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ABSTRACT
We develop a regularity theory for integro-differential equations with
kernels deforming in space like sections of a convex solution of a
Monge–Amp�ere equation. We prove an ABP estimate and a Harnack
inequality, and derive H€older and C1, a regularity results for solutions.
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1. Introduction

In stochastic control problems (see [1]), for example if, in a competitive stochastic
game, two players are allowed to choose from different strategies at every step in order
to maximize the expected value u(x) at the first exit point of a domain, we encounter
the fully nonlinear elliptic integro-differential Isaacs equation

IuðxÞ :¼ inf
a
sup
b

LabuðxÞ ¼ f ðxÞ, (1.1)

where

LabuðxÞ :¼
ð
R

n
ðuðxþ yÞ þ uðx� yÞ � 2uðxÞÞKab

x ðyÞ dy (1.2)

are generators of n-dimensional pure jump L�evy processes, those for which diffusion and drift
are neglected. The kernelsKab

x ðyÞmeasure the frequency of jumps in the y direction at the point
x. For a homogeneousmedium, as in [2, 3] for example, the kernel does not depend on x.
We are interested in this paper in the case of a slowly deforming medium for which

the level sets of the kernels Kab
x are sections of a convex solution / of a

Monge–Amp�ere equation. Set
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vxðyÞ ¼ /ðyÞ � /ðxÞ � r/ðxÞ � ðy� xÞ, x, y 2 R
n, (1.3)

and note that vx � 0, since the graph of a convex function stays above supporting
hyperplanes.
We will study equation (1.1) for kernels in (1.2) that satisfy the bounds

ð2� rÞk
vxðyÞ

nþr
2

� Kab
x ðyÞ � ð2� rÞK

vxðyÞ
nþr
2

, (1.4)

for constants K � k > 0 and r 2 ð0, 2Þ: We will assume that kernels are symmetric, i.e.,
that Kab

x ðyÞ ¼ Kab
x ð�yÞ, but this is a purely technical assumption, rendering the proofs

simpler. The kernels in (1.4) may be very degenerate, since the sections of / are com-
parable to ellipsoids, which may have very degenerate eccentricity (see [4], for example).
The right hand side of (1.1) is assumed to be a bounded and continuous function in
R

n: The case of /ðyÞ ¼ jyj2 resembles the kernel of the fractional Laplacian and was
studied in [3], extending the notion of ellipticity by means of the relations

M�wðxÞ � Iðuþ wÞðxÞ � IuðxÞ � MþwðxÞ,
where

M�uðxÞ :¼ inf
L2L

LuðxÞ

and

MþuðxÞ :¼ sup
L2L

LuðxÞ

are analogs of the extremal Pucci operators. Here L is the class of operators of (1.2)
type whose kernels satisfy (1.4).
The approach used in [3] is a non-local version of the strategy used in [5]. In our

case, the strong degeneracy of the kernels precludes the use of standard covering argu-
ments, a difficulty that can be overcome considering the deformation of the kernels is
driven by the Monge–Amp�ere geometry. This is due to the fact that sections of a con-
vex solution of a Monge–Amp�ere equation enjoy an engulfing property: if two sections
overlap, then by lifting one by a universal constant, we engulf the other. After renor-
malization, sections become comparable to balls (see [4, 6]) and this geometry allows
for a refinement of the known techniques in order to develop a regularity theory.
The regularity theory in the classical non-variational approach (see [5]) heavily

depends on the Aleksandrov-Bakelman-Pucci (ABP) estimate

sup
B1

u � CðnÞ
�ð

fC¼ug\B1

ðfþÞn
�1=n

,

where u is a viscosity subsolution of the maximal Pucci equation with ð�f Þ as the
right-hand side, which is non-positive outside the unit ball B1, and where C is the con-
cave envelope of u in B3. The ABP estimate bridges the gap between a pointwise esti-
mate and an estimate in measure. For uð0Þ � 1, it provides the bounds

1 � Cjjf jj1jfC ¼ ug \ B1j1=n � Cjjf jj1jfu � 0g \ B1j1=n,
where jEj stands for the n-dimensional Lebesgue measure of the set E.
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We need a nonlocal version of the ABP estimate like the one in [2, 3] but we are
dealing with kernels which deform in space and we must have some control over the
deformation. It turns out that if the deformation is driven by the Monge–Amp�ere
geometry then the engulfing property of the Monge–Amp�ere sections provides the
needed environment to use a covering lemma from [7] and obtain a variant of the ABP
estimate. Once this is achieved, we can use a variant of Calder�on-Zygmund decompos-
ition from [8] to obtain the Harnack inequality and further regularity results. The heart
of the proof is to find the suitable geometry of the neighborhoods of the contact points
within which there is a portion where a sub-solution u stays quadratically close to the
tangent plane of its concave envelope C and such that, in smaller neighborhoods, C has
quadratic growth. This task, in turn, requires a certain control over the deformation of
sections, that allows one to properly define a suitable concave envelope. We then con-
clude that if a concave function stays below its tangent plane translated by –r (for a
given number r> 0) in a portion of an annulus of the unit section, then Cþ r stays
above its tangent plane in the interior section of the annulus. Through the normaliza-
tion map, we ultimately extend the regularity theory from [3] into the framework of
slowly deforming kernels.
The paper is organized as follows: in Section 2, we list several known facts about the

behavior of a convex solution of the Monge–Amp�ere equation. It is also here that we
define the analogs of the Pucci extremal operators in our framework and state some
preliminary results. Section 3 is devoted to the ABP estimate. Using properties of the
level sets of the kernels (sections of a convex solution of the Monge–Amp�ere equation)
and a covering argument from [7], we get a version of the ABP estimate in a non-local
setting with slowly deforming kernels (Corollary 3.2 and Theorem 3.1). In Section 4, we
construct an auxiliary function which is a subsolution of the minimal equation outside
of a small section and is strictly positive in a larger section (Lemma 4.2). This function
is added to u in Section 5 to force the contact set with C to stay inside intermediate
normalized sections. In this way, using a variant of Calder�on-Zygmund decomposition
from [8], we are able to prove a variant of the so-called Le estimate, which bridges the
gap between a pointwise estimate and an estimate in measure (Theorem 5.1), the main
step toward the Harnack inequality, which we prove in Section 6 (Theorem 6.1).
Finally, as a consequence of the Harnack inequality, we derive H€older (Theorem 6.2)
and C1, a (Theorem 6.3) regularity results for solutions.

2. Preparatory material

In this section we list several known facts about the sections of a convex solution of a
Monge–Amp�ere equation (which can be found in [4, 6, 8–13]; see also [14], where a non-
local linearized Monge–Amp�ere equation is treated, as well as [15–17] for a more compre-
hensive approach to non-local equations) and also state some preliminary results.

