we first define, exactly as in (5.3.3), a Cartier divisor

Bap (1) = Viap(m) + 2Bpap(m)

with rational coefficients on Sg, . Here yf;‘iap(m) is the Cartier divisor of
Theorem §3.7.1, and

Bpap(m) = % M #{we Lo (2,2) = m} - Spap(®).
[}

It is clear from Theorem 3.7.1 that
(5.3.4) 2. 2L (m) = Y&t (m) + 2 #{r e Ly : {x,x) = m} - Excs,

semo(Sing)
where Vi (m) denotes the pullback of Vi (m) via S, — Sp,,-

The isomorphism
w2 = QKra X O(EXC)

of Theorem 3.7.1 identifies w?* ~ Qfﬁa in the generic fiber of Sf; .,
to view 9 (f)? as a rational section of 2% . As S — Spap 18 an isomorphism

allowing us

in the generic fiber, this section descends to a rational section of the line bundle

k
Qpap on Sl’:",ap.
Theorem 5.3.4. — When wviewed as a rational section of Q’f)ap, the

Borcherds product 1 (f)? has divisor
div(e(f)?) = Y. e(=m) - Vi (m)

m>0

— 2k - div(d) + 2 Z Yrcr(0) ZS;ap/Fp'

r|D plr
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These three theorems will be proved simultaneously in §6. Briefly, we will
map our unitary Shimura variety Sh(G,D) to an orthogonal Shimura variety,
where a meromorphic Borcherds product is already known to exist. If we pull
back this Borcherds product to Sh(G, D)(C), the leading coefficient in its an-
alytic Fourier-Jacobi expansion is known from | |, up to multiplication
by some unknown constants of absolute value 1.

By converting this analytic Fourier-Jacobi expansion into algebraic lan-
guage, we will deduce the existence of a Borcherds product ¥ (f) satisfying
all of the properties stated in Theorem 5.3.1, up to some unknown constants
in the leading Fourier-Jacobi coefficient. These unknown constants are the
ke’s appearing in Proposition 6.4.1. We then rescale the Borcherds product
to make many k¢ = 1 simultaneously.

After such a rescaling, the divisor of ¥(f)? on Spap can be computed from
the Fourier-Jacobi expansions, and agrees with the divisor written in Theo-
rem 5.3.4. Pulling back that divisor calculation via Sk, — Sp,,, and using
Theorem 2.6.3, yields the divisor of Theorem 5.3.3.

Using the above divisor calculations, we prove that all kg are roots of unity.
Thus, after replacing f by a multiple, which replaces 1(f) by a power, we can
force all kg = 1, completing the proofs.

5.4. A divisor calculation at the boundary. — Let ® be a proper cusp
label representative for (G,D). The following proposition is a key ingredient
in the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

Proposition 5.4.1. — The rational sections Pg, P(g‘”", and P&;e” of the line
bundles wf%, ﬁgmltq)(f), and Op,,, respectively, have divisors
div(P]) = —k - div(9)
div(Pg) = ). e(—m)Zg(m)
m>0
div(Pyr) = 396 (0) Y Bas,.
r|D plr

In particular, the divisor of P£OT is purely horizontal (Proposition 3.6.2), while
the divisors of Py and PR are purely vertical.

Proof. — By Proposition 5.1.4 the section

7*@2rin®)* € H(Ag, 0 Fwh) = HO(Vo(D), wh)
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has trivial divisor. When we use the inclusion wg < 9 *wg to view it instead
as a rational section Pj of wk, its divisor becomes div(6~*). This proves the
first equality.

To prove the remaining two equalities, let & — Yy(D) be the universal
elliptic curve, and denote by e : Yo(D) — &£ the O-section. It is an effective
Cartier divisor on £.

Directly from the definition of Pg"’“ we have the equality

div(Phery = Z Z div(j*e*).

m>0 x€Lg
(z,z)=m
Combining Proposition 5.1.4 with (3.6.1) shows that
Dodiv(iEe®) = > 24jE(e) = ). 24Z4(z) = 24Z4(m),
:L‘ELO :EELO :L'GLO
{z,x)y=m {z,xy=m {m,xy=m

and the first equality follows immediately.

Recall the morphism j : Ag — Yo(D) of §3.6. For the second equality
it suffices to prove that the function F?* on Yy(D) defined in Lemma 5.1.5
satisfies

(5.4.1) div(j*FPY) = 24> Agr, -
plr

Let C < £ be the universal cyclic subgroup scheme of order D. For each
s | D denote by C[s] = C the s-torsion subgroup, and by C[s]* < C|[s] the
closed subscheme of generators. This is defined as follows. Noting that

we define

where C[p]* denotes the closed subscheme of generators of C[p] as in | ,
§3.3]. Note that C[p]* coincides with the subscheme of points of exact order

p Z (see [ , Remark 3.3.2]) which allows the comparison with the formu-
lation of the moduli problem in [ , Chapter 3]. Here and in the sequel,
we are using | , §3.3] as a convenient summary of Oort-Tate theory (see

also | |) and of facts from | | and | ]
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There is an equality of Cartier divisors

21—4div(F,?4) = (Clr] =€) xg.e No(D) = > (C[s]* xe.c Yo(D))
s|r
s#1

on Yo(D). Indeed, one can check this after pullback to Yi(D), where it is
clear from Proposition 5.1.4, which asserts that the divisor of the section ©24
appearing in the definition of FT24 is equal to 24e. If s is divisible by two
distinct primes then
(Cls]* xe.e Yo(D)) = 0,
and hence
div(F2Y) = 24 ) (C[p]* xg. Yo(D)).
plr

Now pull back this equality of Cartier divisors by j. Recall that j is defined

as the composition

Ap = M(l,o) — yO(D>7
where the isomorphism is the one provided by Proposition 3.4.4, and the arrow

labeled i endows the universal CM elliptic curve £ — My o) with its cyclic
subgroup scheme E[§]. Thus

(5.4.2) *div(F*) = 24> (E[p]* xpe M@,0)),
plr

where p denotes the unique prime ideal in Oy, over p.

Fix a geometric point z : Spec(IFglg) — M(10), and view z also as a geo-
metric point of E or £ using

M(LO) £> E i> g

Let Of . and Og . denote the completed étale local rings of £/ and £ at z.

There is an isomorphism

Ok, = W[[X.Y, Z]| /(XY — )

for some uniformizer w, in the Witt ring W = W(Fglg). Compare with [ ,
Theorem 3.3.1]. Under this isomorphism the 0-section of £ is defined by the
equation Z = 0, and the divisor C[p]* is defined by ZP~! — X = 0. Moreover,
noting that the completed étale local ring of My o) at z can be identified with
O ® W, the natural map Og¢ , — Op,, is identified with the quotient map

WX, Y, ZI /(XY —wp) — WX, Y, Z]]/(XY — wp, X —uY)

for some u e W*.
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Under these identifications, the closed immersion
E[p]™ xp.e M(1,0) = Mq

corresponds, on the level of completed local rings, to the quotient map

OM(LO),Z - W[[Xv Y, Z]]/(XY - wan —uY, Z)
F8 ——— W[[X,Y, Z]]/(XY — wp, X —uY, Z, 2°~! - X).

This implies that
E[p]x XEe M(I,O) = M(I,O)/]Fslg'
The equality (5.4.1) is clear from this and (5.4.2). O

6. Calculation of the Borcherds product divisor

In this section we prove Theorems 5.3.1, 5.3.3, and 5.3.4. We assume
throughout that n > 3.

Throughout §6 we keep f as in (5.2.2), and again assume that ¢(—m) € Z
for all m > 0. Recall that V' = Homyg(Wp, W) is endowed with the hermitian
form (x,y) of (2.1.5), as well as the Q-bilinear form [z,y] of (2.1.6). The
associated quadratic form is

[, 2]

Q) = (a,a) = 55,

6.1. Vector-valued modular forms. — Let L < V be any Og-lattice, self-
dual with respect to the hermitian form. The dual lattice of L with respect to
the bilinear form [-,-] is L' = 07 1L.

Let w be the restriction to SLa(Z) of the Weil representation of SLQ(@)
(associated with the standard additive character of A/Q) on the Schwartz-
Bruhat functions on L ®z Af. The restriction of w to SLg(Z) preserves the
subspace S;, = C[L’/L] of Schwartz-Bruhat functions that are supported on
L’ and invariant under translations by L. We obtain a representation

wy, : SLQ(Z) i Aut(SL).
For e L'/L, we denote by ¢, € St the characteristic function of p.

Remark 6.1.1. — The conjugate representation wy on Sy, defined by

Wr(7)(¢) = wr(7)(9)

for ¢ € Sy, is the representation denoted py, in | , , ].
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Recall the scalar valued modular form
Fr) =Y, elm)-q" e My, (D, x)
m>»>—00

of (5.2.2), and continue to assume that c¢(m) € Z for all m < 0. We will convert
f into a C[L'/L]-valued modular form f, to be used as input for Borcherds’

construction of meromorphic modular forms on orthogonal Shimura varieties.

The restriction of wy, to I'y(D) acts on the line C-¢q via the character x = de,

and hence the induced function
(6.1.1) f(r) = > (f l2=n M)(7) - wL(7) " o
velo(D)\SL2(Z)

is an Sp-valued weakly holomorphic modular form for SLg(Z) of weight 2 —n
with representation wy. Its Fourier expansion is denoted

(6.1.2) i@ =3 em)-qm,

and we denote by ¢(m, u) the value of é(m) € S, at a coset pe L'/L.

