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1. Introduction

In stochastic control problems (see [1]), for example if, in a competitive stochastic
game, two players are allowed to choose from different strategies at every step in order
to maximize the expected value u(x) at the first exit point of a domain, we encounter
the fully nonlinear elliptic integro-differential Isaacs equation

Tu(x) = igfs%pLaﬁu(x) = f(x), (1.1)
where
L(a) = | (ulo ) +u(x =) ~ 20K ) dy (12

are generators of n-dimensional pure jump Lévy processes, those for which diffusion and drift
are neglected. The kernels K*#(y) measure the frequency of jumps in the y direction at the point
x. For a homogeneous medium, as in [2, 3] for example, the kernel does not depend on x.

We are interested in this paper in the case of a slowly deforming medium for which
the level sets of the kernels K% are sections of a convex solution ¢ of a
Monge-Ampere equation. Set
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ve(y) = ¢(y) — ¢(x) = Vo(x) - (y —x), xyeRY, (1.3)
and note that v, > 0, since the graph of a convex function stays above supporting
hyperplanes.

We will study equation (1.1) for kernels in (1.2) that satisfy the bounds

2—0)A 2—0)A

2-o4 :) <K’ (y) S—( l , (1.4)

Vx(y) 2 VXO/) :
for constants A > 1 > 0 and ¢ € (0,2). We will assume that kernels are symmetric, i.e.,
that K*#(y) = K*/(—y), but this is a purely technical assumption, rendering the proofs
simpler. The kernels in (1.4) may be very degenerate, since the sections of ¢ are com-
parable to ellipsoids, which may have very degenerate eccentricity (see [4], for example).
The right hand side of (1.1) is assumed to be a bounded and continuous function in
R". The case of ¢(y) = |y|> resembles the kernel of the fractional Laplacian and was
studied in [3], extending the notion of ellipticity by means of the relations

M w(x) < I(u+w)(x) — Iu(x) < M*tw(x),
where

M~ u(x) := %ggLu(x)

and

M u(x) := sup Lu(x)
LeL
are analogs of the extremal Pucci operators. Here £ is the class of operators of (1.2)
type whose kernels satisfy (1.4).

The approach used in [3] is a non-local version of the strategy used in [5]. In our
case, the strong degeneracy of the kernels precludes the use of standard covering argu-
ments, a difficulty that can be overcome considering the deformation of the kernels is
driven by the Monge-Ampere geometry. This is due to the fact that sections of a con-
vex solution of a Monge-Ampere equation enjoy an engulfing property: if two sections
overlap, then by lifting one by a universal constant, we engulf the other. After renor-
malization, sections become comparable to balls (see [4, 6]) and this geometry allows
for a refinement of the known techniques in order to develop a regularity theory.

The regularity theory in the classical non-variational approach (see [5]) heavily
depends on the Aleksandrov-Bakelman-Pucci (ABP) estimate

1/n
supu < C(n)(J (f+)n) ,
B; {I'=u}NB,

where u is a viscosity subsolution of the maximal Pucci equation with (—f) as the
right-hand side, which is non-positive outside the unit ball By, and where I' is the con-
cave envelope of u in B;. The ABP estimate bridges the gap between a pointwise esti-
mate and an estimate in measure. For u(0) > 1, it provides the bounds

1< ClIfll{T = u} N Bi[" < ClIf |l ol {u = 0} N BY|'",

where |E| stands for the n-dimensional Lebesgue measure of the set E.
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We need a nonlocal version of the ABP estimate like the one in [2, 3] but we are
dealing with kernels which deform in space and we must have some control over the
deformation. It turns out that if the deformation is driven by the Monge-Ampere
geometry then the engulfing property of the Monge-Ampere sections provides the
needed environment to use a covering lemma from [7] and obtain a variant of the ABP
estimate. Once this is achieved, we can use a variant of Calderon-Zygmund decompos-
ition from [8] to obtain the Harnack inequality and further regularity results. The heart
of the proof is to find the suitable geometry of the neighborhoods of the contact points
within which there is a portion where a sub-solution u stays quadratically close to the
tangent plane of its concave envelope I' and such that, in smaller neighborhoods, I" has
quadratic growth. This task, in turn, requires a certain control over the deformation of
sections, that allows one to properly define a suitable concave envelope. We then con-
clude that if a concave function stays below its tangent plane translated by -r (for a
given number r>0) in a portion of an annulus of the unit section, then I' + r stays
above its tangent plane in the interior section of the annulus. Through the normaliza-
tion map, we ultimately extend the regularity theory from [3] into the framework of
slowly deforming kernels.

The paper is organized as follows: in Section 2, we list several known facts about the
behavior of a convex solution of the Monge-Ampere equation. It is also here that we
define the analogs of the Pucci extremal operators in our framework and state some
preliminary results. Section 3 is devoted to the ABP estimate. Using properties of the
level sets of the kernels (sections of a convex solution of the Monge-Ampere equation)
and a covering argument from [7], we get a version of the ABP estimate in a non-local
setting with slowly deforming kernels (Corollary 3.2 and Theorem 3.1). In Section 4, we
construct an auxiliary function which is a subsolution of the minimal equation outside
of a small section and is strictly positive in a larger section (Lemma 4.2). This function
is added to u in Section 5 to force the contact set with I' to stay inside intermediate
normalized sections. In this way, using a variant of Calderén-Zygmund decomposition
from [8], we are able to prove a variant of the so-called L? estimate, which bridges the
gap between a pointwise estimate and an estimate in measure (Theorem 5.1), the main
step toward the Harnack inequality, which we prove in Section 6 (Theorem 6.1).
Finally, as a consequence of the Harnack inequality, we derive Holder (Theorem 6.2)
and C"* (Theorem 6.3) regularity results for solutions.

