
Moreover, these highly conductive
COFs can also find applications as elec-
trode materials in Li-ion batteries10 and
in organic photovoltaics, organic elec-
tronics, and photocatalysis.
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Decarboxylative C(sp3)–S Coupling
via Cu–Photoredox Catalysis

Abolghasem (Gus) Bakhoda1,* and Timothy H. Warren2,*

In this issue of Chem, Liu, Li, and co-workers report the synergistic
use of copper and photoredox catalysis to reveal a general platform
to form C(sp3)–S bonds via redox-active esters of abundantly avail-
able aliphatic carboxylic acids with organosulfinates under mild con-
ditions.

Within the field of organic chemistry,
the efficient construction of C(sp3)–S
bonds is vital because of the prevalence
of sulfur-containing motifs in a wide
array of natural products, pharmaceuti-
cals, and functional materials. Among
the top 100 small-molecule drugs, by
sales in 2018, 21 drugs have at least
one C(sp3)–S bond, corresponding to
approximately $37.4 billion per year.1

In particular, organosulfones are of
great importance not only because of
their occurrence in pharmaceuticals
but also because of their versatility as
synthetic intermediates in organic syn-
thesis.2 Sulfone-containing compounds
have long been recognized as one of
themost privileged structural manifolds
in pharmaceutical chemistry because of

widespreadpresence in approvedphar-
maceuticals and pre-clinical chemical
entities such as antibiotics or nervous
system drugs (Figure 1A).3

Recent synthetic efforts have mainly
focused on C(sp2)–Ssulfonyl bond forma-
tion.2 For example, the Cu-catalyzed,
aerobic decarboxylative sulfonylation
of alkenyl carboxylic acids with sodium
sulfonates NaSO2R provides vinyl–Ssul-
fonyl bonds

4 whereas Pd-catalyzed sul-
fonylation of aryl halides Ar-X with sul-
fonates LiSO2Ar’ (prepared from Li-Ar’
and the SO2 surrogate DABSO [1,4–di-
azabicyclo[2.2.2]octane bis(sulfur diox-
ide) adduct]) leads to diaryl sulfones Ar-
SO2Ar’.

5 On the other hand, C(sp3)
sulfonylation methods heavily rely on

the classical nucleophilic sulfonylation
of electrophiles or electrophilic sulfony-
lation with organometallic reagents.2

Other methods include Reed’s chloro-
sulfonylation of alkanes6 and radical de-
carboxylative sulfonylation of Barton’s
esters by using liquid SO2, both under
UV irradiation (Figure 1B).7

The recent progress in sulfonyl radical
addition to unsaturated bonds serves as
stepping stone for C(sp3)–Ssulfonyl bond
formation.2 A wide range of aryl diazo-
nium salts, aryl halides, or diaryldiazo-
nium salts have been used to generate
aryl radicals Ar,, whichmight undergo re-
action with SO2 to form the correspond-
ing arylsulfonyl radicals ArSO2,. The
latter can be intercepted by olefins and
alkynes to form a sulfonated product.
Likewise, recent development of dual
photoredox-transition metal catalysis
(metallaphotocatalysis) has enabled ma-
jor breakthroughs in the development of
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a wide range of previously inaccessible
redox-neutral transformations that would
be energetically unfeasible under non-
irradiative conditions such as decarboxy-
lative radical cross couplings for C–X
(X = C, N, O, P, and S) bond-forming
reactions.8

To overcome the challenge of sulfony-
lation at C(sp3) centers, Liu, Li and co-
workers implemented decarboxylative

radical sulfonylation employing redox-
active esters derived from alkyl carbox-
ylic acids RCOOH with readily available
sodium sulfinates NaSO2R’.

9 Sulfony-
lated products R–SO2R’ result from an
operationally simple protocol involving
discrete photo- and Cu-catalyzed cy-
cles (Figure 1C). This method benefits
from the use of widely available carbox-
ylic acids that might be easily converted
to their corresponding redox-active N-

hydroxyphthalimide esters RC(O)O–
NPhth (NPhth = phthalimido) upon
condensation with N-hydroxyphthali-
mide. Utilizing a visible-light-induced
energy-transfer strategy, the authors
effectively activate alkyl N-hydroxyph-
thalimide esters RC(O)O–NPhth via
a single-electron transfer (SET) pro-
cess with the organic photocata-
lyst 1,2,3,5-tetrakis(carbazol–9–yl)–
4,6–dicyanobenzene (4CzIPN) to
generate alkyl radicals R, with concom-
itant extrusion of CO2. At the same
time, salt metathesis between NaSO2R’
and Cu(OTf)2 generates the cupric sulfi-
nate Cu(SO2R’)2 capable of alkyl radical
R, capture to afford the sulfonylated
product R–SO2R’.

