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Existence of weak solutions to a continuity equation with
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ABSTRACT
In this manuscript, we consider a non-local porous medium equation
with non-local diffusion effects given by a fractional heat operator

@tu ¼ divðurpÞ,
@tp ¼ �ð�DÞspþ ub,

�

in two space dimensions for b > 1, 1
b < s < 1: Global in

time existence of weak solutions is shown by employing a
time semi-discretization of the equations, an energy inequal-
ity and the Div-Curl lemma.
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1. Introduction

In this manuscript, we study existence of weak solutions to a porous medium equation
with non-local diffusion effects:

@tu ¼ divðurpÞ,
@tp ¼ �ð�DÞspþ ub:

�
(1)

Here uðx, tÞ � 0 denotes the density function and pðx, tÞ � 0 the pressure. We analyze
the problem when x 2 R2, 1

b < s < 1 and b > 1: The model describes the time evolution
of a density function u that evolves under the continuity equation

@tu ¼ divðuvÞ,
where the velocity is conservative, v ¼ rp, and p is related to ub by the inverse of the
fractional heat operator @t þ ð�DÞs:
Problem (1) is the parabolic-parabolic version of a parabolic-elliptic problem recently

studied in [1]. In [1], the authors proved the existence of sign-changing weak solutions to

@tu ¼ divðjujra�1ðjujm�2uÞÞ: (2)
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For m ¼ qþ 1 and a ¼ 2� 2s Eq. (2) reads as

@tu ¼ divðurpÞ, p ¼ ð�DÞ�sub, 0 < s � 1:

The presence of @tp makes our system quite different from (2). For example, techniques
such as maximum principle and Stroock-Varopoulos inequality do not work. We over-
come these significant shortcomings with the introduction of ad-hoc regularization
terms, together with suitable compact embeddings and moment estimates. See later for
a more detailed explanation.
A linear parabolic-elliptic version of (1)

@tu ¼ divðurpÞ, p ¼ ð�DÞ�su, 0 < s � 1, (3)

was studied by the first author and collaborators in a series of papers: existence of weak
solutions for (3) is proven in [2–4] and H€older regularity in [5]. The case s¼ 1 also
appeared in [6] as a model for superconductivity.
Systems (3) and (1) are reminiscent to a well-studied macroscopic model proposed

for phase segregation in particle systems with long range interaction:

@tu ¼ Duþ divðrðuÞrpÞ,
p ¼ K � u:

�
(4)

Any system that exhibits coexistence of different densities (e.g., fluid and vapor or fluid
and solid) has equilibrium configurations that segregate into different regions; the surface
of these regions are minimizers of a free energy functional. The relaxation to equilibrium
of the density function u(x, t) can be described in general by nonlinear integro-differential
equations of type (4). One example is the model proposed in [7], in which the mobility is
rðuÞ :¼ uð1� uÞ and the kernel K is bounded, symmetric and compactly supported. Such
model describes the hydrodynamic (or mean-field) limit of a microscopic model under-
going phase segregation with particles interacting under a short-range and long-range Kac
potential. Several other variants of (4) are present in the literature [7–11]. We also mention
[12] for the study of a deterministic particle method for heat and Fokker–Planck equations
of porous media type where the non-locality appears in the coefficients. The long time
behavior of weak solutions to (1) was studied in [13]. There the authors show algebraic
decay in time toward the stationary solutions u¼ 0 andrp ¼ 0:

The condition that the pressure satisfies a parabolic equation introduces non-trivial
complications in the analysis of (1). The non-local structure prevents the equation from
having a comparison principle. Moreover, maximum principle does not give useful
insights, since at any point of maximum for u we only know that @tu � uDp: We over-
come the lack of comparison and maximum principles with the introduction of several
regularizations. Stampacchia’s truncation arguments yield non-negativity of the solutions
and the Div-Curl lemma will be used to identify the limit for ub:

The main result of this manuscript is summarized in the following theorem:

Theorem 1. Let b > 1, 1
b < s < 1. Moreover let uin, pin : R2 ! ½0, þ1Þ be functions

such that uin 2 L1 \ LbðR2Þ, pin 2 L1 \ H1ðR2Þ. There exist functions u, p : R2 �
½0,1Þ ! ½0, þ1Þ such that for every T> 0
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u 2 L1ð0,T, L1 \ LbðR2ÞÞ \ Lbþ1ðR2 � ð0,TÞÞ,
p 2 L1ð0,T,H1 \ L1ðR2ÞÞ \ L2ð0,T,Hsþ1ðR2ÞÞ,

@tu 2 Lbþ1ð0,T,W�1, 2ðbþ1Þ
bþ3 ðR2ÞÞ, @tp 2 Lðbþ1Þ=bð0,T, ðL2 \ Lbþ1ðR2ÞÞ0Þ,

which satisfy the following weak formulation to (1):ðT
0
h@tu,/idt þ

ðT
0

ð
R2
urp � r/dxdt ¼ 0 8/ 2 L

bþ1
b ð0,T;W1, 2ðbþ1Þ

b�1 ðR2ÞÞ, (5)

ðT
0
h@tp,widt þ

ðT
0

ð
R2
ðð�DÞsp� ubÞwdxdt ¼ 0 8w 2 Lbþ1ð0,T; L2 \ Lbþ1ðR2ÞÞ,

lim
t!0

uðtÞ ¼ uin in W�1, 2ðbþ1Þ
bþ3 ðR2Þ, lim

t!0
pðtÞ ¼ pin in ðL2 \ Lbþ1ðR2ÞÞ0,

(6)

as well as the mass conservation relationð
R2
uðx, tÞdx ¼

ð
R2
uinðxÞdx, t > 0:

The starting point about our analysis is the observation that

H u, p½ � :¼
ð
R2

ub

b� 1
þ 1
2
jrpj2

 !
dx

is a Lyapunov functional for (1) and satisfies the bound

H u, p½ � þ
ðT
0

ð
R2
jð�DÞs=2rpj2dxdt ¼ H uin, pin½ �:

Indeed, formal computations show that

d
dt

ð
R2

ub

b� 1
dx ¼ divðurpÞ, bu

b�1

b� 1

* +
¼ �

ð
R2
rub � rpdx:

Testing the equation for p against Dp we obtainð
R2
rub � rpdx ¼ d

dt

ð
R2

jrpj2
2

dxþ
ð
R2
jð�DÞs=2rpj2dx,

which leads to

d
dt

H u, p½ � þ
ð
R2
jð�DÞs=2rpj2dx ¼ 0 t > 0: (7)

The major difficulty, in the approximation process, is the identification of the limit of
ub: The energy inequality (7) provides plenty of information for the pressure p, but
only uniform integrability in L1ðLbÞ for u. At the moment it is unclear to the authors
how to use the bounds for rp to get useful bounds for ru or u. To overcome the lack
of compactness we employ the Div-Curl Lemma (see [14]) to the vector fields

Ue 	 ðue, � uerpeÞ, Ve 	 ð@tpe,rpeÞ,
where ðue, peÞ is a suitable approximate solution to (1). The argument yields