2.1. Sections of a Monge–Amp�ere convex solution

To understand the deformation of kernels, we need to look at the sections of a C2 con-
vex solution of the Monge–Amp�ere equation

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 849



detD2/ ¼ g,

where 0 < g� � gðxÞ � gþ < 1, x 2 R
n, for constants g� and gþ. A section SrðxÞ of /

is defined as

SrðxÞ :¼ fy : /ðyÞ < /ðxÞ þ r/ðxÞ � ðy� xÞ þ r2g,
or, recalling (1.3),

SrðxÞ ¼ fy : vxðyÞ < r2g: (2.1)

Geometrically, it amounts to taking a supporting hyperplane at x and lifting it by r2 to
carve out the convex set Sr. These are the “balls of radius r” in the Monge–Amp�ere
geometry. The sections are “balanced” around the point from which we lift, and we
know precisely how the volume grows. Before proceeding, we point out that our results
depend upon the geometry of Monge–Amp�ere sections and are valid for generic x and
r rather than a specific section. For simplicity, we will often omit the center of the sec-
tion, when it is not playing an essential role in the proofs.
The proof of following theorem can be found in [4, 6].

Theorem 2.1. There is an ellipsoid E of volume rn such that

cE � SrðxÞ � CE,

where c and C are universal positive constants depending only on n.
Since E is an ellipsoid, there is an affine transformation T such that TðEÞ ¼ B1, and

therefore

Ban � TðSrÞ � B1,

with Br being the ball of radius r centered at 0, and where an is a positive constant
depending only on n. We will refer to T as a normalization map that normalizes the
section Sr, and to TðSrÞ as a normalized section.
We list several properties of the sections for future reference. The first fact is that sec-

tions of / satisfy the engulfing property. More precisely, if two sections of similar size
overlap, a universal multiple of one engulfs the other, indicating that they must have
roughly the same shape. The proof can be found in [4, 6].

Theorem 2.2. There is a universal constant c > 1 such that if y 2 SrðxÞ, then
SrðxÞ � ScrðyÞ:

The next theorem provides a quantitative estimate on the size of normalized sections.
It states that if an affine map normalizes a section, then all other sections with compar-
able height are still comparable to balls (see [4, 6, 9] for the proof).

Theorem 2.3. Let T be an affine transformation that normalizes SRðxÞ and r � R. If

SRðxÞ \ SrðyÞ 6¼ ;,
then there exist positive constants K1, K2, K3, and e, such that

BK2
r
R
ðTyÞ � TðSrðyÞÞ � BK1ðrRÞeðTyÞ,

and Ty 2 BK3ð0Þ:
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As a consequence of the previous theorem, we have a result on the deformation of
sections, the proof of which can be found in [4, 6–8].

Theorem 2.4. The following assertions hold:

(i) there exist C0 > 0 and p0 � 1 such that whenever 0 < r < s � 1, t > 0 and
x 2 SrtðyÞ, then

SC0tðs�rÞp0 ðxÞ � SstðyÞ;
(ii) there exist C1 > 0 and p1 � 1 such that whenever 0 < r < s < 1, t > 0 and

x 2 StðyÞ n SstðyÞ, then
SC1tðs�rÞp1 ðxÞ \ SrtðyÞ ¼ ;;

and as a consequence
(iii) there exists d > 0 such that whenever x 2 S3t=4ðyÞ n St=2ðyÞ, then

SdtðxÞ � StðyÞ n St=4ðyÞ:
Also, for r> 0,

(iv) jSrðxÞj � 2njSr=2ðxÞj;
(v) jSrðxÞj � jS�rðxÞj � nð1� �ÞjSrðxÞj, for all � 2 ð0, 1Þ:
The following Besicovitch type covering lemma is from [7, Lemma 1]. It plays an

essential role in our analysis.

Lemma 2.1. If A � R
n is a bounded set and SrðxÞ, x 2 A, r � C for a fixed constant

C> 0, is a covering of A, then there is a countable subcovering such that

(i) A � [1
k¼1SrkðxkÞ;

(ii) xk 62 [j<k SrjðxjÞ, 8k � 2;
(iii) for small � > 0, the family fSð1��ÞrkðxkÞg1k¼1 has bounded overlaps, i.e., there

exists a universal constant M > 0 such that

X1
k¼1

vSrkð1��ÞðxkÞðxÞ � M log
1
�
,

where vE is the characteristic function of the set E.

The next covering lemma is from [8, Theorem 3]. It is a variant of the Calder�on-
Zygmund decomposition and is used to derive the so-called Le estimate, giving access
to the Harnack inequality.

Lemma 2.2. If A is an open, bounded set and h 2 ð0, 1Þ, then there exists a family of sec-
tions fSrkðxkÞg1k¼1 such that

(1) fxkg1k¼1 � A;

(2) A � [1
k¼1SrkðxkÞ;

(3)
jA\Srk ðxkÞj
jSrk ðxkÞj

¼ h;

(4) jAj < cðhÞj [1
k¼1 SrkðxkÞj,
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where cðhÞ 2 ð0, 1Þ is a constant depending only on h, but not on A nor the family
of sections.

We will make use of the normalization map to normalize sections when needed. As the
normalization of a section implies that all the other sections are comparable to Euclidian
balls, our results are valid for generic r, which comes at the price of constants, depending
upon the normalization map, appearing in the estimates (see Theorem 6.2, for example).

2.2. Extremal operators

Note that when g � 1,/ is a quadratic polynomial, and we are back to the case of the
fractional Laplacian, studied in [3]. We also point out that when k ¼ K ¼ 1 in (1.4), we
are in the framework of the fractional non-local linearized Monge–Amp�ere equation,
studied in [14].
Setting

dðu, x, yÞ :¼ uðxþ yÞ þ uðx� yÞ � 2uðxÞ,
Lab can be rewritten as

LabuðxÞ ¼
ð
R

n
dðu, x, yÞKab

x ðyÞ dy:

We now define the adequate class of test functions for our purposes.

Definition 2.1. A function u is said to be C1, 1 at a point x, and we write u 2 C1, 1ðxÞ,
if there exist v 2 R

n and M, g0 > 0 such that

juðxþ yÞ � uðxÞ � v � yj � Mjyj2,
for every jxj < g0: A function u is said to be C1, 1 in a set X, and we write u 2
C1, 1ðXÞ, if it is C1, 1 at every point in X, for a uniform constant M.
Since solutions of the Monge–Amp�ere equation with a bounded right-hand side have

quadratic growth when a section is normalized, the kernels in our framework are a
deformation of a kernel comparable to that of the fractional Laplacian. Hence, through-
out the paper, we will use the normalization map to make sections comparable to
Euclidean balls, and then change the variables back. In this way, we reproduce several
properties in our framework. However, this approach may result in the dependence of
the constants appearing in the estimates on the normalization map (see the proof of
Theorem 6.2 for details).

Remark 2.1. Let u 2 C1, 1ðxÞ \ L1ðRnÞ, then IuðxÞ 2 R (see Remark 2.2 of [2]).