2. Preparatory material

In this section we list several known facts about the sections of a convex solution of a
Monge-Ampere equation (which can be found in [4, 6, 8-13]; see also [14], where a non-
local linearized Monge-Ampere equation is treated, as well as [15-17] for a more compre-
hensive approach to non-local equations) and also state some preliminary results.

2.1. Sections of a Monge-Ampere convex solution

To understand the deformation of kernels, we need to look at the sections of a C* con-
vex solution of the Monge-Ampere equation
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detD*¢ =g,

where 0 < g < g(x) < g™ < 0o,x € R", for constants g_ and g". A section S,(x) of ¢
is defined as

Si(x):={y : ¢(y) < P(x) +Ve(x)-(y —x) +r°},
or, recalling (1.3),

Si(x)={y : n(y) <r} (2.1)

Geometrically, it amounts to taking a supporting hyperplane at x and lifting it by 7* to
carve out the convex set S,. These are the “balls of radius r” in the Monge-Ampere
geometry. The sections are “balanced” around the point from which we lift, and we
know precisely how the volume grows. Before proceeding, we point out that our results
depend upon the geometry of Monge-Ampere sections and are valid for generic x and
r rather than a specific section. For simplicity, we will often omit the center of the sec-
tion, when it is not playing an essential role in the proofs.

The proof of following theorem can be found in [4, 6].

Theorem 2.1. There is an ellipsoid E of volume " such that
¢E C S,(x) C CE,

where ¢ and C are universal positive constants depending only on n.
Since E is an ellipsoid, there is an affine transformation T such that T(E) = B, and
therefore

B,, C T(S,) C By,

with B, being the ball of radius r centered at 0, and where o, is a positive constant
depending only on n. We will refer to T as a normalization map that normalizes the
section §,, and to T(S,) as a normalized section.

We list several properties of the sections for future reference. The first fact is that sec-
tions of ¢ satisty the engulfing property. More precisely, if two sections of similar size
overlap, a universal multiple of one engulfs the other, indicating that they must have
roughly the same shape. The proof can be found in [4, 6].

Theorem 2.2. There is a universal constant y > 1 such that if y € S,(x), then

Si(x) C Spr(y).

The next theorem provides a quantitative estimate on the size of normalized sections.
It states that if an affine map normalizes a section, then all other sections with compar-
able height are still comparable to balls (see [4, 6, 9] for the proof).

Theorem 2.3. Let T be an affine transformation that normalizes Sg(x) and r < R. If

Sr(x) N S:(y) # 0,

then there exist positive constants K;, K, K, and ¢, such that
Biox(Ty) C T(S:(y)) C By, (Ty),
and Ty € Bg,(0).
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As a consequence of the previous theorem, we have a result on the deformation of
sections, the proof of which can be found in [4, 6-8].

Theorem 2.4. The following assertions hold:

(i) there exist Cy >0 and py > 1 such that whenever 0 <r <s<1, t > 0 and
x € Su(y), then

SCgt(s—r)P" (x) C SSt(y);
(ii) there exist C, > 0 and p; > 1 such that whenever 0 <r <s<1, t > 0 and
x € S(y) \ St(p), then
Sclt(s—r)Pl (.X) N S?’t()/) = Q;

and as a consequence
(iii) ~ there exists & > 0 such that whenever x € S3;/4(y) \ S¢/2(y), then

Sse(x) C Se(y) \ St/4 »)-
Also, for r>0,
(V) IS(x)] < 27|Sr2(x);
V) S (x)] = [Ser(x)] < n(1 —€)|S,(x)|, for all € € (0,1).
The following Besicovitch type covering lemma is from [7, Lemma 1]. It plays an
essential role in our analysis.

Lemma 2.1. If A CR" is a bounded set and S,(x),x € A,r < C for a fixed constant
C> 0, is a covering of A, then there is a countable subcovering such that

(i) A CUZ, S (x);
(11) Xk Q/ Uj<k S'j (X]>,Vk 2 2,
(iii)  for small € >0, the family {Si_e, (xk)}ie; has bounded overlaps, i.e., there
exists a universal constant M > 0 such that

Y 1
Z X8, 10 (x0) (x) < Mlog -
k=1

where yg is the characteristic function of the set E.

The next covering lemma is from [8, Theorem 3]. It is a variant of the Calderdén-
Zygmund decomposition and is used to derive the so-called L° estimate, giving access
to the Harnack inequality.

Lemma 2.2. If A is an open, bounded set and 0 € (0, 1), then there exists a family of sec-
tions {8y, (xk)}rey such that

D) b, C A

() ACUZ,S, (%);
40, )l _ g

¥ Tr =

@) Al < c(0)] Uy (i)l
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where c(0) € (0,1) is a constant depending only on 0, but not on A nor the family
of sections.

We will make use of the normalization map to normalize sections when needed. As the
normalization of a section implies that all the other sections are comparable to Euclidian
balls, our results are valid for generic r, which comes at the price of constants, depending
upon the normalization map, appearing in the estimates (see Theorem 6.2, for example).

2.2. Extremal operators

Note that when g =1, ¢ is a quadratic polynomial, and we are back to the case of the
fractional Laplacian, studied in [3]. We also point out that when A = A =1 in (1.4), we
are in the framework of the fractional non-local linearized Monge-Ampere equation,
studied in [14].

Setting

o(u,x,y) == ulx+y) +u(x—y) —2u(x),

L, can be rewritten as
Lyu(x) = | 3(wx2)K20) dy.
R

We now define the adequate class of test functions for our purposes.