Ue � Ve * U � V weakly in L1ðR2 � ð0,TÞÞ,
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where U, V are the weak limits of Ue,Ve, respectively. Strong convergence of pe and
standard result in compensated compactness theory [15] yield strong convergence
for ue:
The application of the Div-Curl Lemma brings two restrictions on the system. The

first one concerns the lower bound for s, s > 1
b , the second one the dimension. It is

unclear how to remove such restrictions, as they seem necessary to fulfill the integrabil-
ity and compactness constraints on the quantities Ue,Ve: The assumptions on s, b, and
d are not satisfactory from the point of view of a general theory for weak solutions. As
such, Theorem 1 is a first step to understand the complete behavior of (1). Most inter-
esting, however, is the fact that the addition of a nonstationary term in the pressure
equation radically changes the behavior of the system and calls for a different analytical
setting than in [3, 11]. We also point out that the successful use of the Div-Curl
Lemma, a tool commonly employed in the study of fluid-dynamic systems, in the ana-
lysis of nonlocal diffusion equations is (to our best knowledge) a novelty and an unex-
pected connection between the two fields. Uniqueness of weak solutions is an important
open question for our system. We expect it to hold for short time straightforwardly. For
long time the only available result so far is the one in [13], in which the authors show a
weak-strong uniqueness result: if there exists a strong solution, then any weak solution
with the same initial data coincides with it.
Existence of a solution for b¼ 1 appears to be out of reach with the present tech-

nique, as several other terms will lack compactness.
The article is organized as follows: in Section 2, we show two preliminary technical

lemmas, and in Section 3 the proof of the main theorem.

2. Some technical results

Lemma 1 . Let g : ½0,1Þ ! ½0,1Þ be a continuous, nondecreasing function such that
limr!1 gðrÞ ¼ 1. For j 2 ð0, p�, 1 � p < 2 define the functional space Vg,j, p as

Vg,j, p :¼ W1, pðR2Þ \ LjðR2, gðjxjÞdxÞ ¼ f 2 W1, pðR2Þ :
ð
R2
f ðxÞjgðjxjÞdx < 1

� �
:

Then Vg,j, p is compactly embedded in LqðR2Þ for any maxfj, 1g � q < 2p
2�p :

Proof. Let ffng be a uniformly bounded sequence in Vg,j, p: We first notice that there
exists a subsequence, still denoted with fn such that

fn * f weakly inW1, pðR2Þ ,! L2p=ð2�pÞðR2Þ:
Denote with BR the ball of center x¼ 0 and radius R. Since W1, pðBRÞ is compactly
embedded in LqðBRÞ for any 1 � q < 2p

2�p , there exists a subsequence of fn, still denoted
with fn, such that

fn ! f strongly in LqðBRÞ for any 1 � q <
2p

2� p:

Thanks to a Cantor diagonal argument, the subsequence fn can be chosen to be inde-
pendent of R. The uniform bound for fn in Vg,j, p and Fatou’s Lemma imply
that f 2 Vg,j, p:
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Next we show that jfn � f jj strongly in L1ðR2Þ : for n big enoughð
R2
jfn � f jjdx ¼

ð
BR

jfn � f jjdx þ
ð
Bc
R

jfn � f jjdx

� e
2
þ 1
gðRÞ

ð
Bc
R

gðjxjÞjfn � f jjdx � e,

by choosing R big enough. Interpolation between L2p=ð2�pÞ and Lmaxfj, 1g implies that for
any q with maxfj, 1g � q < 2p

2�p the sequence fn strongly converges to f in LqðR2Þ: w

Lemma 2. Define gðxÞ ¼ ð1þ jxj2Þ�a=2 with a > 4 and for every R � 1 we set
gRðxÞ ¼ gðx=RÞ. For s> 0 we have

lim
R!1

jjð�DÞsgRj L1 ¼ 0:j

Proof. The result is a consequence of the scaling property of the fractional Laplacian:

ð�DÞsgR ¼ 1
R2s

ð�DÞsg:

3. Proof of the main theorem

Define the spaces

X :¼ L
2b
b�1ðR2Þ, Y :¼ g 2 W1, 1þb

b ðR2Þ :

ð
R2
jgj1þb

b cdx < 1
� �

,

~Y 	 fu 2 L1locðR2Þ : u � 0 a:e: in R2, ub�1 2 Yg,
where

cðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxj2

q
:

Thanks to Sobolev’s embedding and Lemma 1:

Y ,! LqðR2Þ continuously for
1þ b
b

� q � 2ðbþ 1Þ
b� 1

, (8)

Y ,! LqðR2Þ compactly for
1þ b
b

� q <
2ðbþ 1Þ
b� 1

: (9)

In particular, the embedding Y ,! X is compact.
For every measurable function g : R2 ,! R [ f61g we denote by gþ :¼ maxfg, 0g

and g� :¼ minfg, 0g its positive and negative part, respectively.

For given constants .1, .2, s, e > 0, functions u� 2 ~Y and p� 2 H2sðR2Þ such that
u�, p� � 0 a.e. in R2, consider the time-discrete problemð

R2

u� u�

s
/þ urp � r/þ .1jrub�1j1b�1rub�1 � r/þ eu

b�1
b /c

� �
dx ¼ 0 8/ 2 Y ,

(10)
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p� p�

s
þ ð�DÞsp� .2Dp� ub ¼ 0: (11)

We divide the proof of Theorem 1 into several steps: we first show existence of solution
to (10, 11) by Leray-Schauder fixed point theorem. Then we perform the limits
e ,! 0, s ,! 0, .2 ,! 0 and .1 ,! 0 (in this order). The last limit is the most compli-
cated because we need compactness for u without relying on the
term .1

Ð
R2 jrub�1j1b�1rub�1 � r/dx:

3.1. Existence for (10)–(11)

For given constants ., s, e > 0, r 2 ½0, 1�, functions z 2 X, u� 2 ~Y and p� 2 H2sðR2Þ
such that u�, p� � 0 a.e. in R2, consider the linear problem in the variable w:ð

R2
ðs�1 jwj2�b

b�1w� u�
� �

/þ rz
1

b�1
þ rp � r/Þdx þ .1

ð
R2
jrwj1b�1rw � r/dx

þ e
ð
R2
jwj1b�1w/cdx ¼ 0 8/ 2 Y ,

(12)

ð
R2
ðs�1ðp� p�Þwþ �DÞs=2p � ð�DÞs=2wþ .2rp � rw� z

b
b�1
þ w

� �
dx ¼ 0 8w 2 H1ðR2Þ:

(13)

We first solve (13). We have that z
b

b�1 2 L2ðR2Þ: Lax-Milgram Lemma yields the exist-
ence of a unique solution p 2 H1ðR2Þ: Standard elliptic regularity results imply that p 2
H2ðR2Þ and consequently rp 2 LqðR2Þ for every q � 2:

We now solve (12). Since z
1

b�1 2 L2bðR2Þ and rp 2 LqðR2Þ for every q � 2, the linear
mapping

/ 2 Y 7!
ð
R2

�s�1u�/þ rz
1

b�1
þ rp � r/

� �
dx 2 R

is continuous. The nonlinear operator A : Y ,! Y 0 defined by

hA w½ �,/i ¼
ð
R2
s�1jwj2�b

b�1w/dx þ .1

ð
R2
jrwj1b�1rw � r/dx þ e

ð
R2
jwj1b�1w/cdx

for every / 2 Y is strictly monotone, coercive, hemicontinuous. Therefore, the standard
theory of monotone operators [16] yields the existence of a unique solution w 2 Y
to (12).
We can now define the mapping