Definition 2.2. Let f be a bounded and continuous function in R
n: A function u : Rn ! R,

upper continuous in �X, is a viscosity subsolution of the equation Iu¼ f, and we write Iu � f ,
if whenever x0 2 X,Brðx0Þ � X, for some r, and u 2 C2ðBrðx0ÞÞ satisfies

uðx0Þ ¼ uðx0Þ and uðyÞ > uðyÞ, 8y 2 Brðx0Þ n fx0g,
then, if we let
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v :¼
u in Brðx0Þ

u in R
n n Brðx0Þ,

8<
:

we have Ivðx0Þ � f ðx0Þ:
A viscosity supersolution is defined analogously and a function is called a viscosity

solution if it is both a viscosity subsolution and a viscosity supersolution.

Remark 2.2. Functions which are merely C1, 1 at a contact point x can be used as test
functions in the definition of viscosity solution (see Lemma 4.3 in [3]).

Let L be the collection of linear operators Lab satisfying (1.4). We define the maximal
and minimal operators (the Pucci analogs) with respect to the class L as

MþuðxÞ :¼ sup
L2L

LuðxÞ

and

M�uðxÞ :¼ inf
L2L

LuðxÞ:

By definition, if MþuðxÞ < 1 and M�uðxÞ < 1, we have the simple forms

MþuðxÞ ¼ ð2� rÞ
ð
R

n

Kdþ � kd�

vxðyÞ
nþr
2

dy

and

M�uðxÞ ¼ ð2� rÞ
ð
R

n

kdþ � Kd�

vxðyÞ
nþr
2

dy,

where dþ and d� are, respectively, the positive and negative parts of d.

Definition 2.3. The operator I is called elliptic with respect to the class L of integro-
differential operators, if

� Iu(x) is well defined for all u 2 C1, 1ðxÞ, u bounded;
� Iu 2 CðXÞ once u 2 C2ðXÞ;
� M�ðu� vÞðxÞ � IuðxÞ � IvðxÞ � Mþðu� vÞðxÞ, for any bounded functions u

and v which are C1, 1 at x.

We close this section by recalling several results, the proofs of which can be derived
as in [3]. The first result says that if u can be touched from above, at a point x, with a
paraboloid, then Iu(x) can be evaluated classically.

Lemma 2.3. If Iu � f in X, and u 2 C2 touches u from above at a point x 2 X, then
Iu(x) is defined in the classical sense, and IuðxÞ � f ðxÞ:
Another important result is the continuity of Iv in X, if v 2 C1, 1ðXÞ:

Lemma 2.4. If v is a bounded function in R
n, which is C1, 1 in some open set X,

then Iv 2 CðXÞ:
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Although in general one cannot compare two solutions at a given point, since they
may not have the required behavior simultaneously, it is possible to show (see [3,
Section 5]) that the difference of a subsolution of the maximal operator and a superso-
lution of the minimal operator is a subsolution of the maximal operator.

Lemma 2.5. If X is an open, bounded set, and u and v are bounded functions in R
n

such that

(1) u is upper-semicontinuous, v is lower-semicontinuous in �X;
(2) Iu � f , Iv � g in the viscosity sense in X with f, g continuous,

then
Mþðu� vÞ � f � g in X

in the viscosity sense.

As in [3], Lemma 2.5 leads to the following comparison principle.

Theorem 2.5. Let I be elliptic with respect to a class L,X � R
n be a bounded open set, u,

v be bounded functions in R
n such that u is upper semi-continuous in �X and v is lower

semi-continuous in �X. If Iu � f and Iv � f in X, where f is continuous, and u � v in
R

n n X, then u � v in X.

The existence of a solution for the Dirichlet problem then follows from the compari-
son principle, by constructing suitable barriers and using Perron’s method (see [18]).

3. The ABP estimate

In this section we prove a version of the ABP estimate, which will give access to the
regularity theory. We start with the following proposition, which then allows one to
properly define a suitable concave envelope for functions.

Proposition 3.1. Let c > 1 be the engulfing constant from Theorem 2.2. If x 2 S1ð0Þ,
then there exists a constant s > c such that whenever either xþ y or x – y is not in Ssð0Þ,
then both of them are not in S1ð0Þ:
Proof. Let xþ y 62 Ssð0Þ, for some s > c to be chosen later. We want to show that x�
y 62 S1ð0Þ: We argue by contradiction and assume that x� y 2 S1ð0Þ: By the engulfing
property, Theorem 2.2, this implies that S1ð0Þ � Scðx � yÞ, and therefore

Scðx� yÞ \ Ssð0Þ 6¼ ;,
since they both contain S1ð0Þ: If T is an affine transformation that normalizes the sec-
tion Ssð0Þ, i.e.,

Ban � TðSsð0ÞÞ � B1,

then from Theorem 2.3 we obtain that

TðScðx� yÞÞ � BK1ðcsÞeðTx� TyÞ,
for some positive constants K1 and e. Since 0 2 Scðx� yÞ, the above inclusion then
gives
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jTx� Tyj < K1
c
s

� �e

:

Similarly, since also x 2 Scðx� yÞ, then the above inclusion provides

jTyj < K1
c
s

� �e

,

hence

jTxj < 2K1
c
s

� �e

:

Combining the last two inequalities, we obtain

jTxþ Tyj < 3K1
c
s

� �e

:

On the other hand, since xþ y 62 Ssð0Þ, then Tx þ Ty 62 Ban , i.e.,

jTxþ Tyj � an:

By choosing s > cð3K1
an
Þ1=e, we get a contradiction. The other case is proved analo-

gously. w

Hereafter, we will assume that s > c is as in Proposition 3.1. Whenever the center of
a section is the origin, we will omit it, i.e., we will write Sr instead of Srð0Þ:
Let u be a non-positive function outside the section S1. The concave envelope of u is

defined by

CðxÞ :¼ minfpðxÞ : p is a plane and p � uþ in Ssg in Ss
0 in R

n n Ss:
�

Lemma 3.1. Let u � 0 in R
n n S1 and C be its concave envelope. If MþuðxÞ � �f ðxÞ in

S1, then there is a constant C0 > 0, depending only on k and n (but not on r), such that,
for any x 2 fu ¼ Cg \ S1 and any M> 0, there exists k such that

jWkðxÞj � C0
f ðxÞ
M

jRkðxÞj,

where RkðxÞ ¼ SrkðxÞ n Srkþ1ðxÞ, rk ¼ 2�1=ð2�rÞ�k and

WkðxÞ :¼ RkðxÞ \ fy : uðyÞ < uðxÞ þ rCðxÞ � ðy � xÞ �Mr2kg:
Here rC stands for any element of the super differential of C at x, which will coincide
with its gradient when C is differentiable.