This protocol operates at room temper-
ature under redox-neutral conditions
without any external reducing or
oxidizing agents. Careful reaction opti-
mization demonstrated that (BuO)2P(O)
OH or CF3COOH must be used as an
additive to obtain high yields, perhaps
by buffering the reaction. Additionally,
the dibutyl phosphite additive inhibits
the generation of an alkene byproduct
resulting from b-H atom abstraction of
the R, radical observed with some sec-
ondary carboxylates.

This method offers both broad substrate
scope and functional group compati-
bility. A wide range of primary and sec-
ondary alkyl carboxylates as their redox-
active derivatives RC(O)O–NPhth func-
tion in this protocol, allowing the incorpo-
ration of alkenes, alkynes, aldehyde, ke-
tones, esters, and amides via the R,
radical generated via decarboxylation.
Moreover, diverse (hetero)aryl and alkyl
organosulfinates M–SO2R’ might be
used, including those relevant to medici-
nal chemistry, such as pyridyl or cyclo-
propyl sulfinates.

The direct, late-stage functionalization of
natural product derivatives and pharma-
ceuticals holds great promise for the
development of new libraries for drug
screening. Accordingly, the new
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methodology by Liu and Li allows for the
late-stage modification of steroids such
as dehydrocholic acid and chenodeoxy-
cholic acid to furnish the corresponding
sulfones in excellent yields. Other bioac-
tive carboxylic acids such as isoxepac
(non-steroidal anti-inflammatory), chlor-
ambucil (chemotherapy), mycophenolic
acid (antibiotic), gibberellic acid (plant
hormone), or indomethacin (non-steroi-
dal anti-inflammatory) could also be effi-
ciently converted to the corresponding
sulfones (Figure 1D).

Careful mechanistic studies unambigu-
ously show the intermediacy of alkyl
radicals R, generated from RC(O)O-
NPhth via photoredox catalysis of
4CzIPN. For instance, the NHPI ester
of cyclopropylacetic acid provides the
ring-opened sulfonylation product in
88% yield, consistent with the genera-
tion of the cycloproylmethyl radical
that rapidly opens to the allylmethyl
radical. In a similar manner, the
authors demonstrate that the ethyl
radical Et, (generated from exposure
of BEt3 to air) might be captured by
Cu(OS(O)(p-tolyl))2 to form the corre-
sponding Et–SO2(p-tolyl) product in
81% yield.

The key C(sp3)–Ssulfonyl bond-forming
step takes advantage of Jay Kochi’s
groundbreaking work on C(sp3) radical
capture by simple cupric salts CuX2.
For instance, generation of Bu, radicals
in the presence of CuX2 (X = O2CR, Cl,
Br, I, SCN, N3, and CN) results in the for-
mation of functionalized products Bu–
X.10 This key observation is central to

many new families of C(sp3)–H function-
alization reactions that broadly enable
the conversion of R-H substrates to
functionalized products R-FG via alkyl
radical R, capture by [CuII]–FG (func-
tional group) intermediates.11

The new method by Liu and Li9 offers a
versatile method to convert easily acces-
sible alkyl carboxylic acids RC(O)OH to
the corresponding sulfones R–SO2R’ via
redox-active esters RC(O)O–NPhth under
light and Cu catalysis. This methodology
is amenable to a variety of alkyl radicals
R, generated via photocatalyzed decar-
boxylation from redox-active esters
RC(O)O–NPhth to provide broad families
of alkyl sulfones R-SO2R’. As mechanistic
studies demonstrate that the C(sp3)–Ssul-
fone bond forms by R, capture by cupric
sulfinates Cu(SO2R’)2, this approach
might enable new C(sp3)–H sulfonylation
protocols by formation of alkyl radicals
R, via H-atom abstraction reactions of
substrates R-H. Such a complementary
C(sp3)–sulfonylation approach could
further extend the reach of the present
methodology to potentially allow single-
step access to a diverse array of organo-
sulfones that serve important roles in syn-
thetic chemistry, pharmaceuticals, agro-
chemicals, and material science.
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