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Abstract—We consider the problem of tracking an unstable
stochastic process X; by using causal knowledge of another
stochastic process Y;. We obtain necessary conditions and suf-
ficient conditions for maintaining a finite tracking error. We
provide necessary conditions as well as sufficient conditions for
the success of this estimation, which is defined as order m
moment trackability. By-products of this study are connections
between statistics such as Rényi entropy, Gallager’s reliability
function, and the concept of anytime capacity.

Index Terms—tracking conditions; causal information; Holder
inequality; Rényi entropy; Gallager’s reliability function;
Gartner-Ellis limit; anytime capacity; causal estimation

I. INTRODUCTION

The tracking of unstable processes from noisy, delayed or
infrequent samples is a fundamental problem that naturally
arises in networked control systems. Non-stationary stochastic
processes such as random walks and their scaling limits such
as the Wiener process and the Ornstein -Uhlenbeck process are
examples of unstable processes that are often used to model
uncontrolled systems. Tracking of such processes may also
arise in situations that do not require closed-loop control, and
may have applications beyond networked control systems. For
example, the Wiener process is used to model the physical
diffusion process known as Brownian motion [1], option
pricing in financial analysis [2], phase noise in communication
channels [3] and forms a basis for analysis tools such as
Feynman-Kac formula [4].

The problem of communicating the state of unstable sources
has been considered in [5], which introduced the notions
of anytime reliability and anytime capacity. It was shown
that anytime capacity provides the necessary and sufficient
condition on the rate of an unstable scalar Markov source
that can be tracked in the finite mean-squared error sense.
Accordingly, it was claimed that anytime capacity, which is
upper bounded by Shannon capacity, is the correct figure of
merit to measure the quality of a channel on the purpose of
tracking an unstable source and also controlling through an
unreliable channel [6]. However, while anytime capacity is
known to be strictly positive for some channels, a closed-
form expression for anytime capacity has not been shown as
opposed to Shannon capacity which can be expressed as an
optimization of mutual information. On the other hand, any-
time capacity of particular channels such as erasure channels
with feedback [7] and Markov channels [6] have been derived.

This work has been supported in part by ONR grant N00014-17-1-2417,
NSF grant CCF-1813050, TUBITAK Grant 112E175 and Huawei.

978-1-7281-6432-8/20/$31.00 ©2020 IEEE

2228

Aside from the theory developed in [5], the problem of
stabilizing a system with limited communication has been
extensively studied from stochastic control [8]-[12], rate-
distortion theory [13]-[17] and joint source-channel coding
[18] perspectives for linear systems and from the perspectives
of metric and topological entropy for non-linear dynamical
systems [19]. In our study, the state estimation side of this
problem is investigated from a perspective that is centered on
a definition of reliable estimation which we refer as order m
moment trackability in accordance with m-th moment stability.
Based on this definition, we study the estimation of integer-
valued ! stochastic processes which may represent linear or
non-linear discrete-time systems.

Our contributions are as follows:

o We show two moment-entropy inequalities for integer-
valued random variables inspired from the inequality for
the moments of guessing random variables in [20]. One
of these bounds is for bounded integer-valued random
variables (see Lemma 1) while the other (see Lemma 2)
is valid for integer-valued random variables that do not
necessarily have finite support.

o We provide necessary conditions (see Theorem 1 and
Theorem 2) for tracking integer-valued sources using
causal information. Corollaries of Theorem 1 are upper
bounds on anytime capacity based on Gallager’s reliabil-
ity function and the Gartner-Ellis limit of the information
density between channel inputs and outputs.

e We provide sufficient conditions for tracking integer-
valued sources using causal information in Theorem 3
and Theorem 4 where the former is based on an upper
bound for the estimation error of maximum a posteriori
(MAP) estimators (Lemma 3) and the latter is based on
estimators we suggest.

II. SYSTEM MODEL

Consider the problem of tracking a scalar discrete-time
and discrete-valued stochastic process {Xt}tzlygv._ based on
causal knowledge of another stochastic process {Y;}i=12,. ...
At any time ¢, the estimator generates a guess Xt = fi(Y1.4)
of the current value X;, where f;(-) is a function and Y7, =
(Y1,Ys,...,Y;) is the information that is available at time ¢.