Definition 2.1. A function ¢ is said to be C! at a point x, and we write ¢ € C!(x),
if there exist v € R" and M, n, > 0 such that

lp(x+y) — o(x) —v-y| < M|,

for every |x| <n,. A function ¢ is said to be C"! in a set Q, and we write ¢ €
Ch1(Q), if it is C*! at every point in Q, for a uniform constant M.

Since solutions of the Monge-Ampere equation with a bounded right-hand side have
quadratic growth when a section is normalized, the kernels in our framework are a
deformation of a kernel comparable to that of the fractional Laplacian. Hence, through-
out the paper, we will use the normalization map to make sections comparable to
Euclidean balls, and then change the variables back. In this way, we reproduce several
properties in our framework. However, this approach may result in the dependence of
the constants appearing in the estimates on the normalization map (see the proof of
Theorem 6.2 for details).

Remark 2.1. Let u € C>!(x) N L®(R"), then Iu(x) € R (see Remark 2.2 of [2]).
Definition 2.2. Let f be a bounded and continuous function in R”. A function u : R" — R,

upper continuous in Q, is a viscosity subsolution of the equation Iu = f, and we write Iu > f,
if whenever xy € Q, B,(xy) C Q, for some r, and ¢ € C*(B,(x,)) satisfies

¢(x0) = u(xo) and  ¢(y) > u(y),Vy € Br(x0) \ {0}

then, if we let



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 853

@ in B,(x)

u in R"\ B.(xo),

we have Iv(xy) > f(x).
A viscosity supersolution is defined analogously and a function is called a viscosity
solution if it is both a viscosity subsolution and a viscosity supersolution.

Remark 2.2. Functions which are merely C"! at a contact point x can be used as test
functions in the definition of viscosity solution (see Lemma 4.3 in [3]).

Let £ be the collection of linear operators L,z satisfying (1.4). We define the maximal
and minimal operators (the Pucci analogs) with respect to the class £ as

M*tu(x) := sup Lu(x)
LeLl

and

M u(x) := %IGIEL“(X)'

By definition, if MTu(x) < oo and M~ u(x) < oo, we have the simple forms

+ _ —
M) = 2-0)| 2= g
" Vx()’)z
and
" + _ —_
M) = 2-0)| 220 gy,
! Vx()’)z

where 6% and § are, respectively, the positive and negative parts of d.

Definition 2.3. The operator I is called elliptic with respect to the class £ of integro-
differential operators, if

Tu(x) is well defined for all u € C!(x), u bounded;

Iu € C(Q) once u € C*(Q);

M~ (u—v)(x) < Iu(x) — Iv(x) < M™(u—v)(x), for any bounded functions u
and v which are C"! at x.

We close this section by recalling several results, the proofs of which can be derived
as in [3]. The first result says that if u can be touched from above, at a point x, with a
paraboloid, then Iu(x) can be evaluated classically.

Lemma 2.3. If Iu>f in Q, and ¢ € C* touches u from above at a point x € Q, then
Iu(x) is defined in the classical sense, and Iu(x) > f(x).

Another important result is the continuity of Iv in Q, if v € C>1(Q).

Lemma 24. If v is a bounded function in R", which is C“! in some open set Q,
then Iv € C(Q).
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Although in general one cannot compare two solutions at a given point, since they
may not have the required behavior simultaneously, it is possible to show (see [3,
Section 5]) that the difference of a subsolution of the maximal operator and a superso-
lution of the minimal operator is a subsolution of the maximal operator.

Lemma 2.5. If Q is an open, bounded set, and u and v are bounded functions in R"
such that

(1) u is upper-semicontinuous, v is lower-semicontinuous in €;
(2)  Iu>f,Iv < g in the viscosity sense in Q with f, g continuous,

then
MY (u—v)>f—g in Q
in the viscosity sense.

As in [3], Lemma 2.5 leads to the following comparison principle.

Theorem 2.5. Let I be elliptic with respect to a class £,Q C R" be a bounded open set, u,
v be bounded functions in R" such that u is upper semi-continuous in Q and v is lower

semi-continuous in Q. If Iu> f and Iv < f in Q, where f is continuous, and u <v in
R"\ Q, then u < v in Q.

The existence of a solution for the Dirichlet problem then follows from the compari-
son principle, by constructing suitable barriers and using Perron’s method (see [18]).

3. The ABP estimate

In this section we prove a version of the ABP estimate, which will give access to the
regularity theory. We start with the following proposition, which then allows one to
properly define a suitable concave envelope for functions.

Proposition 3.1. Let y > 1 be the engulfing constant from Theorem 2.2. If x € $(0),
then there exists a constant T >y such that whenever either x+y or x — y is not in S;(0),
then both of them are not in §;(0).

Proof. Let x + y ¢ S;(0), for some © > y to be chosen later. We want to show that x —
y & S$1(0). We argue by contradiction and assume that x — y € $;(0). By the engulfing
property, Theorem 2.2, this implies that S;(0) C S,(x — y), and therefore

S,(x —y) N S(0) # 0,
since they both contain §;(0). If T is an affine transformation that normalizes the sec-
tion S;(0), ie.,
B,, C T(S:(0)) C By,
then from Theorem 2.3 we obtain that
T(S,(x — 7)) € By (Tx — Ty),

for some positive constants K; and &. Since 0 € S,(x —y), the above inclusion then
gives
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|Tx — Ty| < K, <%> .

Similarly, since also x € S,(x — y), then the above inclusion provides

')) &
T Ki(=],
w1 <K (1)
&
|Tx|<2K1(y>.
T

Combining the last two inequalities, we obtain
A &
Tx + Ty| < 3K, (g) .

