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Abstract

This paper describes theoretical design principles emerging from the development of tasks for
standard undergraduate mathematics courses that address applications to teaching secondary
mathematics. While researchers recognize that mathematical knowledge for teaching is a form of
applied mathematics, applications to teaching remain largely absent from curriculum resources
for courses for mathematics majors. We developed various materials that contain applications to
teaching that have been integrated into four standard undergraduate mathematics courses. Three
primary principles influenced the design of the tasks that prepare future teachers to learn and
apply mathematics in a manner central to their future work. Additionally, this paper provides
guidance for instructors desiring to develop or implement similar applications. The process of
developing these tasks underscores the importance of key features regarding the roles of human
beings in the tasks, the intentional focus on advanced content connected to school mathematics,
and the integration of active engagement strategies.

Keywords: Design principles; Applications to teaching; Secondary mathematics; Mathematical
knowledge for teaching

1. Introduction

Because the population of undergraduates enrolled in courses for mathematics majors
includes prospective secondary mathematics teachers, these courses can play a large role in
providing future teachers with opportunities for developing mathematical knowledge for
teaching (MKT). However, research has shown that many prospective secondary mathematics
teachers complete these courses without having gained sufficiently deep understanding of
knowledge central for teaching (Speer, King, & Howell, 2015; Zazkis & Leikin, 2010) or having
made connections between what they are studying and what they will be teaching (Wasserman,
2018). One way to address prospective teachers’ MKT is to embed applications to teaching into
these courses, which mirrors the common inclusion of other science applications in
undergraduate mathematics courses. Yet, Lai and Patterson (2017) document that applications to
teaching remain largely absent from textbooks for courses for mathematics majors.

Common textbooks contain many applications relevant for traditional applied mathematics
majors, such as ballistic motion in calculus (see Fig. 1) or statistical analysis used to interpret the
effectiveness of clinical trials. Whereas emerging physicists or engineers see many mathematics
applications linked to their future work, prospective secondary mathematics teachers in
traditional mathematics courses do not. Researchers (e.g., Bass, 2005; Cuoco, 2018) posit that
mathematical knowledge for teaching is a form of applied mathematics. Thus, applications of



mathematics to teaching should be brought on par with other, already-ubiquitous applications of
mathematics.

8. If a ball is thrown vertically upward with a velocity of 80 ft/s, then its height after ¢+ seconds is

s = 80t — 16¢°.
a. What is the maximum height reached by the ball?
b. What is the velocity of the ball when it is 96 ft above the ground on its way up? On its way down?

Fig. 1. Example of a common application to applied mathematics (Stewart, 2016).

The Association of Mathematics Teacher Educators (AMTE) released the Standards for
Preparing Teachers of Mathematics (AMTE, 2017) in which they recommend that prospective
teachers need more than strong content knowledge to effectively teach. Teaching involves
interacting with students. Teachers must attend to students’ mathematical reasoning during
instruction by explaining mathematical concepts, responding to questions, linking ideas to past
and future courses, posing meaningful questions to assess and advance students’ understanding,
and using evidence of student thinking (AMTE, 2017; Ball, Thames, & Phelps, 2008). Future
teachers need opportunities to engage in these practices throughout their teacher preparation
programs. Grossman et al. (2009) refers to these opportunities as approximations of practice, or
“opportunities to engage in practices that are more or less proximal to the practices of a
profession” (p. 2058). Thus, by developing applications to teaching and incorporating them into
undergraduate mathematics major courses, the mathematics education community can provide
prospective secondary teachers opportunities in content courses to simultaneously develop a
deep understanding of content central to teaching secondary mathematics alongside skills and
practices fundamental for teaching. Providing support while prospective teachers learn to
navigate a student’s work and ways of thinking, for instance, may better prepare them to use this
skill when they begin teaching in a secondary classroom.

We take the stance that while approximations of practice are especially important for
prospective teachers as they situate mathematics in the practice of their future careers, they are
equally beneficial for undergraduates who are not obtaining a teaching credential. Many
undergraduate mathematics majors see themselves in a teaching role in the future, whether that
be tutoring or attending graduate school and becoming a teaching assistant. In addition, “learning
by teaching” is effective and strengthens everyone’s understanding and retention of the concept
(Fiorella & Mayer, 2013). Including applications of mathematics to teaching does not detract
from the learning of mathematics, in the same way that including applications to engineering
does not detract from the learning of mathematics.

Through our work on the META Math project, we have developed and field tested various
materials that contain applications to teaching that have been integrated into four standard
undergraduate courses: Calculus I, Abstract Algebra, Discrete Mathematics, and Statistics. The
classrooms in which these materials have been field tested have included student populations
composed of (1) mostly prospective teachers, (2) a mixture of both prospective teachers and
undergraduates not intending to become teachers, and (3) mostly undergraduates not intending to
become teachers. Through this field testing, we have learned about how to develop materials that
meet instructors’ expectations for preparing future teachers and engage undergraduates in a way
that helps them understand the connections between the mathematics they will teach and the
mathematics they are learning.



In this paper, we describe our efforts in developing materials that embed applications to
teaching in undergraduate mathematics courses, establishing theoretical design principles as a
way to provide guidance for instructors who want to develop and implement similar applications
to teaching in their own courses. Rather than presenting empirical data from field testing, what
we share herein is the set of design principles at which we have arrived based on our work with
instructors and undergraduates over the past two years. We further highlight different features of
these materials, concluding with insights we have gained in the process of development.

1.1 Connections to Teaching Secondary Mathematics

The Mathematical Education of Teachers II (MET II) Report of the Conference Board of the
Mathematical Sciences (CBMS) recommends that future secondary mathematics teachers
encounter opportunities to explicitly connect the advanced mathematics concepts they learn as
part of their continuing education to the primary or secondary school mathematics concepts they
will eventually teach to their own students (CBMS, 2012). They provide examples of such
connections, such as: “Linear equations and functions are prominent in secondary school
mathematics, and geometric interpretations of them in higher dimensions can deepen teachers’
understanding of these notions” (CBMS, 2012, p. 58). While this observation is mathematically
valuable, the MET II Report does not explicitly define connections or give practical insight into
how such connections can be effectively integrated into traditional undergraduate mathematics
major courses. Mathematics instructors who do not specialize in K-12 mathematics education
may find it particularly difficult to adapt their existing lecture notes or lesson plans to include
such connections (Lai, 2016; Alvarez & Burroughs, 2018; Alvarez & White, 201 8).

To better identify connections to teaching, we developed a framework which delineates five
different conceptualizations of how a connection to teaching might manifest in the context of a
lesson (Table 1; Arnold et al., 2020). The five connections are grounded in existing literature on
MKT, proposed by Ball et al. (2008), where it is suggested that teachers need not only advanced
content knowledge but also a kind of pedagogical knowledge that is enhanced by that content
knowledge. For example, it is important that teachers “be able to hear and interpret students’
emerging and incomplete thinking” (Ball et al., 2008, p. 401), a pedagogical activity only
possible with a deep understanding of the content being taught.

Table 1
Five connections to teaching and their descriptions.
Connection Description
Content Knowledge Undergraduates use course content in applied contexts or to answer

mathematical questions in the course.

Explaining Undergraduates justify mathematical procedures or theorems and use
Mathematical Content  of related mathematical concepts.