Definition 1. For any m > 0, {X,; }1=1,2.... is said to be order
m moment trackable based on {Y;}i=12, . if there exists a

1Our results are for integer-valued sources, however, note that this is not
restrictive for digital systems where data is represented using integers.
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family of functions {fi(-)}i=1,2,.. such that Xt = fi1(Y1.4)

and
supE [|Xt - Xt|m} < 0. (1)
>0
The first goal of the present paper is to find necessary
conditions and sufficient conditions for the m-th moment
trackability of process {X;};=12, .. based on the side infor-
mation process {Y;}¢=12.. . In [5], the anytime capacity of
a noisy channel was shown to be a necessary and sufficient
quality measure of a channel to allow order m moment
trackability of a Markov source {S;};=12, .. based on the
channel output {Y;};=12, ., The second goal of the paper
is to find new bounds of the anytime capacity, based on the
trackability results.

III. MAIN RESULTS

A. Necessary Conditions for Trackability

We provide two necessary conditions for order m moment
trackability, which are expressed in terms of Rényi entropy
and information density. The Rényi entropy of order o, where
a >0 and «a # 1, is defined as [21]

1
Ho(X) = 1——1ogE [Px (X)*"] 6)
1
=1 = log TGZXPX(QC)O‘] . 3)

Given joint distribution Pyy, the information density function
is defined as [22]

i(z;y) =log [

Pxy(z,y) } @)

Px (z)Py (y)
The first necessary condition that we present is as follows:

Theorem 1. If {X;}i=12, ..
process that satisfies

is an integer-valued stochastic

| X < e, @)
. 1
tliglo ;log(log(ct)) =0, (6)

then {X}i=1,2,. is order m moment trackable based on
{Yi}i=1,2,.., where Y, € Y and | Y| < oo, only if the following
inequality holds, f()r all p€ (0,m] and ¢ > p+ 1,

]

liminf —— logE [ [ —Li(X¢;Y1e)

t—o00 p

1
>limsup - H W (Xt). @)
t—o0 t
Proof. See Appendix A. O

The proof of Theorem 1 uses the following moment-entropy
inequality for the Rényi entropy, which is inspired by Theorem
1 in [20].

Lemma 1. If X is an integer-valued random variable taking
values from the set X = {—M_,...,—1,0,1,..., M} where
M_ and M are positive integers, then for all p > 0

Lemma 1 requires that M_ and M are finite. As a result,
Theorem 1 only applies to stochastic processes that satisfy (5)
and (6). Next, we will provide a necessary condition for the
trackability of unbounded stochastic processes in Theorem 2,
which is based on the following moment-entropy inequality.

Lemma 2. If X is an integer-valued random variable, then
for all p € (0,m)

-P
E[|X["™] +1> {1+2g (7})] SN (9

where ((-) is the Riemann zeta function

=1
) = s
s ;n

Proof. See Appendix C. O

(10)

Theorem 2. An integer-valued stochastic process {X; }1=12, ...
is order m moment trackable based on {Y;}i=12, .. , where

€ Y and |Y| < oo, only if (7) holds for all p € (0, m) and
g>p+1

Proof. The proof is identical to the proof of Theorem 1, except
that it uses Lemma 2 instead of Lemma 1. Note that ¢(*}) is
finite for all p € (0, m).

Theorem 2 requires a weaker condition than Theorem 1.
Accordingly, the result of Theorem 2 is weaker than that of
Theorem 1. For this, notice that p = m is not allowed in
Theorem 2.

B. Upper Bounds of Anytime Capacity

Now, we show that (7) implies two inequalities that provide
upper bounds on anytime capacity. First one can be expressed
in terms of Gallager’s reliability function which is defined as
[23]

Eo(p, Py|x, Px)

~log > (Z Px(z

14+p
)Py x (ylz) ]””) . 3an
yey \zecX

In [24], an alternative expression for Gallager’s reliability
function was used as follows
14p
Eo(p, Py|x,Px) = —logE {E[ 1+”7(XY)' } } ;
(12)

where Pyy x(7,y,Z) = Px(2)Py|x(y|x)Px(Z) is the joint
density for X, Y and X.

In this paper, we find the following expression of Gallager’s
reliability function convenient, due to its connection with the
LHS of (7).

