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ABSTRACT: A mild method for accessing diazo compounds via aerobic oxidation of hydrazones is described. This catalytic trans-
formation employs a Cu(OAc),/pyridine catalyst and molecular oxygen from ambient air as the terminal oxidant, generating water as
the sole byproduct and affording the desired diazo compounds within minutes at room temperature. A broad array of electronically
diverse aryldiazo esters, ketones and amides can be accessed. Pyridine dramatically enhances the rate of the reaction by solubilizing
the copper catalyst and serving as Brensted base in the turnover-limiting proton-coupled oxidation of hydrazone by copper(Il). In-
sights gained from mechanistic studies led to expansion of the scope of this method to include diaryl hydrazones, delivering diaryl
diazomethane derivatives, which cannot be accessed via established diazo transfer methods. The products of this method may be
employed in rhodium carbene catalysis without isolation of the diazo intermediate to afford cyclopropane products in good yield with
high enantioselectivity. Keywords : copper, aerobic oxidation, dehydrogenation, hydrazones, diazo compounds, mechanism

Introduction

a-Diazo carbonyl compounds and diaryl diazomethane deriva-
tives are versatile reagents with broad synthetic utility. Release
of dinitrogen from diazo compounds is thermodynamically very
favorable, enabling facile generation of carbene or metal car-
bene species via thermolysis,' photolysis? or activation by metal
complexes.’ Carbene intermediates are very reactive and en-
gage in diverse synthetically useful transformations, including
insertion into C-H and X—H bonds (X =N, S, O, Si),* cycload-
ditions,’ and other coupling reactions.® One of the challenges
with the use of diazo compounds on scale is the intrinsic high
energy of these compounds,'®7 and there is considerable inter-
est in preparing diazo compounds in situ to avoid safety hazards
associated with their generation and isolation in large quanti-
ties.® Traditional approaches for the synthesis of diazo com-
pounds use reactive starting materials, such as azides (i.e., diazo
transfer) or stoichiometric oxidants, which generate undesirable
byproducts (Scheme 1a-i).° Base-induced fragmentation of sul-
fonylhydrazones (Bamford-Stevens reaction) represents an-
other method (Scheme 1a-ii).'"” The stoichiometric sulfinate by-
product is an undesirable feature, especially for large scale ap-
plications, and the common need for strong base or elevated
temperatures can lead to decomposition or undesired reactivity
of diazo product. The development of more practical methods
for synthesis of diazo compounds could bypass these limitations
and expand the utility of synthetic methods employing diazo re-
agents.

Simple hydrazones are appealing precursors to diazo com-
pounds because they are readily accessible and stable. Their ox-
idation to diazo compounds, however, typically employs stoi-
chiometric metal-based oxidants, such as HgO,!" Ag0,"
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MnO,,"* Ni;03,'* and Pb(OAc)s (Scheme 1b)."> This challenge
has been addressed, in part, by the development of alternative
oxidation methods. Examples include the use of chlorodime-
thylsulfonium chloride (generated from DMSO and oxalyl
chloride),'® iodine-based oxidants, such as IBX!” and N-iodo-p-
toluenesulfonamide (TsNIK),'® and a catalytic system using
TEMPO and NaOCl as terminal oxidant.!”” Molecular oxygen



(O2) would be an ideal oxidant; however, catalytic methods
demonstrating the feasibility of aerobic oxidation of hydrazone
exhibit very limited scope.?

Herein, we describe a copper-catalyzed method for the oxida-
tion of hydrazones with O, in which water is the only by-prod-
uct. It operates efficiently under mild conditions, reaching com-
pletion within minutes at room temperature with ambient air as
the oxidant, and shows excellent scope in reactions with hydra-
zones bearing adjacent donor and acceptor substituents (elec-
tron-donating and withdrawing groups respectively) (Scheme
1c). The resulting diazo compounds are precursors to syntheti-
cally versatile donor/acceptor carbenes employed in diverse ste-
reoselective and synthetically useful transformations.>® Pyri-
dine derivatives play a crucial role in the catalytic reactions, and
kinetic and mechanistic studies show that electron-rich pyri-
dines significantly increase catalytic rate and support expansion
of the substrate scope to diaryl hydrazones, accessing diaryl di-
azomethane derivatives. The utility of these advances is high-
lighted in tandem processes that feature in situ generation and
use of the diazo compounds in catalytic enantioselective cyclo-
propanation of alkenes.