F : ðz, rÞ 2 X � 0, 1½ � 7! w 2 X,

where ðw, pÞ 2 Y �H2ðR2Þ is the unique solution to (12, 13). Clearly Fð�, 0Þ is a con-
stant mapping. Moreover F is continuous and also compact due to the compact embed-
ding Y ,! X, see Lemma 1.
Next, we show that any fixed point is nonnegative and uniformly bounded in r. We

use a Stampacchia truncation argument. This method is generally used in nonlinear
elliptic problems to show positivity, boundedness and higher regularity via the choice of
particular test functions. In our case, by choosing / ¼ w� and w ¼ p� as test functions,
we get
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ð
R

2
s�1jw�j

b
b�1dx þ

ð
R

2
.1jrw�jðbþ1Þ=bdx þ e

ð
R

2
jw�jðbþ1Þ=bcdx ¼ 0,ð

R
2
s�1ðp�Þ2 þ ðð�DÞs=2p�Þ2 þ .2jrp�j2dx � 0,

from which it follows that w, p � 0 a.e. in R2: The nonnegativity of w and the
H2ðR2Þ-regularity of p allow for the formulationð

R2
ðs�1ðu� u�Þ/þ rurp � r/Þdxþ .1

ð
R2
jrub�1j1=b�1rub�1 � r/dx

þe
ð
R2
uðb�1Þ=b/cdx ¼ 0 8/ 2 Y ,

(14)

s�1ðp� p�Þ þ ð�DÞsp� .2Dp� ub ¼ 0 in R2, (15)

where we defined u 	 w
1

b�1:
We now search for uniform bounds with respect to r: choosing / ¼ ub�1 in (14) leads toð

R2
ðs�1ðu� u�Þub�1 þ .1

ð
R2
jrub�1jðbþ1Þ=bdx þ e

ð
R2
uðb

2�1Þ=bcdx ¼ �r
ð
R2
urp � rub�1dx

¼ rðb� 1Þ
b

ð
R2
ubDpdx:

On the other hand, multiplying (15) by rDp 2 L2ðR2Þ and integrating in R2 yields

r
ð
R2
ubDpdx ¼ r

ð
R2
ðs�1ðp� p�Þ þ ð�DÞsp� .DpÞDpdx

¼ �s�1r
ð
R2
ðrp�rp�Þ � rpdx � r

ð
R2
jð�DÞs=2rpj2dx � r.2

ð
R2
ðDpÞ2dx:

Given that

ðu� u�Þub�1 � ub=b� ðu�Þb=b, ðrp�rp�Þ � rp � jrpj2=2� jrp�j2=2,
we deduce

1
s

ð
R2

ub

b
þ r

b� 1
2b

jrpj2
 !

dxþ .1

ð
R2
jrub�1jðbþ1Þ=bdx þ e

ð
R2
uðb

2�1Þ=bcdx

þrðb� 1Þ
b

ð
R2
jð�DÞs=2rpj2dx þ .2

rðb� 1Þ
b

ð
R2
ðDpÞ2dx

� 1
s

ð
R2

ðu�Þb
b

þ r
b� 1
2b

jrp�j2
 !

dx:

(16)

The above estimate yields a bound for w ¼ ub�1 in Y which is uniform in r. Together
with the embedding Y ,! X we have that u belongs to X, with jjujjX bounded uni-
formly with respect to r. Leray-Schauder fixed point theorem yields the existence of a
fixed point w ¼ ub�1 2 Y for Fð�, 1Þ, i.e., a solution ðu, pÞ 2 ~Y b � H2ðR2Þ toð

R2

u� u�

s
/dx þ

ð
R2
urp � r/dxþ .1

ð
R2
jrub�1j1=b�1rub�1 � r/dx

þe
ð
R2
uðb�1Þ=b/cdx ¼ 0 8/ 2 Y ,

(17)
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p� p�

s
þ ð�DÞsp� .2Dp� ub ¼ 0 in R2, (18)

such that u, p � 0 a.e. in R2 and (16) holds for r¼ 1:

1
s

ð
R2

ub

b
þ b� 1

2b
jrpj2

 !
dx þ .1

ð
R2
jrub�1jbþ1

b dx þ e
ð
R2
uðb

2�1Þ=bcdx

þb� 1
b

ð
R2
jð�DÞs=2rpj2dx þ .2ðb� 1Þ

b

ð
R2
ðDpÞ2dx � 1

s

ð
R2

ðu�Þb
b

þ b� 1
2b

jrp�j2
 !

dx:

(19)

3.2. The limit e fi 0

The next step is to take the lime!0 in (17)–(19).
The uniform bound of ub�1 in W1, ð1þbÞ=bðR2Þ (see (19)) and Sobolev’s embedding

insure that for every R> 0 there exists a subsequence uðe,RÞ of uðeÞ such that

uðe,RÞ ! u strongly in LqðBRÞ, 1 � q < 2ðbþ 1Þ: R > 0,

The function u is the weak limit of uðeÞ in L2ðbþ1ÞðR2Þ: By a Cantor diagonal argument
we can find a subsequence (not relabeled) of uðeÞ such that

uðeÞ ! u strongly in LqðBRÞ, 1 � q < 2ðbþ 1Þ, R 2 N,

as well as uðeÞ ! u a.e. in R2: As a consequence

ðuðeÞÞb ! ub strongly in L2ðBRÞ, uðeÞ ! ustronglyinL2=sðBRÞ, R > 0: (20)

Going back to the limit in (18) and (17) we have that as e ! 0ð
R2
ðuðeÞÞbwdx !

ð
R2
ubwdx, 8w 2 C1

c ðR2Þ,ð
R2
uðeÞrpðeÞ � r/dx !

ð
R2

ð
R2
urp � r/dx, 8/ 2 C1

c ðR2Þ,

where we used (20) for the first limit, and (20) together with rpðeÞ * rp in
L2=ð1�sÞðR2Þ to obtain the second limit (remember that pðeÞ is relatively weakly compact
in H1þsðR2Þ). Summarizing, taking the limit e ! 0 in (17, 18) and subsequently
employing a standard density argument we getð

R2
ðs�1ðu� u�Þ/þ urp � r/þ .1jrub�1j1=b�1rub�1 � r/Þdx ¼ 0 8/ 2 W1, 1þb

b ðR2Þ, (21)

s�1ðp� p�Þ þ ð�DÞsp� .2Dp� ub ¼ 0 in R2: (22)

Moreover u, p � 0 a.e. in R2 and

1
s

ð
R2

ub

b
þ b� 1

2b
jrpj2

 !
dx þ .1

ð
R2
jrub�1j1þb

b dx

þb� 1
b

ð
R2
jð�DÞs=2rpj2dx þ .2ðb� 1Þ

b

ð
R2
ðDpÞ2dx � 1

s

ð
R2

ðu�Þb
b

þ b� 1
2b

jrp�j2
 !

dx:

(23)
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Let GdðxÞ 	 minfx=d, 1g for every x � 0: By testing (22) against GðpÞ 2 L2ðR2Þ and
exploiting the fact that

Ð
R2GdðpÞð�DÞspdx � 0 one deduces the estimateð

R2
GdðpÞpdx �

ð
R2
GdðpÞp�dx þ s

ð
R2
GdðpÞubdx �

ð
R2
p�dxþ s

ð
R2
ubdx � C:

Taking the limit d ! 0 in the above inequality (by monotone convergence)
yields p 2 L1ðR2Þ:
Let gR as in the statement of Lemma 2. Multiplying (22) by gR, integrating in R2 and

integrating by parts leads to

s�1
ð
R2
ðp� p�ÞgRdx ¼

ð
R2
ðubgR þ .2pDgR � pð�DÞsgRÞdx: (24)