14p
EO(pv-PY\X;PX):—IOg]E |:E|: 1+p7(XY)' } :|
(13)

Using (13), one can observe that the LHS of (7) becomes the
Gallager’s reliability function as g reduces to p+ 1. Based on

E[|X]F]+ 1> [3+log(M_M,)] e w5 .
[XT7]+1 = [3 + log( Hl e ’ ®) this observation, we derive the following corollary of Theorem
Proof. See Appendix B. O 1
2229
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Corollary 1. Suppose that S; — X1 — Y1 is a Markov
chain for each t. If {S; }1=1,2,... is an integer-valued stochastic
process that satisfies

1St| < e, (14)
1
tlggo n log(log(c)) = 0, (15)

then {Si}i=1,2,.. is order m moment trackable based on
{Yi}i=1,2,.., where Yy € Y and |Y| < oo, only if

| , 1
lim inf = Eo(m, Pry.ijx0. Py, ) 2 lim sup 2 Heo (5).(16)
Proof. Apply Theorem 1 for S; considering p = m and the
limit that ¢ reduces to p + 1 yields

1 1
lltl’il)lolclf %EO(”IH PYl:t'St ) PSt) > h?i)soljp ;Hoo(st) (I7)
Observe that (17) implies (16) as Eo(m, Py, ,|s,, Ps,) is upper
bounded by FEo(m, Py,,,|x,.,, Px,,) due to data-processing
inequality for Rényi divergence (see [24, Theorem 5]). O

Corollary 1 can be related to the a-anytime capacity of
a channel (see [25, Definition 3.2]) when we consider the
following communication system. Let Y7.; be the outputs of a
channel given by Py, ,|x,., (y1:¢|71.¢) with X7.; being inputs
that encode a source {S;} . As the outputs of the channel
depend on the source process only through the channel inputs,
the system follows S; — X;.; — Yi.;. For ease of analysis,
we will consider the type of source representing a stream of
bits with fixed rate as follows:

Definition 2. For R being a positive integer, a discrete-time
process {S;} is said to be a rate-R source if it obeys:

Spp1 = 288, + Wy, (18)

where {W.} is an ii.d. process such that Wi is uniformly
chosen from the set {0, 1,...,2% - 1}, and Xo = 0.

Note that a rate-R source satisfies |S;| < 27 almost surely

and H(S;) = Rtlog(2) as it has a uniform distribution for
all t. Accordingly, we can apply Corollary 1 to a rate- R source
and show the following

Corollary 2. If C,uy(a) is the a-anytime capacity of a discrete
memoryless channel (DMC) without feedback, R is an positive
integer, m > 0 is an arbitrary positive number, and

Rlog(2) < Cupy(mR), (19)
then E
Rlog(2) < Oslm), (20)

where Eo(m) = supp, Eo(m, Py|x, Px) for given transition
probabilities Py |x of the channel.

Proof. First suppose that (19) holds which means a rate-R
source is order m moment trackable though a DMC with
anytime capacity Cgny(cr) (see [25, Theorem 3.3]). On the
other hand, if a rate-R source is order m moment trackable

through a DMC, the following should also hold:

|

hglogf %Eo(m,Pyl:”Xl:t,PXl:t) > Rlog(2), 21
which follows from Corollary 1. Moreover, this implies (20)
as Eo(m, Py, ,|x,.,, Px,.,) < tEq(m) (see [23, Theorem 5])

for DMCs without feedback. O

A result that is similar to Corollary 2 was shown (see [7,
Theorem 3.3.2 ]) for symmetric DMCs with feedback based on
sphere packing exponent. On the other hand, Corollary 2 holds
both for asymmetric and symmetric DMCs without feedback.

The second inequality that we provide can be obtained 2
from (16) while considering a rate-R source for S;. Accord-
ingly, when Y7, are the outputs of a channel with inputs X,
that encode a rate-R source, the source is order m trackable
based on Yj.; only if:

1 e
liminf — log E [eMXlzvKw)} > Rlog(2).  (22)

t—o00 P

In fact, the LHS of (22) is the Gartner-Ellis limit of
i(X1.¢; Y1.+) which provides another upper bound for anytime
capacity if we use (22) instead of (21) in the proof of Corollary
2. Also, observe that both (21) and (22) can be applied for
channels other than DMCs without feedback.

C. Sufficient Conditions for Trackability

Next, we provide two sufficient conditions for order m
moment trackability. The first one is based on MAP estimators.
Definition 3. An estimator Xt(MAP)
a posteriori (MAP) estimator if

X—t(MAP)

is said to be a maximum

= P | Y7, 23
argrmnea}(c X, Vi (2] Y1:0), (23)

with ties in the maximization broken arbitrarily.