On the other hand, since x + y & S;(0), then Tx + Ty ¢ B,,, ie.,
|Tx + Ty| > o.

hence

By choosing 7 > y(z—fl)l/ ‘, we get a contradiction. The other case is proved analo-
gously. O
Hereafter, we will assume that t > 7 is as in Proposition 3.1. Whenever the center of

a section is the origin, we will omit it, i.e., we will write S, instead of S,(0).

Let u be a non-positive function outside the section S;. The concave envelope of u is
defined by

T(x) = min{p(x) : p is a plane and p > u* in S;} in S,
10 in R"\ S..

Lemma 3.1. Let u <0 in R"\ S and T be its concave envelope. If M u(x) > —f(x) in
S1, then there is a constant Cy > 0, depending only on /. and n (but not on c), such that,
forany x € {u =T} NS, and any M > 0, there exists k such that

W) < &L Ry (o),
where Ri(x) = S;,(x) \ Sy, (x), 1 = 272~k gnd
Wi(x) = Re(x) N {y : u(y) <u(x)+ VI(x)-(y —x) — Mrj}.
Here VI stands for any element of the super differential of I' at x, which will coincide
with its gradient when I is differentiable.

Proof. Since u can be touched by the plane
I'(x)+ VI(x)-(y—x)
from above at x, then from Lemma 2.3, M"u(x) is defined classically, and we have

o
Mtu(x) = (2 — O')J /\5;”“75 dy.

T ()
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Note that o(u,x,y) = u(x +y) + u(x — y) — 2u(x) <0, whenever x € {u =T'}. In fact,
if both x - y and x+ y are in S;, then 6 <0, since u(x) = I'(x) = p(x) for some plane
p that remains above u in the whole section S;. On the other hand, if either x - y or
x4y is not in S;, then by Proposition 3.1 both are not in S;, and thus u is non-positive
at those points. Hence, in any case, 6 < 0, and therefore

85
—f(x) <MTu(x) = (2 - G)J A—M dy
"vi(y) 2
s
<e-of o a
S0 Va(y) 2
where 7o = 271/79)_ Now, splitting the integral in the sections and reorganizing terms,
we obtain
oo 6_
EECEED =
; S NS, (1) Vi (7)) 2

which, together with (2.1), provides

oz e-an> [ 2 G
k=0 JRu(x) Tk
Note that since x € {u =I'}, then
Wi(x) C Re(x) N {z : —& > 2Mri}. (3.2)
But 6 <0 and so —0 = 6. From (3.1)-(3.2), we then have
£ > 2M22 - 0) Y 7 W) 6
k=0

Suppose now the conclusion of the lemma is false. Then (3.3) implies
fx) = 24Co(2 = 0)f(x) Y 1 " " |Re(x). (3.4)
k=0
Using Theorem 2.1, we estimate

[R(x)| > ery,

where ¢ >0 is a universal constant. Combining the latter with (3.4), we deduce
oo
flx)>24(2— G)Cocf(x)Zri*”
k=0

> C2 - o) G
> 0 (+)

where the last inequality holds because (2 —¢)/(1 —2~?79)) remains bounded below
for ¢ € (0,2). The constant C >0 depends only on 4, n but not on ¢. By choosing C,
large enough, we obtain a contradiction. O
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Remark 3.1. Note that if MTu(x) > g(x), then u # I in {g > 0}.

The next lemma reveals that Lemma 3.1 implies a uniform quadratic detachment of
I from its tangent plane in a smaller section.

Lemma 3.2. Let r € (0,1), I' be a concave function in S,(x) and h> 0. There exists & >
0 such that, if

S\ Sr2)(x) N {y = T(y) <T(x) + VI(x) - (y — x) — h}
< F|Sr \ Sr/2

>

for 0 < & < &, then
I'ly) >T(x)+VI(x)-(y—x)—h,
in the whole section S, /,(x).
Proof. Let y € S,/5(x). Using Theorem 2.4, we conclude that there exist two points z, and
z, in S;(x) \ S,/2(x) such that the sections S (z;) and S(z;) are contained in the ring

S:(x) \ S;/2(x), for some constant ¢ > 0. Moreover, we can choose these points such that
y =az; + (1 — o)z, for some o € (0,1). If & is small enough, then at those points one has

[(a1) > T(x) + VI() - (&1 — ) = h
and
I'(z;) > T(0) + VI'(x) - (z, —x) — h.
The concavity of I' then gives
I'(y)>al(z;)) + (1 =) (z2) =T'(x) + VI'(x) - (y —x) — h.
a

Corollary 3.1. Let u be as in Lemma 3.1 and ry = 27"/ ?=9) Under the hypothesis of
Lemma 3.1, for every ¢ > 0, there exist C = C(n,&) > 0 and r € (0,79) such that

S\ Sp2)(x) N {y = u(y) < u(x)+ VI(x)- (y — x) = Cf(x)r*}|
<8\ S,

and
IVI(Sy/a(x)] < Cf (x)"[S,/(x)]-
Proof. By taking M = Cyf(x)/¢ in Lemma 3.1, we obtain the first estimate with C =
C: := Cy/e. Moreover, since u(x) = I'(x) and u(y) < I'(y), for y € S,(x), one has
(S \S2)(x)N{y + T(y) <T(x) + VI(x) - (y —x) — Cif (0)r*} € W, (x),

where

Wi(x) = ($:\ $;2)(x) Ny u(y) < ulx) + VI(x) - (y —x) = Cif (x)r}.
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Set
E(y) :=T(y) = T(x) — VI (x) - (y — x) + Cif (x)r*.
From Lemma 3.2 and the concavity of I', we have
0 < F(y) < Cif(x)r%, Wy €S, n(x). (3.5)
Since F is concave and
VEF(y) = VI(y) — VI'(x),
using (3.5), we obtain the bound
[VI(y) = VI(x)| < Cof (1)1, ¥y € S,a(),
for a constant C, > 0. Therefore,
VI(8,/4(x)) C Beyfixye (VI(x))

and, estimating the measures of these sets and using Theorem 2.1, we obtain, with a(n)
denoting the volume of the unit ball and observing that r* < r,