Results and Discussion

Catalyst Optimization. Prior work by Ibata and Singh demon-
strated that Cu(acac), (acac = acetylacetonate) catalyzes aerobic
oxidation of narrow set of benzil-derived diarylhydrazones;
however, the products are susceptible to further oxidation to
benzophenone azines if the reaction time and temperature is not
strictly controlled.*™ In spite of these limitations, this precedent
prompted us to consider simple Cu salts as catalysts for aerobic
oxidation of hydrazones bearing donor/acceptor substituents.
Initial efforts focused on oxidation of hydrazone (Z)-1 to 2,2,2-
trichloroethyl 2-(4-bromophenyl)-2-diazoacetate 2 (Table 1).
This substrate was used because the resulting diazo compound
has found broad application in catalyst-controlled C-H func-
tionalization reactions.** A double oxygen balloon and vigorous
stirring (800 rpm) with a large magnetic stir bar were used to
support efficient oxygen mixing between the headspace and re-
action solution. Ibata and Singh used Cu(acac), as the cata-
lyst,”® but the hydrazone starting material 1 was completely un-
reactive under the previously reported conditions. Similar be-
havior was observed under modified conditions with several
different Cu sources, including Cu(acac),, copper(l) iodide,
copper(I) oxide, and copper(Il) triflate (Table 1, entries 2-5).
The triflate salts of copper(I) resulted in hydrazone decomposi-
tion but no desired diazo compound was observed (entry 6). The
known activity of copper(l) triflate salts activation of diazo
compounds,?' accounts for the observed byproducts derived
from carbene intermediates, such as O-H insertion with H,O,
N-H insertion with the hydrazone (Z)-1 and dimerization. Cop-
per(Il) acetate showed the greatest promise and was found to
facilitate both formation and retention of the diazo compound
2, affording a 20% yield of 2 with 40% unreacted hydrazone
(2)-1 (entry 7). Use of the less expensive hydrated copper ace-
tate, Cu(OAc),*H>O, was similarly effective (entry 9). How-
ever, addition of approximately 10% water by volume to the
reaction mixture inhibited the reaction and resulted in complete
recovery of (Z)-1 (entry 8). Both molecular sieves and silica
were found to be slightly beneficial, affording the desired prod-
uct in comparable yield, likely due to removal of deleterious
water. The use of silica resulted in significantly reduced for-
mation of undesirable byproducts (entry 10 and 12). MgSO,

Table 1. Optimization of Hydrazone Oxidation®

N'NH2 N
WOVCClg [Cul (x mol %) movccn
additive e}
Br o 0, (1atm), CHoCl,  Br
1 23°C,1h 2
Entry [Cu] X additive recovered 1, % yield (2), %
1° Cu(acac), 20 — 100 0
2 Cu(acac), 20 — 100 0
3 cul 20 — 100 0
4 Cu,O 20 — 100 0
5 Cu(CF3SOs), 20 — 100 0
6 Cu(CFsSO3;) 20 — 0° 0
7 Cu(OAc), 20 — 40° 20
8 Cu(OAc), 20 HxO(0.1mL) 98 0
9 Cu(OAc),*H,O0 20 — 45¢ 21
o 7107 7 7C7u(OAc)27-H72(5 7 7270 3A molecular sieve (100 mg) 55 24
11 Cu(OAc),*H,0 20  MgSOy (100 mg) 86 <5
12 Cu(OAc)*H,0 20  silica (100 mg) 63 26
13 Cu(OAc)»H,O 20  NEt3 (1 equiv), silica <1 80
14 Cu(OAc),*H,0 20  pyridine (1 equiv), silica 3 92
15  Cu(OAc),*H,0 10  pyridine (0.6 equiv), silica nd 95
169 Cu(OAc),*H,0 10  pyridine (0.6 equiv), silica  nd 94

“Reaction conditions: a solution of (Z)-1 (0.5 mmol) in 1 mL of
CH,Cl, was added in 1-pot to a vial with [Cu] and additive in 4 mL
of CH,Cl, under 1 atm O, (balloon) at 23 °C. The mixture was
stirred vigorously for 1 h. ?Reaction run in Et,O at 0 °C. ‘Oxidation
byproducts were observed in the 'H NMR spectrum of the crude
reaction mixture. ‘Ambient air used instead of a pure O, balloon.

was also tested as a desiccant, but it inhibited reactivity (entry
1.