Looking Back/ Undergraduates explain how mathematics topics are related over a
Looking Forward span of K-12 curriculum through undergraduate mathematics.
School Student Undergraduates evaluate the mathematics underlying a student’s
Thinking work and explain what that student may understand.



Guiding School Undergraduates pose or evaluate guiding questions to help a
Students’ hypothetical student understand a mathematical concept and explain
Understanding how the questions may guide the student’s learning.

We have developed nine lessons that can be integrated into Calculus I, Discrete Mathematics,
Abstract Algebra, or Statistics curricula. Our development team consists of four mathematicians
who are mathematics education researchers and two mathematics education graduate students.
All six members have experience in high school teaching settings, and the mathematics
education researchers specialize in mathematics teacher preparation and professional
development. Each lesson is textbook-independent, designed to involve active learning, and is
intended to span approximately two 50-minute class periods. Each lesson consists of a class
activity, along with suggested homework and assessment questions. We have inserted tasks that
embed applications to teaching throughout these lessons to make our five connections to
teaching school mathematics explicit.

1.2. Approximations of Practice

Teaching is a human activity. As such, mathematics teachers’ interactions with learners
interweave their content knowledge with their capacity to respond to student thinking and with
their perceptions of students as learners. Teachers are called on to engage in interpersonal
interactions that require both mathematical expertise and skills for probing student thinking or
finding meaning in learners’ perspectives. Prospective teachers need to gain experience with the
variety of questions, conjectures, and ideas arising from learners. The uncertainty about what K-
12 students may ask or how they may respond to teachers’ questions contributes to the
complexity and challenge of teacher preparation.

Grossman and colleagues (2009) propose a framework for thinking about “the teaching of
practice” and preparing future teachers for conditions of uncertainty while in a university setting
rather than a clinical setting. One of three concepts they have identified in their framework is
“approximations of practice,” which refers to opportunities given to beginning teachers to
engage in high-leverage practices fundamental to teaching — in other words, practices that are
important for deepening students’ understanding and also practices that advance their knowledge
for teaching. Specific examples in mathematics may include reading a vignette of a teacher
facilitating a class discussion, watching a video of a class engaged in a number talk, interpreting
a student’s thinking, designing a lesson, and playing the role of a teacher by implementing a
portion of a lesson to their peers. These approximations of practice lie on a continuum of
authenticity, and Grossman et al. (2009) state that even though these approximations are not
“entirely authentic in terms of their audience or execution, they can provide opportunities for
students to experiment with new skills, roles, and ways of thinking with more support and
feedback than actual practice in the field allows” (p. 2077). Grossman et al. posit that
approximations of practice play a critical role in teacher preparation and may be a way to bridge
the gap between what prospective teachers do in their teacher preparation courses and what they
actually experience in their own classrooms.

The framework for approximations of practice is intended to span across subject areas, grade
levels, and context (Grossman et al., 2009). In this work, we focus on approximations of practice
as applied to secondary mathematics, with a broad focus on teaching practices that advance a
prospective teacher’s mathematical knowledge in analyzing and interpreting students’ thinking
and guiding students’ understanding. Certainly, there are approximations of practice that are not



applications of mathematics to teaching. For example, a prospective teacher might write a letter
to hypothetical parents to introduce a hypothetical classroom; it is an approximation of a real
teaching task that mathematics teachers will do in their professional work, but it is not an
application of mathematics to teaching. In this paper, we provide examples of applications of
mathematics to teaching, some of which incorporate approximations of practice, while others
address mathematical knowledge for teaching without incorporating approximations of practice.

1.3 Mathematics in its Human Context

Mathematics and teaching are human activities embedded in social and cultural contexts;
effective teachers understand their students as people and humanize their classrooms. A
humanizing classroom is one that places the ideas of students at its center, celebrates different
approaches and understandings, and encourages students to interpret and understand each other’s
mathematical thinking. Bishop (1988) states that to humanize a mathematics classroom, teachers
must “create a particular kind of social environment” while learners “construct ideas and modify
them in interaction with that environment” and describes how curriculum can support such a
structure.

Secondary mathematics teachers can have difficulty in recognizing the cultural context of a
mathematics classroom, or to see mathematics as part of a social and political space (Parker,
Bartell, & Novak, 2017). Mathematics education researchers are called on to address cultural,
social, and political aspects of this work, including the work of teacher preparation, as part of
participation in a discipline that holds equity at the forefront (Aguirre et al., 2017; Gutierrez,
2018). In this paper, we focus on applications of mathematics to secondary teaching in an
explicitly human context, so that the prospective teachers who engage with our materials will see
that the human context of mathematics is held on par with the mathematics content.

1.4 Designing Applications of Mathematics to Teaching

The development of tasks that address applications of mathematics to teaching derives from
the theory and research on task design. Research on what makes a mathematical task “effective”
along with frameworks for task design has received growing attention from the mathematics
education community (e.g., Smith & Stein, 1998; Watson & Ohtani, 2015; Liljedahl, Chernoff,
& Zazkis, 2007). The use of different mathematical tasks in the classroom can lead to different
kinds of learning opportunities for students. Watson and Ohtani articulate that attention to task
design in research and in classroom practice is important from a cognitive, cultural, and practical
perspective. Cognitively demanding tasks (see Smith & Stein, 1998) have a substantial impact on
students’ learning and conceptual understanding by providing students with the opportunity to
“do” mathematics. Watson and Ohtani (2015) discuss that from a cultural perspective,
mathematical tasks shape the students’ experience with mathematics. Culture, among other
aspects, plays a large role in one’s learning experience. Practically speaking, mathematical tasks
are a staple of the mathematics classroom; they are the “things to do” (Watson & Ohtani, 2015,
p. 3).

There are many features to consider when designing a mathematical task. The design process
begins with considerations regarding the purpose and curricular aim of the task. Is the task
focused on helping students learn a mathematical concept, a pedagogical concept, or some
specialized or practical aspect of mathematics (see Watson & Ohtani, 2015)? It is also important
to incorporate knowledge of mathematics and pedagogy when designing tasks, especially when
considering how the tasks will be used. Multiple researchers tie the work of task design to Ball et



al.’s (2008) theory of MKT. Sullivan, Knott, and Yang (2015), for instance, describe how
knowledge for teaching mathematics and knowledge of pedagogical practices are two key
components of task design. Liljedahl et al. (2007) expand on the interaction between these
knowledge bases. They specify four ways tasks are used in teacher education: the use of
mathematics to promote understanding of mathematics; the use of pedagogy to promote
understanding of mathematics; the use of mathematics to promote understanding of pedagogy;
and the use pedagogy to promote understanding of pedagogy. Additionally, Thanheiser et al.
(2015) offer three design aspects to consider when creating tasks for prospective teachers:
cognitive demand level, authenticity in terms of connections to the K-12 classroom, and the
extent to which tasks provide opportunities for prospective teachers to develop their MKT.

Other researchers, drawing inspiration from the MKT framework, have designed tasks and
frameworks specifically for prospective secondary mathematics teachers. Heid, Wilson, and
Blume (2015) focused solely on mathematical understandings, and their Mathematical
Understanding for Secondary Teaching (MUST) framework is grounded in classroom practice.
They designed teaching prompts that allow prospective teachers to analyze secondary
mathematics content and describe what mathematical understanding a teacher would use.
Moreover, Lai et al. (2019) focused on improving prospective teachers’ experiences in
undergraduate mathematics courses by relying on pedagogical contexts. They used
approximations of practice (Grossman et al., 2009) embedded in pedagogical contexts and
designed a framework to analyze prospective teachers’ development of MKT. Wasserman et al.
(2019) developed an instructional model that examines how advanced mathematics in standard
undergraduate mathematics courses is related to school mathematics. They focused on both
mathematical and pedagogical contexts and used pedagogical teaching situations, such as how a
teacher responded to a student, to motivate the advanced mathematics undergraduates would
learn.