For any 7 | D let v, € {£1,+i} be as in (5.3.2), and let c.(m) be the m'™®
Fourier coefficient of f at the cusp o0, as in (4.1.1). For any p € L'/L define
ru | D by

(6.1.3) =[] »

pp#0

where yu, € L,/ Ly is the p-component of .
Proposition 6.1.2. — For all m € Q the coefficients ¢(m) € St satisfy
6(m, ,U) _ ZT‘H‘T|D Y- C"‘(mr) lfm = —Q</J,) (mOd Z))
0 otherwise.
Moreover, for m < 0 we have

c(m) if p=0,

5(m,u)={0 if 0,

and the constant term off s given by

(0, ) = Z ¥r - r(0).

rulr|D

Proof. — The first formula is a special case of results of Scheithauer [ ,
Section 5]. For the reader’s benefit we provide a direct proof in §8.2.
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The formula for the m = 0 coefficient is immediate from the general formula.
So is the formula for m < 0, using the fact that the singularities of f are
supported at the cusp at oo. ]

Remark 6.1.3. — The first formula of Proposition 6.1.2 actually also holds
for f in the larger space M, _, (D, x).

Corollary 6.1.4. — The coefficients c¢(m) and ¢(m) satisfy the following:

1. The ¢(m) are rational for all m.
2. The ¢(m, p) are rational for all m and u, and are integral if m < 0.
3. For all v | D we have 7, - ¢,(0) € Q. In particular

&0,0) = > 9 - er(0) € Q.

r|D

Proof. — For the first claim, fix any o € Aut(C/Q). The form f7 — f € M;fon
is holomorphic at all cusps other than oo, and vanishes at the cusp o by
the assumption that as ¢(m) € Z for m < 0. Hence f7 — f is a holomorphic
modular form of weight 2—n < 0, and therefore vanishes identically. It follows
that ¢(m) € Q for all m.

Now consider the second claim. In view of the Proposition 6.1.2 the coeffi-
cients &(m, p) of f with m < 0 are integers. Hence, for any ¢ € Aut(C/Q), the
function f7 — f is a holomorphic modular form of weight 2 —n < 0, which is
therefore identically 0. Therefore f has rational Fourier coefficients.

The third claim follows from the second claim and the formula for the
constant term of f given in Proposition 6.1.2. O

6.2. Construction of the Borcherds product. — We now construct the
Borcherds product t(f) of Theorem 5.3.1 as the pullback of a Borcherds
product on the orthogonal Shimura variety defined by the quadratic space
(V,Q). Useful references here include | , , , ].

After Corollary 6.1.4 we may replace f by a positive integer multiple in
order to assume that ¢(—m) € 24Z for all m > 0, and that v,.¢,.(0) € 24Z for
all 7 | D. In particular the rational number

k = &0,0)

of Corollary 6.1.4 is an integer. Compare with Remark 5.3.2.
Define a hermitian domain

(6.2.1) D= {weV(C): [w,w] =0, [ww] <0}/C*,
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Let @ be the tautological bundle on D, whose fiber at w is the line Cw <
V(C). The group of real points of SO(V') acts on (6.2.1), and this action lifts
to an action on w*”".

As in Remark 2.1.2, any point z € D determines a line Cw < ¢V (C). This
construction defines a closed immersion

(6.2.2) D D,

under which @%* pulls back to the line bundle w®* of §2.4. The hermitian
domain D has two connected components. Let Dt < D be the connected
component containing D.

For a fixed g € G(Ay), we apply the constructions of §6.1 to the input form
f and the self-dual hermitian Og-lattice

L = Homp, (gap,ga) < V.

The result is a vector-valued modular form f of weight 2—n and representation
wr, : SLe(Z) — Si. The form f determines a Borcherds product ¥(f) on D;

see | , Theorem 13.3] and Theorem 7.2.4. For us it is more convenient
to use the rescaled Borcherds product
(6.2.3) Py (f) = (2mi) 0w (2f)

determined by 2f. It is a meromorphic section of (@)

The subgroup SO(L)* < SO(L) of elements preserving the component D+
acts on ig( f) through a finite order character | ]. Replacing f by mf
has the effect of replacing 1,59( f) by 1,59( f)™, and so after replacing f by a
multiple we assume that 7,Z~Jg( f) is invariant under this action.

Denote by 14(f) the pullback of 'J)g(f) via the map

(G(Q) n gKg ')\D — SO(L)"\D*

k

induced by (6.2.2). It is a meromorphic section of (w®*)" on the connected

component

z2—(z

(G(Q) n gKg™)\D “22 Sh(G, D)(C),
By repeating the construction for all g € G(Q)\G(Af)/K, we obtain a mero-
morphic section #4(f) of the line bundle (w**)* on
Sh(G, D)(C) = Skra(C).

After rescaling on every connected component by a complex constant of ab-
solute value 1, this will be the section whose existence is asserted in Theorem
5.3.1.
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Proposition 6.2.1. — The divisor of 1(f) is
div(e(f)) = Y, e(=m) - Zxcra(m)(C).

m>0

Proof. — The divisor of 1/39( f) on Dt was computed by Borcherds in terms
of the Fourier coefficients ¢(—m) of f, and from this it is easy to obtain a
formula for the divisor of ¥4(f) on D. See | , Theorem 3.22] and | ,
Theorem 8.1] for the details. The claim therefore follows by using Proposition
6.1.2 to rewrite this formula in terms of the ¢(—m), and comparing with the
explicit description of Zk.a(m)(C) stated in Remark 2.5.2. O

6.3. Analytic Fourier-Jacobi coefficients. — We return to the notation
of §3.9. Thus ® = (P, g) is a proper cusp label representative for (G, D), we
have chosen

s : ResgoGm — Qo
as in Lemma 3.9.2, and have fixed a € k<. This data determines a lattice
L = Homp, (s(a)gay, s(a)ga),
and Witt decompositions
V=VaoWweV, L=L1®L L.

Choose bases e_1,f_1 € L_; and e, f; € Ly as in §3.9.
Imitating the construction of (3.9.16) yields a commutative diagram

D (6.2.2) Pt

’LU'—’(’LUO 7&) l l UJ*—’(T,U}O 75)
eVp(C) x C HxV(C)xC

in which the vertical arrows are open immersions, and the horizontal arrows
are closed immersions. The vertical arrow on the right is defined as follows:
Any w € D pairs nontrivially with the isotropic vector f_;, and so may be
scaled so that [w,f_;] = 1. This allows us to identify

D={weV(C): [w,w] =0, [ww] <0, [w,f_1] = 1}.
Using this model, any w € D* has the form
w=—Ee_1 + (17§ — Q(wo))f_1 + wo + Te1 + {1

with 7 € 9, wg € V)(C), and £ € C. The bottom horizontal arrow is (wg,§) —
(T,wo,§), where 7 is determined by the relation (3.9.6).
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The construction above singles out a nowhere vanishing section of @
whose value at an isotropic line Cw is the unique vector in that line with
[w,f_1] = 1. Asin the discussion leading to (3.9.18), we obtain a trivialization

[ f1]: 0" = 0p..

Now consider the Borcherds product 1/)s(a)g( f) on D* determined by the
lattice L above (that is, replace g by s(a)g throughout §6.2). It is a meromor-
phic section of (@%")*, and we use the trivialization above to identify it with
a meromorphic function. In a neighborhood of the rational boundary com-
ponent associated to the isotropic plane V_; < V, this meromorphic function
has a product expansion.

Proposition 6.3.1 (| ). — There are positive constants A and B
with the following property: For all points w € DT satisfying
Q(Im(wy)) B
I — 2 > Al
m®) = T AMO T

there is a factorization
'lnz;s(a)g(f) = k- (2mi)* - (1) - e2™E . Py(7) - Pi(1,wo) - Po(T,wo, €)
in which k € C* has absolute value 1, n is the Dedekind n-function, and
1:25(0— >—2ZZ co1(m — Q(x)).
beZ/DZ m>0xzeLg
The factors Py and P are defined by

b &0,2f 1)
1_[ @ <’7', D>

beZ/ D7
b#0

(7, wp) @ s [wo, © e(=m),
=11 11 2])*

m>0 xzelg

Q(z)=m

and

The remaining factor is

. . . . 2-¢c(ac—Q(x),
Py (7_, wo, {) _ 1_[ (1 - 627mc§e?7rza'r€2mb/D€—2m[x,wo]) (ac=Q(w),n)
3}6(571[/0
ae’Z
beZ/DZ
cel~0

I

where i = —ae_1 — %f,l +x+ceped'L/L.
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Proof. — This is just a restatement of | , Corollary 2.3], with some
simplifications arising from the fact that the vector-valued form f used to
define the Borcherds product is induced from a scalar-valued form via (6.1.1).

A more detailed description of how these expressions arise from the general
formulas in [ | is given in the appendix. O

If we pull back the formula for the Borcherds product 1,55(@9( f) found in
Proposition 6.3.1 via the closed immersion (6.2.2), we obtain a formula for the
Borcherds product t(q),(f) on the connected component

(G(Q) n s(a)gK g s(a) " N\D =299, gh(@, D) (),

from which we can read off the leading analytic Fourier-Jacobi coefficient.

Corollary 6.3.2. — The analytic Fourier-Jacobi expansion of ¥ (f), in the
sense of (3.9.18), has the form

Py (f) = . FI ((£)) (wo) - ',

=1

where I is the integer of Proposition 6.3.1. The leading coefficient FJga) (W (f)),
viewed as a function on Vy(R) as in the discussion leading to (3.9.14), is given

by
(6.3.1) FI () (wo) = - (2mi)* - 5(r)?* - Po(7) - Py (r, wo),
where T € §) is determined by (3.9.6),

=11 11 © (77 % )%cT(o)

r|D beZ/DZ.
b#0
rb=0
and

Pl(T,wo) = H 1_[ @(T,<w0,$>)c(7m).

m>0 xzeLg

Q(z)=m

The constant k € C, which depends on both ® and a, has absolute value 1.