Addition of base, such as NEt; or pyridine, led to dramatically
improved conversion of hydrazone (Z)-1 to the desired diazo
compound 2 (80% and 92% yield in entries 13 and 14, respec-
tively). Excellent yield was maintained with reduced loading of
Cu(OAc),*H,0O and pyridine (10 mol % and 0.6 equiv, respec-
tively; entry 15). In addition, ambient air proved to be compe-
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Figure 1. React-IR analysis of the formation of diazo product 2
from hydrazone 1 (A), together with reaction outcomes observed at
longer reaction times with the different base additives (B).



tent as the source of O», affording 2 in a yield nearly identical
to that obtained with pure O, (entry 16). The beneficial effect
of NEt; and pyridine is especially clear from React-IR studies
of the reaction progress, using the IR absorbance of diazo func-
tionality at ~2100 cm™ (Figure 1A). The reactions conducted
with NEt; and pyridine reached completion in less than 10 min.
The reactions with no base and with the bulky base, 2,6-Bupy,
showed very little conversion during the same time period, al-
beit with moderate product formation over longer time periods
(Figure 1B).

Assessment of Substrate Scope. The optimized conditions
identified for oxidation of hydrazone (Z)-1 provided a starting
point for evaluation of a broader range of substrates, using am-
bient air as the source of oxidant and pyridine as an additive
(Table 2). In most of these cases, the diazo products could be
obtained in good purity simply by passing the crude reaction
mixture though a plug of silica gel. The Z isomer is the domi-
nant isomer obtained from the synthesis of hydrazone 1 and was
used in the optimization studies in Table 1. The £ isomer proved
to be equally effective, generating 2 in 96% isolated yield.
Hence, the other hydrazone substrates were evaluated as mix-
tures of E£/Z isomers without extensive separation. Efficient hy-
drazone oxidation was observed with different ester substitu-
ents, generating 3-5 in high yields (89-97%). The oxidation was
similarly effective for the synthesis of a variety of aryldiazoace-
tates, as illustrated for 6-13. The reaction was especially effec-
tive when the aryl substituents were electron-withdrawing or
slightly electron-donating, with products isolated in >93%
yield. The reaction yield was diminished for substrates with the
electron-donating methoxy group (88% yield of 8 and 69%
yield of 13). This result is consistent with previous observations
showing that aryldiazoacetates with strongly donating groups
decompose more rapidly.'®?? In the reaction affording 13, by-
products observed from further reaction of the carbene with ox-
ygen and water were detected. The reaction was also effective
in the formation of pyridyldiazoacetate 14 and even an alkyldi-
azoacetate 15 in high yields (94% and 82%, respectively).

Diazoketone 16 was obtained in good yield, necessitating minor
modification of the reaction conditions due to the instability of
the product. Specifically, the reaction was conducted in the dark
using an O, balloon with higher loading of the pyridine additive
to minimize the decomposition of the diazoketone product via
Wolff rearrangement.” Furthermore, the isatin-derived hydra-
zones were converted to the corresponding diazoamides 17 and
18 in near-quantitative yields.

Mechanistic studies. Additional studies provided valuable in-
sights into these reactions. The addition of 1 equiv of pyridine
to a solution of Cu(OAc), in dichloromethane formed the pre-
viously reported pyridine-capped Cu(OAc), dimer,
Cuz(OAc)(py)2.2* This complex was found to be a competent
catalyst for the aerobic oxidation hydrazone 1, without the in-
clusion of additional pyridine, affording diazo compound 2 in
nearly quantitative yield (Figure 2).
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Figure 2. Oxidation of hydrazone (Z)-1 catalyzed by
Cu(OAc),*2py, which was characterized by X-ray crystallog-
raphy.

In order to probe the mechanism of this Cu-catalyzed hydrazone
oxidation, the rate of the catalytic reaction was then monitored
under standard conditions with a series of 4-substituted pyridine
derivatives (Figure 3). The reaction of hydrazone 19 was

Table 2. Substrate Scope of Diazo Compounds from Cu(OAc),-Catalyzed Oxidation of Hydrazones Under Ambient Air

N NH2

Cu(OAC)*H,0 (10 mol %) N,

R!

