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Abstract

Some organic pollutants in snowpack undergo faster photodegradation than in so-

lution. One possible explanation for such effect is that their UV-visible absorption

spectra are shifted toward lower energy when the molecules are adsorbed at the air-

ice interface. However, such bathochromic shift is difficult to measure experimentally.

Here we employ a multiscale/multimodel approach that combines classical and first-

principles molecular dynamics, quantum chemical methods and statistical learning to

compute the light absorption spectra of two phenolic molecules in different solvation

environments at the relevant thermodynamic conditions. Our calculations provide an

accurate estimate of the bathochromic shift of the lowest-energy UV-visible absorption

band when these molecules are adsorbed at the air-ice interface, and they shed light

into its molecular origin.

Introduction

Although primarily composed of ice, snowpacks contain small regions of disordered water

molecules, where most solutes reside.1–3 They are either bulk liquid-like regions (LLR) lo-

cated within the ice matrix or quasi-liquid layers (QLL) at the surface of ice crystals. These

characteristics make snow and ice unique environments for environmentally relevant chemical

reactions such as the photodegradation of pollutants, which may be transformed into more

volatile molecules that can then be released into the atmosphere.4,5 While extremely impor-

tant, to date only a few direct photochemical reactions have been studied on ice and snow.

Some works show an increase in the rate of photodegradation at the air-ice interface com-

pared to in solution (e.g., for naphthalene, toluene, ethylbenzene and xylene),6,7 while others

show that photodegradation proceeds at similar rates at the air-ice interface and in solution

(e.g., for nitrate, nitrite, hydrogen peroxide, anthracene, pyrene and fluoranthene).8,11–13 A

possible reason for the observed photodegradation enhancement for molecules solvated at the

air-ice interface is that their molar absorptivities are shifted to lower energy (bathochromic
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shift), where there is a higher sunlight photon flux. This is a hypothesis that has been pre-

viously examined for a variety of chemicals.7,14–18 Since the summer polar actinic flux at the

surface of the Earth increases by a factor of approximately 1 million between 290 and 310

nm,19 compounds that absorb light below this range of wavelengths would normally not be

readily photolyzed by sunlight in solution, but could undergo degradation in snow if there

is a bathochromic shift in their absorbance toward wavelengths with higher photon flux.

Due to the high concentrations required to measure light absorbance of chemicals, these

measurements are extremely challenging for molecules at the air-ice interface and require

concentrations much higher than those of pollutants in the natural environment. Increas-

ing the concentration of molecules at surfaces to the measurable threshold would lead to

high surface density and possibly molecular aggregation, which may affect the features of

UV-visible spectra.14,20 For this reason, molecular modeling becomes an essential tool to

understand the solvation of small molecules and ions at water and ice surfaces,21–23 and to

predict their optical spectra.24 A number of former studies supplemented experimental ob-

servations with quantum chemical calculations of the excited states of molecules optimized in

the gas phase.14,15,17,18 Whereas these calculations provide an accurate estimate of electronic

transition energies, they fail to account for the solvation effects in complex environments

at the relevant thermodynamic conditions. Accurate electronic excitations for gas-phase

molecules may be computed by many-body quantum chemical approaches, such as coupled-

clusters25 or the Bethe-Salpeter equation,26 but methods based on time dependent density

functional theory (TDDFT) also provide a reasonably good approximation of UV-visible

absorption spectra at lower computational cost,27–29 thus enabling ensemble averaging.30,31

The absorption spectra of solvated molecules, just like many other physical properties,

depend critically on solute-solvent interactions. The interaction with the solvent affects the

molecular configuration of the solute and its electron density, both by means of local inter-

actions – local electric fields – and through the long-range dielectric environment. The effect

of embedding the solute in a solvent medium is customarily approximated using continuum
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solvation models (CSM).32,33 In turn, for explicit solvent schemes, it has been proven that in

most cases it is necessary to include multiple solvation shells to converge excitation energies,

thus leading to very large first-principles calculations.34,35 A viable alternative to treat both

long-range electrostatic effects and local interactions, e.g. hydrogen-bonding, at an acces-

sible computational cost consists of supplementing the continuum models with a shell of

explicit solvent molecules.36,37 Furthermore, the positions of the absorption peaks and their

line shapes are determined by the temperature-driven fluctuations of the solute molecule,

and possibly of its solvation shell.38–41 The line broadening produced by molecular vibrations

should be, in principle, treated at the quantum mechanical level, i.e., computing correlation

functions of quantum operators. However, a more viable approach for systems near and

above room temperature consists of acquiring absorption spectra as thermodynamic aver-

ages over a sufficiently large number of frames along molecular dynamics (MD) trajectories,

obtained using either classical empirical potentials40,41 or first-principles MD (FPMD) based

on density functional theory (DFT).39 FPMD overcomes the transferability issues of classical

models, and it has been employed together with TDDFT and a self-consistent continuum

solvation model (SCCS),42,43 to compose a multimodel approach that has proven successful

to predict the color and the optical spectra of natural dyes in solution.30,44

A model to establish the subtle differences in the UV-visible absorption spectra as a

function of the solvation environment, should consider both electrostatic embedding and

temperature fluctuations, and also provide an accurate description of the solvation environ-

ment. For the case of molecules adsorbed at the air-ice interface, it is then necessary to start

from a reliable model of the quasi-liquid layer (QLL) at the ice surface45,46 and to probe

how the solutes are solvated in this complex environment. Hence the need to supplement

the state-of-the-art computational approach discussed above with classical MD simulations

able to probe suitably larger size and time scales.47

In this work we employ molecular modeling to assess the UV-visible absorption spectra of

two common organic pollutants – phenol and 2-methoxyphenol (guaiacol) – in solution and at
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the air-ice interface. Our goal is to examine whether these molecules exhibit a spectral shift at

the ice surface, which would lead to higher photon uptake and enhanced photodegradation in

snowpacks. To achieve this goal we developed and tested a multiscale/multimodel approach,

in which we first investigate the structural and thermodynamic features of the solvation

of phenol and guaiacol in bulk water and at the air-ice interface by classical MD, using a

realistic well-characterized ice surface molecular model.47 We eventually refine the details of

the solvation shells of these molecules in water and on ice using smaller models treated by

Born-Oppenheimer FPMD. We then compute the UV-visible absorption spectra by TDDFT,

averaging over hundreds of frames from the FPMD trajectories and using different types of

solvation models, including a new SCCS setup designed to correctly represent dielectric

screening at interfaces. The least absolute shrinkage and selection operator (LASSO)48

algorithm is finally employed to refine the lowest energy band of the absorption spectra and

to gain insight into the physical origin of the observed spectral shift.