We will use the following lemma to derive a sufficient
condition for order m moment trackability based on MAP
estimators:

Lemma 3. For an integer-valued stochastic process {X:},
a discrete-valued stochastic process {Y;} and d(-,-) being a
distance metric such that d : 7. x 7. — Z=° we have the
following for arbitrary real numbers p > 0 and s > 1:

E (a0, M) <) > P ) Y

Y1:t x
P

Z[PXt,\Yl:t(x/‘ylzt)]ﬁd(x’x/)% )

x/

1
[PXt|Y1:t, (x‘ylzt)] ptl

(24)
Proof. See [26]. O]

A sufficient condition for order m moment trackability using
Lemma 3 is as follows:

Theorem 3. Let

T(‘Tvyl:t)
=E [Px,|y,., (Xe[Y14) 757 | Xy — 2° | Yie = y1e] . (25)

2See [26] for the proof.
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where s > 1 is an arbitrary real number and m is an integer.
Then, the integer-valued stochastic process {X;}i=1,2,.. is
order m moment trackable using {Y;}1=12, . if

EEISE [7(Xe, Y1) ™ P, vi, (Xe| Y1) " 77| <00, (26)
Proof. Apply Lemma 3 for d(z,2’) = |z — x
then observe that

E “Xt _ Xt(MAP)|m] <
C(s)E [T(XuYl:t)mPX”Yl:t(Xt|Y1:t)_m'L“} .27
O

™ and p = m,

In addition to MAP estimators, we consider another type of
estimators which are defined below:

Dgﬁnition 4. For p > 0 being an arbitrary real Anumbe}; let
{Xt(p) (Y1.1)} be a family of estimators such that Xt(p) (Y1:t) is
uniformly chosen from the set Ai(p, y1.t, Jt(p,y1.¢)) where

At(pv yl:tvc) =
P .
{”” : M 2> clz — af’lp,\ﬂ"'} (28)
PXt‘Yl:t ((L’ ‘ylzt)

and

Jt(p7 ym) = SUP{C >0: At(ﬂ7 Yi:t, C) # ®}~

Observe that, as opposed to MAP estimators, the estimator
Xt(p ) has a notion of distance and it requires that a possible
value to be less likely proportional with its distance to the
estimate. This requirement is natural as more likely values
cluster around the estimate value. Accordingly, considering
the family of estimators {Xt(p )} yields

(29)

Theorem 4. If p > 1 and s > 1 are arbitrary real numbers,
and m is a positive integer, then, the integer-valued stochastic
process {Xi}i=12,... is order m moment trackable based on

{Yitizio,.. 0f

yees

1
__m_ (m+1)]»
sup B [B [Py, v, (X Yi) 7 | 12"
t>

p—1
P
< 00,

xE {Jt(sm(m +1), YM)&}
(30)
where Ji(p,y1.t) is as defined in (29) .

Proof. See [26]. O

Note that the first term in (30) can be expressed in terms of
conditional Rényi 3 entropy when p = 1 while J; function in
the second term can be considered as a measure for the shape
of the conditional distribution Px,y,,, (2]Y1.¢).

IV. CONCLUSION

We considered necessary and sufficient conditions for track-
ing a random source. Our results may provide insights to the
design of causal information (via real-time coding) for systems
that rely on the tracking of random sources.

3We consider the definition of conditional Rényi entropy that fits our case.
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APPENDIX

A. The Proof of Theorem 1

Consider arbitrary estimators {X,} such that |X,| < ¢, for
t>0*. Let us define estimators (X} such that X9 =
[X.] where [-] is the ceiling function. If m € (1, 00),

m

ey

L
m

E[1X - X" <E[1X, - %] 3D

where the inequality follows from Minkowski’s inequality and
that E {|Xt - Xt(c)\m} <1.Ifme (0,1,

E[1x - X]

<E K\Xt — X + X — XEC)D }
<E “Xt — Xy|™ + | X - Xt(C)‘m}

<E “Xt - Xt|m} +1, (32)

where the first inequality is due to triangle inequality, the
second inequality follows from the inequality that (a+ b)™ <
a™+b™ for a,b > 0 when m € (0, 1], and the third inequality
is due to E [|Xt - Xt(c)|m} < 1. Hence, combining (31) and
(32), we conclude that:

supE {|Xt - Xt|m] < 00 (33)
>0
holds only if
supE [|Xt . Xt(c)|m} < . (34)
>0

Accordingly, (34) is a necessary condition to satisfy (33).
Now, we find a necessary condition for (34). Let E; := X;—
X be estimation error for estimators {X\“}. As |X,| < ¢
for ¢ > 0 and )A(t(c) is integer-valued, Iy is an integer valued
random variable taking values in [—2c;, 2¢4].
Using Lemma 1 for F; being conditioned on Y7.;, we have:

E [|Ef|m | Yl:t = yl:t] +1 >
E[|E? | Yii = y1e] + 1> (3 +2log(2¢1)) "