[VI(S,/4(x0))] < a(m) Cof (x)"r*" < Cof (x)"[S, ()],
for a constant C; > 0. Taking C = max{C;, C;}, we conclude the proof. O

We then derive a lower bound on the volume of the union of the sections S,, where
I' (and u) detaches quadratically from its tangent plane.

Corollary 3.2. For each x €¢ Z:={u=T}NS,, let S,(x) be the section obtained in
Corollary 3.1. Then

C(supu)" <

U S,(x)

x€EX

Proof. Using Lemma 2.1, we cover X by sections S, with bounded overlaps. Since I" has
quadratic growth in each section Sy of the covering, then from Corollary 3.1 we have

IVE(Sk)| < CISkl,
where C>0 is a universal constant. Strictly speaking, the estimate is only valid on the

set S,/4. A rigorous justification follows in the same manner as in [17], as Lemma 4.5 is
used to prove Lemma 4.1. Thus,

(supu)” = (supl')" < C|VI(S,)| = CIVI(Z)
<Y VIS

k
< CZ|Sk|'
k

The next result is a consequence of Corollary 3.1, and provides the first step toward
the so-called L? estimate.

Theorem 3.1. There exists a constant k > 0 and a countable family of sections {S;};-,,

with center x; € X and height L < r; <1, where r € (0,1y) is as in Corollary 3.1, covering

X and with bounded overlaps, such that
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VTS < c(maxf) s
and

{rens s ) 2 10) - ¢ maxs) 7} = uis

Si

where the constants C> 0 and p > 0 depend only on n, 4, A, but not on o.
Proof. Using Lemma 2.1, we find the covering {Si(x;) };=, satisfying the desired proper-
ties. We have S; C S,(x;) and, by Theorem 2.4, there is a constant x > 0 such that
Sy(xi) C KS;.
Moreover, since I is concave, we also have
I'ly) <u(x;) +VI(x) - (y — x;).

From Corollary 3.1 and the fact that r; and r are comparable (recall also that the volume
of S, is comparable to "), we obtain

{rens  ut =10 - ¢ maxs )2}

S

i

>y exS @ uly) >ulx)+ VI(x) - (y —x) — Cf (x:)r*}|
> (1—=¢)[S\ Spa
> pfSil.

4. An auxiliary function

In order to prove the Harnack inequality, one needs to show that under the hypothesis
of Lemma 3.1, u is non-negative, not just in a positive portion of section S;, but in a
positive portion of any middle-sized section centered in a smaller section S, C S;.
Having in mind the localization of the contact set, we construct a function which is a
subsolution of the minimal equation outside of a small section and is strictly positive in
a larger section. This function will later be added to u to force the contact set with I" to
stay inside of the intermediate sections.

Lemma 4.1. For a given R > 1, there exist m > 0 and oo € (0,2) such that the function
F(x) := min(2", |x| ™)
satisfies
M F(x) >0,

for every ¢ € (60,2) and 1 < |x| < R. The constants m and o, depend only on 4, A, R
and dimension.

Proof. Without loss of generality, it is enough to prove the lemma for the vector x =
e; = (1,0,...,0), since for every other point with |x| =1 the result will follow by rota-
tion. If |x| > 1, one can consider the function
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g(y) = [x["F(|xly) = F(y)
and note that
M F(x) = CM g(x/|x]) > CM F(x/|x|) > 0,

for a constant C> 0. In order to prove the lemma for x = e;, we will use the following
elementary inequalities:

wrnrrzao(i-at),
(a+b) T+ (a—b)1>2a14+q(q+1)b*a 17, (4.2)

where a > b > 0 and g > 0. Using (4.1) and (4.2) for [y| <1, we get
O(Feny) =len+y[™" +ler =y =2
= (U P +2) ™"+ (L P = 2) 7 -2
> 21+ )"+ m(m 211+ ) =2

1
> (< + 2% = 5 m o 2) o 500
We choose m >0 large enough to guarantee

(m+ Z)AJ yt dao(y) — A|0S,| =: 5p > 0. (4.3)
051

Then we make use of the above relation to estimate the part of the integral in M~ F(e;)
over the set S, (with r> 0 small). More precisely,

+_A —
M~ F(er) Z(Z—G)J u dy
Sovd (9)
AT — A6
-0 A,

nto
IRNS, vy ()/)

r Amdos* — %m(m +2)(m + 4)CAs*

>((2-o0)C d
—( G) 0 snto s

—(2-0) Az— dy

nta

JRNS: v ()
2 —
> cr* " "mdy — m(m + 2)(m + 4)C4—0 e
—a
2—0

- camtlye,
o

where ¢ and C are positive constants (independent of ¢). Note that we used (4.3) to
bound the first integral and the fact that 0 < F(x) < 2™ to bound the second. We finish
the proof by choosing o, close enough to 2, so that the factor (2 — o) forces the second
and the third terms in the last inequality to be very small to conclude
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[u—y

M F(e;) > = cr* “mdy > 0.