R? pyridine (0.6 equiv), air
Si0y, CH,Cly, 23 °C, 1 h

RO

(0]

Nz N

mov00|3 movcma
Br 0 Br o

2 94%, from (2)-1 2 96%, from (E)-1 389%
N, Ny
mo\/cch mo\/c%
Bu °© MeO ©
796% 888% 996%
Ny Ny [\

moa | N OEt WOEt
MeO ° a N © o)

13 69% 14 94%° 15 82%°

N, N, Na N2
movcm /©)H(o\/cF3 moa ©)\WO\/CC|3
Br °© Br °© Br °© o

497% 5 93%° 6 95%

Nz Ny N N
moa moa WOEt moa
o} o) o} o
O,N FiC By

10 97%° 11 93% 12 96%
N, Br N, N,
0 J @0 @0
N N
(o] \
Br H CHs

16 92%¢ 17 99%° 18 98%"

“Reaction condition: a solution of (Z)-hydrazone (0.5 mmol) in 1 mL of CH,Cl, (0.5% pyridine) was added to a vial with Cu(OAc),*H,O (10
mol %) and SiO; (100 mg) in 4 mL of CH,Cl, (0.5% pyridine) under ambient air (without cap) at 23 °C. The mixture was stirred vigorously
for 1 h before silica plug. ?1:1 (Z:E)-hydrazone was used. (E)-hydrazone was used. “Reaction was conducted using 2.4 equiv of pyridine
with O, balloon in dark (alumium foil). ¢2:1 (Z:E)-hydrazone was used. /17:1 (Z:E)-hydrazone was used.
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Figure 3. Analysis of pyridine electronic effects on the rate of hy-
drazone oxidation to afford diazo compound 11. See Supporting
Information for experimental details.

analyzed by following O, consumption via gas-uptake methods,
and well-behaved time-course data were amenable to initial-
rate analysis (see Supporting Information for details). A
Bronsted plot correlating the logarithm of the relative rates with
the pyridinium pK, values® exhibits a linear fit with a positive
slope,” showing that more basic pyridine derivatives lead to
faster rates. Use of 4-(N,N-dimethyamino)pyridine (DMAP) as
the base led to complete conversion of 19 into diazo compound
11 within 2 min at room temperature.

These data were complemented by additional kinetic analysis to
determine a catalytic rate law. The catalytic rate for oxidation
of 19 exhibited a first-order dependence on [Cu(OAc),] and
[19], but little-to-no dependence on [py] or pO, (328 psi) (see
Figure S6 in the Supporting Information). These results provide
the basis for the proposed catalytic mechanism shown in Figure
4. The reaction is initiated by reversible substitution of a pyri-
dine ligand on Cu,(OAc)s(py). by the hydrazone substrate, fol-

lowed by turnover-limiting deprotonation of the coordinated
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Figure 4. Proposed catalytic mechanism and rate law.

hydrazone by pyridine. The latter step is expected to be coupled
to reduction of the Cu" centers, resulting in formation of the
diazo compound and 2 equiv of Cu'OAc. The catalyst can then
be re-oxidized by O», supported by protons derived from the
substrate oxidation step. A rate law derived for this mechanism
(Figure 4, eq 2) rationalizes the zero-order kinetic dependence
on [py], even while pyridine is crucial to enable the reaction to
proceed (cf. Figure 1). The influence of the electronic properties
of pyridine (cf. Figure 3)” may be rationalized by electronic
contributions to the fundamental rate constants incorporated in
the ks term (Figure 4, eq 3: ki, k.1, and k). The positive slope
in Figure 3 suggests the influence of pyridine basicity on turn-
over-limiting proton transfer (k) is the most significant elec-
tronic contribution.

Expansion of reactivity to diaryl hydrazones. Diaryl hydra-
zones are precursors to diaryldiazomethane derivatives. The lat-
ter compounds are noteworthy because they behave as donor-
acceptor carbenes in rthodium-catalyzed cyclopropanations, af-
fording the desired products with high stereoselectivity.”® Cata-
lytic methods for aerobic dehydrogenation of diarylhydrazones
to prepare diazo compounds have not been reported, and the
catalytic conditions shown in Table 2 are unreactive with these
substrates (cf. Table S2 in the Supporting Information).”’ None-
theless, we wonder whether the more reactive catalyst systems
featuring electron-rich pyridines might be effective with these
substrates.