Proof. — Using Proposition 6.3.1, the pullback of 't/?s(a)g(f) via (6.2.2) factors
as a product

Voo (f) = k- 2mi)F (1) - 2™ Py(1) Py (1, wo) Po(7, w0, ),
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where £ € C* and wg € V(R) = eV (C). The parameter 7 € § is now fixed,
determined by (3.9.6). The equality

b E(O,%f_ﬂ b Yrer(0)
I e(T,D> “TT 11 @(T,D>

beZ/DZ r|D beZ/DZ
b0 b0
rb=0

follows from Proposition 6.1.2, and allows us to rewrite P, in the stated form.
To rewrite the factor P; in terms of (-, -) instead of [-, -], use the commutative
diagram of Remark 3.9.4. Finally, as Im(£) — 0, so ¢ = €?™¢ — 0, the factor
P, converges to 1. This P, does not contribute to the leading Fourier-Jacobi
coeflicient. O

Proposition 6.3.3. — The integer I defined in Proposition 6.5.1 is equal to
the integer multe (f) defined by (5.2.4), and the product (6.3.1) satisfies the
transformation law (3.9.1/) with £ = multe(f).

Proof. — The Fourier-Jacobi coefficient FJEG) (¢(f)) appearing on the left
hand side of (6.3.1) is, by definition, a section of the line bundle QJIE(G) oL
on F(® ® L. When viewed as a function of the variable wq € Vp(R) using our
explicit coordinates, it therefore satisfies the transformation law (3.9.14) with
(=1

Now consider the right hand side of (6.3.1), and recall that 7 is fixed, de-
termined by (3.9.6). In our explicit coordinates the function O (7, (wq, x))?* of
wo € Vo(R) is identified with a section of the line bundle 57 12 on E@ g L
this is clear from the definition of j, in (3.6.2), and Proposition 5.1.4. Thus
Py (1,wp), and hence the entire right hand side of (6.3.1), defines a section of
the line bundle

® ® j;j(;(l—m)/2 ~ ﬁimlﬂté(f/Q) ~ Q]}E?ifg(,-f),
m>0 xzelg
Q(z)=m
where the isomorphisms are those of Proposition 5.2.2 and Proposition 3.4.4.
This implies that the right hand side of (6.3.1) satisfies the transformation law
(3.9.14) with ¢ = multe(f).

A function on Vp(R) cannot satisfy the transformation law (3.9.14) for two
different values of ¢, and hence I = multg(f). Note that we are using here the
standing hypothesis n > 2; if n = 2 then V5(R) = 0, and the transformation
law (3.9.14) is vacuous.

For a more direct proof of the proposition, see §8.4. O
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6.4. Algebraization and descent. — The following weak form of Theo-
rem 5.3.1 shows that ¥ (f) is algebraic, and provides an algebraic interpreta-
tion of its leading Fourier-Jacobi coefficients.

Proposition 6.4.1. — The meromorphic section ¥ (f) is the analytification
of a rational section of the line bundle w* on Skrajc-  This rational section
satisfies the following properties:

1. When viewed as a rational section over the toroidal compactification,

div(y(f)) = Z c(=m) - Zféra(m)/(c + Z multe(f) - ka(ra(q))/((:‘
m>0 P
2. For every proper cusp label representative ®, the Fourier-Jacobi expan-
sion of P(f) along S ,(®)c, in the sense of §3.8, has the form

w(f) = ™ Sy g,

£=0

3. The leading coefficient 1q, a rational section ofwé;@E?ultq’(f) over By c,

factors as
o = o ® P @ PL @ P4

for a unique section
Ry € HO(Aq>/(C, O;(‘q)/(c).

This section satisfies |ke(2)| = 1 at every complex point z € Ag(C). (The
other factors appearing on the right hand side were defined in Theorem
5.3.1.)

Proof. — Using Corollary 6.3.2 and Proposition 6.3.3, one sees that t(f)
extends to a meromorphic section of w” over the toroidal compactification
ra(C), vanishing to order I = multe(f) along the closed stratum

szra(q))/(c <« Sf;ra/(c

indexed by a proper cusp label representative ®.

The calculation of the divisor of ¥ ( f) over the open Shimura variety Skya(C)
is Proposition 6.2.1. The algebraicity claim now follows from GAGA (using the
fact that the divisor is already known to be algebraic), proving all parts of the
first claim. The second and third claims are just a translation of Corollary 6.3.2
into the algebraic language of Theorem 5.3.1, using the explicit coordinates of
§3.9 and the change of notation (27in?)* = Py, Py = Pt and P, = PRor. O
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We now prove that 1 (f), after minor rescaling, descends to k. This can be
deduced from the analogous statement about Borcherds products on orthog-
onal Shimura varieties proved in | |, but in the unitary case there is a
much more elementary proof. This will require the following two lemmas.

Lemma 6.4.2. — The geometric components of Sh(G,D) are defined over
the Hilbert class field kTP of k, and each such component has trivial stabilizer
in Gal(kMP /k).

Proof. — One could prove this using Deligne’s reciprocity law for connected
components of Shimura varieties | , §13], but it also follows easily from
the theory of toroidal compactification.

Our assumption that n > 2 guarantees that every connected component of
Skra /C contains some connected component of the boundary. It is a part®) of
Theorem 3.7.1 that all such boundary components are defined over the Hilbert
class field, and it follows that the same is true for components of Si Jc The
same is therefore true for the components of the interior

SKra/(C = Sh(Gap)/(C
The claim about stabilizers follows from the open and closed immersion
Sh(G, D) = M) s Mn—1,1)

of (2.2.2), along with the classical fact (from the theory of complex multiplica-
tion of elliptic curves) that the geometric components of M ¢y form a simply
transitive Gal(k™!"/k)-set. O

The lemma allows us to choose a set of connected components
{X;} cmo (Sh(G,D)/anb)
in such a way that
Sh(G, D)pun =| | ||  o(X0)
i oeGal(kHilb k)

For each index i, pick g; € G(Ay) in such a way that X;(C) is equal to the
image of

—1 z—(2,9:)

(G(Q) N giKg;  )\D —— Sh(G, D)(C).

Choose an isotropic k-line J < W, let P < G be its stabilizer, and define a

proper cusp label representative ®; = (P, g;). The above choices pick out one

(®This particular part of Theorem 3.7.1 follows from the reciprocity law for the boundary
components of Mf;fl 1) proved in [ , Proposition 2.6.2].
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boundary component on every component of the toroidal compactification, as
the following lemma demonstrates.

Lemma 6.4.3. — The natural maps

-
PN
&
-
O]
&
12

™

|_|i ka’ap(q)i) - Sf’ap

induce bijections on connected components. The same is true after base change

to k or C.

Proof. — Let X} Sf;ap((C) be the closure of X;. By examining the com-
plex analytic construction of the toroidal compactification | s ,
], one sees that some component of the divisor g, (®;)(C) lies on X/
Recall from Theorem 3.7.1 that the components of Sf, (®;)(C) are defined
over kM!Pand that the action of Gal(k"M!P/k) is simply transitive. It follows
immediately that

S;ap(QZ)(C) < |_| O-(Xi*)v
oeGal(kHib /k)

and the inclusion induces a bijection on components. By Proposition 3.2.1
and the isomorphism of Proposition 3.3.3, the quotient map

Co(C) — Ag,\Co,(C)

induces a bijection on connected components, and both maps Cey — Bs — As
have geometrically connected fibers (the first is a Gy,-torsor, and the second
is an abelian scheme). We deduce that all maps in

Ap,; (C) « B, (C) = A, \Bs,(C) = Siya(9:)(C) = Spopy(24)(C)

induce bijections on connected components.

The above proves the claim over C, and the claim over k follows formally
from this. The claim for integral models follows from the claim in the generic
fiber, using the fact that all integral models in question are normal and flat
over O. ]
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Proposition 6.4.4. — After possibly rescaling by a constant of absolute
value 1 on every connected component of Sf';ra/(c, the Borcherds product ¥ (f)
1s defined over k, and the sections of Proposition 0.4.1 satisfy

ko € H(Apk, O o /te)

for all proper cusp label representatives ®. Furthermore, we may arrange that
ko, = 1 for all i.

Proof. — Lemma 6.4.3 establishes a bijection between the connected compo-
nents of S, (C) and the finite set | |; Ag,(C). On the component indexed by
z € Ag,(C), rescale ¥ (f) by ke, (z) . For this rescaled ¥(f) we have kg, = 1
for all 4.

Suppose o € Aut(C/k). The first claim of Proposition 6.4.1 implies that
the divisor of 4(f), when computed on the compactification S JC is defined
over k. Therefore o(1(f))/1(f) has trivial divisor, and so is constant on every
connected component.

By the third claim of Proposition 6.4.1, the leading coefficient in the Fourier-
Jacobi expansion of ¥(f) along the boundary stratum S, (®;) is

o = Py, ® Pyl @ P,

which is defined over k. From this it follows that o (¢ (f))/¥(f) is identically
equal to 1 on every connected component of Sf /C meeting this boundary
stratum. Varying i and using Lemma 6.4.3 shows that o(¢(f)) = ¥(f).