We focus on designing materials for prospective secondary mathematics teachers that will be
used by a variety of undergraduates. Like Wasserman et al. (2019) and Lai et al. (2019), we
consider both mathematical and pedagogical contexts in the design of our tasks. To draw
attention to the practice of teaching, we embed our five connections between undergraduate
mathematics and school mathematics in these tasks.

2. Design Principles

We refer to applications of mathematics to teaching as tasks that situate undergraduate
mathematics topics in the context of teaching secondary mathematics. The tasks we developed
are influenced by the five connections to teaching we defined in section 1.1. Because learning to
teach requires interpersonal interactions with other people, in this paper we focus on tasks that
include hypothetical situations that feature human beings. We created these tasks with two
objectives in mind: (1) to scaffold undergraduates’ advancement of content learning goals or (2)
to provide undergraduates opportunities to engage in practices necessary for mathematics
teaching. Our three design principles, Habit of Respect, Active Engagement, and Recognition of
Mathematics as a Human Activity, guided the overall development of these tasks.

How did we arrive at these three design principles? Liljedahl et al. (2007) describe a
recursive process for developing good tasks: predictive analysis, trial, reflective analysis, and
adjustment. This aligns with the process we used in designing the tasks and arriving at our design
principles. That is, our initial efforts at designing and predicting the affordances of tasks resulted
in some mathematically rich tasks, but when implemented, often left the connections to teaching



that we were trying to promote too easy to miss. We reflected throughout the length of the initial
semester of field testing on what aspects of our tasks were effective in highlighting our five types
of connections and enriched those components. The interviews with instructors and
undergraduates, together with examinations of how undergraduates responded to the tasks, gave
us valuable insight into revisions that were necessary to make. We also drew inspiration from our
own experiences in the K-12 classroom, reflecting on our roles as teachers, mathematics teacher
educators, and researchers. After another semester of field testing, we refined even further. Now,
the benefit of looking back and reflecting on this process enables us to articulate our three design
principles. We did not have a sophisticated enough view to articulate them at the beginning, and
only came across them through a process of intense reflection and discussion. What we present
here illustrates some of the progression we made and is the final result. We expect that
describing our process will help others begin their design process with the benefit of the
discoveries we made.

Habit of Respect. Effective teachers validate students’ thinking and recognize that when
students make errors, they are often basing their reasoning on justifications that make sense to
them. The Habit of Respect design principle reflects our aim to promote practices that nurture
students’ assets and understandings and to offer alternatives to deficit-perspectives that focus on
lack of understanding. The practice of evaluating student work requires more than the content
knowledge needed to assess whether the student’s mathematical work is correct or incorrect; it
also requires knowledge to assess what a student does and does not understand. This principle
centers on helping future teachers to address different perspectives in a manner that conveys
respect for student thinking and reasoning and for the students as members of the classroom
community, both when a student’s work is correct and when it is incorrect.

Active Engagement. All undergraduates should build deep conceptual understanding of the
mathematics they are learning, and research has shown that this understanding is fostered when
students are actively engaged with these concepts (CBMS, 2016; Freeman et al., 2014). As K-12
mathematics instruction continues to shift to a more student-centered approach, it is necessary
for prospective teachers themselves to learn mathematics in such an environment so that they are
better equipped to teach in a student-centered manner. Classroom experiences that allow
prospective teachers to validate conjectures, justify their reasoning, or reflect on meaningful
questions all provide valuable models for their future teaching. They learn to pause to allow
students to make sense of new ideas, to invite students to be co-discoverers of mathematical
concepts, and to establish mathematical norms that encourage students to take ownership for the
creation of mathematics. The Active Engagement design principle encompasses the
understanding that undergraduates can actively construct knowledge rather than simply be told,
for example, a method to use, though there are times when it is unreasonable to expect
undergraduates to “invent” a clever strategy or method on their own. At the heart of this design
principle is actively engaging undergraduates in developing understanding and deriving meaning
underlying the methods, theorems, or ideas relevant for a mathematical task.

Recognition of Mathematics as a Human Activity. Mathematics teachers require more than
a deep underlying understanding of the mathematics they will teach because the practice of
teaching involves interacting with people, the learners of the mathematics. Thus, prospective
teachers need to be prepared to communicate mathematical content to other human beings.
During any given day, teachers have numerous interactions with their students: teachers listen
and respond to students’ questions; teachers ask students questions; teachers probe student
thinking; teachers evaluate students’ work and decide how to help move students’ mathematical



ideas forward when their ideas are incomplete; teachers consider students’ posed conjectures.
For all of these human interactions, teachers’ fluent understanding of the mathematical content
they are teaching must be coupled with an understanding of how to interact with students and
their mathematical work. The Recognition of Mathematics as a Human Activity design principle
simultaneously addresses content knowledge and the types of interpersonal interactions that are
valuable to future teachers.

3. Ilustrations of the Design Principles

Embedded throughout the META Math lessons are various tasks that feature mathematics in
a human context. The examples we provide in this section were developed for the purpose of
inserting approximations of practice into the curriculum or to advance content learning goals
during the lesson. In the subsections below, we illustrate our design principles with these
examples. While the examples often include more than one of the three design principles, tasks
focusing on approximations of practice aligned closely with the Recognition of Mathematics as a
Human Activity design principle, and tasks intended to advance content learning goals aligned
closely with the Active Engagement design principle. In all of our tasks, we strive to incorporate
the Habit of Respect design principle to provide more experiences with appropriate language,
non-deficit thinking, and positive dispositions in mathematics teaching that reflect this essential
habit for teachers.

3.1. Examples of Approximations of Practice

Approximations of practice provide future teachers opportunities to practice and learn high-
leverage skills necessary for teaching while in the relatively simplified setting of a university
classroom, without the complexities and distractions of a clinical setting. We use the following
categories presented in Table 2 to label the various types of approximations of practice tasks we
developed, though many tasks encompass more than one of these categories.

Table 2
Categories of the “approximations of practice” tasks embedded in our lessons

Category Description

Undergraduates are presented with a student’s mathematical work or

Analyzing Mathematical :
na'yzing hlathematica conjecture. Undergraduates may be asked to (1) speculate on the

Reasoning . . .
reasoning a student may have used to make their conjecture or to
carry out their work, (2) identify if the student’s reasoning is flawed,
(3) explain when the student’s reasoning works, or (4) explain what
mathematical understanding may underlie the student’s reasoning.
Examining Hypothetical students make a conjecture or use mathematical
Overgeneralization reasoning based on methods or theorems that students typically may

memorize, and their work or conjecture inappropriately
overgeneralizes or applies the method or theorem. Undergraduates
are asked to consider when the students’ methods are inconsistent,
incomplete, or when the method fails. Overgeneralization is a
common source of student mathematical misconceptions (Van
Dooren, De Bock, Janssens, & Verschaffel, 2008), so while the
Examining Overgeneralization tasks might be viewed as a subset of




Analyzing Mathematical Reasoning, we choose to set them apart to
emphasize their importance and prevalence.