Using this approach, which explicitly takes into account solvent environment and ther-

modynamic effects, we find that the absorption band corresponding to the lowest energy

electronic transition undergoes a significant solvatochromic red shift when the molecules are

adsorbed at the air-ice interface, thus enhancing the absorption rate of solar light and result-

ing photochemistry. The statistical learning analysis suggests that the main reason for the

observed solvatochromic shift lies in the differences in the atomic configurations determined

by different solvation environments.

Methods

Our sequential multiscale approach comprises the following steps: (i) classical MD simula-

tions to characterize the structure and dynamics of phenol and guaiacol at the air-ice interface

and to compute solvation free energies; (ii) FPMD simulations to refine the structure of the

solvation shell and to obtain molecular configurations at finite temperature for the following
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step; (iii) TDDFT calculations of the absorption spectra using the SCCS implicit solvent

model with an increasing number of explicit water molecules; (iv) fitting of a LASSO regres-

sion model, trained on TDDFT calculations, to compute the lowest transition energy as a

function of the molecular configuration. Each step is described in the following subsections.

Classical Molecular Dynamics

Classical MD is used to probe the structure and dynamics of phenol and guaiacol at the

surface of ice slabs and in bulk water, and to calculate adsorption and solvation free ener-

gies. Simulation models consist of ∼ 1000 water molecules and MD trajectories extend to

hundreds of nanoseconds. The equations of motion are integrated with the velocity Ver-

let algorithm with a time step of 0.5 fs. Simulations are carried out in the constant volume

canonical ensemble (NVT), where the temperature is controlled by stochastic velocity rescal-

ing with a relaxation time of 1 ps,49 and long-range electrostatics are computed using the

particle-particle particle-mesh solver (PPPM).50 MD simulations are performed using the

LAMMPS package.51 Water molecules are modeled using the fixed-charge TIP4P/Ice force

field, which was parameterized to reproduce the experimental melting temperature of ice at

ambient conditions, and it accurately reproduces the equations of state of water and ice near

the melting temperature and at mild supercooling.52 Phenol and guaiacol are modeled using

the generalized Amber force field (GAFF),53 using the AM1-BCC charge model54 in order

to calculate the atomic point charges, which we later reparameterized so to reproduce the

experimental solvation free energy in TIP4P/Ice water at room temperature. These calcula-

tions are carried out by free energy perturbation (FEP),55,56 and details are provided in SI

(Figures S1, S2 and S3).

For the solution model, a molecule of phenol or guaiacol was added to a cubic box contain-

ing 1000 water molecules and allowed to equilibrate before running free energy calculations

followed by production runs of 100 ns at 300 K. For the ice model, a proton-disordered

hexagonal ice model containing 1536 water molecules was generated using a Monte Carlo
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procedure to minimize the total electric dipole,57 and it was cut into a slab 45 Å thick along

the basal plane. The orthorhombic simulation box measures 36.393×31.517×144 Å3 and pe-

riodic boundary conditions (PBC) are applied in all three directions. The ∼ 100 Å vacuum

separating periodic images in the z direction is sufficient to avoid finite-size artifacts.47 The

system was equilibrated for 100 ns at 263 K, so to obtain a stable QLL at the surface. The

QLL is about two ice bilayers thick, in agreement with previous experimental observations

and MD simulations.45,47 After equilibration, we added one phenol or guaiacol molecule on

each surface of the slab, positioning the OH group within hydrogen bonding distance from

the water molecules of the ice slab, and allowed the system to equilibrate for 2 ns. Production

runs of 100 ns were then obtained at 263 K for both phenol and guaiacol.

First-Principles Molecular Dynamics

FPMD simulations of several tenths of picoseconds are performed for molecules in both so-

lution and at the air-ice interface in smaller simulation boxes with explicit solvent. The

purpose of these simulations is to attain a more accurate description of the solvation en-

vironment and to sample the configuration of the solvated molecule with a computational

framework consistent with that used for the excited state calculations. DFT-based FPMD

simulations were carried out using the Quickstep approach implemented in the CP2K pack-

age,58,59 employing the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation

(GGA) for the exchange and correlation functional.60 Valence Kohn-Sham orbitals are ex-

panded on a double-ζ localized basis set61 in real space, and core states are treated implicitly

using Geodecker-Teter-Hutter pseudopotentials.62 Plane waves up to a cutoff energy of 300

Ry are used to represent the density in reciprocal space.

FPMD simulations of phenol and guaiacol in aqueous solution were carried out in a cubic

simulation box (12.8 Å) containing 64 water molecules with PBC. Simulations of each organic

molecule adsorbed on the ice surface are performed putting one molecule on the surface of

an ice slab made of 192 water molecules in a periodic orthorhombic cell with dimensions 18,
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15.589 and 80 Å. Both aqueous solutions and ice slabs were prepared using classical MD

with the empirical force fields described above. Eventually, the systems were equilibrated

at the target temperature using CP2K, and 50 ps long production runs in the constant

volume canonical ensemble (NVT)49 were carried out. Aqueous solutions are equilibrated

at room temperature (300 K), whereas ice slabs are kept at 263 K. In these simulations

hydrogen atoms are replaced with deuterium, thus allowing a relatively large timestep of