Proof. Since u can be touched by the plane

CðxÞ þ rCðxÞ � ðy� xÞ
from above at x, then from Lemma 2.3, MþuðxÞ is defined classically, and we have

MþuðxÞ ¼ ð2� rÞ
ð
R

n

Kdþ � kd�

v
nþr
2
x ðyÞ

dy:
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Note that dðu, x, yÞ ¼ uðxþ yÞ þ uðx� yÞ � 2uðxÞ � 0, whenever x 2 fu ¼ Cg: In fact,
if both x – y and xþ y are in Ss, then d � 0, since uðxÞ ¼ CðxÞ ¼ pðxÞ for some plane
p that remains above u in the whole section Ss: On the other hand, if either x – y or
xþ y is not in Ss, then by Proposition 3.1 both are not in S1, and thus u is non-positive
at those points. Hence, in any case, d � 0, and therefore

�f ðxÞ � MþuðxÞ ¼ ð2� rÞ
ð
R

n

�kd�

vxðyÞ
nþr
2

dy

� ð2� rÞ
ð
Sr0 ðxÞ

�kd�

vxðyÞ
nþr
2

dy,

where r0 ¼ 2�1=ð2�rÞ: Now, splitting the integral in the sections and reorganizing terms,
we obtain

f ðxÞ � ð2� rÞk
X1
k¼0

ð
Srk ðxÞnSrkþ1

ðxÞ

d�

vxðyÞ
nþr
2

dy,

which, together with (2.1), provides

f ðxÞ � ð2� rÞk
X1
k¼0

ð
RkðxÞ

d�

rnþr
k

dy: (3.1)

Note that since x 2 fu ¼ Cg, then
WkðxÞ � RkðxÞ \ fz : �d > 2Mr2kg: (3.2)

But d � 0 and so �d ¼ d�: From (3.1)-(3.2), we then have

f ðxÞ � 2Mkð2� rÞ
X1
k¼0

r2�n�r
k jWkðxÞj: (3.3)

Suppose now the conclusion of the lemma is false. Then (3.3) implies

f ðxÞ � 2kC0ð2� rÞf ðxÞ
X1
k¼0

r2�n�r
k jRkðxÞj: (3.4)

Using Theorem 2.1, we estimate

jRkðxÞj � crnk ,

where c> 0 is a universal constant. Combining the latter with (3.4), we deduce

f ðxÞ � 2kð2� rÞC0cf ðxÞ
X1
k¼0

r2�r
k

� Cð2� rÞ 1

1� 2�ð2�rÞ C0f ðxÞ
� CC0f ðxÞ,

where the last inequality holds because ð2� rÞ=ð1� 2�ð2�rÞÞ remains bounded below
for r 2 ð0, 2Þ: The constant C> 0 depends only on k, n but not on r. By choosing C0

large enough, we obtain a contradiction. w

856 L. CAFFARELLI ET AL.



Remark 3.1. Note that if MþuðxÞ � gðxÞ, then u 6¼ C in fg > 0g:
The next lemma reveals that Lemma 3.1 implies a uniform quadratic detachment of

C from its tangent plane in a smaller section.

Lemma 3.2. Let r 2 ð0, 1Þ, C be a concave function in SrðxÞ and h> 0. There exists e0 >
0 such that, if

jðSr n Sr=2ÞðxÞ \ fy : CðyÞ < CðxÞ þ rCðxÞ � ðy� xÞ � hgj
� ejSr n Sr=2j,

for 0 < e � e0, then

CðyÞ � CðxÞ þ rCðxÞ � ðy� xÞ � h,

in the whole section Sr=2ðxÞ:

Proof. Let y 2 Sr=2ðxÞ: Using Theorem 2.4, we conclude that there exist two points z1 and
z2 in SrðxÞ n Sr=2ðxÞ such that the sections Scrðz1Þ and Scrðz2Þ are contained in the ring
SrðxÞ n Sr=2ðxÞ, for some constant c> 0. Moreover, we can choose these points such that
y ¼ az1 þ ð1� aÞz2 for some a 2 ð0, 1Þ: If e0 is small enough, then at those points one has

Cðz1Þ � CðxÞ þ rCðxÞ � ðz1 � xÞ � h

and

Cðz2Þ � Cð0Þ þ rCðxÞ � ðz2 � xÞ � h:

The concavity of C then gives

CðyÞ � aCðz1Þ þ ð1� aÞCðz2Þ ¼ CðxÞ þ rCðxÞ � ðy� xÞ � h:

w

Corollary 3.1. Let u be as in Lemma 3.1 and r0 ¼ 2�1=ð2�rÞ. Under the hypothesis of
Lemma 3.1, for every e > 0, there exist C ¼ Cðn, eÞ > 0 and r 2 ð0, r0Þ such that

jðSr n Sr=2ÞðxÞ \ fy : uðyÞ < uðxÞ þ rCðxÞ � ðy� xÞ � Cf ðxÞr2gj
� ejSr n Sr=2j

and

jrCðSr=4ðxÞÞj � Cf ðxÞnjSr=4ðxÞj:

Proof. By taking M ¼ C0f ðxÞ=e in Lemma 3.1, we obtain the first estimate with C ¼
C1 :¼ C0=e: Moreover, since uðxÞ ¼ CðxÞ and uðyÞ � CðyÞ, for y 2 SrðxÞ, one has

ðSr n Sr=2ÞðxÞ \ fy : CðyÞ < CðxÞ þ rCðxÞ � ðy� xÞ � C1f ðxÞr2g � WrðxÞ,
where

WrðxÞ :¼ ðSr n Sr=2ÞðxÞ \ fy : uðyÞ < uðxÞ þ rCðxÞ � ðy� xÞ � C1f ðxÞr2g:
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Set

FðyÞ :¼ CðyÞ � CðxÞ � rCðxÞ � ðy� xÞ þ C1f ðxÞr2:
From Lemma 3.2 and the concavity of C, we have

0 � FðyÞ � C1f ðxÞr2, 8y 2 Sr=2ðxÞ: (3.5)

Since F is concave and

rFðyÞ ¼ rCðyÞ � rCðxÞ,
using (3.5), we obtain the bound

jrCðyÞ � rCðxÞj � C2f ðxÞr2, 8y 2 Sr=4ðxÞ,
for a constant C2 > 0: Therefore,

rCðSr=4ðxÞÞ � BC2f ðxÞr2ðrCðxÞÞ
and, estimating the measures of these sets and using Theorem 2.1, we obtain, with aðnÞ
denoting the volume of the unit ball and observing that r2 < r,

jrCðSr=4ðxÞÞj � aðnÞCn
2 f ðxÞnr2n � C3f ðxÞnjSr=4ðxÞj,

for a constant C3 > 0: Taking C ¼ maxfC1,C3g, we conclude the proof. w

We then derive a lower bound on the volume of the union of the sections Sr, where
C (and u) detaches quadratically from its tangent plane.