Encountering Multiple ~ Undergraduates are presented with two or more students’

Perspectives mathematical work on the same problem. Each student uses different
reasoning, but the mathematical work is valid. Undergraduates are
prompted to explain why the student reasoning is correct and how to
help students understand different perspectives.

Highlighting Teaching Undergraduates are presented with a teaching decision made by a
Decisions hypothetical teacher and are asked to explain the value of that
decision.

Posing and Evaluating Undergraduates are presented with student work that contains flawed

Questions reasoning. Often paired with an Analyzing Mathematical Reasoning
task wherein undergraduates are asked to first describe what the
student does and does not understand, these tasks then further prompt
undergraduates to write or evaluate questions they can ask the student
to guide their understanding

3.1.1. Analyzing Mathematical Reasoning

A daily teaching practice entails analyzing the mathematical reasoning evidenced in student
work. Teachers need to be able to assess whether a student’s mathematical work is correct. If so,
why is the work valid? If not, where are there flaws in the student’s reasoning, when did they
occur, and what understanding does the work convey? Analyzing Mathematical Reasoning tasks
approximate this teaching practice by presenting hypothetical student work, both correct and
incorrect, and prompting undergraduates to determine what mathematical ideas the student does
or does not understand and to identify, if appropriate, where an error occurred. These tasks may
explicitly state whether a student’s work is correct or leave the undergraduate to establish the
accuracy of the student’s work. The provision of this information depends on whether the task
intends to focus undergraduate discourse on if the work is accurate or on why the work is flawed.
Consider the example presented in Fig. 2 from a lesson on foundations of divisibility used in a
discrete mathematics class, focused on a hypothetical student, Adam. The problem explicitly
tells undergraduates that Adam’s conjecture is incorrect and prompts undergraduates to identify
where the error occurs.

2. Adam incorrectly claims that if a number is divisible by both 2 and 10, then it is divisible
by 20. Adam’s proof to his conjecture is shown below. Identify the error in his proof and
explain why it is an error.

Let # be any integer that is divisible by 2 and 10. By the definition of
divisibility, since # is divisible by 2, there is an integer k£ where n=2k.
Since » is also divisible by 10, that means that k must be divisible by 10.
By definition of divisibility, there is an integer / where k=10I. Using
substitution, n=2k = 2(10/)=20l. Since n=20! for some integer /, n is
divisible by 20.

Fig. 2. Adam’s task: An example of an Analyzing Mathematical Reasoning task from the
Foundations of Divisibility lesson in Discrete Mathematics.



Alternatively, Fig. 3 presents a task from a lesson in abstract algebra focused on solving
equations in Z,. Students are prompted to analyze Thuy’s work, which contains an error, but the
undergraduate is not told whether her work is correct. Undergraduates must first assess the
accuracy of Thuy’s work themselves and describe what underlying assumptions she makes.

2. Thuy’s work for finding solutions to x* —x =0 in Z, is shown below.
X=X =0
x(x=1) =0
Therekere, cithar
X=0 o ¥-1=0
The selukion set i f 0, l}

a. From her work, what assumption does Thuy seem to be making about Z, ? Is this
assumption correct?

b. Thuy checks each element of Z, and verifies that her solution set is correct. Her
teacher asks her to attempt to solve the same equation, this time in Z,. What is
the teacher hoping Thuy will understand about her approach by working in Z?

Fig. 3. Thuy’s task: An example of an Analyzing Mathematical Reasoning task from the Solving
Equations in Z, lesson in Abstract Algebra.

3.1.2 Examining Overgeneralization

Examining Overgeneralization tasks can illustrate instances where hypothetical students
apply a rule or method incorrectly and ask undergraduates to explain why the students might
have made this error. In the following example from the foundations of divisibility lesson in
discrete mathematics, Olivia first learns the divisibility rule for six and then incorrectly applies
similar logic to develop a divisibility rule for 60 (Fig. 4). Here, Olivia may not recognize that the
divisibility rule for six holds because the factors 2 and 3 are relatively prime. These types of
tasks provide opportunities for prospective teachers to consider how and why students can
overgeneralize a rule and to think about how they would respond to a student’s conjecture in a
way that considers and respects the mathematical knowledge the student demonstrated. We often
drew inspiration from our own experiences in the K-12 classroom and with common student
mistakes to develop these types of tasks.

2. Olivia says that “because 60 is divisible by 6 and 10, if a number is divisible by both 6
and 10, then the number is divisible by 60.”
a. Provide two reasons why you think Olivia made this conjecture?
b. Olivia’s conjecture is false. Provide a counterexample showing that it is false.
c. Write two questions you can ask Olivia to help her understand that her conjecture
is not true. Explain how your questions might help Olivia.

Fig. 4. Olivia’s task: An example of an Examining Overgeneralization task from the Foundations
of Divisibility lesson in Discrete Mathematics.

Other Examining Overgeneralization tasks feature hypothetical students applying commonly
taught methods that expire (Dougherty, Bush, & Karp, 2017). For example, in a Calculus I lesson
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about the derivatives of inverse functions, we prompt undergraduates to consider the
mathematical ideas and properties underlying a method for finding inverses commonly taught in
high school that leads to difficulties in many contexts. Undergraduates are first presented with
Alex’s work in finding the inverse of f{x)=(2/3)x+1, as shown in Fig. 5. Alex employs the
method of “switching x and y and solving for y,” a method undergraduates often use themselves.
Later, in problem 2 of the lesson (see Fig. 6), undergraduates are presented with contexts in
which Alex’s method introduces mathematical inconsistencies and are asked to describe why this
common method is mathematically incomplete. In working through this sequence of problems,
undergraduates will learn that the “switch x and y and solve for y” method presents difficulties
when the variables in question have associated units or different domains. The goal is to help
undergraduates learn that this common method used for quick computation, when
overgeneralized or used without sufficient attention to the context, detracts from important
considerations related to the properties of inverses. This highlights the limitations or expiration
of the method for building mathematical meanings.

Alex’s work

1:1-‘"?’3-‘}(4‘1
1-:1?".29 *|
1_;1:1'4#3‘%
Lo

I

Fig. 5. Alex’s work for finding the inverse function for f{x)=(2/3)x+1, an excerpt from a task in
the Derivative of Inverse Functions lesson in Calculus 1.
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2. Now consider two problems where a high school student used Alex’s method of
switching the variables and solving for the dependent variable to find the inverse

function.
Find the inverse function of Find the inverse function of
TC)= %C+32Where Cis the fx) = % forx#1 .

temperature in Celsius and F = T(C)
gives the temperature in Fahrenheit.

Lk F- 3Cxs 2L X

= %’F*%'L X"‘2:+I

-4 -t
C'S'L 5F (3_.\)( = Y\j—l-l
f’_(c,-'b‘ﬂ"r' Yyx =% =244\
1 '-3)(-1*3:]*)(
ylx-2) = X+

2 X+ |
y* 5 S XFE

a. Describe why the student’s work for the temperature function is problematic.

b. Describe why the student’s work for the rational function is problematic.

c. Why is it problematic to use Alex’s method of switching the variables and solving
for the dependent variable to find an inverse function?

Fig. 6. Problematic situations that arise in an Examining Overgeneralization task from the
Derivatives of Inverse Functions lesson in Calculus 1.