0.5 fs to integrate the equations of motion. Up to 200 statistically independent molecular

configurations obtained from each one of these trajectories are used to compute UV-visible

absorption spectra with the ensemble method.30,44

Excited State Calculations by Time-Dependent Density Functional

Theory

Finite temperature spectra are calculated as time averages of single spectra of individual

frames over a 50 ps FPMD trajectory. For each molecular configuration selected from the

FPMD runs in solution and on ice, we computed the absorption spectra using TDDFT in

the time-dependent density functional perturbation theory implementation (TDDFPT)63 in

the Quantum-Espresso package.64,65 Absorption spectra are computed in a two-step process

that consists of a single-point self-consistent ground state total energy calculation followed

by the calculation of excitation energies and oscillator strengths solving TDDFPT equations

with the recursive Lanczos algorithm.63 Since we are interested in the relative shifts between

the spectra of a molecule in aqueous solution and at the air-ice interface, we adopt the PBE

functional60 for the excitation energy calculations, rather than more accurate, but much

more computationally expensive, hybrid functionals. It was indeed shown that the main

effect of using hybrid functionals is a nearly rigid shift of the lower energy excitation, and

it is possible to rescale the GGA spectra to those calculated with hybrids with a simple

morphing procedure.44 These calculations are performed in the plane-wave pseudopotential

formalism: nuclei and core states are represented by ultrasoft pseudopotentials,66 and a
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plane-wave basis set with an energy cutoff of 30 Ry for the Kohn-Sham orbitals and a

cutoff of 240 Ry for the electron density. Calculations are performed for isolated systems

in tetragonal simulation cells, with dimension 25×25×50 Å3, with long-range electrostatic

corrections for non-periodic systems.67

Solvation Environment

To compute the absorption spectra of molecules either in solution or at the air-ice interface,

we need to include the electrostatic screening effect of the solvation medium. This may be

achieved in two different ways: either using an explicit embedding scheme or using an im-

plicit polarizable continuum solvent.44,68 The latter presents the advantage of providing the

correct long-range limit.30,36,69 Furthermore, local effects may be refined by supplementing

the implicit solvent model with one or more explicit solvation shells. The SCCS implicit sol-

vent model42,43,70–74 can capture the dominant electrostatic effects in water solvation, while

relying on a limited number of parameters. The extension of SCCS to model the solva-

tochromic shifts in electronic excitations within the linear response TDDFT formalism pro-

duces optical spectra in perfect agreement with similar approaches in the quantum-chemistry

literature.30 In addition, SCCS can handle both isolated and periodic, or partially periodic

systems. Moreover, it relies on a smoothly varying definition of the boundary between the

quantum-mechanical solute and the embedding continuum medium. For these reasons, it

is ideally suited to model the smooth transition in non-homogeneous environments, such as

water-vacuum, water-ice, or ice-vacuum interfaces. The SCCS model is implemented in the

ENVIRON plugin75 to Quantum Espresso.76

For calculations in bulk, we modeled the environment as a homogeneous dielectric medium

characterized by the dielectric constant of water at 300 K, which is equal to 78.5.77 For cal-

culations on the ice surface, we developed an extension of SCCS, where dielectric regions of

arbitrary shape and dimensionality are included in the simulation cell. In the original SCCS

definition,42 the dielectric function varies from a value of 1 inside the quantum-mechanical
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region of space, to a constant environment permittivity ǫ0, where the electronic density of the

solute becomes negligible. Here, in addition to the continuum interface due to the presence

of the solute, a position-dependent permittivity of the environment, ǫ0(r), is introduced.

Starting from a uniform homogeneous background ǫ0
0
(r) ≡ ǫ0

0
, a step-wise procedure is de-

signed to include a user-defined number of heterogeneous media. For each dielectric region

i, centered at position Ri, the environment permittivity is modified as follows

ǫi
0
(r) = ǫi−1

0
(r) +

(

ǫi
0
− ǫi−1

0
(r)

)

hi (r−Ri) , (1)

where ǫi
0

is the target dielectric permittivity of region i, while hi is a smooth function that

varies from one to zero as we move outside of the region. In particular, a definition in terms

of the complementary error function is adopted

hi(r) =
1

2
erfc

(

|r|d −Wi

∆i

)

, (2)

where Wi represents the width of the region, ∆i is the spread of the interface, while d controls

the dimensionality of the interface. For simulating the ice surface, a two-dimensional (d = 2)

region is added to the simulation, with coordinates and width based on our FPMD models,

an interface smoothing thickness ∆i = 2 Å, a dielectric permittivity of ǫ0 = 107 and an

optical permittivity of ǫopt = 1.716 (Figure 1).

Statistical Learning

To obtain an accurate absorption line shape from the lowest electronic excitation, we would

need to perform several thousand TDDFT calculations. To abate the inherent computa-

tional cost, we exploit a machine learning (ML) model, trained on the TDDFT calculations

described above, to predict first excitation energies from molecular configurations. As the

training set is made of a few hundred calculated frames and the optimization space is highly

dimensional, we opted for the least absolute shrinkage and selection operator (LASSO), a
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a)

b)

Explicit Implicit

transition

vacuum

ice 

Figure 1: Scheme of the transition from explicit to implicit solvation models for a bulk
aqueous solution (a) and for the air-ice interface (b). In both the three-dimensional repre-
sentations of the implicit solvent models the guaiacol molecule occupies a cavity with the
dielectric constant of vacuum embedded in a continuum with the dielectric constant of the
solvent medium. In the case of adsorption on ice the molecule sits at the interface between
a region with the dielectric constant of ice and one with dielectric constant of vacuum. The
two regions are connected by a smooth transition region with a parameterized thickness (∆i),
which is represented by the grey area.

linear regression model with norm one regularization.48,78

The dimensionality of the configurational space corresponds to the number of coordinates

that define phenol (13 atoms, 39 coordinates) or guaiacol (17 atoms, 51 coordinates). Dimen-

sionality is reduced by aligning each molecule with respect to a reference and by ignoring the

coordinates of the hydrogen atoms, except the one on the hydroxyl group for both molecules.