This proves that v (f) is defined over k, hence so are all of its Fourier-
Jacobi coefficients along all boundary strata Si;,, (®). Appealing again to the
calculation of the leading Fourier-Jacobi coefficient of Proposition 6.4.1, we
deduce finally that k¢ is defined over k for all ®. O

6.5. Calculation of the divisor, and completion of the proof. — The
Borcherds product +(f) on S . Ik of Proposition 6.4.4 may be viewed as a
rational section of w¥ on the integral model Skra-

Let @ be any proper cusp label representative. Combining Propositions
6.4.1 and 6.4.4 shows that the leading Fourier-Jacobi coefficient of 4 (f) along
the boundary divisor S . (®) is

(6.5.1) o = ke ® P ® PR @ Py
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Recall that this is a rational section of wg ® ﬁgultq’(f ) on Bg. Here, by mild
abuse of notation, we are viewing k¢ as a rational function on Ag, and denot-
ing in the same way its pullback to any step in the tower

Ci 5 By — Ag.

Lemma 6.5.1. — Recall that m has a canonical section By — C§, realizing
Bs as a divisor on C§. If we use the isomorphism (3.7.1) to view ¥(f) as
a rational section of the line bundle wé; on the formal completion (C3)g. , its
divisor satisfies

div(y(f)) = div(6 % ke) + multe(f) - B
+ D e(=m)Ze(m) + > v (0) Y 7 By, )-

m>0 r|D plr

&’

Proof. — The key step is to prove that the divisor of ¥ (f) can be computed
from the divisor of its leading Fourier-Jacobi coefficient 1y by the formula

(6.5.2) div(p(f)) = 7*div(the) + multe(f) - Bo.

Recalling the tautological section ¢ with divisor Bg from Remark 3.8.1, con-
sider the rational section

R=q ™D p(f) = Y i df

=0

of wff, ® W*Egmltq’(f ) on the formal completion (C3) By

We claim that div(R) = 7*A for some divisor A on Bg. Indeed, whatever
div(R) is, it may decomposed as a sum of horizontal and vertical components.
We know from Theorem 3.7.1 and Proposition 6.4.1 that the horizontal part
is a linear combination of the divisors Zg(m) on C} defined by (3.6.1); these
divisors are, by construction, pullbacks of divisors on Bg. On the other hand,
the morphism C3 — Bs is the total space of a line bundle, and hence is smooth
with connected fibers. Thus every vertical divisor on C3, and in particular the
vertical part of div(R), is the pullback of some divisor on Bg.

Denoting by i : B — C§ the zero section, we compute

A =i*1*A = i*div(R) = div(i*R) = div(ty).

Pulling back by 7 proves that div(R) = 7*div(tg), and (6.5.2) follows.
We now compute the divisor of 9y on By using (6.5.1). The divisors of Py,
Pg‘”", and P"* were computed in Proposition 5.4.1, which shows that on Bg
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we have the equality

div(tp) = div(6 *ke) + Y c(—m)Za(m) + Y %er(0) Y Byyw,-

m>0 r|D plr
Combining this with (6.5.2) completes the proof. O
Proposition 6.5.2. — When viewed as a rational section of w* on Skeras the

Borcherds product ¥(f) has divisor
le(’l,b(f)) = Z C(_m) ’ Zfzra(m) + Zmultq>(f) ) szra(q))

m>0 (]
(6.5.3) +div(0™") + ) 7 (0) D S,
r|D p|r
up to a linear combination of irreducible components of the exceptional divi-
sor Exc < Sf,,. Moreover, each section ke of Proposition 6.4.4 has finite
multiplicative order, and extends to a section ke € H°(Ag, (’):‘@).

Proof. — Recall from Lemma 6.4.3 that the natural maps
|_|z' B‘Pi - |_|z Sf;ap((pi) - Sf;ap

|

|_|i A(I’i

induce bijections on connected components, as well as on connected compo-
nents of the generic fibers.

All stacks in the diagram are proper over Ok, and have normal fibers. (For
Sf;ap
other stacks appearing in the diagram are smooth over Og.) It follows from

this follows from Theorem 3.7.1 and our assumption that n > 2. The

this and [ , Corollary 8.2.18] that all arrows in the diagram induce bi-
jections between the irreducible (=connected) components modulo any prime
pC Og.

Deleting the (0-dimensional) singular locus Sing Sf‘iap does not change
the irreducible components of Sf;ap or its fibers, and so if we define

def :
U= Sp,, ~ Sing = S, \ Exc

then the natural maps

I_Iz' B@i - |_|z S;ap((l)i) —U

|

|_|i Aq%‘
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induce bijections on irreducible components, as well as on irreducible compo-
nents modulo any prime p < O.

Suppose ® is any proper cusp label representative, and let Up < U be the
union of all irreducible components that meet Sg, (®). If we interpret div(xe)
as a divisor on U using the bijection

{vertical divisors on Ag} = {vertical divisors on Uy},

then the equality of divisors (6.5.3) holds after pullback to Up, up to the
error term div(kg). Indeed, this equality holds in the generic fiber of Ug
by Proposition 6.4.1, and it holds over an open neighborhood of Sf;ap((ID) by
Lemma 6.5.1 and the isomorphism of formal completions (3.7.1). As the union
of the generic fiber with this open neighborhood is an open substack whose
complement has codimension > 2, the stated equality holds over all of Usp.

Letting ® vary over the ®; and using ke, = 1, we see from the paragraph
above that (6.5.3) holds over | |, Up, = U. With this in hand, we may reverse
the argument to see that the error term div(kg) vanishes for every ®. It
follows that ke extends to a global section of Oi@.

It only remains to show that each k¢ has finite order. Choose a finite
extension L/k large enough that every elliptic curve over C with complex
multiplication by O admits a model over L with everywhere good reduction.
Choosing such models determines a faithfully flat morphism

LlSpec(OL) — M) = As,

and the pullback of ke is represented by a tuple of units (z;) € [ [ O] . Each z,
has absolute value 1 at every complex embedding of L (this follows from the
final claim of Proposition 6.4.1), and is therefore a root of unity. This implies
that k¢ has finite order. ]

Proof of Theorem 5.5.1. — Start with a weakly holomorphic form (5.2.2). As
in §6.2, after possibly replacing f by a positive integer multiple, we obtain
a Borcherds product t(f). This is a meromorphic section of (w®*)*. By
Proposition 6.4.1 it is algebraic, and by Proposition 6.4.4 it may be rescaled
by a constant of absolute value 1 on each connected component in such a way
that it descends to k.

Now view %(f) as a rational section of w* over i .. By Proposition 6.5.2
we may replace f by a further positive integer multiple, and replace 1 (f) by
a corresponding tensor power, in order to make all kg = 1. Having trivialized
the kg, the existence part of Theorem 5.3.1 now follows from Proposition 6.4.1.
For uniqueness, suppose ¥'(f) also satisfies the conditions of that theorem.
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The quotient of the two Borcherds products is a rational function with trivial
divisor, which is therefore constant on every connected component of S . (C).
As the leading Fourier-Jacobi coefficients of 4’(f) and v (f) are equal along

every boundary stratum, those constants are all equal to 1. O
Proof of Theorem 5.3./. — As in the statement of the theorem, we now view
WP(f)? as a rational section of the line bundle Q’f,ap on Sg,,. Combining

Proposition 6.5.2 with the isomorphism
Skira ~ Exc > Sff,ap . Sing,
of (3.7.2), and recalling from Theorem 3.7.1 that this isomorphism identifies
W = O, = QP
we deduce the equality

div(y()?) = Y, e(=m) - Vhp(m) + 2 ) multe(f) - Sty (P)
P

m>0

(6.5.4) +div(5) + 237 (0) Y. Shap s,
r|D pl|r

of Cartier divisors on Sf:k'ap ~ Sing. As Sf{,ap is normal and Sing lies in codi-
mension > 2, this same equality must hold on the entirety of Sf:'iap. O

Proof of Theorem 5.3.5. — If we pull back via Si,, — Sp,, and view W(f)?
as a rational section of the line bundle
QF >~ w?*®O(Exc) ",
the equality (6.5.4) on Sp,p pulls back to
div(yp()?) = 3, e(=m) - Via(m) + 2 ) multa(f) - Sitya(®)
>

m>0

+div(0) + 2 76 (0) D Sk, -
r|D plr

Theorem 2.6.3 allows us to rewrite this as

le(¢(f)2) =2 2 C(_m) ’ Zlﬂéra(m) + 2ZmU1tfb(f) ’ SI*(ra(q))
d

m>0

+div(07) + 2 960 (0) Y Sk,

r|D p|r

- Z c(—m) Z #{x € Ly : {x,z) = m} - Excs.

m>0 semo(Sing)
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If we instead view 1p(f)? as a rational section of w?*, this becomes

div(y(f)*) =2 ) e(=m) - Zia(m) +2 ) multe(f) - Sra(®)

m>0

[
+div(0™*) +2 Y 76,(0) Y Sk,
r[D plr

- Z c(—m) Z #{xe Ls: {x,x) =m} - Excs
m>0 semo (Sing)

+ k - Exc

as desired. 0

7. Modularity of the generating series

Now armed with the modularity criterion of Theorem 4.2.3 and the arith-
metic theory of Borcherds products provided by Theorems 5.3.1, 5.3.3, and
5.3.4, we prove our main results: the modularity of generating series of di-
visors on the integral models S, and Sf;ap of the unitary Shimura variety
Sh(G, D). The strategy follows that of [ |, which proves modularity of
the generating series of divisors on the complex fiber of an orthogonal Shimura
variety.

Throughout §7 we assume n > 3.