3.1.3. Encountering Multiple Perspectives

In the classroom, students often share their ideas and ways of thinking and commonly present
different ways to solve a problem. Different approaches can highlight distinct mathematical
aspects of a concept or a method. An important teaching practice is to recognize that there are
many ways to view and approach a mathematics problem and to acknowledge and link these
perspectives to the underlying mathematical ideas. Encountering Multiple Perspectives tasks
highlight different ways students may solve a problem and provide undergraduates an
opportunity to not only see these different approaches, but also investigate the mathematics
behind each perspective.

The inverse function task mentioned above includes two other hypothetical students, Jordan
and Kelly, as shown in Fig. 7. Undergraduates are asked to examine Alex, Jordan, and Kelly’s
work, where Jordan and Kelly’s work reflects a reliance on the definition of an inverse function,
the composition of a function with its inverse, and function notation to arrive at an expression of
the inverse that avoids the same difficulties as Alex’s method. Examining multiple perspectives
in this problem allows undergraduates to examine how a common method, which might be the
method they rely on, suppresses important mathematical aspects of inverse functions, and to
study other methods that highlight those important aspects.
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1. Consider how Alex, Jordan and Kelly found the inverse function of f(x) = %x +1.

Alex’s work Jordan’s work Kelly’s work
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Compare and contrast the key mathematical ideas used by Alex, Jordan, and Kelly to find the
inverse function of f(x) = %x + 1. Make sure to identify which properties of inverse functions

each student uses, if any.
Fig. 7. Alex, Jordan, and Kelly’s task from the Derivatives of Inverse Functions lesson in
Calculus I: Alex’s method (from Fig. 6) alongside two other hypothetical students’ methods.

Figure 8 presents another example of an Encountering Multiple Perspectives task. In a
binomial theorem lesson used in discrete mathematics, Phoebe and Anita both correctly state that
the coefficient of a’h” in a binomial expansion is 10, but they arrive at their answers differently.
Phoebe counts the “a’s” and Anita counts the “b’s,” thus leading to two different combinations
that produce the same result. Teachers need to be prepared to help their students recognize that
both approaches are correct and to be able to explain why. By incorporating these types of tasks
into the curriculum, prospective teachers can practice interacting with different students and
responding to their different ways of thinking. A teacher who sees the power of understanding
multiple paths to a solution may be more open to encouraging their students to look at a problem

in multiple ways.

6. Phoebe and Anita were working on the following problem.

Suppose you were to expand
(a+ b)5 =(a+b)a+b)a+b)a+b)a+b)

Fill in the coefficients in the expansion:
(@+b)’=_d+__a'b+_a’b’+_ &P+ _ab'+_ B

Explain how you determined your coefficients.

Phoebe says that the coefficient of a’b” is (_f,) = 10 because she was counting the a’s.
Anita claims that the coefficient is (Z) = 10 since she was counting the b’s. Write two
questions you could ask Phoebe and Anita to help them resolve this. Explain how your
questions might help them.

Fig. 8. Phoebe and Anita’s task: An example of an Encountering Multiple Perspectives task
from the Binomial Theorem lesson in Discrete Mathematics.
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3.1.4. Highlighting Teaching Decisions

Teaching involves making many decisions. Teachers decide, for instance, how to structure a
classroom, how to sequence a course of lessons, how to elicit students’ ideas, and how to use
assessments to enhance learning. Prospective teachers may not be aware of all of these decisions
until they are teaching in their own classrooms. Highlighting Teaching Decisions tasks bring
relevant instructional decisions to light and give undergraduates the opportunity to think about
these decisions before they begin teaching in a K-12 classroom.

One instance that illuminates an important instructional decision occurs in part b of Thuy’s
task in section 3.1.1 (see Fig. 3). Thuy’s instructor prompts her to work the same problem in an
integral domain that is less conducive to her approach. Undergraduates describe why challenging
a student’s misconceptions with counterexamples may be more effective than telling them they
did a problem wrong, especially when they can see that the student has still gotten the correct
answer. In this part of the problem, the undergraduate is analyzing a teaching decision.

Another example focuses on the sequence of topics taught in a curriculum (Fig. 9). In a
statistics lesson on variability, undergraduates learn about different measures of spread,
including mean absolute deviation (MAD) and standard deviation (SD). Teachers are often
called on to “look back™ and make connections to concepts previously taught. Middle school
students typically calculate and use the MAD as a measure of variability and this measure of
variability is then built upon in high school as students learn about SD. Thus, this task prompts
undergraduates to consider why it is important for students to first learn MAD before SD.

2. Consider different measures of variability.
a. Why might it be helpful for students to learn MAD (mean absolute deviation) before SD
(standard deviation)?

Fig. 9. A Highlighting Teaching Decisions task from the Variability lesson in Statistics.

3.1.5. Posing and Evaluating Questions

NCTM (2014) states that “Effective teaching of mathematics uses purposeful questions to
assess and advance students’ reasoning and sense making about important mathematical ideas
and relationships” (p. 10). Thus, a common practice of teaching is to ask students mathematical
questions about their work, which can be challenging for novice teachers. Posing and Evaluating
Questions tasks are intended to help undergraduates understand different types of questions that
can be asked and how those questions may or may not be helpful to the student. This practice of
posing questions often occurs after the teacher has evaluated student work in some way, meaning
that these types of tasks occur after undergraduates complete a corresponding Analyzing
Mathematical Reasoning task.

In some instances, as demonstrated by Zayn’s task in a lesson on variability used in Statistics
(Fig. 10), undergraduates are asked to generate questions on their own that they could ask a
student. Then, undergraduates are prompted to explain how the questions may be helpful. In this
task, undergraduates apply their content knowledge and develop skills to respond to incorrect
student work in a manner that conveys respect for student thinking. Undergraduates evaluate the
student work to not only determine whether the solution is correct, but also to determine what
that solution reveals about student thinking. This serves the purpose of allowing undergraduates
to respectfully consider what the student understands when thinking of questions to pose that
help guide student learning. Undergraduates can recognize that Zayn’s answer has some validity
to it: while the median and IQR may be easier measures to compute, that is not a statistical
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reason to use these measures over the mean and standard deviation. In this task, undergraduates

gain experience in posing questions that help pinpoint what students understand about the
problem, a valuable practice for deepening students’ conceptual understanding.

Fig. 10. Zayn’s task (adapted from the LOCUS Project, 2020): An example of a Posing and
Evaluating Questions task from the Variability lesson in Statistics.

4. Zayn, a high school student, is working on the following question.

Carlton found data on the percent of area that is covered by water for
each of the 50 states in the U.S. He made the dotplots below to
compare the distributions for states that border an ocean and states
that do not border an ocean.

States that border n the ocean States that do not border on the ocean

Percent of Area Covered by Water Percent of Area Covered by Water

What is the best statistical reason for using the median and IQR, rather
than the mean and standard deviation, to compare the centers and
spreads of these distributions?

Zayn gives the following incorrect answer:
“The median and IQOR are easier to calculate than the mean and standard deviation.”

a. Why is he incorrect?
b. Write a question that you could ask Zayn to help him revise his work. Explain

how your question could help his understanding.

