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Abstract: We complete the description, initiated in [6], of a free boundary traveling at constant speed
in a half plane, where the propagation is controlled by a line having a large diffusion on its own.
The main result of this work is that the free boundary is asymptotic to a line at infinity, whose angle
to the horizontal is dictated by the velocity of the wave on the line. This helps understanding some
counter-intuitive simulations of [7].
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1. Introduction

1.1. Model and question

The system under study involves an unknown real c > 0, an unknown function u(x, y) defined in
R2
− := R × R−, and an unknown curve Γ ⊂ R2

− satisfying
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

−d∆u + c∂xu = 0 (x, y) ∈ {u > 0}
|∇u| = 1 ((x, y) ∈ Γ := ∂{u > 0}

−Duxx + c∂xu + 1/µuy = 0 for x ∈ R, y = 0
u(−∞, y) = 1, uniformly in y ∈ R−
u(+∞, y) = 0 pointwise in y ∈ R−

(1.1)

Note that the convergence of u to 1 to the left, and 0 to the right, are not requested to hold in the
same sense. This is not entirely innocent, we will explain why in more detail below. We will also be
interested in a (seemingly) more complex version of (1.1). We look for a real c > 0, a function u(x),
defined for x ∈ R, a function v(x, y) defined in R2

− := R+ × R−, and a curve Γ ⊂ R2
− such that

−d∆v + c∂xv = 0 (x, y) ∈ {v > 0}
|∇v| = 1 ((x, y) ∈ Γ := ∂{v > 0}

−Duxx + c∂xu + 1/µu − v = 0 for x ∈ R, y = 0
vy = µu − v for x ∈ R, y = 0 and v(x, 0) > 0

u(−∞) = 1/µ, u(+∞) = 0
v(−∞, y) = 1 uniformly with respect to y ≤ 0
v(+∞, y) = 0 pointwise with respect to y ≤ 0.

(1.2)

We ask for the global shape of the free boundary Γ. Before that, we ask about the existence of a
solution (c,Γ, u) to (1.1), and of a solution (c, Γ, u, v) to (1.2), this indeed deserves some thought, as the
condition at −∞ is rather strong.

Systems (1.1) and (1.2) arise from a class of models proposed by H. Berestycki, L. Rossi and
the second author to model the speed-up of biological invasions by lines of fast diffusion, see for
instance [3] or [4]. The two-dimensional lower half-plane (that was called “the field” in the afore-
mentionned references), in which reaction-diffusion phenomena occur, interacts with the x axis (“the
road”) which has a much faster diffusion D of its own. In Model (1.2), u(x) the density of individuals
on the road, and v(t, x, y) the density of individuals in the field. The road yields the fraction µu to the
field, and retrieves the fraction νv in exchange; the converse process occurs for the field. Model (1.1) is
obtained from (1.2) by forcing µu = v on the road, so that the sole unknown is v(x, y), and the exchange
term is replaced by

vy

µ
(and v has been renamed u). In the sequel, Model (1.2) will be called the “model

with two species” (that is, the density on the road and in the field may be different), while Model (1.1)
will be called “Model with one species”. Also note that, in both models, the unknown functions are
travelling waves of an evolution problem where the term c∂xu (resp. c∂xv) is replaced by ∂tu (resp.
∂tv). This is explained in more detail in [6], where the study of (1.1) and (1.2) was initiated.