Corollary 3.2. For each x 2 R :¼ fu ¼ Cg \ S1, let SrðxÞ be the section obtained in
Corollary 3.1. Then

CðsupuÞn �
���� [x2R SrðxÞ

����:
Proof. Using Lemma 2.1, we cover R by sections Sr with bounded overlaps. Since C has
quadratic growth in each section Sk of the covering, then from Corollary 3.1 we have

jrCðSkÞj � CjSkj,
where C> 0 is a universal constant. Strictly speaking, the estimate is only valid on the
set Sr=4: A rigorous justification follows in the same manner as in [17], as Lemma 4.5 is
used to prove Lemma 4.1. Thus,

ðsupuÞn ¼ ðsupCÞn � CjrCðSsÞj ¼ CjrCðRÞj
� C

X
k

jrCðSkÞj

� C
X
k

jSkj:

The next result is a consequence of Corollary 3.1, and provides the first step toward
the so-called Le estimate.

Theorem 3.1. There exists a constant j > 0 and a countable family of sections fSig1i¼1,
with center xi 2 R and height r

4 � ri < r
2, where r 2 ð0, r0Þ is as in Corollary 3.1, covering

R and with bounded overlaps, such that
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jrCð�SiÞj � C

�
max

�Si

f

�n

jSij

and ����
�
y 2 jSi : uðyÞ � CðyÞ � C

�
max

�Si

f

�
r2i

����� � ljSij,

where the constants C> 0 and l > 0 depend only on n, k, K, but not on r.

Proof. Using Lemma 2.1, we find the covering fSiðxiÞg1i¼1 satisfying the desired proper-
ties. We have �Si � Sr=2ðxiÞ and, by Theorem 2.4, there is a constant j > 0 such that

SrðxiÞ � jSi:

Moreover, since C is concave, we also have

CðyÞ � uðxiÞ þ rCðxiÞ � ðy� xiÞ:
From Corollary 3.1 and the fact that ri and r are comparable (recall also that the volume
of Sr is comparable to rn), we obtain����

�
y 2 jSi : uðyÞ � CðyÞ � C

�
max

�Si

f

�
r2i

�����
� jfy 2 jSi : uðyÞ � uðxiÞ þ rCðxiÞ � ðy� xiÞ � Cf ðxiÞr2gj
� ð1� eÞjSr n Sr=2j
� ljSij:

4. An auxiliary function

In order to prove the Harnack inequality, one needs to show that under the hypothesis
of Lemma 3.1, u is non-negative, not just in a positive portion of section S1, but in a
positive portion of any middle-sized section centered in a smaller section Sr � S1:
Having in mind the localization of the contact set, we construct a function which is a
subsolution of the minimal equation outside of a small section and is strictly positive in
a larger section. This function will later be added to u to force the contact set with C to
stay inside of the intermediate sections.

Lemma 4.1. For a given R> 1, there exist m> 0 and r0 2 ð0, 2Þ such that the function

FðxÞ :¼ minð2m, jxj�mÞ
satisfies

M�FðxÞ � 0,

for every r 2 ðr0, 2Þ and 1 � jxj � R. The constants m and r0 depend only on k, K, R
and dimension.

Proof. Without loss of generality, it is enough to prove the lemma for the vector x ¼
e1 ¼ ð1, 0, :::, 0Þ, since for every other point with jxj ¼ 1 the result will follow by rota-
tion. If jxj > 1, one can consider the function
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gðyÞ :¼ jxjmFðjxjyÞ � FðyÞ
and note that

M�FðxÞ ¼ CM�gðx=jxjÞ � CM�Fðx=jxjÞ > 0,

for a constant C> 0. In order to prove the lemma for x ¼ e1, we will use the following
elementary inequalities:

ðaþ bÞ�q � a�q 1� q
b
a

� �
, (4.1)

ðaþ bÞ�q þ ða� bÞ�q � 2a�q þ qðqþ 1Þb2a�q�2, (4.2)

where a > b > 0 and q> 0. Using (4.1) and (4.2) for jyj < 1
2 , we get

dðF, e1, yÞ ¼ je1 þ yj�m þ je1 � yj�m � 2

¼ ð1þ jyj2 þ 2y1Þ�m=2 þ ð1þ jyj2 � 2y1Þ�m=2 � 2

� 2ð1þ jyj2Þ�m=2 þmðmþ 2Þy21ð1þ jyj2Þ�m=2�2 � 2

� m �jyj2 þ ðmþ 2Þy21 �
1
2
ðmþ 2Þðmþ 4Þy21jyj2

� �
:

We choose m> 0 large enough to guarantee

ðmþ 2Þk
ð
@S1

y21 drðyÞ � Kj@S1j ¼: d0 > 0: (4.3)

Then we make use of the above relation to estimate the part of the integral in M�Fðe1Þ
over the set Sr (with r> 0 small). More precisely,

M�Fðe1Þ ¼ ð2� rÞ
ð
Sr

kdþ � Kd�

v
nþr
2
x ðyÞ

dy

þ ð2� rÞ
ð
R

nnSr

kdþ � Kd�

v
nþr
2
x ðyÞ

dy

� ð2� rÞC
ðr
0

kmd0s2 � 1
2
mðmþ 2Þðmþ 4ÞCKs4

snþr
ds

� ð2� rÞ
ð
R

nnSr
K

2m

v
nþr
2

x ðyÞ
dy

� cr2�rmd0 �mðmþ 2Þðmþ 4ÞC 2� r
4� r

r4�r

� 2� r
r

C2mþ1r�r,

where c and C are positive constants (independent of r). Note that we used (4.3) to
bound the first integral and the fact that 0 � FðxÞ � 2m to bound the second. We finish
the proof by choosing r0 close enough to 2, so that the factor ð2� rÞ forces the second
and the third terms in the last inequality to be very small to conclude
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M�Fðe1Þ � 1
2
cr2�rmd0 > 0:

w

Arguing as in Corollary 9.2 of [3], with the obvious adaptations, we obtain the following
corollary.

Corollary 4.1. For any r0 2 ð0, 2Þ and r> 0, there exist m> 0 and s> 0 such that the
function

FðxÞ ¼ minðs�m, jxj�mÞ
is a subsolution, i.e.,

M�FðxÞ � 0,

for all r 2 ðr0, 2Þ and jxj > r, where the constants m and s depend only on k, K and
the dimension.

Corollary 4.2. For given r> 0, R> 1 and r0 2 ð0, 2Þ, there exist s> 0 and m> 0 such
that the function

gðxÞ :¼ minðs�m, jT�1
r xj�mÞ

satisfies

M�gðxÞ � 0,

for x 2 R
n n Sr, where Tr is the normalization map of the section Sr.

Proof. Since

gðxÞ ¼ FðT�1
r xÞ, for x 2 R

n

and

M�gðxÞ ¼ CjdetTrjM�FðT�1
r xÞ � 0,

for all x 2 R
n n Sr, the result follows from Corollary 4.1. w

We are now ready to construct the function which will later be added to u to force
the contact set with C to stay inside of the intermediate sections.