7.1. The modularity theorems. — Denote by
Ch(b (szra) = Pic(sfzra) Xz Q

the Chow group of rational equivalence classes of Cartier divisors on S, with
Q coeflicients, and similarly for Sf",ap. There is a natural pullback map

Chiy(Sfap) = Chgy(Sitra)-
Let x = x} be the quadratic Dirichlet character (5.2.1).

Definition 7.1.1. — If V is any Q-vector space, a formal g-expansion
(7.1.1) D d(m) - q™ e V[[q]]
m=0

is modular of level D, weight n, and character x if for any Q-linear map
a:V — C the g-expansion

> a(d(m)) ¢ e C[[q]]

mz=0

is the g-expansion of an element of M, (D, x).
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Remark 7.1.2. — If (7.1.1) is modular then its coefficients d(m) span a
subspace of V' of dimension < dim M, (D, x). We leave the proof as an exercise
for the reader.

We also define the notion of the constant term of (7.1.1) at a cusp oo,
generalizing Definition 4.1.1.

Definition 7.1.3. — Suppose a formal g-expansion g € V[[¢]] is modular
of level D, weight n, and character x. For any r | D, a vector v € V(C) is
said to be the constant term of g at the cusp oo, if, for every linear functional
a:V(C) — C, a(v) is the constant term of «(g) at the cusp o0, in the sense
of Definition 4.1.1.

For m > 0 we have defined in §5.3 effective Cartier divisors
ylg(;tp( ) - Slﬂ;ap’ Zf(cirta( ) - Sféra
related by (5.3.4). We have defined in §3.7 line bundles
Qpap € Pic(Sp,,), w € Pic(Skya)

extending the line bundles on the open integral models defined in §2.4. For
notational uniformity, we define

Ve (0) = D5y 2184(0) = w™ @ O(Exc).

Theorem 7.1.4. — The formal q-expansion
2 ;’c;tp q € ChQ(SPap)[[ ]]
m=0

is a modular form of level D, weight n, and character x. For any r | D, its
constant term at the cusp o0, is

<ylg(§p + 22513@/1? ) € Chg(Sp.p) ®g C.
plr

Here v, € {£1,%i} is defined by (5.3.2), p < Oy is the unique prime above
p |7, and Fy is its residue field.

Proof. — Let f be a weakly holomorphic form as in (5.2.2), and assume again
that ¢(m) € Z for all m < 0. The space M2 (D, x) is spanned by such forms.
The Borcherds product ¥ (f) of Theorem 5.3.1 is a rational section of the line

bundle
= @ w’yf‘c’f(o)’
r|D



112 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

on Si.,. If we view 9(f)? as a rational section of the line bundle
'VT‘CT
Pap = ® QPap
r|D
on Sl’éap, exactly as in Theorem 5.3.4, then
div (v Z ~Yrer (0 Ef;tp(())
r|D

holds in the Chow group of Sfﬁap. Comparing this with the calculation of the
divisor of ¥(f)? found in Theorem 5.3.4 shows that

(7.1.2) 0= e(=m) - Yh(m) + > 7ree(0) - (VEL(0) +2V,),
m=0 r|D
r>1

where we abbreviate V, = >, Sf_ F,-
For each r | D we have defined in §4.2 an Eisenstein series

ET(T) = Z er(m) ' qm € MH(D>X)7
m=0
and Proposition 4.2.2 allows us to rewrite the above equality as
0= 3 c(=m) - [V (m) = 3 rer(m) - (Vi (0) +20) |-

m=0 r|D
r>1

Note that we have used e,(0) = 0 for > 1, a consequence of Remark 4.2.1.
The modularity criterion of Theorem 4.2.3 now shows that

D Vin(m) g™ = Y B (Vi (0) +2V)
m=0 r|D
r>1

is a modular form of level D, weight n, and character y, whose constant term
vanishes at every cusp different from co.

The theorem now follows from the modularity of each E,, together with the
description of their constant terms found in Remark 4.2.1. O

Theorem 7.1.5. — The formal q-expansion

Z ZIt(Orta q € ChQ(SKra)[[ ]]

m=0

1s a modular form of level D, weight n, and character x.
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Proof. — Recall from Theorems 2.6.3 and 3.7.1 that pullback via Sg,, — S,

sends

Vip(m) = 2- 28 (m) = Y #{we Ly: (w,x) = m} - Exc,

semo(Sing)

for all m > 0. This relation also holds for m = 0, as those same theorems
show that

Vi (0) = Qp, = w > ® O(Exc) = 2- Zi8,(0) — Exc.
Pulling back the relation (7.1.2) shows that

0= e(- )(zfg;ta( - ) AGARIE <””> m} EXCS)

m=0 semp (Sing)
1
+ 3 rer(0) - (Z864(0) - 5 Exc V)
r|D
r>1

in Chb(Sera) for any input form (5.2.2), where we now abbreviate

Ve = Z szra/]Fp :

plr

Using Proposition 4.2.2 we rewrite this as

0= c(om) - (zighom) — Y, FEEmm oM )

m=0 semp (Sing)
1
- Z c(—m) Z Yrer(m) (forta(O) — 5 Exc + VT>,
mz=0 r|D
r>1

where we have again used the fact that e,(0) = 0 for r > 1.
The modularity criterion of Theorem 4.2.3 now implies the modularity of

Szt (m) m—% S 0(r) - Bxc,

mz=0 semo(Sing)
1
- 2 VB (T) - (Zfé’rta(O) 5 Exc + V,«).
r|D
r>1

The theorem follows from the modularity of the Eisenstein series F,(7) and
the theta series

9s(r) = > ¢ e Mu(D, x).

x€Ll g
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7.2. Green functions. — Here we construct Green functions for special
divisors on S, as regularized theta lifts of harmonic Maass forms.
Recall from Section 2 the isomorphism of complex orbifolds

SealC) = Sh(C. D)(C) = G(Q)\D x G(Ay)/K.

We use the uniformization on the right hand side and the regularized theta
lift to construct Green functions for the special divisors

Zf((;ta(m) = Zfzra(m) + BKra(m)

on Si,.. The construction is a variant of the ones in | | and [ I,
adapted to our situation.

We now recall some of the basic notions of the theory of harmonic Maass
forms, as in | , Section 3]. Let H5° (D, x) denote the space of harmonic
Maass forms f of weight 2 — n for T'g(D) with character y such that

— f is bounded at all cusps of I'g(D) different from the cusp oo,
— f has polynomial growth at oo, in sense that there is a

Pp= Y ¢"(m)g"eClg]

m<0
such that f — P is bounded as ¢q goes to 0.

A harmonic Maass form f e Hs” (D, x) has a Fourier expansion of the form

(721)  f(r)= >, ¢"(m)g™+ D] ¢ (m) -T(n—1,4r|m|TIm(7)) - ¢,

MEZL meZ
m>»—0o0 m<0

where

0

[(s,x) = J e tt5Ldt

€T
is the incomplete gamma function. The first summand on the right hand side
of (7.2.1) is denoted by f* and is called the holomorphic part of f, the second
summand is denoted by f~ and is called the non-holomorphic part.

If fe HY (D, x) then (6.1.1) defines an Sp-valued harmonic Maass form

for SLa(Z) of weight 2—n with representation wz,. Proposition 6.1.2 extends to
such lifts of harmonic Maass forms, giving the same formulas for the coefficients

&t (m, ) of the holomorphic part f* of f. In particular, if m < 0 we have

+ if u=20
(7.2.2) ét(m,p) = ¢t(m) ifp=0,
0 if p#0,
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and the constant term of f is given by

E0,p) = Y, w-ci(0).

rulr|D

The formula of Proposition 4.2.2 for the contant terms ¢, (0) of f at the other
cusps also extends.

As before, we consider the hermitian self-dual Op-lattice L = Homop, (ag, a)
in V' = Homg (Wp, W). The dual lattice of L with respect to the bilinear form
[,-]is L' =07 1L. Let

Sp = S(V(Ay))

be the space of Schwartz-Bruhat functions that are supported on L’ and in-
variant under translations by L.
Recall from Remark 2.1.2 that we may identify

D~ {weeV(C): [w,w] <0}/C*,
and also
D =~ {negative definite k-stable R-planes z ¢ V(R)}.

For any x € V and z € D, let x, be the orthogonal projection of x to the plane
z < V(R), and let x,1 be the orthogonal projection to z*.

For (7,2,9) € 9 x D x G(Ay) and ¢ € S, we define a theta function

G(Ta'z’ga(p) = Z (p(g_lx) ) SDOO(TaZa:E)a
zeV

where the Schwartz function at oo,

SOOO(T, Z,ﬂ?) — - 627TiQ(Zzl)T+27TiQ(ZZ)7_"
is the usual Gaussian involving the majorant associated to z. We may view
6 as a function $ x D x G(Ay) — S;. As a function in (z,g) it is invariant
under the left action of G(Q). Under the right action of K it satisfies the
transformation law

G(T)Z7gk7¢) :0(7—,2797(4(}1/(]{;)90)7 kEK7

where w;, denotes the action of K on Sy, by the Weil representation and v =
Im(7). In the variable 7 € § it transforms as a S} -valued modular form of
weight n — 2 for SLy(Z).
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Fix an f € H5° (D, x) with Fourier expansion as in (7.2.1), and assume
that ¢t (m) € Z for m < 0. We associate to f the divisors

ZKra(f) = Z C+(_m) : ZKra(m)

m>0
ZIL() = D ¢t (=m) - Zig(m)
m>0

on Skra and S, , respectively. As the actions of SLy(Z) and K via the Weil
representation commute, the associated Sr-valued harmonic Maass form f is
invariant under K. Hence the natural pairing S;, x S — C gives rise to a
scalar valued function (f(7),0(7, z, g)) in the variables (7, z, g) € HxDxG(A}),
which is invariant under the right action of K and the left action of G(Q).
Hence it descends to a function on SLy(Z)\$ x Sh(G, D)(C).