Since jjð�DÞsgRjjL1 ! 0 as R ! 1 (see Lemma 2) and p 2 L1ðR2Þ, the bound for the
mass of p follows ð

R2
pdx ¼

ð
R2
p�dxþ s

ð
R2
ubdx:

At this point, we have proved the existence of sequences ðukÞk2N 
 H1ðR2Þ, ðpkÞk2N 

H2ðR2Þ such that u0 ¼ uin, p0 ¼ pin, and for k � 1 uk, pk � 0 a.e. in R2,ð

R2
ðs�1ðuk � uk�1Þ/þ ukrpk � r/Þdx þ .1

ð
R2
jrub�1

k j1=b�1rub�1
k � r/dx ¼ 0

8/ 2 H1ðR2Þ,
(25)

s�1ðpk � pk�1Þ þ ð�DÞspk � .2Dpk � ubk ¼ 0 in R2, (26)

with the estimates

1
s

ð
R2

ubk
b
þ b� 1

2b
jrpkj2

 !
dx þ .1

ð
R2
jrub�1

k jð1þbÞ=bdx

þ b� 1
b

ð
R2
jð�DÞs=2rpkj2dxþ .2ðb� 1Þ

b

ð
R2
ðDpkÞ2dx � 1

s

ð
R2

ðuk�1Þb
b

þ b� 1
2b

jrpk�1j2
 !

dx,

(27)ð
R2
pkdx ¼

ð
R2
pk�1dxþ s

ð
R2
ubkdx: (28)

Choose T> 0 arbitrary. Define N ¼ T=s, uðsÞðtÞ ¼ u0vf0gðtÞ þ
PN

k¼1 ukvððk�1Þs, ks�ðtÞ,
pðsÞðtÞ ¼ p0vf0gðtÞ þ

PN
k¼1 pkvððk�1Þs, ks�ðtÞ: Moreover define the backward finite differ-

ence w.r.t. time Ds as

Dsf ðtÞ 	 s�1ðf ðtÞ � f ðt � sÞÞ, t 2 s,T½ �:
We can rewrite (25)–(28) with the new notation. For all / 2 L2ð0,T;H1ðR2ÞÞ \
L

1þb
b ð0,T;W1þb

b ðR2ÞÞ and w 2 L2ð0,T;H1ðR2ÞÞ we haveðT
0

ð
R

2
ððDsuðsÞÞ/þ uðsÞrpðsÞ � r/Þdxdt

þ .1

ðT
0

ð
R

2
jrðuðsÞÞb�1j1=b�1rðuðsÞÞb�1 � r/ dxdt ¼ 0,

(29)
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ðT
0

ð
R2
ððDsp

ðsÞÞwþ ðð�DÞs=2pðsÞÞðð�DÞs=2wÞ þ .2rpðsÞ � rw� ðuðsÞÞbwÞdx ¼ 0, (30)

ð
R

2

ðuðsÞÞb
b

þ b� 1
2b

jrpðsÞj2
 !

dx þ .1

ðt
0

ð
R

2
jrðuðsÞÞb�1jð1þbÞ=bdxdt0

þ .2ðb� 1Þ
b

ðt
0

ð
R

2
ðDpðsÞÞ2dxdt0 þ b� 1

b

ðt
0

ð
R

2
jð�DÞs=2rpðsÞj2dxdt0

�
ð
R

2

ðuinÞb
b

þ b� 1
2b

jrpinj2
 !

dx,

(31)

ð
R2
pðsÞðtÞdx �

ð
R2
pindxþ Ct t 2 0,T½ �, (32)

where the constant in (32) only depends on the entropy at initial time.

3.3. The limit s fi 0

We first estimate the time derivative of the density function. Let R> 0 arbitrary, QR,T 	
BR � ð0,TÞ: For any / 2 C1

c ðQR,TÞðT
0

ð
R

2
ðDsu

ðsÞÞ/ dxdt

				
				

�
ðT
0

ð
R

2
uðsÞrpðsÞ � r/ dxdt

				
				þ .1

ðT
0

ð
R

2
jrðuðsÞÞb�1j1=b�1rðuðsÞÞb�1 � r/ dxdt

				
				

� jjrpðsÞjj
L2ð0,T;L 2

1�sðR2ÞÞjjuðsÞjjL1ð0,T;Lbþ1ðR2ÞÞjjr/jj
L2ð0,T;L

2b
2þð1�sÞbðR2ÞÞ

þ .1jjrðuðsÞÞb�1jj
1
b

L
bþ1
b ðR2Þ

jjr/jj
L
bþ1
b ðR2Þ

� CðTÞjj/jj
L2ð0,T;W1, bþ1

b \W1, 2b
2þð1�sÞbðR2ÞÞ

using (31). This yields

jjDsu
ðsÞjj

L2ð0,T;ðW1, bþ1
b \W1, 2b

2þð1�sÞbðR2ÞÞ0Þ
� CðTÞ: (33)

In particular,

jjDsu
ðsÞjj

L2ð0,T;W�1, k
k�1ðBRÞÞ

� CðT,RÞ, 8R > 0, k 	 max
bþ 1
b

,
2b

2þ ð1� sÞb
� �

: (34)

The compact Sobolev embedding W1, 2ðbþ1Þ=bðBRÞ; ! L2ðbþ1Þ=b��ðBRÞ, valid for every
� > 0, allows us to apply Aubin-Lions Lemma in the version of [17] and obtain, for
any R> 0, the existence of a subsequence uðs,RÞ of uðsÞ such that

uðs,RÞ ! u strongly in L2ð0,T; L2ðBRÞÞ:
The limit function u is unique and coincides with the weak-� limit of uðsÞ in
L1ð0,T; LbðR2ÞÞ: A Cantor diagonal argument allows us to find a subsequence of uðsÞ

(which we denote again with uðsÞ) such that

uðsÞ ! u strongly in L1ð0,T; L1ðBRÞÞ, 8R 2 N,
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and

uðsÞ ! u a:e: in R2 � 0,T½ �: (35)

Since uðsÞ 2 L1ð0,T, LbðR2ÞÞ \ L
b2�1
b ð0,T, L2ðbþ1ÞðR2ÞÞ, a straightforward interpolation

yields

jjuðsÞjjLrð0,T, LrðR2ÞÞ � C, r ¼ 3b2 þ b� 2
2b

: (36)

Since r > b, thanks to (35) it follows

uðsÞ ! u strongly in Lbð0,T; LbðBRÞÞ, 8R > 0: (37)

Hence as s ! 0 :ðT
0

ð
R2
ðuðsÞÞbwdxdt !