In other instances, undergraduates are prompted to evaluate pre-written questions and explain
how they may or may not help guide a student’s understanding. For instance, we could alter part

b in Zayn’s task above to include an assortment of pre-written questions (Fig. 11). Here,
undergraduates are asked to explain how these questions (1) assess understanding, (2) advance
understanding, and (3) overlook student work or strategies that may be leveraged to help the
student reflect on or build their understanding. Assessing questions are meant to gather
information about what the student does or does not understand. Advancing questions are those

that “build on, but do not take over or funnel, student thinking” (NCTM, 2014, p. 41). Questions

that are not helpful may, for instance, ignore the work students have completed or directly

inform students on the next step to complete.

i

1l

iii.

b. Consider the following questions that one might ask Zayn to help him revise his work.
Explain how the following question may help a teacher assess what Zayn
understands.

“Can you explain why your answer is a statistical reason? ”

Explain how the following question may help Zayn to advance in his
understanding of summary measures?
“How do you calculate all of those summary measures? How is each data point

used when calculating each measure?”’

Explain why the following question may not help Zayn in revising his work.
“What about using the mean and standard deviation instead?”
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Fig. 11. An example of including pre-written questions in Zayn’s task in a lesson on variability
in Statistics.

3.2. Examples of Advancing Content Learning Goals

All of the examples in this paper involve interacting with human beings about mathematics;
yet, that alone suffices neither for classifying them as approximations of practice nor for
ensuring that they provide future teachers with opportunities to engage in teaching practices.
Some tasks that involve people scaffold the delivery of formal mathematical content at the heart
of a course. These tasks remain situated in the context of teaching but in such a way that the
undergraduates focus on the mathematical content rather than teaching practices. We categorized
the tasks we developed for the purpose of advancing content learning goals as shown in Table 3.

Table 3

Categories of the “advancing content learning goals” tasks embedded in our lessons
Category Description

Introducing Ideas A goal in several of the tasks is to introduce a method or proof

technique that is new to undergraduates. Following our Active
Engagement design principle, we created these tasks to introduce
new mathematical ideas in a manner that allows undergraduates to
construct their own knowledge, rather than simply being presented
with a method or technique.

Applying Content Some tasks draw upon undergraduates’ (possibly recently acquired)

Knowledge advanced content knowledge. The decisions they make and the
responses to and observations of the work of the human beings in the
tasks requires the undergraduates to apply their content knowledge to
resolve mathematical questions.

3.2.1. Introducing Ideas

Some of our materials introduce or scaffold important mathematical ideas mostly grounded
in relatively direct methods of instruction; we made this choice with classroom time constraints
in mind or because it was unreasonable to expect undergraduates to “invent” a clever strategy or
procedure on their own. In these cases, we situate the instruction in an unfolding narrative of
hypothetical students working through a mathematical problem, using the hypothetical students’
discoveries and sticking points to focus undergraduates’ attention on important mathematical
concepts and on forming mathematical meanings (or, on sense making and reasoning in problem
solving).

The sequence of questions in a Newton’s Method lesson in Calculus I (excerpt from lesson
shown in Fig. 12) illustrates our use of tasks that introduce mathematical ideas in the context of
human beings engaging in thinking and reasoning. These two questions graphically introduce the
first few steps of Newton’s Method by incorporating a collaborative discussion that arises in a
hypothetical group of students. Undergraduates follow Nnamdi and Mari’s thought processes,
and in doing so, they perform the necessary first steps of Newton’s Method while also
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considering how these steps are beneficial for estimating zeros of a function. The process is not
presented as fact and Nnamdi and Mari are not authorities, so undergraduates are more likely to
engage in examining the appropriateness of their work.

Consider the function, f(x) = %xS - %x + 1—10 , for which Nnamdi wanted to find zeros. Nnamdi

initially thinks that x = 1.2 is a good estimate of the zero, C.

1. Nnamdi zooms in on the graph and sketches the tangent line at x, = 1.2 (see graph
below).

a. Label the x-intercept of Nnamdi’s tangent line as x; .

b. Write the equation of Nnamdi’s tangent line in point-slope form and find the value
of x,.

2. Mari continues Nnamdi’s idea of using a tangent line and she sketches the tangent line to
the graph of f(x) at the point (x,, f(x,)) . She claims that the x -intercept of her tangent
line seems to be closer to the zero C than x; .

a. Sketch in Mari’s tangent line. Label the x-intercept of her tangent line as x, .

b. Do you agree with Mari’s claim? Explain why or why not.

c. Write the equation of Mari’s tangent line in point-slope form and find the value of
X,.

Fig. 12. Nnamdi, Mari, and Amy’s task: An example of Introducing Ideas tasks from the
Newton’s Method lesson in Calculus.

3.2.2. Applying Content Knowledge

After learning a new theorem or method, undergraduates should be able to apply this
knowledge to solve mathematical questions. This next sequence of questions from the Newton’s
Method lesson (see Fig. 13) illustrates tasks where the focus is on undergraduates applying their
content knowledge to both new and similar mathematical situations.
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3. Amy said she used both Mari’s and Nnamdi’s ideas to find a point, x; , even closer to the
zero C.
a. What do you think she did? Explain.
b. Find x,.

6. Reconsider f(x) = %xj - lzx + ﬁ) . Nnamdi now wants to use Newton’s method to
approximate the zero, A. He wonders what will happen if he uses the following initial
guesses: — 0.5, —1, — 1.5, and —2.

a. Without doing any calculations, what zero of f do you expect each of these initial
guesses to lead to and why? Use the graph above to graphically show (by drawing
tangent lines) what happens when you apply Newton’s method using these initial

guesses.
i. x=—05 iii. x=—15
. x=—1 iv. x=-2

b. Use Newton’s method with all four initial guesses to calculate a zero of f. Give
your answer to three decimal places, when applicable.

¢. Summarize to Nnamdi what you observe in the graph of f that indicates what
zero you will approximate given your initial guess.

Fig. 13. Nnamdi, Mari, and Amy’s task: Examples of Applying Content Knowledge tasks
from the Newton’s Method lesson in Calculus.

The work that undergraduates are asked to do in problem 3 is to apply what they learned
from Nnamdi and Mari’s reasoning in problems 1 and 2 (Fig. 12) to describe and justify the
process Amy used. To answer problem 6a (Fig. 13), undergraduates need to generalize the
procedures from problems 1 and 2, which involves them in the process of creating a method for
determining zeros of a function based upon their understanding of Nnamdi’s and Mari’s
reasoning. This requires them to engage at a deeper level than if they are simply following steps
that have been outlined for them. In problem 6b, undergraduates are asked to apply Newton’s
Method (which they just formalized) with different initial guesses to calculate a zero of a
function. Finally, in problem 6c, undergraduates return to the context of Nnamdi to summarize
what they have learned graphically about Newton’s Method. The setup for this task involves
Nnamdi’s attempts to estimate the zero using tangent lines, and the sequence of questions a, b,
and c engages the undergraduates in circling back to Nnamdi’s initial question. By asking
undergraduates to summarize their ideas to Nnamdi, the task utilizes the narrative device of
Nnamdi as a peer learner in calculus; the undergraduates learn alongside him, with the end result
that they are building experience with explaining what they have learned to another mathematics
learner.
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4. Guidance for Creating Tasks that Address Applications of Mathematics to Teaching
The design principles and types of tasks described in this paper can guide the development of
tasks that include applications of mathematics to teaching. Figure 14 depicts the relationship
between our design principles and the tasks we designed to enhance prospective teachers” MKT
by embedding mathematics in a human context. These tasks were guided by our three design
principles and each task includes one or more of our five connections to teaching. We can further
categorize tasks based on whether we intended the task to help undergraduates advance content

learning goals or to engage undergraduates in practices fundamental to teaching secondary
school mathematics.