A range of copper carboxylate salts and basic pyridine deriv-
atives were evaluated for the oxidation of benzophenone hy-
drazone (Table 3). The diphenyl diazomethane product (24)
is relatively unstable, and to facilitate product quantitation,
AcOH was added to the reaction mixture at the end of the
reaction to convert the diazo compound 24 to the correspond-
ing acetate 25. Moderate reactivity was observed with
Cu(OAc); in combination with DMAP or another electron-

Table. 3 Optimization of Diaryl Hydrazone Oxidation®

N’NH2 N, OAc
[Cu] (10 mol %) AcOH
O O additive MeCN O O
air (1 atm), DCE
23°C,2h 24 25
Entry [Cu] additive yield (25), %

1 Cu(OAc),*H,0 pyridine (0.5 equiv), silica 7
2 Cu(OAc),*H,0 DMAP (0.5 equiv) 34
3 Cu(OAc),*H,0 20 (0.5 equiv) 38
4 Cu(OAc),*H,0 21 (0.5 equiv) 34
5 Cu(OAc),*H0 22 (0.5 equiv) 24
6 Cu(OAc),*H,0 23 (0.5 equiv) 59
7 5 mol % Cu(0,CCF3),H,0 23 (0.20 equiv) 87

@@fu@?

“Reaction conditions: a solution of hydrazone (0.01 mmol) in 0.05
mL of solvent was added in 1 to a vial with [Cu] and additive in 0.05
mL of DCE under air at 23 °C. The mixture was stirred vigorously
for 2 hrs then cooled to 0°C and quenched with AcOH (20 uL in
200uL MeCN). Product 24 was converted to the acetate to facilitate
UPLC analysis. A stock solution of IS (1,3,5-triemthoxybenzene
was added and assay yield was determined by calibrated UPLC
analysis. DCE = 1,2-dichloroethane.



rich pyridine derivative (20-23, entries 3-6). 9-Azajulolidine
(23) showed the best reactivity (59%, entry 6), probably reflect-
ing the coplanarity of the amino group and the pyridine n-sys-
tem, which enhances the basicity of 23 relative to DMAP and
other 4-aminopyridine derivatives.*® Further improvement was
observed when  Cu(OAc), was  replaced  with
Cu(O,CCF3),*H,O. The combination of 5 mol%
Cu(O,CCF;),*H,0 and 20 mol% 23 delivered 87% assay yield
of acetate derivative 25 (entry 7; see Table S2 for additional
screening data).?!

These optimized conditions were then employed with a series
of additional di(hetero)aryl hydrazone derivatives (Table 4).
The innate reactivity of the diaryldiazomethane derivatives can
lead to relatively large differences between the NMR and iso-
lated yields. For example, benzophenone hydrazone affords the
corresponding diazo compound (24) in excellent in situ yield
(98% by NMR), but only 58% isolated yield (see SI for experi-
mental detail). A similar outcome is observed upon substitution
of one of the aromatic rings with an electron-donating p-OMe
group (26: 89% NMR, 62% isolated yield). Substrates bearing
electron-withdrawing substituents are particularly effective un-
der these conditions, furnishing the diazo compounds in excel-
lent yield (27 and 28, 90% and 86% isolated yield respectively).
This outcome likely reflects a combination of factors, including
the more acidic nature of the N-H bonds of the hydrazone start-
ing materials, which leads to enhanced reactivity, and increased
stability of the diazo products under the reaction conditions and
during isolation. Finally, benzoylpyridine derived hydrazones
were subjected to the optimized reaction conditions and pro-
ceeded to the corresponding diazo compounds in moderate to
good yield (29 and 30, 44 and 79% isolated yield respectively),
demonstrating that Lewis basic heterocycles can be tolerated in
the substrates.

Tandem catalytic diazo synthesis and carbene transfer. The
present method provides a means to prepare diazo compounds
in situ and use, without isolation, in tandem one-pot reactions

Table 4. Diaryl Hydrazone Oxidation’
Cu(TFA),*H,0 : N
(5 mol %) '
N2 i =
I JL l T 0mol%23 : ;}?
air (1 atm), DCE O O ; SN
0°C,o.n :
' 23
Ny N2 N2

98% (58%)

29b¢ 30°
56% (44 %) 94% (79 %)

89% (62%) 92% (90%)

91% (86 %)

“Reaction conditions: Hydrazone (0.20 mmol) was added to a vial
with 5 mol % Cu(TFA),*H,O and 20 mol % 9-azajulolidine (21) in
2 mL of DCE under air at 0 °C. The mixture was stirred vigorously
for 12 h. Yields shown reflect 'H NMR analysis of the crude reac-
tion with 1,3,5-trimethoxybenzene as internal standard; yields
shown in parenthesis are isolated.>! *Reaction run for 6 h. ¢ Product
isolated as an inseparable 4:1 mixture with ketone byproduct.