ðT
0

ð
R2
ubwdxdt, for all w 2 C0

c ðR2 � ð0,TÞÞ:

Moreover directly from (31)

ðuðsÞÞb�1 * ub�1 weakly in Lðbþ1Þ=bð0,T;W1, ðbþ1Þ=bðR2ÞÞ,
uðsÞ * u weakly� in L1ð0,T; LbðR2ÞÞ:

From (33), (37) it follows

Dsu
ðsÞ * @tu weakly in L2ð0,T; ðW1, bþ1

b \W1, 2b
2þð1�sÞbðR2ÞÞ0Þ:

Since pðsÞ is uniformly bounded in L1ð0,T, L1ðR2ÞÞ and rpðsÞ is uniformly bounded in
L1ð0,T, L2ðR2ÞÞ, Gagliardo-Nirenberg and the entropy inequality (31) yield

jjpðsÞjjL1ð0,T,H1ðR2ÞÞ þ jjpðsÞjjL2ð0,T;Hsþ1ðR2ÞÞ þ
ffiffiffiffiffi
.2

p jjpðsÞjjL2ð0,T;H2ðR2ÞÞ � C, (38)

where C only depends on the initial data. Hence there exists a subsequence of pðsÞ

(which we denote again with pðsÞ) such that

pðsÞ * p weakly in L2ð0,T;Hsþ1ðR2ÞÞ,
pðsÞ*�p weakly� in L1ð0,T,H1ðR2ÞÞ:

In particular,

jjpjjL1ð0,T,H1ðR2ÞÞ þ jjpjjL2ð0,T,Hsþ1ðR2ÞÞ � C: (39)

Also, by Sobolev’s embedding,

rpðsÞ * rp weakly in L2ð0,T; L2=ð1�sÞðR2ÞÞ:
The strong convergence uðsÞ ! u in L2ð0,T; LbðBRÞÞ for every R> 0, the weak conver-
gence of rpðsÞ in L2ð0,T; L2=ð1�sÞðR2ÞÞ, and the assumption s > 1

b implyðT
0

ð
R2
uðsÞrpðsÞ � r/dxdt !

ðT
0

ð
R2
urp � r/dxdt, for all/ 2 C1

c ðR2 � ð0,TÞÞ:

Let us look at the discrete time derivatives of the pressure function. Thanks to (36) we
have
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ðT
0

ð
R

2
ðuðsÞÞbwdxdt

				
				 � jjðuðsÞÞbjjLr=bðR2�ð0,TÞÞjjwjjLr=ðr�bÞðR2�ð0,TÞÞ

� Cð.1ÞjjwjjLr=ðr�bÞðR2�ð0,TÞÞ,

while (31) impliesðT
0

ð
R2
ð�DÞspðsÞwdxdt

				
				þ .2

ðT
0

ð
R2
DpðsÞwdxdt

				
				 � CjjwjjL2ðR2�ð0,TÞÞ:

We deduce ðT
0

ð
R2
ðDsp

ðsÞÞwdxdt
				

				 � Cð.1ÞjjwjjL2\Lr=ðr�bÞðR2�ð0,TÞÞ: (40)

It follows

Dsp
ðsÞ * @tp weakly in ðL2 \ Lr=ðr�bÞðR2 � ð0,TÞÞÞ0: (41)

Since pðsÞ is bounded in L1ð0,T,H1ðR2ÞÞ and DspðsÞ is bounded in ðL2 \ Lr=ðr�bÞðR2 �
ð0,TÞÞÞ0, we can invoke Aubin-Lions lemma to deduce, for every R 2 N, the existence
of a subsequence pðs,RÞ of pðsÞ such that pðs,RÞ ! p strongly in L1ð0,T, L1ðBRÞÞ, for every
R 2 N: A Cantor’s diagonal argument yields the existence of a subsequence of pðsÞ

(which we call again pðsÞ) such that

pðsÞ ! p strongly in L1ð0,T, L1ðBRÞÞ 8R 2 N, pðsÞ ! p a:e in R2: (42)

At this point we can take the limit s ! 0 in (29) and (30), which yields (after a suitable
density argument)ðT

0
h@tu,/idt þ

ðT
0

ð
R2
urp � r/dxdt þ .1

ðT
0

ð
R2
jrub�1j1=b�1rub�1 � r/dxdt ¼ 0

8/ 2 L2ð0,T;W1, 2b
2þð1�sÞbðR2ÞÞ \ L

1þb
b ð0,T;W1þb

b ðR2ÞÞ,
(43)ðT

0
h@tp,widt þ

ðT
0

ð
R2
ðð�DÞsp� ubÞwdxdt � .2

ðT
0

ð
R2
wDpdxdt ¼ 0

8w 2 L2 \ L
r

r�bðR2 � ð0,TÞÞ,
(44)

where r ¼ 3b2þb�2
2b is defined in (36).

Thanks to the lower weak semicontinuity of the Lp norm we deduce from (31) the
following entropy inequality:ð

R2

ub

b
þ b� 1

2b
jrpj2

 !
dxþ .1

ðt
0

ð
R2
jrujbþ1

b dxdt0 þ .2ðb� 1Þ
b

ðt
0

ð
R2
ðDpÞ2dxdt0

þ b� 1
b

ðt
0

ð
R2
jð�DÞs=2rpj2dxdt0 �

ð
R2

ðuinÞb
b

þ b� 1
2b

jrpinj2
 !

dx:

(45)

Furthermore, thanks to the a.e. convergence of pðsÞ (42) we can apply Fatou’s Lemma in
(32) and get
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ð
R2
pðtÞdx �

ð
R2
pindx þ Ct, t 2 0,T½ �: (46)

3.4. The limit .2 fi 0

From the entropy inequality (45) and the mass conservation (46) we deduce the follow-
ing q2� uniform bounds:

jjujjL1ð0,T;L2ðR2ÞÞ þ jjub�1jj
L
bþ1
b ð0,T;W1, bþ1

b ðR2ÞÞ
� Cðq1,TÞ, (47)

jjpjjL1ð0,T;H1ðR2ÞÞ þ jjpjjL2ð0,T;Hsþ1ðR2ÞÞ þ
ffiffiffiffiffi
q2

p jjDpjjL2ð0,T;L2ðR2ÞÞ � CðTÞ: (48)

Moreover, from (43), (44), (47), (48) we deduce q2�uniform bounds for the time deriv-
atives of u, p:

jj@tujj
L2ð0,T;ðW1, bþ1

b \W1, 2b
2þð1�sÞbðR2ÞÞ0Þ

þ jj@tpjjL2ð0,T;ðL2\L r
r�bðR2ÞÞ0Þ � CðT, q1Þ: (49)

Estimates (47)–(49) and the compact Sobolev embeddings W1, ðbþ1Þ=bðXÞ ,!
L2ðbþ1Þ=ðb�1Þ��ðXÞ,Hsþ1ðXÞ ,! W1, 2=ð1�sÞ��ðXÞ, valid for every bounded open X 
 R2

and � > 0, allow us to apply Aubin-Lions Lemma and deduce, for every R 2 N, the
existence of subsequences uðq2,RÞ, pðq2,RÞ of uðq2Þ, pðq2Þ such that

uðq2,RÞ ! u strongly in L1ð0,T; L1ðBRÞÞ, pðq2,RÞ ! p strongly in L1ð0,T; L1ðBRÞÞ,

for every R 2 N: Once again, a Cantor diagonal argument allows us to find subsequen-
ces (not relabeled) of uðq2Þ, pðq2Þ such that

uðq2Þ ! u strongly in L1ð0,T; L1ðBRÞÞ, pðq2Þ ! p strongly in L1ð0,T; L1ðBRÞÞ,
for every R 2 N: Bounds (47), (48) also imply (up to subsequences) the following weak
convergence relations

uðq2Þ*�u weakly �� in L1ð0,T; L2ðR2ÞÞ,
rðuðq2ÞÞb�1 * rub�1 weakly in Lð1þbÞ=bð0,T; Lð1þbÞ=bðR2ÞÞ,
pðq2Þ*�p weakly �� in L1ð0,T;H1ðR2ÞÞ,
pðq2Þ * p weakly in L2ð0,T;Hsþ1ðR2ÞÞ:

Thanks to the convergence relations stated above, taking the limit q2 ! 0 in (43), (44)
is at this point straightforward and leads toðT

0
h@tu,/idt þ

ðT
0

ð
R

2
urp � r/ dxdt þ .1

ðT
0

ð
R

2
jrub�1j1=b�1rub�1 � r/ dxdt ¼ 0

8/ 2 L2ð0,T;W1, 2b
2þð1�sÞbðR2ÞÞ \ L

1þb
b ð0,T;W1þb

b ðR2ÞÞ,
(50)ðT

0
h@tp,widt þ

ðT
0

ð
R2
ðð�DÞsp� ubÞwdxdt ¼ 0

8w 2 L2 \ L
r

r�bðR2 � ð0,TÞÞ,
(51)

where r ¼ 3b2þb�2
2b is defined in (36).
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The same convergence relations yieldð
R2

ub

b
þ b� 1

2b
jrpj2

 !
dxþ .1

ðt
0

ð
R2
jrub�1jbþ1

b dxdt0

þ b� 1
b

ðt
0

ð
R2
jð�DÞs=2rpj2dxdt0 �

ð
R2

ðuinÞb
b

þ b� 1
2b

jrpinj2
 !

dx:

(52)

We also point out that (46) holds true also after taking the limit q2 ! 0:

3.5. The limit .1 fi 0

In the rest of the article, we denote q1 with q.
As a preliminary step, we are going to prove a uniform bound for rpðqÞ: By interpol-

ation we obtain

jjrpðqÞjjLqðR2�ð0,TÞÞ � jjrpðqÞjjkL1ð0,T;L2ðR2ÞÞjjrpðqÞjj1�k

Lð1�kÞqð0,T;L 2
1�sðR2ÞÞ,

with 1
q ¼ k

2 þ ð1�kÞð1�sÞ
2 , 0 � k � 1: The assumption s > b�1 allows for the choice q >

2ðbþ 1Þ=b such that ð1� kÞq � 2 and, therefore,

jjrpðqÞjjL2ðbþ1Þ=bþ�ðR2�ð0,TÞÞ � CjjrpðqÞjjkL1ð0,T;L2ðR2ÞÞjjrpðqÞjj1�k
L2ð0,T;L2=ð1�sÞðR2ÞÞ 8� 2 0, �0Þ,½

for some �0 > 0: Since rpðqÞ is bounded in L2ð0,T;HsðR2ÞÞ, by Sobolev’s embedding it
is also bounded in L2ð0,T; L2=ð1�sÞðR2ÞÞ: Together with the uniform bound in
L1ð0,T; L2ðR2ÞÞ, we conclude

9�0 > 0 : jjrpðqÞjjL2ðbþ1Þ=bþ�ðR2�ð0,TÞÞ � C 8� 2 0, �0Þ:½ (53)

Now we wish to prove a uniform bound for uðqÞ in Lbþ1ðR2 � ð0,TÞÞ: Let us choose / ¼
pðqÞ,w ¼ uðqÞ in (50), (51), respectively, and sum the resulting equations. We obtainðT

0

ð
R

2
ðuðqÞÞbþ1dxdt ¼

ðT
0

ð
R

2
uðqÞð�DÞspðqÞdxdt þ

ðT
0

ð
R

2
uðqÞjrpðqÞj2dxdt

þ
ð
R

2
uðqÞðTÞpðqÞðTÞdx �

ð
R

2
uinpindxþ q

ðT
0

ð
R

2
rðuðqÞÞb�1 � rpðqÞdxdt:

(54)

Let us bound the terms on the right-hand side of (54) by using bounds (46), (52).
Applying H€older and Gagliardo-Nirenberg inequalities yieldsðT

0

ð
R2
uðqÞð�DÞspðqÞdxdt

� jjuðqÞjjL1ð0,T;LbðR2ÞÞjjð�DÞspðqÞjj
L1ð0,T;L

b
b�1ðR2ÞÞ

� CjjuðqÞjjL1ð0,T;LbðR2ÞÞjjpðqÞjjaL2ð0,T;H1þsðR2ÞÞjjpðqÞjj1�a
L1ð0,T;L1ðR2ÞÞ

� C,

for some a 2 ½0, 1�: Let us then consider
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ðT
0

ð
R2
uðqÞjrpðqÞj2dxdt � jjuðqÞjjLbþ1ðR2�ð0,TÞÞjjrpðqÞjj2L2ðbþ1Þ=bðR2�ð0,TÞÞ

� CjjuðqÞjjLbþ1ðR2�ð0,TÞÞ

thanks to (53). Next we notice thatð
R2
uðqÞðTÞpðqÞðTÞdx � jjuðqÞjjL1ð0,T;L2ðR2ÞÞjjpðqÞjjL1ð0,T;L2ðR2ÞÞ � C:

Finally, Gagliardo-Nirenberg inequality allows us to write

q
ðT
0

ð
R

2
jrðuðqÞÞb�1j1=b�1rðuðqÞÞb�1 � rpðqÞdxdt

� qjjrðuðqÞÞb�1jj1=b
L
bþ1
b ðR2�ð0,TÞÞ

jjrpðqÞjj
L
bþ1
b ðR2�ð0,TÞÞ

� CqjjrðuðqÞÞb�1jj1=b
L
bþ1
b ðR2�ð0,TÞÞ

jjpðqÞjjaL1ð0,T;L1ðR2ÞÞjjpðqÞjj1�a
L2ð0,T;H1þsðR2ÞÞ

� C,

for some a 2 ½0, 1�: From (54) we conclude

jjuðqÞjjbþ1
Lbþ1ðR2�ð0,TÞÞ � C1jjuðqÞjjLbþ1ðR2�ð0,TÞÞ þ C2

which implies, via Young’s inequality,

jjuðqÞjjLbþ1ðR2�ð0,TÞÞ � C: (55)

Next we find a suitable bound for uðqÞrpðqÞ: Since uðqÞ and rpðqÞ are bounded
in L1ð0,T; LbðR2ÞÞ and L1ð0,T; L2ðR2ÞÞ, respectively, then uðqÞrpðqÞ is bounded in
L1ð0,T; L2b=ð2þbÞðR2ÞÞ: On the other hand, uðqÞ and rpðqÞ are also bounded in
Lbþ1ð0,T; Lbþ1ðR2ÞÞ and L2ð0,T; L2=ð1�sÞðR2ÞÞ, respectively, so uðqÞrpðqÞ is also
bounded in L2ðbþ1Þ=ðbþ3Þð0,T; L2ðbþ1Þ=ð2þð1�sÞðbþ1ÞðR2ÞÞ: A straightforward interpolations
leads to

jjuðqÞrpðqÞjj
L
2ð1þbÞðð1þsÞbþ2Þ

ðbþ2Þðbþ3Þ ðR2�ð0,TÞÞ
� C: (56)

Now we prove the strong convergence of pðqÞ: From (52), (55) it follows that

jj@tpðqÞjjLðbþ1Þ=bð0,T;ðL2\Lbþ1ðR2ÞÞ0 � C (57)

From (52) and (57) we deduce via Aubin-Lions Lemma and a Cantor diagonal argu-
ment that, up to subsequences,

pðqÞ ! p strongly in L1ðBR � ð0,TÞÞ, 8R > 0:

Bound (55) implies that, up to subsequences,

uðqÞ * u weakly in Lbþ1ðR2 � ð0,TÞÞ,
ðuðqÞÞb * v weakly in L

bþ1
b ðR2 � ð0,TÞÞ, (58)

for some function v 2 L
bþ1
b ðR2 � ð0,TÞÞ: We are now going to show that v ¼ ub a.e.

in R2 � ð0,TÞ:
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Let us now consider the vector fields

UðqÞ 	 ðuðqÞ, � uðqÞrpðqÞÞ, VðqÞ 	 ð@tpðqÞ,rpðqÞÞ:
Let p0 ¼ 1þb

b , p1 ¼ p2 ¼ 2ð1þbÞðð1þsÞbþ2Þ
ðbþ2Þðbþ3Þ

� �0
¼ 1� ðbþ2Þðbþ3Þ

2ð1þbÞðð1þsÞbþ2Þ
� ��1

: It is easy to see
that pmin 	 minfp0, p1, p2g ¼ p0: Let X 
 R2 bounded open smooth domain.
Bound (56) means that uðqÞ@xip

ðqÞ is bounded in Lp
0
iðX� ð0,TÞÞ, for i¼ 1, 2, while

uðqÞ is bounded in Lp
0
0ðX� ð0,TÞÞ thanks to (55). In particular UðqÞ

i is bounded in
Lp

0
iðX� ð0,TÞÞ for i¼ 0, 1, 2.
On the other hand, (52) and (55) imply that @tpðqÞ is bounded in Lp0ðX� ð0,TÞÞ,

while @xip
ðqÞ is bounded in LpiðX� ð0,TÞÞ for i¼ 1, 2 thanks to (53) and the trivial

relation p1 ¼ p2 � 2ðbþ1Þ
b which holds thanks to the hypothesis s � 1

b : It follows that

VðqÞ
i is bounded in LpiðX� ð0,TÞÞ for i¼ 0, 1, 2.
Next we notice that

divðt, xÞUðqÞ ¼ divx qjrub�1j1=b�1rub�1
� �

! 0 strongly in W�1, p0minðX� ð0,TÞÞ
thanks to (52). On the other hand, curlVðqÞ 	 0 since VðqÞ is a gradient field.
Therefore, we are able to apply [14, Thr. 1.1] and deduce that

UðqÞ � VðqÞ * U � V in D0ðX� ð0,TÞÞ,
where U, V are the weak limits of UðqÞ,VðqÞ, respectively. This implies, being UðqÞ � VðqÞ

bounded in L1ðX� ð0,TÞÞ,
uðqÞ@tpðqÞ � uðqÞjrpðqÞj2 * u@tp� uðqÞrpðqÞ � rp in D0ðX� ð0,TÞÞ, (59)

where u, uðqÞrpðqÞ are the weak limits of uðqÞ, uðqÞrpðqÞ, respectively. However, we
know that pðqÞ ! p strongly in L1ðX� ð0,TÞÞ, while rpðqÞ is bounded in
L2ðbþ1Þ=bþ�ðR2 � ð0,TÞÞ and L2ð0,T;HsðR2ÞÞ thanks to (52), (53). Therefore, Gagliardo-
Nirenberg inequality allows us to deduce rpðqÞ ! rp strongly in L2ðbþ1Þ=bðX� ð0,TÞÞ:
It follows

uðqÞjrpðqÞj2 * ujrpj2, uðqÞrpðqÞ * urp: (60)

From the relations above and (59) we deduce

uðqÞ@tpðqÞ * u@tp in D0ðX� ð0,TÞÞ: (61)

Again, the local-in-space strong convergence of pðqÞ and the known uniform bounds for
pðqÞ in L1ð0,T; L1ðR2ÞÞ and L2ð0,T;H1þsðR2ÞÞ imply via Gagliardo-Nirenberg inequal-
ity that ð�DÞspðqÞ ! ð�DÞsp strongly in L2ðX� ð0,TÞÞ: This fact, together with the
weak convergence uðqÞ * u in Lbþ1ðR2 � ð0,TÞÞ and relation b � 2, implies that

uðqÞð�DÞspðqÞ * uð�DÞsp in D0ðX� ð0,TÞÞ: (62)

Summing (61), (62), employing (51) and the uniform bound for uðqÞ in Lbþ1ðR2 �
ð0,TÞÞ leads to

ðuðqÞÞbþ1 * uv in MðX� ð0,TÞÞ, (63)
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where v is the weak limit of ðuðqÞÞb and MðX� ð0,TÞÞ is the space of Radon measures,
i.e., the dual of C0

c ðX� ð0,TÞÞ:
We are going to show that (63) implies the a.e. convergence of uðqÞ in R2 � ð0,TÞ:

Define the truncation operator Tk as TkðxÞ 	 minfx, kg for every x � 0, k 2 N: Let / 2
C0
c ðR2 � ð0,TÞÞ,/ � 0 in R2 � ð0,TÞ arbitrary. Relation (63) impliesðT

0

ð
R2
uðqÞTkðuðqÞÞb/dxdt �

ðT
0

ð
R2
ðuðqÞÞbþ1/dxdt !

ðT
0

ð
R2
uv/dxdt as q ! 0,

and so ðT
0

ð
R2
uðqÞTkðuðqÞÞb/dxdt �

ðT
0

ð
R2
uv/dxdt: (64)

On the other hand [15, Thr. 10.19] impliesðT
0

ð
R2
uðqÞTkðuðqÞÞb/dxdt �

ðT
0

ð
R2
uTkðuðqÞÞb/dxdt: (65)

The weak lower semicontinuity of the L1 norm yieldsðT
0

ð
R2
jTkðuðqÞÞb � vjdxdt � lim inf

q!0

ðT
0

ð
R2
jTkðuðqÞÞb � ðuðqÞÞbjdxdt

� 2 lim inf
q!0

ð
fuðqÞ>kg

ðuðqÞÞbdxdt

� 2
k
lim inf
q!0

ð
fuðqÞ>kg

ðuðqÞÞbþ1dxdt:

The uniform bound for uðqÞ in Lbþ1ðR2 � ð0,TÞÞ implies

lim
k!1

ðT
0

ð
R2
jTkðuðqÞÞb � vjdxdt ¼ 0,

which implies TkðuðqÞÞb * v weakly in L
bþ1
b ðR2 � ð0,TÞÞ as k ! 1, and soðT

0

ð
R2
uTkðuðqÞÞb/dxdt !