Hence the optimization space for phenol is 24-dimensional and for guaiacol 30-dimensional.

We found that fitting directly excitation wavelengths using inverse coordinates as descriptors

is optimal to minimize the error. The regularization parameter was set to 10−8, and fitting
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and testing were carried out using an 8-fold cross validation scheme. The statistical metrics

of R2 and mean absolute error (MAE) were used to assess the performance of the ML model.

Figure S4 in SI shows that the ML model has an average testing R2 of 0.781 and MAE of

1.94 nm for guaiacol and 0.844 and 1.44 nm for phenol.

Since the model fitted on bulk aqueous solution is able to reproduce the excitation wave-

length of the same molecule adsorbed at the air-ice interface, the ML model was further

developed by using the TDDFT calculations obtained for the molecules in both environ-

ments. This combined model was trained on a total of 325 TDDFT calculations for guaiacol

and 312 calculations for phenol. The regularization parameter remained at 10−8 for both

molecules, with fitting and testing carried out using an 5-fold cross validation for guaiacol

and 4-fold validation for phenol. Figures S5 and S6 in SI shows that combined model for

guaiacol has R2 of 0.838 (solution) and 0.778 (ice), along with MAE of 1.74 nm (solution)

and 2.05 nm (ice), while the combined model for phenol entails R2 of 0.892 (solution) and

0.863 (ice), with MAE of 1.29 nm (solution) and 1.50 nm (ice).
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Results and Discussion

Adsorption of Phenol and Guaiacol at the Air-Ice Interface
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Figure 2: Probability distribution for the oxygen atoms in the hydroxy (OOH) and, in the case
of guaiacol, the methoxy group (OMeO) and for the carbon opposite to the hydroxy carbon
in the aromatic ring (CA) with respect to the density profile of the ice slabs, obtained from
classical MD simulations of phenol (panel a) and guaiacol (panel b) at the air-ice interface.

Experiments on the photodegradation of organic pollutants in snow are often carried out

at temperatures between 253 and 263 K.9,10,13,79 The first step in this study consisted of

studying the structure, dynamics and free energy of adsorption of the molecule at the air-ice

interface at 263 K, so as to compare to the corresponding properties in aqueous solutions

at room temperature. At this temperature the basal plane of ice exhibits a disordered

and diffusive QLL about two bi-layers thick.45,47,80,81 The probability distributions of the

positions of the oxygen atom of the hydroxyl group of both phenol and guaiacol over the

surface, overlapped to the density profile of the ice slabs (Figure 2), show that both molecules

adsorb at the ice surface forming hydrogen bonds between the OH group and water molecules
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in the outermost layer of the QLL. The three-dimensional solvation structure of the hydroxyl

groups (Figure S7ab) shows that OH accepts two hydrogen bonds. As opposed to the case

of solvation in bulk water (Figure S7cd), the phenyl ring does not get fully solvated and

floats above the surface. Similarly, the CH3 end of the methoxy group of guaiacol exhibits

hydrophobic behavior, but the bridging oxygen interacts with water as it can accept a weak

hydrogen bond. The hydrophilic interaction of the polar OH group and the hydrophobic

behavior of the phenyl ring determine the orientation of the molecules with respect to the

ice surface. The analysis of the angles that define such orientation shows that both molecules

lie with the phenyl ring at ∼ 45◦ with respect to the ice surface, with differences in the tilt

angle, dictated by the presence of the methoxy group in guaiacol (a detailed description of

the angle distributions is provided in the caption of Figure S8 in SI).

Table 1: Calculated solvation free energies in kcal/mol for phenol and guaiacol
300K (∆G300K) and 263 K (∆G263K) and adsorption free energy at the air-ice
interface at 263 K (∆Gice). Adsorption free energies at the air-ice interface are
not corrected for the change in translational entropy.

Molecule ∆G300K ∆G263K ∆Gice

Phenol -5.30±0.30 -6.12±0.29 -9.90±0.18
Guaiacol -5.62±0.46 -8.05±0.65 -13.12±0.30

We compute the adsorption free energy of phenol and guaiacol at the air-ice interface at

263 K, and we compare it to the solvation free energies in supercooled and room temperature

water. The details of these FEP calculations are reported in Figures S2 and S3. Adsorption

free energies at the air-ice interface turn out lower than the solvation free energies in water

at 263 K and even lower when compared to solution at room temperature, (Table 1). The

adsorption free energy obtained by FEP is a lower boundary, as it may not fully take into

account the removal of translational entropy from gas phase molecules. However, we esti-

mated that such correction amounts to about 2.5 kcal/mol, so that adsorption on ice remains

thermodynamically favorable with respect to solvation in LLR at the same temperature. As

FEP calculations are carried out in two stages, it is possible to sort out the origin of the
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observed free energy differences, distinguishing between the contribution from electrostatic

interactions on one hand and short-range repulsion and dispersion forces on the other hand.

The difference between solvation in water and adsorption at ice surfaces mostly comes from

the latter, and it stems from the cost of creating a cavity for the solute in the bulk liquid,

which is higher than the equivalent term for the same molecule adsorbed at the air-ice in-

terface. This result is very important because it shows that it is more thermodynamically

favorable for both molecules to adsorb at the air-ice interface than to be solvated in bulk

liquid regions.
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Figure 3: Coordination number comparison showing the variance over 5 trajectories between
solution and ice surface obtained from FPMD calculations, focusing on the hydrogen bonding
region (2–3 Å) for a) phenol and b) guaiacol. Plots on the left show the bonding pattern of
the hydrogen of the hydroxyl group (HPh) with the water oxygen (OW ), while plots on the
right show the bonding pattern of the oxygen of the hydroxyl group (OPh) with the water
hydrogen atoms (HW ), as indicated by the red arrows.

Whereas classical MD simulations provide a coarse picture of the thermodynamics of

solvation, FPMD gives more accurate insight into the local structure of the hydration shell

of each molecule in either aqueous solution or at the air-ice interface. In particular, we

focus on the hydration shell of the hydroxyl group, which forms hydrogen bonds with water.
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Figure S9 shows that there are significant differences in the radial distribution functions and

their integral between classical and first-principles MD simulations. As shown in Figure 3,

the hydroxyl groups donate one hydrogen bond regardless of the solvation environment.