1.2. Results

Theorem 1.1. (Existence for the model with one species) Assume D ≥ d. System (1.1) has a solution
(c > 0,Γ, u) with u globally Lipschitz, and we have ∂xu < 0. Moreover

– Γ is an analytic curve, as well as a locally Lipschitz graph in the y variable:

Γ = {(ϕ(y), y), y < 0}. (1.3)
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– Γ ∩ {y = 0} is nonempty, assume (0, 0) ∈ Γ. There is ε0 > 0 such that

Γ ∩ Bε0(0) = {y = φ(x), −ε0 ≤ x ≤ 0}, φ(x) = −
x2

2D
+ ox→0(x2). (1.4)

Theorem 1.2. (Existence for the model with two species) System (1.2) has a solution (c > 0,Γ, u, v)
such that the function v is globally Lipschitz, and we have ∂xv < 0. Moreover

– Γ is an analytic curve, as well as a locally Lipschitz graph in the y variable:

Γ = {(ϕ(y), y), y < 0}. (1.5)

– Γ ∩ {y = 0} is nonempty, assume (0, 0) ∈ Γ. There is λ > 0 and ε0 > 0 such that

Γ ∩ Bε0(0) = {y = φ(x), −ε0 ≤ x ≤ 0}, φ(x) = λx + ox→0(|x|). (1.6)

The main question of this work, namely, how Γ looks like, is addressed in the following theorem.
Both models with one species and model with two species are concerned. Let c0 be the speed of the
basic travelling wave φ0(x):

−φ′′0 + c0φ
′
0 = 0 (x ∈ R−)

limx→−∞ φ0(x) = 1, φ0(x) = 0 (x ∈ R+)[
φ0

]
x=0 = 0,

[
φ′0

]
x=0 = 1.

(1.7)

In what follows, we stress the dependence on D of the velocity, free boundary and solution of the PDE
by denoting them cC, ΓD, uD, vD.

Theorem 1.3. In both models (1.1) and (1.2), there is D0 ≥ 0 such that, for every D ≥ D0 we have
cD > c0. Let αD be given by sinαD =

c0

cD
. If ϕD is given by (1.4) we have

lim
y→−∞

ϕ′D(y) = −cotanαD. (1.8)

In other words, ΓD has an asymptotic direction, which is a line making the angle αD with the
horizontal. We have a more precise version of Theorem 1.3:

Theorem 1.4. Assume that α <
π

2
. For every ω ∈ (0,

1
2

cD sinαD), we have

ϕ′D(y) = −cotanαD + O(eωy). (1.9)

Thus there is a straight line making the angle αD with the horizontal that is asymptotic to ΓD at
infinity, and the distance between the two shrinks exponentially fast.

1.3. Underlying question, comments, organisation of the paper

Let us be more specific about the question that we wish to explore here. We want to account for
a loss of monotonicity phenomenon for u (Model (1.1)) or v (Model (1.2)) in the y variable, a study
that was initiated in [6]. This phenomenon was discovered numerically by A.-C. Coulon in her PhD
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t h esis [ 7]. T h er e, s h e pr o vi d e d si m u ati o ns f or t h e e v ol uti o n s yst e m ( n oti c e t h at t h e pr o p a g ati o n t a k es
pl a c e f or y > 0):

∂ tu − D ∂ x x u = ν v (t, x , 0) − µ u x ∈ R

∂ tv − d ∆ v = f (v ) (x , y ) ∈ R × R +

∂ y v (t, x , 0) = µ u (t, x , t) − ν v (t, x , 0) x ∈ R .
( 1. 1 0)

T h e fi g ur es b el o w a c c o u nt f or s o m e of h er r es ults; t h e p ar a m et ers ar e

f (v ) = v − v 2 , D = 1 0 , u ( 0, x ) = 1 [− 1 ,1] (x ), v ( 0, x , y ) ≡ 0 .

T h e t o p fi g ur e r e pr es e nts t h e l e v els s et 0. 5 of v at ti m es 1 0, 2 0, 3 0, 4 0, w hil e t h e b ott o m fi g ur e r e pr es e nts
t h e s h a p e of v ( 4 0, x , y ).