Design Principles
e Habit of Respect

e Active Engagement

e Recognition of Mathematics as a Human Activity

that enhance MKT by embedding

mathematics in a human context
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Fig. 14. Depiction of the relationship between our design principles and tasks that embed
connections to teaching

The tasks we developed for the META Math lessons have been field tested in several
university classes across the United States in the last two years. By analyzing how instructors
used these tasks and how undergraduates responded to them, we gained valuable insight that
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influenced key revisions. For instance, instructors and undergraduates provided useful feedback
about what worked well in the tasks and what could be improved. In their interviews, many
expressed positive impressions of encountering hypothetical student work in the tasks.
Instructors, for instance, liked how the hypothetical students make similar mistakes as their own
undergraduates. One instructor pointed out that an early iteration of a task that involved a
hypothetical student did not require the hypothetical student context in any meaningful way. This
feedback led us to enhance certain attributes of our hypothetical student work. We also learned
how much time instructors spent on each task and whether more guidance on tasks was needed.
Examining undergraduates’ written responses to our tasks also afforded us the opportunity to
reflect on the quality of their responses. We used this information to revise tasks to address
discrepancies between the type of response we expected and those received.

In an effort to help instructors build from our experience when creating these tasks, we
describe what we learned and offer three important recommendations to consider when
developing them: (1) give human beings meaningful roles in tasks; (2) focus undergraduates’
attention on central ideas; and (3) provide undergraduates sufficient scaffolding. We further
elaborate on these recommendations in the following sections.

4.1 Give Human Beings Meaningful Roles in Tasks

We became more clear about how we included the hypothetical human beings in our tasks
and identified ways that the role of a human being contributed to the learning of mathematics.
There was a purpose for the inclusion of humans, and they were not just “window dressing” to a
typical mathematics problem. We looked for ways to incorporate the human context in a
meaningful way; if the task could be posed without the human context and the meaning of the
task did not change, we refined the human’s role to ensure that it was more than ancillary.

In our first drafts of the materials, all of the tasks that included a human were in the category
of approximations of practice. For example, the Phoebe and Anita task (Fig. 8) provided
undergraduates in discrete mathematics an opportunity to first view two students’ differing (and
correct) approaches to find the coefficient of a term in a binomial expansion. The task prompted
undergraduates to consider how they, as teachers, would help Phoebe and Anita understand that
both methods were appropriate. But, as we continued developing applications to teaching, we
added hypothetical students to tasks meant to advance content learning goals. For instance, the
Newton’s Method task from section 3.2 (Figs. 12 and 13) did not originally include the human
beings Nnamdi, Mari, and Amy. Rather, the task contained a set of instructions for
undergraduates to follow from which they were to uncover Newton’s Method. We found that the
task took too long, did not achieve our active engagement design principle, and undergraduates
were not taking away the insights and connections to teaching we intended. We adjusted by
shifting the focus of this task to follow three students’ reasoning. Inserting Nnamdi, Mari, and
Amy enhanced the way undergraduates engaged with the Newton’s Method task. We found that
this inclusion humanized the mathematics in the lesson and encouraged undergraduates to
consider mathematical ideas rather than taking a presented idea as “true” because an authority
stated it. These humans provided a pacing device for the task and using them lets us “pause” the
task in places where we want undergraduates to deeply think about content before moving on to
the next part of the task.

When incorporating human beings into tasks, we also became more intentional about the
names of the hypothetical students we used. To better reflect gender, cultural, and ethnic
diversity, we strove to include names that allowed a variety of genders and represented a range
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of possible cultural ties and ethnicities (e.g., Thuy, Zayn, Nnamdi, Amy). We also chose to
include realistic names. For example, the Alex, Kelly, and Jordan task from the inverse lesson in
calculus initially used the names Tom, Jerry, and Felix, and we found we were unsatisfied that
these evoked images of cartoon characters rather than people.

4.2 Focus Undergraduates’ Attention on Central Ideas

Undergraduates can be easily distracted by or drawn toward examining computations, and we
became intentional about refining tasks to reduce computations and to provide guidance about
whether the work we are presenting is error free. In all of our tasks, regardless of mathematical
content, we found that when undergraduates analyzed student work, they were more likely to
check the accuracy of computations than to think about the deeper mathematical ideas
underlying the computations or methods shown in the work. As an example, one early version of
Alex, Jordan, and Kelly’s task from the Calculus I lesson on derivatives of inverse functions (see
Fig. 7) instead featured Tom, Jerry, and Felix finding the inverse of a rational function (Fig. 15).
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Explain how Tom, Jerry, and Felix found the inverse of f(x) = x+3 :
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Fig. 15. Version 1 of three students finding the inverse of a function.

Because the rational function involves relatively more complex computations for the
undergraduates, instructors reported that too much class time was used investigating the
computational work of Tom, Jerry, and Felix. To focus undergraduates’ attention on the
conceptual ideas we had intended for this task to highlight, we changed the function from a
rational function to a polynomial function of degree 1 (referred to as linear functions in school
mathematics) (Fig. 16) and encouraged instructors to let their undergraduates know that all
computations were correct. The simplicity of the linear function minimized opportunities for
undergraduates to get bogged down in checking computations.
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1. Consider how Alex, Jordan and Kelly found the inverse function of f(x) = %x +1.
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Compare and contrast the key mathematical ideas used by Alex, Jordan, and Kelly to find the
inverse function of f(x) = %x + 1. Make sure to identify which properties of inverse functions
each student uses, if any.

Fig. 16. Alex, Jordan, and Kelly’s task: Version 2 of three students finding the inverse of a
function.

We also provided more structure in the questions we wanted undergraduates to consider in an
attempt to focus on the conceptual understanding of each approach. When prompted to “Explain
how...” in the first version of this task, undergraduates felt compelled to list the sequence of
algebraic manipulations of each student rather than attend to the mathematical reasoning that
gave rise to their method. The second version prompts undergraduates for a comparison, which
leaves less room for surface-level commentary, and reminds undergraduates to identify important
properties of inverse functions. Finally, we found the first version of Felix’s work needlessly
opaque about how the student used the composition property of inverses. By making the
mathematical reasoning explicit, we gave undergraduates a physical place to point to in
discussions about how Felix (now named Kelly) used the properties of inverse functions.

4.3 Provide Undergraduates Sufficient Scaffolding

The Active Engagement design principle inspired us to think of ways we could incorporate
the right balance of openness and structure in our tasks. We wanted to present undergraduates
with opportunities to consider new ideas and ask students questions after analyzing their
hypothetical work. Initially, some of our tasks were too open, leaving undergraduates unsure of
how to respond, as well as leaving instructors unsure of how to help undergraduates proceed with
the problems. This became readily apparent in tasks where undergraduates were prompted to first
analyze student work and then write questions and justify how they would help guide a student’s
understanding. Figure 17 illustrates an early draft of such a task in a discrete mathematics lesson
on the binomial theorem. In this problem undergraduates were presented with Henry, a high
school student, and his incorrect work expanding a binomial. In part ¢, we asked undergraduates
to write questions they would ask Henry to help him correct his work.
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1. Henry, a high school student, expanded (2x — y)* using the Binomial Theorem
and made some errors. Below is his work.
(2x —y)4 =2t — 8x3y —12x%y* — 8xy* — y*

a. What errors did Henry make?

b. What does Henry understand about the Binomial Theorem?

c. What questions can you ask Henry to help him correct his work? Explain
how your questions might help Henry.