Conversely, differences in the accepted hydrogen bonds are more substantial when comparing

the two molecules in solution at room temperature or at the air-ice interface at 263 K.

For both molecules the hydroxyl group accepts between one and two hydrogen bonds from

water. The nearest neighbor hydration structure of the hydroxyl group of phenol does

not vary beyond the statistical uncertainty of the FPMD simulations from bulk water to ice

(Figure 3c). In contrast, the coordination of the hydroxyl group of guaiacol drops significantly

when the molecule is adsorbed on ice rather than in solution (Figure 3d), as a result of

the interaction of the methoxy group with the surface. These results show that there are

subtle differences in the hydration environment of phenol and guaiacol between solvation in

bulk water and at the air-ice interface. In the following section, we assess whether these

differences affect the light absorption spectra, making it necessary to consider explicitly the

water molecules in the first solvation shells in the computational model.

UV-Visible Absorption Spectra

To compare UV-visible absorption spectra of phenol and guaiacol in aqueous solution and

at the air-ice interface, and compute solvatochromic shifts, we need to take into account

three main factors: (i) the sampling of the configurational space of the molecules, driven

by temperature fluctuations and affected by different solvation environments, (ii) long-range

dielectric screening, and (iii) local interactions with the hydration shell.

Previous works suggest that it is necessary to consider the thermal fluctuations of the sol-

vation shell in the shape and width of absorption spectra.30,31,38–41 These works highlight the

importance of calculating absorption spectra for a distribution of configurations that sample

the relevant thermodynamic ensemble. To this aim, we have calculated the absorption spec-

tra for a number of statistically independent frames from the FPMD trajectories described
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in the previous section. Convergence tests show that within this ensemble approach, the

line-shape of the lowest-energy excitation band converges averaging over at least 100 frames

(Figure S10). To assess the effect of configurational sampling, we compare the absorption

spectra of geometry optimized phenol and guaiacol in aqueous solution, using molecular con-

figurations extracted from the corresponding FPMD runs at 300 K (Figure 4). Both spectra

are compared to experimental molar absoptivities measured in solution.82,83 TDDFT calcu-

lations of the UV-visible absorption spectra are carried out for phenol and guaiacol in the

SCCS model, which was used also for the geometry optimization of the zero-temperature

configurations. In time-dependent density functional perturbation theory absorption spec-

tra are obtained from the resolvent of the TDDFT operator, which is computed through the

Lanczos iterative algorithm. The poles of the resolvent, which correspond to the excitation

energies of the system, are smoothed by adding a small imaginary part to the frequency;

this implies that peaks in the spectra are broadened by Lorentzian functions, with a width

σ set by the user. We used σ = 0.027 eV in all our calculations.

Averaging over a finite temperature ensemble has a major effect on peak positions and

amplitudes for both molecules. Temperature fluctuations result in a red shift with respect to

the excitation energy of zero-temperature optimized frames (8 nm for guaiacol and 6 nm for

phenol) and broadening of the peaks. The lineshapes obtained from the ensemble method

resemble fairly closely the experimental measurements and, in the case of phenol, also the

peak positions correspond. As expected, we observe a red shift of the guaiacol solution

spectrum with respect to experiment. The energy difference between the maximum of the

theoretical and the experimental lowest-energy absorption bands of guaiacol in Figure 4

is about 0.15 eV. This discrepancy is not surprising, as TDDFT calculations using semi-

local GGA functionals are known to lead to a systematic underestimation of the excitation

energies up to ∼ 0.4 eV for benzene-like molecules.84 The temperature induced broadening

is by far the most prominent effect on the line shape of the absorption spectrum of aromatic

molecules. Experimental estimates of the radiative and non-radiative lifetime of the low
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energy excited states of benzene, both of the order of 10−7 s, suggest that the broadening

induced by this additional effect is of the order of 10−8 eV, so it can be neglected in our

calculations.
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Figure 4: Absorption spectra of a) phenol and b) guaiacol in aqueous solution obtained
from a single geometry-optimized configuration (red line) and an ensemble average over the
first-principles molecular dynamics trajectory at 300 K (blue line) calculated via TDDFT.
The dotted lines on both plots show the measured absorptivities of phenol and guaiacol in
solution.82,83

The different solvation environments are treated with the standard SCCS model for

bulk water, and with the newly implemented extension of the SCCS model for the air-ice

interface,75 in which phenol and guaiacol are embedded at the interface between regions with

the dielectric constants of ice and air (vacuum). In Figure S11 we assess the influence of the

different implicit solvent models on the absorption spectra of phenol and guaiacol optimized

in the respective solvation environment, comparing to the gas-phase spectra. While the

differences are substantially smaller than those observed by ensemble averaging, the different
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electrostatic embeddings produce changes in both peak positions and oscillator strength. Yet,

the sign of these changes is different for the two molecules.

In order to account for the effect of the local solvation environment, we have computed the

absorption spectra including a systematically increasing number of explicit water molecules

in the hydration shell of both phenol and guaiacol. We have considered molecules at an

increasing distance from the oxygen atom of the hydroxyl group, as it is the part of the

molecule that interacts more strongly with the solvent. Similar to implicit solvent calcula-

tions, about 100 frames are necessary to converge the line shape of spectra. Whereas this

hybrid approach accounts for more physics, as it includes both short-range and long-range

effects, the number of explicit water molecules needs to be converged to avoid artifacts.

Provorse et al.69 showed that in a mixed implicit/explicit solvent model, a small number of

explicit solvent molecules is sufficient to achieve well converged spectra for neutral solutes.