2
O

Arguing as in Corollary 9.2 of [3], with the obvious adaptations, we obtain the following
corollary.

Corollary 4.1. For any gy € (0,2) and r> 0, there exist m >0 and s> 0 such that the
function

F(x) = min(s™", |x| ™)

is a subsolution, i.e.,

M F(x) >0,
for all ¢ € (00,2) and |x| > r, where the constants m and s depend only on A, A and
the dimension.
Corollary 4.2. For given r>0, R>1 and o, € (0,2), there exist s>0 and m> 0 such
that the function

¢(x) = min(s ™, T 15 ")

satisfies

M g(x) >0,

for x € R"\'S,, where T, is the normalization map of the section S,.

Proof. Since
g(x) =F(T.'x), for xcR"
and
M g(x) = C|detT,|M F(T, 'x) > 0,
for all x € R"\ S,, the result follows from Corollary 4.1. O

We are now ready to construct the function which will later be added to u to force
the contact set with I' to stay inside of the intermediate sections.

Lemma 4.2. For a given g, € (0,2), there exists a continuous function  : R" — R satis-
fying the following conditions:

[ ] l//ZOian\Szr;

e \y>2inS;

o M y>—¢ in R", for some positive function ¢ supported in Sy, for
every G > 0.

Above, T > 0 is as in Proposition 3.1.

Proof. We prove the lemma by constructing the function . Let s>0 and m >0 be as
in Corollary 4.1 with r=1/4. Set
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0 in R" \ Szf

1

Elﬁ(x) = T ™™ — (21) ™ in Sy \ S,
q in S,

where g is a quadratic paraboloid chosen such that i is C"! across 9S;. The constant ¢
is chosen such that Y > 2 in S,. Since € C!(S,,), then from Lemma 2.4, we have
that M~y € C(Sy). Corollary 4.1 then gives M~y > 0 in R"\ S,/;, which completes
the proof. 0O

5. Toward the Harnack inequality

In this section we prove a lemma which bridges the gap between a pointwise estimate
and an estimate in measure. This is the main tool toward the proof of the Harnack
inequality, as in [2, 3, 5]. It is here that we will make use of the function  from
Lemma 4.2.

Lemma 5.1. Let ¢ € (0,2) and 6y € (0,05). There exist constants & > 0,1 € (0,1) and
M > 1, depending only on oy, /, A and n, such that if, with T > 0 as in Proposition 3.1,
u >0 in R" infu <1; M u<g in Sy,

S;
then
{u< M} >0

Proof. Note that if ¢ is far from 2, one can prove the lemma adapting the ideas from
[19], but as in [3] we argue differently to guarantee an estimate that remains uniform
as g — 2.

Define ¢ := {y — u, where  is the function from Lemma 4.2, and observe that

Mfo>M Yy —M u>—¢—g.

Let now I' be the concave envelope of ¢ in Ss4;. Applying Theorem 3.1 (rescaled) to g,
we get a family of sections S; such that

1/n
maxg < VT (520" < o 3 9169 )

Sae

< (cZ(Q?x<<p+s>+>"|si|)l/n

1/n
< Ceo + C(Z(m‘ax((p+)”|8,-|> ,

i o

with C>0 constant. On the other hand, we have maxs, ¢ > 1, since infg u <1 and
Y >2in S;, and therefore
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1/n
1 < Cey+ C(Z(max(@*)"|8i|> :

i 1
Hence, if ¢ is small enough, one has
1 1/n
5= O maxtoysi)
Also, since supp ¢ C S1 /4>
1 1/n
7S C( Z |Si>
S,‘f‘lsl/47£®

or else

doIsi=c (5.1)

S,‘ﬁSl/ﬁé@

Also, the height of S; is bounded by 27/2=%) < 1. Hence, every time ; intersects S, /s,
one has kS§; C S,/4, for k¥ >0 as in Theorem 3.1. An application of Theorem 3.1 then
gives

{y e xS = oly) >T(y) — Cri}| > plSil, (5.2)

and Cr; < C. Observe that the family {xS;}, where $;NS;/, # (), is an open covering
for U;S; and is contained in S;/,. By taking a subcovering with bounded overlapping
and using (5.1) and (5.2), one gets

Iy €S + aoly) 2T(y) — C}|
> |ufyexs; + o) = T() - C)
>C Y HyexS : o) >T(y)—C}
Z C1C1.
Therefore, if [ := maxsl/zl//, then
{yeSys = uly) <1+CY| = Cuar
Hence, for M := [+ C, noting that S,/, C S;, one has
{yeS : uly) <M} = Cicy,
which completes the proof. O

As a consequence, using a variant of Calderén-Zygmund decomposition (Lemma
2.2), as in [8, Theorem 3], from Lemma 5.1 we get the following result.

Theorem 5.1. Let z€ R",u >0 in R", infg,yu < 1,M u < g in Sy(z). There exist
constants p € (0,1), C>0 and & > 0 such that

{u>t}NS,(2)] < CreS,(2)], Ve >o.

Here C and ¢ > 0 depend only on 2, A, g, ¢ and n.