We define the reqularized theta lift of f as

‘o res z du dv
S} g(zag7f) :J‘ (f(T)ve(Tvzag))T
SL2(Z)\% v
Here the regularization of the integral is defined as in | , s

]. We extend the incomplete Gamma function
Q0
d
(7.2.3) (0,t) = f e v
t

v
to a function on Rx¢ by setting

N T(0,4) ift >0,
F(O’t):{o( | :ft:O

Theorem 7.2.1. — The regularized theta lift ©™%(z, g, f) defines a smooth
function on Skra(C) \ Zxra(f)(C). For g € G(Af) and zy € D, there exists a
neighborhood U < D of zy such that

®reg(z,g’f) - Z C+(—<£L‘,$>) ' f‘(O,47T’<xZ,xz>‘)

xegL
xlzg

s a smooth function on U.

Proof. — Note that the sum over z € gL n 2 is finite. Since Sh(G,D)(C)
decomposes into a finite disjoint union of connected components of the form
(G(Q) ngKg™")\D,

where g € G(Ay), it suffices to consider the restriction of ©™5(f) to these
components.
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On such a component, ©™8(z, g, f) is the regularized theta lift considered
in | , Section 4] of the vector valued form f for the lattice
gL = gf/ NV = Homp, (gag, ga) < V,

and hence the assertion follows from (7.2.2) and | , Theorem 4.1]. O

Remark 7.2.2. — Let Ap denote the U(V)(R)-invariant Laplacian on D.
There exists a non-zero real constant ¢ (which only depends on the normal-
ization of Ap and which is independent of f), such that

AD@reg(Za 9, f) = c-deg ZKra(f)((C)
on the complement of the divisor Zkya(f)(C).

Using the fact that
r(0,t) = —log(t) + I'(1) + o(t)

as t — 0, Theorem 7.2.1 implies that ©8(f) is a (sub-harmonic) logarithmic
Green function for the divisor Zk;a(f)(C) on the non-compactified Shimura
variety Skra(C). These properties, together with an integrability condition,
characterize it uniquely up to addition of a locally constant function | ,
Theorem 4.6]. The following result describes the behavior of ©™%(f) on the
toroidal compactification.

Theorem 7.2.3. — On S}, (C), the function ©4(f) is a logarithmic Green
function for the divisor Z{2t (f)(C) with possible additional log-log singularities
along the boundary in the sense of | .

Proof. — As in the proof of Theorem 7.2.1 we reduce this to showing that
©2(f) has the correct growth along the boundary of the connected compo-
nents of S, (C). Then it is a direct consequence of | , Theorem 4.10]
and | , Corollary 4.12]. O

Recall that w?" is the tautological bundle on

D= {weeV(C): [w,w] <0}/C*.

We define the Petersson metric | - | on w®” by
2 [wvw]
ol = ~522,
e
where v = —I"(1) denotes Euler’s constant. This choice of metric on w®”

induces a metric on the line bundle w on Sk;a(C) defined in §2.4, which ex-
tends to a metric over Si ., (C) with log-log singularities along the boundary
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[ , Proposition 6.3]. We obtain a hermitian line bundle on Sf ., de-

ra’
noted

@ = (w,[-1)-

If f is actually weakly holomorphic, that is, if it belongs to M;fon(D, X), then
©re(f) is given by the logarithm of a Borcherds product. More precisely, we
have the following theorem, which follows immediately from [ , Theorem
13.3] and our construction of ¥ (f) as the pullback of a Borcherds product,
renormalized by (6.2.3), on an orthogonal Shimura variety.

Theorem 7.2.4. — Let f € Mé’fon(D,X) be as in (5.2.2). The Borcherds
product ¥ (f) of Theorem 5.5.1 satisfies

0"¢(f) = —log [y (f)[*.

7.3. Generating series of arithmetic special divisors. — We can now

define arithmetic special divisors on Sj ., and prove a modularity result for

ra’
the corresponding generating series in the codimension one arithmetic Chow
group. This result extends Theorem 7.1.5.

Recall our hypothesis that n > 2, and let m be a positive integer. As in
[ , Proposition 3.11], or using Poincaré series, it can be shown that there
exists a unique f,, € H (D, x) whose Fourier expansion at the cusp oo has

the form

fm=q""+0(1)
as ¢ — 0. According to Theorem 7.2.3, its regularized theta lift ©™2(f,,) is a
logarithmic Green function for Z{2% (m).

Denote by (/]B(IQ( Kra) the arithmetic Chow group [ | of rational equiv-
alence classes of arithmetic divisors with Q-coefficients. We allow the Green
functions of our arithmetic divisors to have possible additional log-log error
terms along the boundary of S, (C), as in the theory of | ]. For
m > 0 define an arithmetic special divisor

~ ~1

ZIt(orta(m) = ( f(orta(m>7 @reg(fm)) € ChQ(SIﬂzra)
on Sg .., and for m = 0 set

2164(0) = & + (Exc, — log(D)) € Chyy(Skya).

In the theory of arithmetic Chow groups one usually works on a regular
scheme such as Sj . However, the codimension one arithmetic Chow group
of Sf,, makes perfect sense: one only needs to specify that it consists of
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rational equivalence classes of Cartier divisors on Sf;’iap endowed with a Green
function.
With this in mind one can use the equality

Veap(m)(C) = 2255, (m)(C)

in the complex fiber Sf, (C) = S§,,(C) to define arithmetic divisors

~1
Vit (m) = (VI (m), 2078 (fn)) € Chgy(Siap)
for m > 0. For m = 0 we define
A~ —~1
Vit (0) = Q71 + (0, —2log(D)) € Chgy(Spap)

where the metric on € is induced from that on w, again using € =~ w? in the
complex fiber.

Theorem 7.3.1. — The formal q-expansions

(7.3.1) = > Z%(m)-q" e Chi (St [a]]
m=0

and

lg(;tl:) q € ChQ(SPap)[[ ]]

m=0

are modular forms of level D, weight n, and character x.

Proof. — For any input form [ € Mé’fon(D,X) as in (5.2.2), the relation in
the Chow group given by the Borcherds product ¥ (f) is compatible with the
Green functions, in the sense that

—log 9 (/)| = D] e(=m) - ©"5(fn).

m>0

Indeed, this directly follows from f = >} _,c(—m)fy and Theorem 7.2.4.

This observation allows us to simply repeat the argument of Theorems 7.1.4
and 7.1.5 on the level of arithmetic Chow groups. Viewing 1(f)? as a rational
section of the metrized line bundle Qlkpap, the arithmetic divisor

div(w()?) 2 (div(e(f)?), ~2log [ (f)]2) € Chy(Shay)
satisfies both

(7.3.2)  div(¥(f)?) = Qb,, = —2k - (0,log(D)) = > ,(0) - Vit (0)
r|D
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and, recalling 6 =+/—D € k,

dvw()) )
= Z c(=m) - Vi, (m) — 2k - (div(6),0) + 2 Z Yrcr(0) - Vr
m>0 r|D
(133) = Y clom)- Digh(m) — 2k - (0.105(D) +2 Y yrer(0) - D,
m=>0 r|D

where V, is the the vertical divisor V, = ZMT

Green function. Note that in the second equality we have used the relation

S;‘,ap /K, endowed with the trivial

0 = div(d) = (div(s), — log |§2]) = (div(s),0) — (0, log(D))

in the arithmetic Chow group. Combining (7.3.2) and (7.3.3), we deduce that

0= 3 c(=m)- Dito(m) + 3 7 (0) (P (0) + 25, )

m=0 r|D

r>1
With this relation in hand, both proofs go through verbatim. O
7.4. Non-holomorphic generating series of special divisors. — In

this subsection we discuss a non-holomorphic variant of the generating series
(7.3.1), which is obtained by endowing the special divisors with other Green

functions, namely with those constructed in | , | following the
method of [ |]. By combining Theorem 7.3.1 with a recent result of
Ehlen and Sankaran [ |, we show that the non-holomorphic generating

series is also modular.
For every m € Z and v € R~ define a divisor

Bicra(m, v) — ﬁZ#{x € Lo: (z,2) = m} - Sk, (®)
[}

with real coefficients on Sf;,,. Here the sum is over all K-equivalence classes of
proper cusp label representatives @ in the sense of §3.2, L is the hermitian Og-
module of signature (n —2,0) defined by (3.1.4), and S, (®) is the boundary
divisor of Theorem 3.7.1. Note that Bgya(m,v) is trivial for all m < 0. We
define classes in Chﬁ%(sﬁra)’ depending on the parameter v, by

Z*ra(m) + BKra(m, ’U) ifm#0
ZIt(Or;(m7v) = K
w! + Exc + BKra(O, U) if m=0.
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Following | , R ], Green functions for these divisors
can be constructed as follows. For x € V(R) and z € D we put

R("E> Z) = _QQ(:I"Z)'
Recalling the incomplete Gamma function (7.2.3), for m € Z and
(v,2,9) € Rug x D x G(Ay)

we define a Green function

(A1) Emoezg = Y xgla) TO,2m0R(,2)
zeV~{0}
Q(z)=m

where x; € S, denotes the characteristic function of L. As a function of the
variable (z,g), (7.4.1) is invariant under the left action of G(Q) and under the
right action of K, and so descends to a function on R~y x Sh(G,D)(C). It
was proved in [ , Theorem 3.4.7] that Z(m,v) is a logarithmic Green
function for Z{&¥ (m,v) when m # 0. When m = 0 it is a logarithmic Green
function for Bg;a(0,v).