In a similar fashion we tested a mixed explicit/implicit solvent framework with both phe-

nol and guaiacol both in bulk water and at the air-ice interface. We observe that for both

molecules either in solution or at the air-ice interface the wavelength of the maximum of

the lowest energy absorption peak is not sensitive to the number of explicit water molecules

in the hybrid model, and with five explicit water molecules it does not vary with respect

to that computed with the fully implicit solvation model (Figure S12), indicating that local

solvation has only secondary effects on the absorption spectra of these molecules. Hence,

hereafter we solely rely on the SCCS implicit solvent model to represent either the aqueous

solution or the air-ice interface solvation environment.

Figure 5 shows the theoretical (TDDFT) absorption spectra of guaiacol and phenol at

the air-ice interface and in water, each computed by averaging over about 200 statistically

independent frames picked from FPMD trajectories at random intervals. The figure also

shows the modeled solar photon flux for Summit, Greenland on the summer solstice from

the tropospheric ultraviolet and visible (TUV) model.19 The main result is that our model

predicts a solvatochromic (bathochromic) shift of the lowest-energy absorption band for both
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Figure 5: Absorption spectra for a) phenol and b) guaiacol comparing theoretical results
obtained in solution and on the ice surface. A shift of approximately 5 nm to the right can
be seen for both molecules at the air-ice interface compared to solution. Values represent
wavelengths of peak absorbance in the long-wavelength band. The orange line represents
the modeled solar spectrum for Summit, Greenland at midday on the summer solstice from
the tropospheric ultraviolet and visible (TUV) model.19

molecules adsorbed at the air-ice interface, with the maximum of the molar absorptivity peak

red-shifted by about 5 nm relative to bulk solution. Although small, such shift modifies

significantly the overlap between the molar absorptivity of the molecules and the actinic

flux, thus leading to a significant increase of the photon absorption when the two molecules

are adsorbed at the air-ice interface. This is especially true for guaiacol, which has the low-

energy tail of UV-visible absorption spectrum in a region where the actinic flux increases by

several orders of magnitude. Specifically, there is a million-fold increase between 290 and

310 nm,19,83 which is the wavelength range in which the spectra tail off. Conversely, we are

not aware of experiments on phenol photodegradation at the air-ice interface, but, based

on the small degree of overlap with the solar flux, our computed spectra suggest that the
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photodecay of phenol is very slow both in solution and at the ice surface, but it would be

enhanced in the latter.

Spectral Line Shapes from Machine Learning

260 270 280 290 300 310

λ (nm)

0

0.5

1

1.5

2

2.5

In
te

n
s
it
y
 (

a
.u

.)

TDDFT Solution

TDDFT Ice

ML Solution

ML Ice

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

Actinic Flux

λ = 286.3 nm

λ = 281.4 nm

λ = 281.2 nm

λ = 286.0 nm

a)

b)

250 260 270 280 290 300 310

λ (nm)

0

0.5

1

1.5

2

2.5
In

te
n

s
it
y
 (

a
.u

.)
TDDFT Solution

TDDFT Ice

ML Solution

ML Ice

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

Actinic Flux

λ = 274.5 nm

λ = 269.5 nm

λ = 274.7 nm

λ = 269.6 nm

A
c
ti
n
ic

 f
lu

x
, 
p
h
o
to

n
s
 c

m
-2

s
-1

n
m

-1
A

c
ti
n
ic

 f
lu

x
, 
p
h
o
to

n
s
 c

m
-2

s
-1

n
m

-1

Figure 6: Absorption spectra for (a) phenol and (b) guaiacol in solution and on the ice
surface, comparing results obtained from TDDFT calculations (blue/light blue) and through
the LASSO regression model (red/orange). The amplitudes of the machine-learning spectra
are normalized to those of the TDDFT spectra.

A quantitative estimate of the increased photon absorption of molecules at the air-ice

interface can be obtained by computing the convolution of the molar absorptivity with the

photon flux, which, however, would require a precise evaluation of the shape of the lowest

energy band of the UV-visible absorption spectra. Yet, in our calculations these are affected

by the Lorentzian broadening of the TDDFT spectra and by insufficient statistical sampling,

which yield slowly decaying tails and features like the accentuated shoulders at 287 nm and
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298 nm in the spectra of phenol and guaiacol at the air-ice interface (Figure 5). To remove

these artifacts we have designed an efficient statistical learning approach, outlined in the

Methods section, which fits the excitation energy on a reduced set of molecular coordinates

using the LASSO algorithm, thus allowing us to compute the spectra of thousands of frames

at nearly no computational cost. The outcome of this ML model is the lowest energy bands

of the spectra, obtained by averaging 5,000 frames from the 50 ps FPMD trajectories, in

which each frame contributes to the total spectrum as a Gaussian with 0.014 nm width.

The comparison between the UV-visible absorption bands computed by ML and by TDDFT

(Figure 6) shows that the ML approach provides smoother line-shapes without requiring a

fictitiously large line broadening and eliminates unphysical long-wavelength tails, while peak

positions and line width remain similar to those computed by the TDDFT ensemble method.

In spite of the solvatochromic shift the spectrum of phenol at the air-ice interface does not

overlap with the solar flux, thus we do not expect any enhancement of photodegradation

rates due to an increased absorption of photons. In contrast, the solvatochromic shift of

guaiacol can produce a substantial enhancement of photon absorption, the extent of which

depends on the detailed shape of the actinic flux. For example, we calculated that a 5 nm

red shifts increases the rate of sunlight absorption by a factor of 10 under polar summer

sunlight conditions.83

Furthermore, our approach also sheds light into the physical origin of the observed

bathochromic shift. While fitting and testing the ML model, we realized that a model

fitted on bulk aqueous solution data is capable of reproducing the lowest excitation energies

of the same molecule adsorbed at the air-ice interface, with similar accuracy, i.e., MAE. 2

nm, and without systematic deviations. This means that the molecular configuration is the

main parameter that determines the lowest excitation energy, and therefore the position and

shape of the longest wavelength absorption band. The screening provided by the solvation

environment turns out to be a higher order correction. The weights of the LASSO fitting

parameters associated with the coordinates of each atom give the relative influence of such
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Figure 7: Histogram representing the cumulative weights to the LASSO regression models
from coordinates of the atoms of phenol/guaiacol as labeled in the molecular model (left).
Atoms are labeled consistently for both molecules. Data from guaiacol adapted from Hullar
et al.83

coordinates to determine the excitation energy. Figure 7 shows that for both phenol and

guaiacol the coordinates of the carbon atoms in the phenyl ring have the largest weights,

thus indicating that the observed bathochromic shift is caused by configurational changes

in the phenyl ring, dictated by different temperatures and solvation environments. In fact,

we observed that for both molecules the distribution of the C-C bond lengths changes at

the different conditions, with slightly larger bond lengths when the molecules are adsorbed

at the air-ice interface. The centers of the bond length distributions are shifted by 0.011