Fig. 17. Version 1 of Henry’s task in a Binomial Theorem lesson in Discrete Mathematics.

Undergraduates found it difficult to come up with questions and were often unsure of where
to start. Instructors also needed more guidance to help their undergraduates with this type of task.
While our intention was to provide undergraduates the opportunity to create any type of
question, it became clear that more guidance was needed, particularly direction on what
questions would be helpful to ask a student who is trying to learn the content.

Teachers ask many types of questions of students, and some questions are more beneficial
than others. For instance, certain questions advance a student’s learning, others assess a student’s
learning, some clarify what the student did, and some are not as effective in helping the student.
Based on the feedback we received and the kinds of questions undergraduates wrote in the initial
round of pilot testing, we revised part ¢ of Henry’s task to include more guidance (see Fig. 18).
Instead of asking undergraduates to generate questions on their own, a skill that takes time to
master, we posed pre-written questions and then prompted undergraduates to explain the benefit
(or lack thereof) in asking each question. This structure tended to be more productive than the
open-ended prompts and helped undergraduates understand that there are a variety of questions a
teacher could pose to a student and some are more helpful than others.

1. Henry, a high school student, expanded (2x — y)* using the Binomial Theorem
and made some errors. Below is his work.
2x—y)' =2x* — 8x'y — 1223y - 8xy? —y*

a. What errors did Henry make?
b. What does Henry understand about the Binomial Theorem?
c. Consider the following questions that one might ask Henry about his
work.
i.  Explain how the following question could help Henry to advance
in his understanding of the binomial theorem:
Howis (2x — y)4 similar to (a + b)* and how is it different?

ii.  Explain how the following question can help you assess what
Henry understands about the binomial theorem:
Why doesn’t (— 3y)* =— 3y2?

iii.  Explain why the following question would not help Henry:
Do the exponents look right?

Fig. 18. Version 2 of Henry’s task in a Binomial Theorem lesson in Discrete Mathematics.
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4.4 Considerations for Instructors before Creating Applications of Mathematics to
Teaching

After establishing which undergraduate mathematics course to target for including
applications to teaching, instructors should identify topics in the course that build upon core
concepts from school mathematics or relate to critical understandings prospective teachers
should develop for deeper insight into the mathematics they will teach. While we have integrated
applications to teaching into Calculus I, Abstract Algebra, Statistics, and Discrete Mathematics,
there are many other mathematics courses that allow appropriate inclusion of such applications.
At the core of these tasks is mathematics content that is central to secondary mathematics. Thus,
gaining familiarity with the standards and expectations in school mathematics becomes an
important component in this process for instructors. Such familiarity may come from studying
relevant state standards for mathematics or the Common Core State Standards for Mathematics
(NGA, 2010), or from speaking with colleagues with experience in mathematics education or
who have recent direct experience teaching K-12 mathematics.

Instructors should consider the purpose of the task. It might be to advance content learning
goals during the lesson, or it might be to provide undergraduates with an opportunity to engage
in approximations of teaching practices, or it could be a combination of the two. If the intent is to
advance content learning goals, consider writing tasks with the Active Engagement design
principle in mind, as it helps guide and focus undergraduates on learning the underlying
mathematical content. If the intent is to focus on teaching practices, consider how to
meaningfully incorporate human beings in the problems and consider which teaching practices to
address.

In our materials, we have integrated tasks that address applications of mathematics to
teaching throughout class activities, homework questions and assessment items. Incorporating
tasks into class activities provides a supportive environment for undergraduates to first encounter
and discuss these ideas with their peers. Homework tasks allow undergraduates to develop their
skills and mathematical independence in situations that are analogous to those of the class
activity. Finally, the inclusion of these tasks on assessments aligns assessment with in-class and
homework activities, reinforces the value placed on using mathematical knowledge in this way,
and provides the opportunity for undergraduates to demonstrate their understanding. Full lessons
and reports of implementation are available with or without an MAA membership in the META
Lessons on the Mathematical Knowledge for Teaching community at MAA Connect (MAA,
2020).

4.5 Considerations for Researchers Concerning the Design of Tasks Addressing MKT for
Secondary Mathematics Teachers

Our work aims to embed applications to secondary teaching in undergraduate mathematics
courses using lessons that include a class activity, homework set, and associated assessment
items. Similar to Wasserman et al. (2019), we intend for our curriculum materials to highlight
explicit connections to teaching in undergraduate mathematics major courses. In addressing the
development of MKT for secondary teachers, we focus on five specific connections,
acknowledging that there are other aspects of teaching that are not incorporated into our tasks.
Unique to our tasks is the implicit attention to habit of respect and interacting with other human
beings, both of which are central to the work of teaching. Furthermore, both Wasserman et al.
(2019) and Heid et al. (2015) use secondary mathematics teaching situations as a prompt at the
outset of the lesson to motivate the learning of advanced mathematics content. In our work, the
teaching application is used both as a vehicle for bridging undergraduates’ advanced
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mathematical knowledge to secondary school mathematics and for strengthening
undergraduates’ understanding of the advanced mathematics from an encounter with school
mathematics. While Heid et al.’s (2015) situations focus on the mathematical understandings
teachers need to address the situation, we use our tasks to probe undergraduates’ understandings
and to lay the foundation for questioning strategies that place value on analyzing student
thinking. Our focus on the process of communication involves the mathematics and gives
leverage to the ways in which ideas are communicated by placing value on student thinking and
highlighting aspects of human interactions.

5. Conclusion

Our three design principles, Habit of Respect, Active Engagement, and Recognition of
Mathematics as a Human Activity, are embedded throughout our tasks to help prepare future
teachers to learn and apply mathematics in a way that is central to their future work. We arrived
at these principles after having begun the process of designing tasks and reflecting on the
features that were common to our tasks. The Habit of Respect design principle recognizes that
students do present work or offer solutions that might be incorrect, and teachers must learn to
address these still-forming notions in their students in an affirming manner that conveys placing
value on student thinking. Our Active Engagement design principle relies on having
undergraduates construct their own knowledge rather than expecting the instructor to be
responsible for imparting all information. The Recognition of Mathematics as a Human Activity
places value on how teachers and students interact and communicate in the process of their
mathematical learning.

Our tasks targeted opportunities to deepen undergraduates’ reasoning about key concepts and
methods while also planting seeds for ways in which mathematical interactions can be respectful
of others’ thinking. They provide examples of how teachers can be facilitators of cognitive
restructuring by attempting to understand a student’s developing notions rather than to “correct.”
Encouraging instructors in mathematics departments to implement these tasks in active learning
environments also provides prospective secondary mathematics teachers with experiences in
their mathematics courses that support the value of student discourse and interaction in the
learning of mathematics.

Including applications to teaching in mathematics content courses that prospective secondary
mathematics teachers take can address mathematical content in a robust manner. Such
applications can advance content learning goals and meet the needs of prospective secondary
mathematics teachers as they make connections between the advanced mathematics they are
learning, the mathematics they will teach, and the complex human context that is central in the
work of teaching.
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