~1
Consequently, we obtain arithmetic special divisors in Chy (S,,) depending
on the parameter v by putting

(28, (m, ), E(m, v)) if m #0
&+ (Bkra(0,v),2(0,v)) + (Exc, —log(Dv)) if m = 0.
Note that for m < 0 these divisors are supported in the archimedian fiber.

Theorem 7.4.1. — The formal q-expansion

Gnontot(7) = Y1 2184 (m,v) - ¢ € Chg (St [[all,

meZ

s a non-holomorphic modular form of level D, weight n, and character x.

Here q = €™ and v = Im(7).
Proof. — Theorem 4.13 of | | states that the difference
(7.4.2) Pron-hol () — &(7)

is a non-holomorphic modular form of level D, weight n, and character Y,

~1
valued in Ch¢(Sg,,). Hence the assertion follows from Theorem 7.3.1. O

The meaning of modularity in Theorem 7.4.1 is to be understood as in
[ , Definition 4.11]. In our situation it reduces to the statement that
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there is a smooth function s(7,z,¢) on $ x Sh(G,D)(C) with the following
properties:

1. in (z,g) the function s(7,z,g) has at worst log-log-singularities at the
boundary of Sh(G,D)(C) (in particular it is a Green function for the
trivial divisor);

2. s(7, 2, g) transforms in 7 as a non-holomorphic modular form of level D,
weight n, and character y;

3. the difference <$n0n_h01(7) — s(1, 2, g) belongs to the space

Mn(D’ X) ®(C Ch(C(SI*(ra) @® (Rn—QMn—Q(Dv X)) ®(C Ch(C(SI*(ra)a

where R,_o denotes the Maass raising operator as in Section 8.4.

8. Appendix: some technical calculations

We collect some technical arguments and calculations. Strictly speaking,
none of these are essential to the proofs in the body of the text. We explain
the connection between the fourth roots of unity 7, defined by (5.3.1) and the
local Weil indices appearing in the theory of the Weil representation, provide
alternative proofs of Propositions 6.1.2 and 6.3.3, and explain in greater detail
how Proposition 6.3.1 is deduced from the formulas of | ).

8.1. Local Weil indices. — In this subsection, we explain how the quantity
7p defined in (5.3.1) is related to the local Weil representation.

Let L < V be as in §6.1, and recall that S, = C[L'/L] is identified with a
subspace of S(V(Ay)) by sending o € L'/L to the characteristic function ¢,
of p+Lc V(Ay).

As dimg V' = 2n and D is odd, the representation wy, of SLy(Z) on Sy, is
the pullback via

SLy(Z) — | [ SLa(Z,)
p|D

of the representation
wr, = Q) wp,
p|D

where w, = wr,, is the Weil representation of SLa(Z,) on Sr, = S(V,). These
WEeil representations are defined using the standard global additive character
Y = ®p1p which is trivial on Z and on Q and whose restriction to R < A is
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given by ¢ (r) = exp(27iz). Recall that, for a € Q; and b € Qy,
wp(n(b))d(x) = ¥p(bQ(2)) - ()
wp(m(a))p(z) = X ,(a) - |aly - ¢(ax)

o) = [ tul-lra) o w= (7,

where 7, = 7v,(L) is the Weil index of the quadratic space V, with respect to
Yp and xg,p is the quadratic character of Q; corresponding to k;,. Note that
dy is the self-dual measure with respect to the pairing ¢, ([x,y]).

Lemma 8.1.1. — The Weil representation w, satisfies the following proper-
ties.
1. When restricted to the subspace Sp, = S(V}), the action of v € SLa(Zy)
depends only on the image of v in SLa(Fp).
2. The Weil index is given by

=6 (D,p)y - invp(Vp)
where (a,b), is the Hilbert symbol for Q, and invy,(V}) is the invariant
of Vp, in the sense of (1.7.3).

Proof. — (i) It suffices to check this on the generators. We omit this.
(ii) We can choose an Oy, p,-basis for L, such that the matrix for the hermitian

form is diag(a1,...,a,), with a; € Z;. The matrix for the bilinear form
[7,y] = Trg,jg,(z,y)) is then diag(2ai,...,2an,2Day,...,2Day). Then,
according to the formula for By in | , p. 379], we have

. 1 “
%' =005 o V) = [ [ e, (aitp) 10, (Dajiy),
j=1
where we note that, in the notation there, z(w) = 1, and j = j(w) = 1. Next
by Proposition A.11 of the Appendix to [ |, for any o € Z*

»» We have
Vg, (1) = 1 and

W@,,(Oép?ﬁp) = <_;é> cep = (—,p)p - €p.
Here note that if n = api,, then the resulting character 7 of IF,, is given by
7(a) = dp(p~ta) = e(=p~"a).
and 9, (n) = <%) - €p. Thus

Y =¢€," - (=D/p,p), - (det(V),p)p,
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as claimed. ]

8.2. A direct proof of Proposition 6.1.2. — The proof of Proposi-
tion 6.1.2, which expresses the Fourier coefficients of the vector valued form
f in terms of those of the scalar valued form f € Mé_n(D, X), appealed to
the more general results of | ]. In some respects, it is easier to prove
Proposition 6.1.2 from scratch than it is to extract it from [loc. cit.]. This is
what we do here.

Recall that f is defined from f by the induction procedure of (6.1.1), and
that the coefficients ¢(m, ) in its Fourier expansion (6.1.2) are indexed by
m € Q and p € L'/L. Recall that, for r | D, rs = D,

ra T a B
Wr = <D'y r5> = < 1) M= <5’y 7“5) € To(s),

Note that

(8.2.1) T'o(D)\SL2(Z) = To(D)\SL2(Z)/T(D) = [ [ By\SLa(F,),
p|D

so this set has order ]_[p| p(p+1). A set of coset representatives is given by
1 ¢
R .
U om (")
r|D
¢ (modr)

Now, using (4.1.1), we have

(At (U ) 0= (i (7)) 0

(3:2.2) = (B)xs(a) Y rE e (m) e

m>»>—0o0

On the other hand, the image of the inverse of our coset representative on the
right side of (8.2.1) has components

1 —c¢ 0 -0 .
)
1 —c rd —pf .
( 1><O oz) if p|s.
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Note that rad — sy = 1. Then, as elements of SLy(F),), we have

(0 )6 e
S O [ Gy L

The element on the second line just multiplies ¢, by xp(«). For the element
on the first line, the factor on the right fixes ¢y and

Wp (<1 _1>> ¢o = 'Ypp_% Z Gu-
neLy /Ly

Thus, the element on the first line carries ¢ ) to

Y (= Q)

peLy/Lp

Xp(ﬁ)’YpP

Recall from (6.1.3) that for p € L'/L, r, is the product of the primes p | D
such that p, # 0. Thus

~1
1 -z Tic
uel’/L
rulr

Taking the product of (8.2.2) and (8.2.3) and summing on ¢ and on r, we
obtain

Z%_Fl 2 Z ezm@(u)qﬁ“ 2 cr(m)ew

r|D ¢(modr) puel’/L m»—00
Tulr
m
=2 2t )y alm)a
rlD pel/JL  m»—o
rulr THQ(neEZ

= > D> D wemr)dug”

meQ uel’/L T
M> =00 14 Q(u)eZ rulr|D

This gives the claimed general expression for é(m, i) and completes the proof
of Proposition 6.1.2.
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8.3. A more detailed proof of Proposition 6.3.1. — In this section, we
explain in more detail how to obtain the product formula of Proposition 6.3.1
from the general formula given in | ].

For our weakly holomorphic S -valued modular form f of weight 2—n, with
Fourier expansion given by (6.1.2), the corresponding meromorphic Borcherds
product ¥(f) on D* has a product formula | , Corollary 2.3] in a neigh-
borhood of the 1-dimensional boundary component associated to L_1. It is
given as a product of 4 factors, labeled (a), (b), (c) and (d). We note that, in
our present case, there is a basic simplification in factor (b) due to the restric-
tion on the support of the Fourier coefficients of f . More precisely, for m > 0,
é(—m,p) =0 for p ¢ L, and é¢(—m,0) = ¢(—m). In particular, if z € L’ with
[z,e_1] = [z,f_1] = 0, then Q(z) = Q(z¢), where z is the (Lp)g component
of z. If 29 # 0, then Q(z) > 0, and é¢(—Q(x),n) = 0 for p ¢ L. The factors

for U(f) are then given by:
(a)
H (1 o e—ZWi[x,w])E(*Q(ﬁ)ﬂE).
zel/
[J?,f_l]:(]

[z,e—1]>0
mod LN Qf_;

il ) Q@)
Pi(wo, 1) ¥ I1 <M> ’

el n(71)
[I,Wo]>0
where Wy is a Weyl chamber in Vj(R), as in | , §2].