Å for phenol and 0.012 Å for guaiacol (Figure S13). It is worth noting that for phenol the

coordinates of the OH group provide a more significant contribution to the ML model than

for guaiacol. To further verify the hypothesis that the solvatochromic shift is essentially dic-

tated by the different configurations of the molecules on ice and in water, we recalculated the

absorption spectrum for the ice frames by TDDFT using the bulk water SCCS parameters:

the two spectra show minimal differences (Figure S14).
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Conclusions

We have developed and validated a multimodel approach for the calculation of absorption

spectra of organic molecules at the air-ice interface, that combines classical and quantum

simulations and statistical learning. Our approach takes into account the relevant thermo-

dynamic conditions and the effects of the interactions between solvent and solute. For the

latter we have extended the SCCS implicit solvent model to represent regions with different

dielectric constants.

Classical MD simulations of well equilibrated ice surface models show that the adsorption

of phenolic molecules at the air-ice interface is thermodynamically more favorable than the

solvation in bulk liquid regions. Moreover they show that these molecules remain confined

to the surface of the QLL on ice, and their dynamics are dictated by the hydrogen bonds

between the hydroxy group and water.

TDDFT calculations over an ensemble of configurations, extracted from FPMD simu-

lations, show that these solvation conditions determine a solvatochromic red shift of the

lowest energy band of the UV-visible absorption spectrum of about 5 nm. The origin of

this bathochromic shift for both molecules lies in slight configurational changes of the aro-

matic ring, dictated by the different solvation environments. This allows us to fit the lowest

excitation energies on a simple statistical learning model from which we can calculate sta-

tistically converged line shapes for the lowest energy absorption band. These calculations

can be exploited to estimate the enhanced photon absorption for molecules adsorbed at the

air-ice interface with respect to bulk solutions and, therefore, interpret the origin of enhanced

photodegradation rates of organic pollutants in snowpacks.

Our efforts represent the most sophisticated modeling of light absorption spectra for or-

ganic molecules at the air-ice interface to date. The resulting red shifts are probably not only

significant for phenols, which are important pollutants in Arctic regions,85–87 but also for a

wide range of organic contaminants. While these red shifts increase the photodegration rates

and shorten pollutant lifetimes, in order to fully understand photochemistry of molecules at
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the air-ice interface, we also need to determine the impact of this environment on quantum

yields.83

Supporting Information Available

The Supporting Information is available and free of charge. Force field parameterization

methods, further classical MD analysis (3D density maps, average positioning, coordination

number comparison with AIMD), single frame absorption spectra calculations using differ-

ent implicit solvation models, absorption spectra convergence plots, changes in absorption

spectra max with the addition of explicit waters, machine learning parity plots for the two

described methods.
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Force Field Parameterization

We performed alchemical free energy perturbation (FEP) calculations1,2 using a two-step

process, where a switching parameter was used to sequentially switch on/off the van der

Waals and electrostatic part of the water/solute interactions. Singularities are avoided by

the use of soft-core potentials instead of Lennard-Jones,3 and with a switching paramenter

of 0.02, a total of 50 intermediate states were simulated and allowed to equilibrate for 0.1 ns.

For phenol and guaiacol solvated in water at room temperature we obtained free energies

of hydration of -5.30 kcal/mol (phenol) and -5.62 kcal/mol (guaiacol), in good agreement

with the experimental values of -6.62 and -5.94 kcal/mol.4,5 The tables in Figure S1 show

the reparameterized charges for both molecules. Charge reparameterization was done based

on the ratio between the dielectric constant of water for the TIP4P (ǫ = 78) and TIP4P/Ice

( ǫ = 106) model, which gives a factor of approximately 1.667.6,7
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Figure (S1) Electrostatic parameters utilized for classical MD simulations for phenol (left)
and guaiacol (right), reparameterized to account for differences in the dielectric constant for
the TIP4P/Ice model. CA/CB/CC/CD and HA/HB/HC/HD correspond to the carbon and
hydrogen atoms of the aromatic ring. CP, OH and HO correspond to the aromatic carbon,
oxygen and hydrogen atoms of the hydroxyl group. CT corresponds to the aromatic carbon
attached to the methoxy group in guaiacol, and OM, CM and HM correspond to the oxygen,
carbon and hydrogens of the methoxy group.
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Figure (S2) Free energy change using a λ parameter equal to 0.02 and a total of 5 ns
simulation time for phenol. Panel a) corresponds to calculations in solution at 300K and
panel b) corresponds to calculations on the ice surface at 263K. Interactions are decoupled:
plots on the left correspond to the Lennard-Jones contribution to the free energy while
plots on the right correspond to the Coulombic contribution to the free energy. ’Forward’
corresponds to the insertion of the molecule while ’reverse’ corresponds to molecule deletion.
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Figure (S3) Free energy change using a λ parameter equal to 0.02 and a total of 5 ns simu-
lation time for guaiacol. Panel a) corresponds to calculations in solution at 300K and panel
b) corresponds to calculations on the ice surface at 263K. Interactions are decoupled: plots
on the left correspond to the Lennard-Jones contribution to the free energy while plots on
the right correspond to the Coulombic contribution to the free energy.’Forward’ corresponds
to the insertion of the molecule while ’reverse’ corresponds to molecule deletion.Since adsorp-
tion at the air-ice interface implies the loss of translational degrees of freedom, the adsorption
free energy may be further corrected by a term that depends on the different translational
partition functions in gas phase Qgas

tr and at the surface Qads
tr : −T∆S = −kBT ln

(

Qads
tr /Q

gas
tr

)

with Qads
tr /Q

gas
tr = h/L (2πMkBT )