- ptl
% B [Prvi, (BlYi) 77 | Yig =y (35)

wherePg,|y,,, is the conditional distribution for E; condi-
tioned on Yj.; and the first inequality is due to that F; is
integer-valued and the second inequality is due to Lemma 1.
As (B, Y1) — (X, Y1) is a bijective transformation
when both X; and X;C) are integer-valued, (35) becomes:

E[|E™ | Y1t = y14] +1 > (34 21og(2¢¢)) ™"
p+1
x E |:PXt|Y1;t(Xt|Y1:t)7Til | Y1 = ylzt] (36)

4Clearly, any estimator X, which can take values that are outside of
[—ct, ct] is suboptimal for minimizing E [\Xt — Xt|m].
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Taking expectations over Y7., on both sides in (36) gives:
E[|E|™] + 1> (3 + 2log(2¢)) ™"

_ o p+1
x  E|E|Px, v, (X¢|Y1.) 751 |Yl:t} } 37

Now, consider

_ L ot
E PXtIYI:t(thyllt) Pl |}/1:t]

p(p+1)
> E |

[ sy (XY
e rlpt+l) (X +) |Y1:t

(1-p)(p+1)
] SE)

xE [th (X;) T T | Yy,

where the inequality follows from the reverse Holder inequal-
ity for p € (1,00) and i(X;; Y1) is the information density
for Px,v,.,. Then, we can get:

1 _ p+1
;k)gE E |:PXt|Y1:t(Xt‘Y1:t) P |Y11t:|

Y

+1
llogE|: [6 P(p+1)l(Xf7Y1 :t) |Y1:t]p(p ):|
p

+Ha(X4), (39)
where o = (p(p+1) — 1)/((p— 1) (p + 1)).
Combining (37) and (39):
1
;log (E[E]™]+1)
1
> LligE {E [e-smicamia |y }p(” )}
P
Ha(X1) — log (3 + 21og(cr)) (40)
As limy_, o log(log(ct))/t =0,
-1
lim sup — log (3 + 2log(2¢;)) = 0. (41)
t—o0 t
Therefore, combining (40) and (41) implies that:
1
limsup — log (E[|E¢|™] + 1) < oo (42)
t—oo Pt

holds only 3 if

b iix p(p+1)
hmlnf——logE [IE [e_ Pl (Xt 1:0) | Yl:t:| ]
p

t—o0

> limsup %Ha(Xt)- (43)

t—o0
In addition, if (34) holds then (42) holds. Hence (43) is a
necessary condition for (34). Therefore, (43) is a necessary
condition for (33), i.e., { X;} being order m moment trackable
though process {Y;}. As p > 1 is arbitrary, p(p + 1) can be
replaced with an arbitrary ¢ such that ¢ > p + 1.

B. The Proof of Lemma 1

We have two methods to prove Lemma 1. The first method
follows the proof of Theorem 1 in [20], with the guessing
function replaced by A(z) defined in (44) below and some
other necessary changes. In the sequel, we provide a second

SHere, it is possible that (42) holds when both limits in (43) diverge.
However, observe that the LHS of (43) converges as 4(X¢; Y1:¢) is uniformly
bounded by log(|Y|) and |Y)| is finite.

proof method, which is based on the reverse Holder inequality
approach used in [20, Lemma 1] and in [27, Theorem 2.1].
Let us define the following function:

Als) = {x| if 2 #£ 0,

if z =0,
where € is an arbitrary positive real number. Accordingly,
observe that

E[|X]"] + € Px (0)

(44)

= Z Px (z)A(x)?
zeX
—(-1)
3 Px(a é] 3 Al . 45)
TeEX reX

where the inequality is due to the reverse Holder inequality
for p € (1,00). Considering p =1+ p in (45), we get

E[[X|7] + " Px(0)

14+p
Z&@”] > Ax)”

reX reX
14p p
1 1
> Px(x) w] {2 + -+ 1og(MM+)} . (46)
reX €
where the second inequality is due to
> A - +zz Dt
r=—M_ j=1
Letting € = 1, combining (46) with Px (0) < 1 and
1+4p
¢ 3 Px(x)“’lp] 7 47)
TEX

we obtain (8).

C. The Proof of Lemma 2

The proof is similar to the proof of Lemma 1 where A(x)
is defined as in (44). We have

E[|X|™] +1
s 1+p —p
> |3 mrb| |3 4]
_O; 1+p o S —pP
> Px(z)T7 14+2) —| ., 48
PR I RO I

where the first inequality follows from reverse Holder inequal-
ity and the second inequality follows from the choice of € = 1.
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