864 L. CAFFARELLI ET AL.

Proof. As in [8, Theorem 4], it is enough to consider the case when section S,(z) is nor-
malized and has unit parameter r=1. Then the result follows from the fact that, as in
[8, proof of Theorem 4], using Lemma 5.1 and Lemma 2.2, for Q and P large enough,
one can construct a decreasing family of sections S := S, (z),k € NU {0}, with 1=
ro > 11 > ..., such that

{u > QP2 N Siyy| < c(O){u > QPF'y NS, keN,

where ¢(0) < 1 is as in Lemma 2.2,

1

k H ! P
rk:l_;<y<QPi+l> ) ,

p>1, and H is a structural constant. Passing to the limit as k — co, we obtain

1

pim1— f; Q(%)) € (0,1),

once P, Q are large enough.
Since ¢(0) < 1, Lemma 2.2 then implies the result for the section S,(z). O

6. The Harnack inequality and consequences

In this section, we prove the Harnack inequality for integro-differential equations with
kernels deforming like sections of a strictly convex solution to a Monge-Ampere equa-
tion and, as a consequence, we derive C* and C"* estimates for solutions. The Harnack
inequality remains uniform as ¢ — 2. We need the following auxiliary result.

Theorem 6.1. Let 6y > 0,0 > g9 and Cy > 0. If u >0 in R", M u < Co, MTu > —Cy in
Sa1, then there exists C> 0, depending on a, but not on o, such that

u(x) < C(u(0) + Co) in S,

where p is as in Theorem 5.1.

Proof. Without loss of generality, one can assume that u(0) <1 and Cy =1 (otherwise
divide by u(0) + Cp). Take & > 0 as in Theorem 5.1 and set ¥ = - and

vo(x) := O(dist(x,08,)) ", Vx € ;.

Let now 0y > 0 be the minimum value of 0 for which there holds u < vy in S;. Note
that there must be a point xy € S; such that u(xg) = vg,(xo) (otherwise one would be
able to take 0y smaller). As in [3], the aim is to show that 0, cannot be too large, i.e.,
that there exists C > 0 such that 0, < C.

For that purpose, we estimate the portion of the section S,(xy) covered by {u <
u(x0)/2} and by {u > u(xy)/2}, where r = d/2, d being the distance of the point x, to
0S;. Theorem 5.1 provides
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&

2 S .
= C2507°d"™ < C,0,°r".

u(xo)

<¢|

Hu>@}ﬁ8n

On the other hand, [S,(xo)| > Cyr", so
{u > @} N S, (xo)

which means that if 0, is large, then the set {u > u(x()/2} can cover only a small por-
tion of S,(xp).

Our next task is to show that if 0, is large, then the measure of the portion of S, (xo) covered
by {u < u(xo)/2} does not exceed (1 — 9)|S,(xo)|, for a positive constant ¢ independent of
0. This will lead to a contradiction, hence 0, must be bounded, and the result will follow.

Let 1 >0 be so small that

o
Sc_lgo 1S/ (x0) 1, (6.1)
2

dist(x,08,) > d — ?, Vx € Sp(x0),

and so, for every x € Sj,(xo), one has

u(x) < vg, (x) < 0Oy (d - hd) N < u(xo) (1 - h) N

2 2

Therefore,

o(x) = <1 —g> ﬂcu(xo) —u(x) >0 in Sp(xo),

and M~ o < 1. The latter follows from the fact that M*u > —1. We would like to apply
Theorem 5.1 (rescaled) to w, but we cannot do so because w is not non-negative in the
whole space, but just in S, This leads us to consider the function a := o™ instead, and
estimate the change in the right hand side due to the truncation error. We need to find
an estimate for M~ a from above. For x € R”, we have

M~a(x) - M w(x) AJ 0 (a,x,y) — 0 (w,x,)
2 — 0 - u nto

vt (7)
JrAJ n 0 (w,%,y) =90 (a,x,y) dy (6.2)

dy

v )
=L+ D5.

Note that if d, := (g, x,y), then

0 =0+ (x—y)+o (x+y)
due to the elementary equality

o' (x+y) = ox+y) + o (x+y).
Also,

67 >d5 and 9,=0) -9,

So, we estimate
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5
I, = _iJ Ho(u
{o:>0} v (y)

dy

J”J w (x+y)m+w (x—y) dy
{o5>08} v (¥)
oA etedroten,
{64 >0} v ()
Similarly,
0. —0
L :AJ " dy
{0,>030{0, #3,} v, (y)

oA 0 (xty) to (x—y)
{0,=0}n{0, #5,,} v ()
—3,— 9,

S AJ T
{5,>000{5; %5, v? (y)

dy
dy.

Observe that

5, =8, = 20(x) — (0(x +) + 0lx — ) -5,

=20(x) = [(0"(x +y) + 0" (x = y)) = (07 (x + ) + 0™ (x — )]

=—0,—0, +o (x+y)+w (x—y)
=0, +o (x+y) +o (x—y).
Using (6.4) and (6.5) we then get
5+
(5, 5000(6, 26, vi® (y)
+AJ w’(erwa’(x—y)
{0,>0}n{o, #,} v ()

<n|  olenrotey
{5, >0} v (y)

dy

dy.

Therefore, from (6.2), (6.3) and (6.6), one gets

n+a

v ()

M~a(x) — M~ o(x) < AJ o (x+y)+o (x—y) oy

2—0

— zAJ olx+y) dv.
{o(e+)<0} v (y)

Moreover, by the definition of , for x € Sj,./>(xo) we have

(6.3)

(6.4)

(6.5)

(6.6)
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M~a(x) — M~ o(x) < 2AJ _wn(jf +) dy
2—-0 w(x+y)<0 VXT<)/)
e -
<u(x +y) — (1 — g) u(x0)>
< ZAJ i dy.
R™\Spr (360 —x) vt ()

Observe that if £> 0 is the largest value for which u(x) > t(1 — |4x|*), then there must
be a point x; in a smaller section S, such that u(x;) = 1 — |[4x,|*. Since u(0) < 1, then
t < 1. Thus,

_ - 2
(2 - O—)J M dy < (2— G)J 0~ (1 —[4x1|%, x1,y) dy < C,

nto ntc =
v () v (¥)
where the constant C > 0 does not depend on . On the other hand, since M~ u(x;) < 1,
we find

n+a —

v (y)

In particular, since u(x;) < 1 and u(x; — y) > 0, we have

@—@Jf““+”_”+@<c.