0.5
. where M is the molecular mass, h Planck’s constant

and L a length related to the density of molecules in gas phase with respect to surface cov-
erage. Assuming L = 1 nm we obtain a correction of +2.35 kcal/mol. We argue, however
that being a dynamic method FEP would account at least in part for such entropy change,
thus we consider this correction an upper limit.
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LASSO Model
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Figure (S4) Parity plots for our first machine learning model, where calculated frames
obtained from molecules in solution were used as training set. The R2 and Mean absolute
error (MAE) in the training and testing subfigures come from the average of 8-fold cross
validation scheme. The cross-testing subfigures illustrate the testing performance from which
models that were developed from solution frames were used to make predictions on ice frames.
a) phenol and b) guaiacol.
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Figure (S5) Parity plots for our combined machine learning model for phenol, where calcu-
lations obtained from molecules in solution and on the ice surface were used as training set.
The R2 and MAE in the training and testing subfigures come from the average of 4-fold cross
validation scheme. During each fold of the cross validation scheme, a total of 234 TDDFT
calculations were used in the training and 78 calculations were used in the testing. Frames
used in cross-testing come from the subset of the calculations used in the cross validation
scheme. The cross-testing subfigures illustrate the testing performance from which the model
that was developed from combined frames was used to make predictions on solution and ice
frames separately.
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Figure (S6) Parity plots for our combined machine learning model for guaiacol, where
calculations obtained from molecules in solution and on the ice surface were used as training
set. The R2 and MAE in the training and testing subfigures come from the average of
5-fold cross validation scheme. During each fold of the cross validation scheme, a total of
260 TDDFT calculations were used in the training and 65 calculations were used in the
testing. Frames used in cross-testing come from the subset of the calculations used in the
cross validation scheme. The cross-testing subfigures illustrate the testing performance from
which the model that was developed from combined frames was used to make on solution
and ice frames separately.
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Adsorption on Ice Surface

a)

d)

c)

d)

Figure (S7) Three-dimensional solvation structure around phenol and guaiacol molecules
obtained from classical MD simulations. Shown in red are the oxygen atoms, while in white
are the hydrogen atoms of water molecules. Panels a and b correspond to the solvation struc-
ture of phenol and guaiacol, respectively on the ice surface while panels c and d correspond
to the same molecules in solution. Data on all panels was obtained from 200 ns simulations
and images were obtained with an isovalue of 0.045.
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Figure (S8) Molecular orientation of phenol (a) and guaiacol (b) at the air-ice interface
obtained from classical MD simulations. Left panels: Definition of the two angles θ and φ

that give the orientation of the molecule relative to the normal to the ice slab. For θ, a vector
was defined using the positions of the phenol oxygen atom and the opposite carbon atom
in the aromatic ring. For φ, two carbon atoms in the aromatic ring were chosen, forming
a vector which is perpedicular to the one formed by the phenol oxygen and carbon atom.
It is important to highlight that the aromatic rings of both molecules are kept rigid during
classical MD simulations. Center: probability distribution of the two angles over the 100
ns MD trajectories. Right: side view of the average configuration for each molecule. The
θ distributions show that the C-O bond of the phenol group tend to have an inclination
between π/4 and π/2, the latter corresponding to the molecule lying flat on the surface. The
distribution of the φ angle is different for the two molecules. While for phenol the plane of
the aromatic ring is oriented between π/4 and π/2, the presence of the methoxy group on
guaiacol changes the average position of the aromatic ring to a range between π/4 and 3π/4,
where the side of the ring containing the methoxy group sits closer to the ice surface, likely
due to the weak hydrogen bond that can be formed by the oxygen of the methoxy group of
guaiacol and the water molecules at the ice surface.
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Classical MD and First-Principles MD
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Figure (S9) Comparison of coordination number for the hydroxyl groups of phenol (a,c)
and guaiacol (b,d) obtained through classical (red line) and first-principles MD simulations
(blue line), both on the ice surface. Panels a and b show no significant differences between
the hydrogen bonding donor ability of the hydroxyl group of phenol (HPh) between the two
methods. However, there is more of a difference when looking at hydrogen bond acceptors
(phenol oxygen, OPh), especially for phenol (panel c), which reiterates the importance of a
more accurate look into the local structure of the solvation shell of both molecules.
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TDDFT Calculations Using SCCS
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Figure (S10) Absorption spectra of a) phenol and b) guaiacol obtained by averaging a differ-
ent number of statistically independent frames obtained from first-principles MD simulations
in solution. Convergence is seen when more than 80 frames are utilized.
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a� b)

Figure (S11) TDDFT calculations of absorption spectra for a)phenol and b)guaiacol in
different solvation environments highlighting the differences in the absorption max. The
red line corresponds to the absorption of a single geometry optimized frame in gas phase
while the blue line and green lines correspond to the solution and ice surface SCCS models,
respectively.
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Figure (S12) Plot showing the maximum absorbance at the lowest energy (λmax) for both
molecules in solution and on the ice surface when performing TDDFT calculations utilizing
0, 2, 3 or 5 explicit water molecules.
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Figure (S13) Average bond length distribution for the aromatic ring carbon-carbon (C-C)
bonds in solution (red) and on ice (blue) showing a difference of 0.011 Å for phenol (panel
a) and 0.012 Å for guaiacol (panel b).
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Figure (S14) TDDFT calculations performed on the same set of 100 frames obtained from
a FPMD trajectory of guaiacol on ice utilizing 2 different solvation models. The blue line
represents the average over frames calculated utilizing the SCCS model as it would be set for
solution while the red line represents the average over frames calculated utilizing our newly
developed SCCS model for calculations of spectra of molecules on the ice surface.
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