C
(c) dof ([, 0, 7)) riforol o] 0,2)/2
PO(TI) = H < N L 27 67” x,w||T,e1 >

xeb*lL,l/L,l 77(7—1)
z#0

(d) and
mn(n)é(o’o) q£0’
where k is a scalar of absolute value 1, and
==Y > é&-mx)oi(m-Q(x)).

m gel/n(L_1)*
mod L_1

The factors given in Proposition 6.3.1 are for the form

Py(f) E 2mi) 00 w(2)

The quantity g2 in | | is our e(§), and 7 there is our 7.
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Recall from (3.9.5) that 0~ 'L_; = Ze_; + D~'Zf_1, so that, in factor (c),
the product runs over vectors D~'bf_ 1, with b (mod D) nonzero. For these
vectors [z,e1] = 0. In the formula for I, x runs over vectors of the form

r=——1f_1+ z,
D 1 0

with 29 € 071 Lo. But, again, if z9 # 0, Q(z) = Q(z0) > 0 and &(—Q(z),z) =0
unless b = 0, and so the sum in that term runs over xg € Ly g # 0 and over

—%f_17s.
Thus the factors for 'JJQ( f) are given by:
(a)
H (1 _ e—2m[z,w])26(—Q(:c),x)
zel’
[Z‘,ffl]:()
[z,e—1]>0
mod LnQf_,
(b)
_ c(—=Q(=0))
PI(UJO;Tl) déf H ( 191( [x07/w]’7—1) ) )
x0ELo 77(7'1)
xo#0
(c)
_ 0,5 1)
Py(11) « H < (=low)m) > "’ )
beZ/DZ n(71)
b#0

(d) and, setting k& = ¢(0,0),

w? (2min’(7))" 63",

where k is a scalar of absolute value 1, and

h=-2Y 3 c-ma(m- Qo)+ Y 0. 5.

m>0 zgeLg beZ/DZ

Here note that for 4, (f) = (2mi)°©0W(2f) we have multiplied the previous
expression by 2.
Finally recall

w=—e_1+ (Tf — Q(wg))f_l + wo + 7€1 + f1.
If [z, f-1] = 0, then = has the form

b
T =—ae_q — Ef_l + g + ceq,
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so that

b
[z,w] = —c& + [x0, wo] — aT — D

and
Q(x) = —ac + Q(xp).

Using these values, the formulas given in Proposition 6.3.1 follow immediately.

8.4. A direct proof of Proposition 6.3.3. — Here we give a direct proof
of Proposition 6.3.3, which does not rely on Corollary 6.3.2. We begin by
recalling some general facts about derivatives of modular forms.

We let qdiq be the Ramanujan theta operator on ¢-series. Recall that the

image under qd% of a holomorphic modular form g of weight %k is in general
not a modular form. However, the function

dg k
4.1 D(g) =q— — —gE
(8.4.1) (9) = ag, — 1395
is a holomorphic modular form of weight k + 2 (see | , §4.2]). Here
By(r) = =24 ) o1(m)q™
m=0

denotes the non-modular Eisenstein series of weight 2 for SLy(Z). In particular

01(0) = —54. We extend oy to rational arguments by putting oy(r) = 0 if
r¢ Zso. If R = 21’% + % denotes the Maass raising operator, and
3

B}(r) = Balr) - —

is the non-holomorphic (but modular) Eisenstein series of weight 2, we also
have

1 k

Ri(9) — 59E5.

D =
(9) I k 1

Proposition 8.4.1. — Let f € Mé’fcn(D,X) as in (5.2.2). The integer

. %2 S w0 -2Y c=m) Y oi(m— Q).

aea*IL_l/L_l m>0 zeLg

defined in Proposition 6.5.1 is equal to the integer

multe(f) = p—

defined by (5.2.4).
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Proof. — Consider the Sy -valued theta function
Z q Xx+L0 € Mn 2(wL0)
zeLj

Applying the above construction (8.4.1) to ©g we obtain an S} -valued mod-
ular form

-2
= 2 Q@)POxY 1, — Ty OoFr € Ma(w,)
zeLy)
of weight n. For its Fourier coefficients we have

D D b(mn)g™xy

veL))/Lo m=0

bm,v)= Y, Q@)+2n—2) Y oi(m—Q(z)).

zev+ Lo zev+ Lo
Q(z)=m
Asin , (4.8)], an Sp-valued modular form F' induces an Sy, ,-valued
0

form Fp,. If we denote by F), the components of I with respect to the standard
basis (x,) of Sr, we have

(8.4.2) Fro, = > Fiia
QED_lLfl/Lfl

for v e Lj/Ly.
Let f e M}, (wr) be the Sz-valued form corresponding to f, as in (6.1.1).
Using (8.4.2) we obtain

r3 |
fLo € Mé—n(wLo)
with Fourier expansion
fLo Z 2 m V+aq Xv+Lo-
VM aes 1)1

We consider the natural pairing between the Sr, -valued modular form fr,, of
weight 2 —n and the S} -valued modular form D(©g) of weight n,

(fLo» D(©0)) € M;(SLa(Z)).
By the residue theorem, the constant term of the g-expansion vanishes, and
S0
(8.4.3) Z Z ¢(—m,v + a)b(m,v) = 0.

m=0 pel/ /L()
aed~I/I
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We split this up in the sum over m > 0 and the contribution from m = 0.
Employing Proposition 6.1.2, we obtain that the sum over m > 0 is equal to
> e(=m)b(m,0).

m>0
For the contribution of m = 0 we notice
n—2 /
== v=0¢€ Ly/Ly,
b(O, l/) _ 12 O/ 0
0, v #0.

Hence this part is equal to

n—2 5
~ 13 IZ ¢(0, ).
Q€0 L,1/L,1

Inserting the two contributions into (8.4.3), we obtain

0= cl=mpm0)— =2 3 &0,a)

; 2

m> acd 1L_1/L_4

-y c(—m)< M Q@) +20-2) Y Jl<m—@<$>>>
m=0 sz)L:Om x€lg

- ”1_22 S H0,0)
a0 'L_1/L_1
D e(—Q@)Qx) +2(n—2) Y c(—m) Y| o1(m — Q(x))
x€Lg m>0 x€Lg
- ”1_22 DO ()
a0 'L_1/L_1
= (n —2)multe(f) — (n —2)I.

This concludes the proof of the proposition. O

Now we verify directly the other claim of Proposition 6.3.3: the function

Pl(T,’w()) = H H @(T,<w0,x>)0(_m)

m>0 xzelg

Qz)=m

satisfies the transformation law (3.9.14) with respect to the translation action
of bLg on the variable wy.
First recall that, for a, b € Z,

O(r,z+ar +b) =exp( — mia*t — 2miaz + wi(b — a)) - O(r, 2).
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If we write « = a7 + b and 7 = u + v, then

Im(a) a—a u
a=——=—7", b = Re(a) — " Im(a).
Thus
1, 1 1 1 1
24 T+az+§(a—b) = m(a— a)o +%(a—a)z+ 2(a—b—ab).
For z and w in C, write
1
R(z,w) = RT(Zaw) = BT(va) - H‘r(sz) = 72(’“} - ZD).
v

Then
1

4o

and we can write

O(7,z + a) = exp(—mR(z, ) — gR(a, @)) - exp(mi(a — b — ab)) ™' O(r, 2).

_ 1 _ 1 1
(a0 —@)a+ %(a —q)z = §R(z, a) + ZR(Q’ a),

We will consider the contribution of the %(a — b — ab) term separately.

For g € Vy, we have (wg + f,z) = (wp,x) + {B,z). Suppose that for all
x € Lo, we have (8,z) = at + b for a and b in Z. Writing b = Z + Zr, this is
precisely the condition that 5 € b Ly. Then we obtain a factor

exp —71'2 Z <w0,m> </87 >

m>0 xzeLg

Q(z)=m

Expanding the sum and using the hermitian version of Borcherds’ quadratic

)+ (<ﬁ,w>,<ﬁvx>)]
2

identity from the proof of Proposition 5.2.2, we have

5, LD 346,29 — Cun, o, py + XD P2
x€Lg
—Hwnm+ 36.8) 5y B Q) o]

.’L‘ELO

~ 2 (w8 + 3485 - a1

Thus, using I = mults(f), we have a contribution of

> <7r<wo,/3> N 7r</37ﬁ>>f

v 2v

to the transformation law.
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Next we consider the quantity

a—0b—ab
Im(a) R ~ulm(a)  Im(a) < B uIm(a))
= ” e(a) » ” Re(a) »

a—a (a+a) ula—a) a—a<(a+a) u(a—d))

2% 2 2iv 2w 2 2iv

This will contribute exp(—miA), where A is defined as the sum

ZC(—Q(x))[ az;)a—aJra—u(a._a) _a-a <(a+a) —u(a._a)>]

=0 2 2iv 2iv 2 2iv

where a = (8,x). Since x and —z both occur in the sum, the linear terms
vanish and

s Zc(—Q(x))[—a_,a <(a+a)_u(a.—a)>].

= 2iv 2 2iv

Using the hermitian version of Borcherds quadratic identity, as in the proof of
Proposition 5.2.2, we obtain

I
A= 25 -(8.5).
Thus we have
Pl(Tv wo + ,3)
= Pulrwo)-exp (Two, )+ 2(8.5) - exp (TP

Finally, we recall the conjugate linear isomorphism L_; =~ b of (3.9.11)
defined by e_1 — 7 and f_1 — 1. As

VL =Ze 1+ D 'Zf_4,
we have —6~'7 = ar + Db for some a,b € Z, and hence
7=-D"'b(a+ 1)L
This gives u/v = aD:. Also, using
de_1 = —Dae_1 —bf_q,
we have

1 1 1
5(1 +d)e_1 = 5(1 —Da)e_1 — ibf_l €Ze 1+7Zf 1=1L_.
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Thus a is odd and b is even. Recall that N(b) = 2v/+/D. Thus

o __aD
4% 9N(b)D2
and, since (3, 3) € N(b), we have

eXp(_M>:eXp<_M

)

) = +1.

10? N(b)
The transformation law is then
I
Pu(ryun + ) = exp (Tun, By + 3205 i o)+ Pur ),
as claimed in Proposition 6.3.3.
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