+

n+a —

v (7)
By assuming 0y > 0 is large enough, we can suppose that u(xy) > 2. Writing
A A
u(x+y) — <1 _§> u(xo) =ulx+x+y—x)— <1 — 5) u(xo),

we estimate

2A(2 — a)J = dy
R"\Syr(x0-3) ve (7)
—x +
<u(x1 +y+x—x)— (1 - %) u(xo)>
<2A(2- G)J [
R"\Spr/2 (%0 ) v (y+x—x)
v::Tg(y +x—x1)
T ke d)/
Vi

< C(hr) ™%

Hence, since

Ma=M o+ (M a—M o),
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we finally conclude
M a<1+Chr)™ ™ in Su(x),

where the constant C >0 does not depend on ¢. This allows to apply Theorem 5.1 to a
in Sj,./2(x0). From Theorem 5.1 and the fact that

a(x) = ((1 - g) o 1> u(xo),
one has

'{u - u(;c 0) } A Spjalxo
- ‘ ) > u(xo) ( ) } N Spr/a(x0)
< C[Spr/al xo)|l<< ) ) (x0) +( +C(hr)‘%)(rh)a]s

a5 0) %
< ClSya(x0) [((1 - 1) () + G <hr>—f(”>]&
nl(-97)
< ClSpr/a(x0)]| [((1 — g) o 1) 8 + h‘c(’“ﬁt‘s} ,

where c¢(n) > 0 does not depend on o. In order to get the last estimate in (6.7), we
used the inequalities

and
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for h > 0 sufficiently small, and also

- A
Czh_c(”)““u (X())((l —E> —E>

< Cshfc(n)erfc(n)eufe(xo) < C4hfc(n)8068dn(lfce) < Cshfc(n)sgas.

We choose k>0 small enough to guarantee

ClSnr/4(x0) ((1 —~ g) e 1) S
< ClShya(x0)] ((1 - Z) il 1>£ (6.8)

1
< -8 .
= 4| hr/4(x0)|

Observe that we can choose such h independently of 0y. Then, for this fixed h, we take
0o > 0 large enough to guarantee

ClShr/a (x0) [1V05° < —|Shya(x0)]. (6.9)

AN

Combining (6.7)-(6.9), we obtain

Hu < Ulx) } M Sh/a (o)

2

1
<-|S ,
< 4 ISwatxo)

which implies, for 0, > 0 large,

{u D) } M Sa (o)

which contradicts (6.1). O

> c[S;(x0) >

As a consequence of the Harnack inequality, we obtain the Holder regularity
of solutions.

Theorem 6.2. Let 6y > 0 and ¢ € (06,2). If u is a bounded function in R" such that
M u<Cy and M'u>—Cy in Sy(xp),

then there exists a positive constant o € (0, 1), depending only on 1, A, o, and dimension,
such that u € C*(S,),) and

||u||C“(S/,/2(XO)) < C(sﬂg}) u| + Co),
for a constant C > 0, depending only on the norm of the normalization map that normal-

izes the section Sw/z(xo), A A, gy, Cy and dimension. Here the constant T > 1 is as in
Proposition 3.1 and p € (0,1) as in Theorem 5.1, and y > 1 is the engulfing constant.

Proof. From the Harnack inequality, as in [20, Lemma 8.23], we conclude that there
exist C>0 and o € (0,1) such that
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o
0SCs, (x) U < C<1> max u, r<op.
P Sp(xg)
Let x, y € S,/2(x0) and S, (x) be the smallest section containing y. By the engulfing
property, Theorem 2.2, S,/,(x0) C S,,/2(x). Thus, y € S,,/5(x), hence r, < yp/2, since
Si,(x) is the smallest section containing y. If T is the affine transformation that normal-
izes the section S,,/5(xo), then arguing as in [8, Section 4], we have

2T 1/e \
ro < 2?P<—|K2||> =y,

where K, > 0 and ¢ > 0 are the constants appearing in Theorem 2.3. Thus,

o
|u(x) — u(y)| < oscs, (ot < <r_0> max u < Clx — y/*/* maxu.

Sp(x) Sp(x)

|

In order to prove the interior C"* regularity of solutions one needs to have an extra assump-
tion on the kernels. The idea is to use Theorem 6.2 for incremental quotients of the solution,
but since we do not have a uniform bound in L™ for these incremental quotients outside of
the domain, we assume a modulus of continuity in measure for the kernel, to make sure that
faraway oscillations tend to cancel out. More precisely, for a given ¢ > 0, we define the class
L; of the operators L with kernels K satistying not only (1.4), but additionally

J K¥(y) — Ky —h)
NS, I

dy <Y, for |h|< g. (6.10)

The proof of the next theorem is essentially the same as the one of Theorem 13.1 of
[3], hence we will omit it.

Theorem 6.3. Let 6o >0 and o € (0y,2). Let also the kernels K* satisfy (1.4) and
(6.10). If u is a bounded function such that Iu=f in Sy, then there is a constant
y € (0,1), depending only on J, A, ¢, and dimension, such that u € C"(S,,) and

lullcnss < Csuplu,
R
for a constant C> 0, depending only on the norm of the normalization map of the section

Syp/2(%0)s % A, 0o Y and dimension. Here the constant T > 1 is as in Proposition 3.1
and p € (0,1) as in Theorem 5.1.
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