Scheme 2. Tandem Oxidation-Cyclopropanation”
NH Cu(OAc)*H,0
NI (10 mci %2)
/(j)l\[(o\/cu3
Br ©
21

60 mol % DMAP
air (1 atm), DCM
silica, 23 °C, 0.5 h

No

fon e
Br ©

2 (not isolated)

Ph
clh,e” N0
)/,,, Rhy(R-p-PhTPCP), (1 mol %)
31 o}
DCM/HFIP, Ny, 23°C, 1 h
67% yield
over 2 steps N
>20:1dr )
99% ee r (5.0 equiv.)

n-NH2 Cu(TFA),*H,0 N,

(5 mol %)
20 mol % 20
NO, air (1 atm), DCE NO,

0°C, overnight 27 (not isolated)

Ph

e

32
o
56 % yield DCM/HFIP, Np, 23 °C, 0.5 h

over 2 steps ©/\
2:1dr .
94 % ee (5.0 equiv.)

Rhy(S-PTAD), (1 mol %)

Rhy(R-p-PhTPCP), Rh,(S-PTAD),
Ph
: O-1Rh
Ph < | O+Rh
O1Rh o) <
N  O<Rh
o)
Ph
4 4

“See SI for experimental details. Yields of cyclopropanes shown
are isolated.

with Rh-catalyzed carbene transfer. This concept was tested us-
ing a hydrazone precursor to both classes of diazo compounds
(Scheme 2). Hydrazone 1 was converted to the corresponding
diazo compound 2 using a Cu(OAc),/DMAP catalyst system.
The crude reaction mixture containing 2 and residual copper
catalyst was then used directly in the cyclopropanation of sty-
rene with a chiral rhodium carboxylate catalyst, Rhy(R-p-
PhTPCP),.*> The cyclopropane product was obtained in good
yield and excellent stereoselectivity (31, 67% yield, >20:1 dr,
99% ee). This tandem reactivity has even greater implications
for diaryldiazomethanes, owing to their instability and chal-
lenges in their isolation (cf. Table 4).2® The crude diaryldiazo-
methane derivative 27, obtained from aerobic dehydrogenation
of the corresponding hydrazone using a Cu(TFA),/23 catalyst
system, was used directly in the cyclopropanation of styrene
with Rhy(S-PTAD), as catalyst. The cyclopropane product 32
was obtained in moderate yield and good stereoselectivity (56%
yield, 2:1 dr, and 94% ee). These results highlight the potential
applicability of sequential Cu-catalyzed aerobic oxidation and
Rh-catalyzed carbene transfer without purification of the reac-
tive diazo intermediate.

Conclusion

A new Cu-catalyzed method has been developed for aerobic de-
hydrogenation of hydrazones to the corresponding diazo



compounds. The catalyst is entirely composed of low-cost,
commercially available materials, and the reaction proceeds
very efficiently at room temperature or below with ambient air
as the source of oxidant. React-IR and gas uptake kinetic studies
provide valuable insights into the accelerating effect of the pyr-
idine in the reaction, which is proposed to arise from its role as
a base for the turnover-limiting proton-coupled oxidation of the
Cu"-coordinated hydrazone substrate. Inspired by these mecha-
nistic studies, we extended the scope of this method to the oxi-
dation of diaryl hydrazones to access diazo compounds, which
cannot be prepared by diazo transfer, utilizing a more basic pyr-
idine co-catalyst. This method shows exceptionally broad sub-
strate scope and in contrast to many traditionally approaches
enables access to multiple classes of structurally diverse diazo
compounds. The utility of this new technology was further
demonstrated by conducting hydrazone oxidation in tandem
with Rh-catalyzed cyclopropanation without isolation of the di-
azo compound from the crude reaction mixture. These results
have important implications for the practical utility of catalytic
processes using diazo compounds as synthetic intermediates.
Further studies to streamline this method for organic synthesis
and extend its utility in flow chemistry are on-going.
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