ðT
0

ð
R2
uv/dxdt as k ! 1: (66)

From (64)–(66) we deduce

lim
k!1

ðT
0

ð
R2
ðuðqÞTkðuðqÞÞb � uTkðuðqÞÞbÞ/dxdt ¼ 0,

which easily implies

lim
k!1

lim
q,q0!0

ðT
0

ð
R2
ðuðqÞ � uðq

0ÞÞðTkðuðqÞÞb � Tkðuðq0ÞÞbÞ/dxdt ¼ 0: (67)

However, elementary computations yield

0 � ðx � yÞðTkðxÞb�1 � TkðyÞb�1Þ � ðx � yÞðTkþ1ðxÞb�1 � Tkþ1ðyÞb�1Þ for x, y � 0, k 2 N,

which implies that the sequence
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ak 	 lim
q, q0!0

ðT
0

ð
R2
ðuðqÞ � uðq

0ÞÞðTkðuðqÞÞb � Tkðuðq0ÞÞbÞ/dxdt

is nondecreasing and nonnegative. Moreover limk!1 ak ¼ 0 thanks to (67). Therefore,
ak ¼ 0 for every k 2 N, that is

lim
q, q0!0

ðT
0

ð
R2
ðuðqÞ � uðq

0ÞÞðTkðuðqÞÞb � Tkðuðq0ÞÞbÞ/dxdt ¼ 0, k 2 N:

In particular

lim
q, q0!0

ð ð
fMq, q0�kg

ðuðqÞ � uðq
0ÞÞððuðqÞÞb � ðuðq0ÞÞbÞ/dxdt ¼ 0, k 2 N, (68)

where we defined Mq,q0 	 maxðuðqÞ, uðq0ÞÞ:
It is easy to prove the elementary relation

xb � yb

x� y
� maxðx, yÞb�1, x, y � 0, x 6¼ y,

which, together with (68), leads to

lim
q,q0!0

ð ð
fMq, q0�kg

ðuðqÞ � uðq
0ÞÞ2Mb�1

q,q0/dxdt ¼ 0, k 2 N: (69)

Fix � 2 ð0, 1Þ arbitrary. Let us considerðT
0

ð
R2
ðuðqÞ � uðq

0ÞÞ2/dxdt ¼
ð ð

fMq, q0>kg
ðuðqÞ � uðq

0ÞÞ2/dxdt

þ
ð ð

fMq, q0��g
ðuðqÞ � uðq

0ÞÞ2/dxdt þ
ð ð

f�<Mq, q0�kg
ðuðqÞ � uðq

0ÞÞ2/dxdt

� 4
ð ð

fuðqÞ>kg
ðuðqÞÞ2/dxdt þ 2�2

ðT
0

ð
R2
/dxdt

þ 1
�b�1

ð ð
f�<Mq, q0�kg

ðuðqÞ � uðq
0ÞÞ2Mb�1

q,q0/dxdt

� 4k1�b
ð ð

fuðqÞ>kg
ðuðqÞÞbþ1/dxdt þ 2�2

ðT
0

ð
R2
/dxdt

þ 1
�b�1

ð ð
f�<Mq, q0�kg

ðuðqÞ � uðq
0ÞÞ2Mb�1

q,q0/dxdt:

From (69) and the uniform bound for uðqÞ in Lbþ1ðR2 � ð0,TÞÞ we deduce

lim
q, q0!0

ðT
0

ð
R2
ðuðqÞ � uðq

0ÞÞ2/dxdt � Cð�2 þ k1�bÞ:

Since the left-hand side of the above inequality does not depend on �, k, we conclude

lim
q, q0!0

ðT
0

ð
R2
ðuðqÞ � uðq

0ÞÞ2/dxdt ¼ 0: (70)

By choosing / 2 C0
c ðR2 � ð0,TÞÞ,/ � 0 such that / 	 1 on QR 	 BR � ðR�1,T � R�1Þ

for R > 2=T arbitrary (where BR is the ball of R2 with center 0 and radius R) we
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conclude from (70) that uðqÞ is a Cauchy sequence in L2ðQRÞ (and, therefore, strongly
convergent in such space) for every R > 2=T: In particular, for every R> 0 there exists
a subsequence uðq,RÞ of uðqÞ that is a.e. convergent in QR. A Cantor diagonal argument
yields the existence of a subsequence (not relabeled) of uðqÞ that is a.e. convergent in QR

for every R 2 N, and, therefore, uðqÞ ! u a.e. in R2 � ð0,TÞ:
The a.e. convergence of uðqÞ and the boundedness of uðqÞ in Lbþ1ðR2 � ð0,TÞÞ imply

ðuðqÞÞb * ub weakly in L
bþ1
b ðR2 � ð0,TÞÞ: (71)

Finally, since uðqÞ is bounded in Lbþ1ðR2 � ð0,TÞÞ (see (55)), while rpðqÞ, qb=ðbþ1Þ

rðuðqÞÞb�1 are bounded in L1ð0,T; L2ðR2ÞÞ, Lðbþ1Þ=bðR2 � ð0,TÞÞ (from (52)), we deduceðT
0
h@tuðqÞ,/idt

				
				

�
ðT
0

ð
R

2
uðqÞjrpðqÞjjr/jdxdt þ q

ðT
0

ð
R

2
jrðuðqÞÞb�1j1=bjr/jdxdt

� jjuðqÞjjLbþ1ðR2�ð0,TÞÞjjrpðqÞjjL1ð0,T;L2ðR2ÞÞjjr/jjLðbþ1Þ=bð0,T;L2ðbþ1Þ=ðb�1ÞðR2ÞÞ
þ qjjrðuðqÞÞb�1jj1=b

Lðbþ1Þ=bðR2�ð0,TÞÞjjr/jjLðbþ1Þ=bðR2�ð0,TÞÞ
� Cjj/jjLðbþ1Þ=bð0,T;W1, ðbþ1Þ=b\W1, 2ðbþ1Þ=ðb�1ÞðR2ÞÞ:

As a consequence

jj@tuðqÞjjLbþ1ð0,T;ðW1, ðbþ1Þ=b\W1, 2ðbþ1Þ=ðb�1ÞðR2ÞÞ0Þ � C,

and so

@tu
ðqÞ * @tu weakly in Lbþ1ð0,T; ðW1, ðbþ1Þ=b \W1, 2ðbþ1Þ=ðb�1ÞðR2ÞÞ0Þ: (72)

Putting the previous limit relations together allow us to take the limit q ! 0 inside
(50), (51) and obtain a solution to (5, 6) (after a suitable density argument). Finally, we
show the mass conservation property. Define the cutoff

gRðxÞ ¼
1 jxj < R
0 jxj > 2R
1
2
ð cos pðjxj=R� 1Þ þ 1Þ R � jxj � 2R

, R > 0:

8>><
>>:

Let w 2 C1
c ½0,TÞ arbitrary. Choosing /ðx, tÞ ¼ wðtÞgRðxÞ inside (5) yieldsðT

0

ð
R2
ugRðxÞw0ðtÞdxdt þ wð0Þ

ð
R2
uingRdx

				
				

¼
ð
R2
urp � rgRwdxdt

				
				

� jjujjLbþ1ðR2�ð0,TÞÞjjrpjjL1ð0,T;L2ðR2ÞÞjjrgRjj
L
2ðbþ1Þ
b�1 ðR2Þ

jjwjj
L
bþ1
b ð0,TÞ

:

Since u 2 Lbþ1ðR2 � ð0,TÞÞ and rp 2 L1ð0,T; L2ðR2ÞÞ, it followsðT
0

ð
R2
ugRðxÞw0ðtÞdxdt þ wð0Þ

ð
R2
uingRdx

				
				

� CjjrgRjjL2þdðR2Þjjwjj
L
bþ1
b ð0,TÞ

� CR� d
2þdjjwjj

L
bþ1
b ð0,TÞ

(73)
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with d ¼ 4
b�1 > 0: Choosing w0 � 0 in ½0,T�, taking the limit R ! 1 inside (73) and

applying the monotone convergence theorem yields u 2 L1locð0,1; L1ðR2ÞÞ (since T> 0
is arbitrary). At this point we can apply the dominated convergence theorem to take the
limit R ! 1 inside (73) with w 2 C1

c ð½0,TÞÞ arbitrary and deduce

�
ðT
0

ð
R2
udxw0ðtÞdt ¼ wð0Þ

ð
R2
uindx, t > 0,

implying that the mass
Ð
R2udx is constant in time. This concludes the proof of

Theorem 1.
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