Lemma 4.2. For a given r0 2 ð0, 2Þ, there exists a continuous function w : Rn ! R satis-
fying the following conditions:

� w ¼ 0 in R
n n S2s;

� w > 2 in Ss;
� M�w > �u in R

n, for some positive function u supported in �S1=4 for
every r > r0:

Above, s > 0 is as in Proposition 3.1.

Proof. We prove the lemma by constructing the function w. Let s> 0 and m> 0 be as
in Corollary 4.1 with r¼ 1/4. Set
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1
c
wðxÞ :¼

0 in R
n n S2s

jT�1
1
4
xj�m � ð2sÞ�m in S2s n Ss

q in Ss,

8>>>><
>>>>:

where q is a quadratic paraboloid chosen such that w is C1, 1 across @Ss: The constant c
is chosen such that w > 2 in Ss: Since w 2 C1, 1ðS2sÞ, then from Lemma 2.4, we have
that M�w 2 CðS2sÞ: Corollary 4.1 then gives M�w � 0 in R

n n S1=4, which completes
the proof. w

5. Toward the Harnack inequality

In this section we prove a lemma which bridges the gap between a pointwise estimate
and an estimate in measure. This is the main tool toward the proof of the Harnack
inequality, as in [2, 3, 5]. It is here that we will make use of the function w from
Lemma 4.2.

Lemma 5.1. Let r 2 ð0, 2Þ and r0 2 ð0, rÞ. There exist constants e0 > 0, g 2 ð0, 1Þ and
M> 1, depending only on r0, k, K and n, such that if, with s > 0 as in Proposition 3.1,

u � 0 in R
n; inf

Ss
u � 1; M�u � e0 in S2s,

then

jfu � Mg \ S1gj > g:

Proof. Note that if r is far from 2, one can prove the lemma adapting the ideas from
[19], but as in [3] we argue differently to guarantee an estimate that remains uniform
as r ! 2:
Define . :¼ w� u, where w is the function from Lemma 4.2, and observe that

Mþ. � M�w�M�u � �u� e0:

Let now C be the concave envelope of . in S4s: Applying Theorem 3.1 (rescaled) to .,
we get a family of sections Si such that

max
S2s

. � CjrCðS2sÞj1=n � C

�X
i

jrCð�SiÞj
�1=n

�
�
C
X
i

ðmax
Si

ðuþ eÞþÞnjSij
�1=n

� Ce0 þ C

�X
i

ðmax
Si

ðuþÞnjSij
�1=n

,

with C> 0 constant. On the other hand, we have maxS2s. � 1, since infSs u � 1 and
w � 2 in Ss, and therefore
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1 � Ce0 þ C

�X
i

ðmax
Si

ðuþÞnjSij
�1=n

:

Hence, if e0 is small enough, one has

1
2
� C

�X
i

ðmax
Si

ðuþÞnjSij
�1=n

:

Also, since supp u � S1=4,

1
2
� C

� X
Si\S1=4 6¼;

jSij
�1=n

or else X
Si\S1=4 6¼;

jSij � C: (5.1)

Also, the height of Si is bounded by 2�1=ð2�rÞ < 1: Hence, every time Si intersects S1=4,
one has jSi � S1=4, for j > 0 as in Theorem 3.1. An application of Theorem 3.1 then
gives

jfy 2 jSi : .ðyÞ � CðyÞ � Cr2i gj � ljSij, (5.2)

and Cr2i < C: Observe that the family fjSig, where Si \ S1=4 6¼ ;, is an open covering
for [i �Si and is contained in S1=2: By taking a subcovering with bounded overlapping
and using (5.1) and (5.2), one gets

jfy 2 S1=2 : .ðyÞ � CðyÞ � Cgj
�
���[

i
fy 2 jSi : .ðyÞ � CðyÞ � Cg

���
� C1

X
i

jfy 2 jSi : .ðyÞ � CðyÞ � Cgj

� C1c1:

Therefore, if l :¼ maxS1=2w, then

jfy 2 S1=2 : uðyÞ � l þ Cgj � C1c1:

Hence, for M :¼ l þ C, noting that S1=2 � S1, one has

jfy 2 S1 : uðyÞ � Mgj � C1c1,

which completes the proof. w

As a consequence, using a variant of Calder�on-Zygmund decomposition (Lemma
2.2), as in [8, Theorem 3], from Lemma 5.1 we get the following result.

Theorem 5.1. Let z 2 R
n, u � 0 in R

n, infSrðzÞ u � 1,M�u � e0 in S2sðzÞ. There exist
constants q 2 ð0, 1Þ, C> 0 and e > 0 such that

jfu > tg \ SqðzÞj � Ct�ejSrðzÞj, 8t > 0:

Here C and e > 0 depend only on k, K, g�, gþ and n.
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Proof. As in [8, Theorem 4], it is enough to consider the case when section SrðzÞ is nor-
malized and has unit parameter r¼ 1. Then the result follows from the fact that, as in
[8, proof of Theorem 4], using Lemma 5.1 and Lemma 2.2, for Q and P large enough,
one can construct a decreasing family of sections Sk :¼ SrkðzÞ, k 2 N [ f0g, with 1 ¼
r0 > r1 > :::, such that

jfu > QPkþ2g \ Skþ1j < cðhÞjfu > QPkþ1g \ Skj, k 2 N,

where cðhÞ < 1 is as in Lemma 2.2,

rk ¼ 1�
Xk
i¼1

c
H

QPiþ1

� �1
e

 !1
p

,

p> 1, and H is a structural constant. Passing to the limit as k ! 1, we obtain

q :¼ 1�
X1
i¼1

c
H

QPiþ1

� �1
e

 !1
p

2 ð0, 1Þ,

once P, Q are large enough.
Since cðhÞ < 1, Lemma 2.2 then implies the result for the section SqðzÞ: w

6. The Harnack inequality and consequences

In this section, we prove the Harnack inequality for integro-differential equations with
kernels deforming like sections of a strictly convex solution to a Monge–Amp�ere equa-
tion and, as a consequence, we derive Ca and C1, a estimates for solutions. The Harnack
inequality remains uniform as r ! 2: We need the following auxiliary result.

Theorem 6.1. Let r0 > 0, r � r0 and C0 > 0. If u � 0 in R
n,M�u � C0,Mþu � �C0 in

S2s, then there exists C> 0, depending on r0 but not on r, such that

uðxÞ � Cðuð0Þ þ C0Þ in Sq=2,

where q is as in Theorem 5.1.

Proof. Without loss of generality, one can assume that uð0Þ � 1 and C0 ¼ 1 (otherwise
divide by uð0Þ þ C0). Take e > 0 as in Theorem 5.1 and set j ¼ n

2e and

vhðxÞ :¼ hðdistðx, @S1ÞÞ�j, 8x 2 S1:

Let now h0 > 0 be the minimum value of h for which there holds u � vh in S1. Note
that there must be a point x0 2 S1 such that uðx0Þ ¼ vh0ðx0Þ (otherwise one would be
able to take h0 smaller). As in [3], the aim is to show that h0 cannot be too large, i.e.,
that there exists C> 0 such that h0 < C:
For that purpose, we estimate the portion of the section Srðx0Þ covered by fu <

uðx0Þ=2g and by fu > uðx0Þ=2g, where r ¼ d=2, d being the distance of the point x0 to
@S1: Theorem 5.1 provides
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����
�
u >

uðx0Þ
2

�
\ Sq

���� � C

���� 2
uðx0Þ

����
e

¼ C2eh�edje � C1h
�e
0 rn:

On the other hand, jSrðx0Þj � C2rn, so

u >
uðx0Þ
2

� �
\ Srðx0Þ

����
���� � C1

C2
h�e
0 jSrðx0Þj, (6.1)

which means that if h0 is large, then the set fu > uðx0Þ=2g can cover only a small por-
tion of Srðx0Þ:

Our next task is to show that if h0 is large, then the measure of the portion of Srðx0Þ covered
by fu < uðx0Þ=2g does not exceed ð1� dÞjSrðx0Þj, for a positive constant d independent of
h0. This will lead to a contradiction, hence h0 must be bounded, and the result will follow.
Let h> 0 be so small that

distðx, @S1Þ � d � hd
2
, 8x 2 Shrðx0Þ,

and so, for every x 2 Shrðx0Þ, one has

uðxÞ � vh0ðxÞ � h0 d � hd
2

� ��j

� uðx0Þ 1� h
2

� ��j

:

Therefore,

xðxÞ :¼ 1� h
2

� ��j

uðx0Þ � uðxÞ � 0 in Shrðx0Þ,

and M�x � 1: The latter follows from the fact that Mþu � �1: We would like to apply
Theorem 5.1 (rescaled) to x, but we cannot do so because x is not non-negative in the
whole space, but just in Shr. This leads us to consider the function a :¼ xþ instead, and
estimate the change in the right hand side due to the truncation error. We need to find
an estimate for M�a from above. For x 2 R

n, we have

M�aðxÞ �M�xðxÞ
2� r

¼ k
ð
R

n

dþða, x, yÞ � dþðx, x, yÞ
v
nþr
2
x ðyÞ

dy

þ K
ð
R

n

d�ðx, x, yÞ � d�ða, x, yÞ
v
nþr
2
x ðyÞ

dy

:¼ I1 þ I2:

(6.2)

Note that if dg :¼ dðg, x, yÞ, then
dþa ¼ dx þ x�ðx� yÞ þ x�ðxþ yÞ

due to the elementary equality

xþðx þ yÞ ¼ xðx þ yÞ þ x�ðx þ yÞ:
Also,

dþa � dþx and dx ¼ dþx � d�x ,

So, we estimate
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I1 ¼ �k
ð
fdþa >dþxg

d�x
v
nþr
2
x ðyÞ

dy

þ k
ð
fdþa >dþxg

x�ðxþ yÞ þ x�ðx � yÞ
v
nþr
2

x ðyÞ
dy

� K
ð
fdþa >0g

x�ðxþ yÞ þ x�ðx� yÞ
v
nþr
2
x ðyÞ

dy:

(6.3)

Similarly,

I2 ¼ K
ð
fd�x>0g\fd�a 6¼d�xg

d�x � d�a
v
nþr
2

x ðyÞ
dy

þ K
ð
fd�x¼0g\fd�a 6¼d�xg

x�ðx þ yÞ þ x�ðx� yÞ
v
nþr
2
x ðyÞ

dy

� K
ð
fd�x>0g\fd�a 6¼d�xg

�dx � d�x
v
nþr
2

x ðyÞ
dy:

(6.4)

Observe that

�d�x � d�a ¼ 2xðxÞ � ðxðx þ yÞ þ xðx � yÞÞ � d�a
¼ 2xðxÞ � ðxþðxþ yÞ þ xþðx� yÞÞ � ðx�ðxþ yÞ þ x�ðx � yÞÞ	 

¼ �da � d�a þ x�ðxþ yÞ þ x�ðx� yÞ
¼ �dþa þ x�ðx þ yÞ þ x�ðx � yÞ:

(6.5)

Using (6.4) and (6.5) we then get

I2 � �K
ð
fd�x>0g\fd�a 6¼d�xg

dþa
v
nþr
2

x ðyÞ
dy

þ K
ð
fd�x>0g\fd�a 6¼d�xg

x�ðx þ yÞ þ x�ðx� yÞ
v
nþr
2
x ðyÞ

dy

� K
ð
fd�a �0g

x�ðx þ yÞ þ x�ðx� yÞ
v
nþr
2
x ðyÞ

dy:

(6.6)

Therefore, from (6.2), (6.3) and (6.6), one gets

M�aðxÞ �M�xðxÞ
2� r

� K
ð
R

n

x�ðx þ yÞ þ x�ðx � yÞ
v
nþr
2

x ðyÞ
dy

¼ �2K
ð
fxðxþyÞ<0g

xðx þ yÞ
v
nþr
2

x ðyÞ
dy:

Moreover, by the definition of x, for x 2 Shr=2ðx0Þ we have
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M�aðxÞ �M�xðxÞ
2� r

� 2K
ð
xðxþyÞ<0

�xðx þ yÞ
v
nþr
2

x ðyÞ
dy

� 2K
ð
R

nnShrðx0�xÞ

uðxþ yÞ � 1� h
2

� ��j
uðx0Þ

� �þ

v
nþr
2
x ðyÞ

dy:

Observe that if t> 0 is the largest value for which uðxÞ � tð1� j4xj2Þ, then there must
be a point x1 in a smaller section Sr such that uðx1Þ ¼ 1� j4x1j2: Since uð0Þ � 1, then
t � 1: Thus,

ð2� rÞ
ð
R

n

d�ðu, x1, yÞ
v
nþr
2

x ðyÞ
dy � ð2� rÞ

ð
R

n

d�ð1� j4x1j2, x1, yÞ
v
nþr
2

x ðyÞ
dy � C,

where the constant C> 0 does not depend on r. On the other hand, since M�uðx1Þ � 1,
we find

ð2� rÞ
ð
R

n

dþðu, x1, yÞ
v
nþr
2

x ðyÞ
dy � C:

In particular, since uðx1Þ � 1 and uðx1 � yÞ � 0, we have

ð2� rÞ
ð
R

n

ðuðx1 þ yÞ � 2Þþ

v
nþr
2

x ðyÞ
dy � C:

By assuming h0 > 0 is large enough, we can suppose that uðx0Þ > 2: Writing

uðxþ yÞ � 1� h
2

� ��j

uðx0Þ ¼ uðxþ x1 þ y � x1Þ � 1� h
2

� ��j

uðx0Þ,

we estimate

2Kð2� rÞ
ð
R

nnShrðx0�xÞ

uðxþ yÞ � 1� h
2

� ��j
uðx0Þ

� �þ

v
nþr
2

x ðyÞ
dy

� 2Kð2� rÞ
ð
R

nnShr=2ðx0�xÞ

uðx1 þ yþ x � x1Þ � 1� h
2

� ��j
uðx0Þ

� �þ

v
nþr
2

x ðyþ x � x1Þ

� v
nþr
2

x ðyþ x� x1Þ
v
nþr
2

x ðyÞ
dy

� CðhrÞ�nþr
2 :

Hence, since

M�a ¼ M�xþ ðM�a�M�xÞ,
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we finally conclude

M�a � 1þ CðhrÞ�nþr
2 in Shr=2ðx0Þ,

where the constant C> 0 does not depend on r. This allows to apply Theorem 5.1 to a
in Shr=2ðx0Þ: From Theorem 5.1 and the fact that

aðx0Þ ¼ 1� h
2

� ��j

� 1

 !
uðx0Þ,

one has����
�
u <

uðx0Þ
2

�
\ Shr=4ðx0Þ

����
¼
����
�
aðxÞ > uðx0Þ 1� h

2

� ��j

� 1
2

 !�
\ Shr=4ðx0Þ

����
� CjShr=4ðx0Þj

"
1� h

2

� ��j

� 1

 !
uðx0Þ þ 1þ CðhrÞ�nþr

2

� �
ðrhÞr

#e

	 uðx0Þ 1� h
2

� ��j

� 1
2

 ! !�e

� CjShr=4ðx0Þj 1� h
2

� ��j

� 1

 !
uðx0Þ þ C1ðhrÞ�cðnÞ

" #e

� uðx0Þ 1� h
2

� ��j

� 1
2

 ! !�e

� CjShr=4ðx0Þj 1� h
2

� ��j

� 1

 !e

þ h�cðnÞet�e

2
4

3
5,

(6.7)

where c(n) > 0 does not depend on r. In order to get the last estimate in (6.7), we
used the inequalities

1� h
2

� ��j

� 1
2

 !
uðx0Þ þ C1ðhrÞ�cðnÞ

" #e

� 1� h
2

� ��j

� 1
2

 !e

ueðx0Þ þ C1ðhrÞ�cðnÞe

and

1� h
2

� ��j

� 1
2
� 1� h

2

� ��n
e

� 1
2
� 1

2
,
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for h> 0 sufficiently small, and also

C2h
�cðnÞeu�eðx0Þ 1� h

2

� ��j

� 1
2

 !�e

� C3h
�cðnÞer�cðnÞeu�eðx0Þ � C4h

�cðnÞeh�e
0 dnð1�ceÞ � C5h

�cðnÞeh�e
0 :

We choose h> 0 small enough to guarantee

CjShr=4ðx0Þj 1� h
2

� ��j

� 1

 !e

� CjShr=4ðx0Þj 1� h
2

� ��2n
e

� 1

 !e

� 1
4
jShr=4ðx0Þj:

(6.8)

Observe that we can choose such h independently of h0. Then, for this fixed h, we take
h0 > 0 large enough to guarantee

CjShr=4ðx0Þjh�cðnÞeh�e
0 � 1

4
jShr=4ðx0Þj: (6.9)

Combining (6.7)-(6.9), we obtain����
�
u <

uðx0Þ
2

�
\ Shr=4ðx0Þ

���� � 1
4
jShr=4ðx0Þj,

which implies, for h0 > 0 large,����
�
u >

uðx0Þ
2

�
\ Shr=4ðx0Þ

���� � cjSrðx0Þj,

which contradicts (6.1). w

As a consequence of the Harnack inequality, we obtain the H€older regularity
of solutions.

Theorem 6.2. Let r0 > 0 and r 2 ðr0, 2Þ. If u is a bounded function in R
n such that

M�u � C0 and Mþu � �C0 in S2sðx0Þ,
then there exists a positive constant a 2 ð0, 1Þ, depending only on k, K, r0 and dimension,
such that u 2 CaðSq=2Þ and

jjujjCaðSq=2ðx0ÞÞ � Cðsup
R

n
juj þ C0Þ,

for a constant C> 0, depending only on the norm of the normalization map that normal-
izes the section Scq=2ðx0Þ, k, K, r0, C0 and dimension. Here the constant s > 1 is as in
Proposition 3.1 and q 2 ð0, 1Þ as in Theorem 5.1, and c > 1 is the engulfing constant.

Proof. From the Harnack inequality, as in [20, Lemma 8.23], we conclude that there
exist C> 0 and a 2 ð0, 1Þ such that
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oscSrðx0Þu � C
r
q

� �a

max
Sqðx0Þ

u, r < q:

Let x, y 2 Sq=2ðx0Þ and Sr0ðxÞ be the smallest section containing y. By the engulfing
property, Theorem 2.2, Sq=2ðx0Þ � Scq=2ðxÞ: Thus, y 2 Scq=2ðxÞ, hence r0 � cq=2, since
Sr0ðxÞ is the smallest section containing y. If T is the affine transformation that normal-
izes the section Scq=2ðx0Þ, then arguing as in [8, Section 4], we have

r0 � 2cq
2jjTjj
K2

� �1=e

jx � yj1=e,

where K2 > 0 and e > 0 are the constants appearing in Theorem 2.3. Thus,

juðxÞ � uðyÞj � oscSr0 ðxÞu � r0
q

� �a

max
SqðxÞ

u � Cjx � yja=emax
SqðxÞ

u:

w

In order to prove the interior C1, a regularity of solutions one needs to have an extra assump-
tion on the kernels. The idea is to use Theorem 6.2 for incremental quotients of the solution,
but since we do not have a uniform bound in L1 for these incremental quotients outside of
the domain, we assume a modulus of continuity in measure for the kernel, to make sure that
faraway oscillations tend to cancel out. More precisely, for a given . > 0, we define the class
L1 of the operators L with kernels K satisfying not only (1.4), but additionallyð

R
nnS.

Kab
x ðyÞ � Kab

x ðy� hÞ
jhj dy � Y, for jhj < .

2
: (6.10)

The proof of the next theorem is essentially the same as the one of Theorem 13.1 of
[3], hence we will omit it.

Theorem 6.3. Let r0 > 0 and r 2 ðr0, 2Þ. Let also the kernels Kab
x satisfy (1.4) and

(6.10). If u is a bounded function such that Iu¼ f in S2s, then there is a constant
c 2 ð0, 1Þ, depending only on k, K, r0 and dimension, such that u 2 C1, cðSq=2Þ and

jjujjC1, cðSq=2Þ � C sup
R

n
juj,

for a constant C> 0, depending only on the norm of the normalization map of the section
Scq=2ðx0Þ, k, K, r0, Y and dimension. Here the constant s > 1 is as in Proposition 3.1
and q 2 ð0, 1Þ as in Theorem 5.1.
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