 

T h e s ur pris e is t h e l o c ati o n of t h e l e a di n g e d g e of t h e i n v asi o n fr o nt: r at h er t h a n b ei n g l o c at e d o n
t h e r o a d, as o n e w o ul d h a v e e x p e ct e d ( es p e ci all y f or l ar g e D ), it sits a littl e f urt h er i n t h e fi el d. T his
e nt ails a c o u nt er-i nt uiti v e l oss of m o n ot o ni cit y. As w or ki n g dir e ctl y wit h t h e r e a cti o n- di ff usi o n ( 1. 1 0)
h as n ot r es ult e d i n a si g ni fi c a nt o ut c o m e s o f ar, t h e i d e a w as t o r e pl a c e t h e r e a cti o n- di ff usi o n m o d el
b y a fr e e b o u n d ar y pr o bl e m, t h at m a y b e s e e n as a n e xtr e m e i nst a n c e of r e a cti o n- di ff usi o n. Usi n g t his
i d e a, a first e x pl a n ati o n of t h e l o c ati o n of t h e l e a di n g e d g e is pr o vi d e d i n [ 6]. T h e c o n cl usi o ns ar e

i n cl u d e d i n T h e or e ms 1. 1 a n d 1. 2.

T h e g o al of t h e p a p er is, as alr e a d y a n n o u n c e d, t o a c c o u nt f or t h e gl o b al s h a p e of t h e fr e e b o u n d ar y.
We cl ai m t h at it will pr o vi d e a g o o d t h e or eti c al e x pl a n ati o n of A.- C. C o ul o n’s n u m eri cs. I n d e e d it m a y
b e e x p e ct e d ( alt h o u g h it is n ot a t ot all y tri vi al st at e m e nt) t h at t h e s ol uti o n of ( 1. 1 0) will c o n v er g e t o

a tr a v elli n g w a v e. As t h e u n d erl yi n g sit u ati o n is t h at of a n i n v asi o n, it is r e as o n a bl e t o ass u m e t h at

n o i n di vi d u als (if w e r ef er, as w as t h e i niti al m oti v ati o n, t o a bi ol o gi c al i n v asi o n) ar e pr es e nt a h e a d of
t h e fr o nt. T his is w h y w e i m p os e t h e s e e mi n gl y stri n g e nt, b ut r e as o n a bl e fr o m t h e m o d elli n g p oi nt of
vi e w, c o n diti o n at − ∞ . T h e or e m 1. 3 s h o ws t h at it e nt ails a v er y s p e ci fi c b e h a vi o ur.

L et us e x pl ai n t h e c o ns e q u e n c es of o ur r es ults o n t h e u n d erst a n di n g of t h e m o d el. T h e or e ms 1. 1

t o 1. 3 p ut t o g et h er d e pi ct a fr e e b o u n d ar y w h os e l e a di n g e d g e is i n t h e l o w er h alf pl a n e a n d w hi c h,
aft er a p ossi bl y n o n e m pt y b ut fi nit e s et of t ur ns, b e c o m es as y m pt oti c t o a li n e t h at g o es t o t h e ri g ht
of t h e l o w er h alf pl a n e. T his is i n g o o d q u alit ati v e a gr e e m e nt wit h t h e u p p er t w o-t hir ds of t h e pi ct ur e

pr es e nt e d h er e, t h e l o w er t hir d a c c o u nti n g f or t h e f a ct (still t o b e d es cri b e d i n m at h e m ati c all y ri g or o us
t er ms) t h at t h e fr e e b o u n d ar y b e n ds i n or d er t o c o n n e ct t o a fr o nt pr o p a g ati n g d o w n w ar ds, w hi c h is

M at h e m ati cs i n E n gi n e eri n g Vol u m e 3, Iss u e 1, 1 – 2 5.
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logical as we start from a solution that is compactly supported. Let us, however, point out that the
analogy should not be pushed further than what is reasonable, as the logistic nonlinearity displays –
and this is especially true for the model (1.10) – more counter-intuitive oddities of its own, see [5].

Some additional mathematical comments are in order. The first one is that we have put some effort
in proving existence theorems. The reason is that we could not entirely rely on our previous study [6]
for that: Although the leading edge was analysed, we had chosen to wipe out the additional difficulties
coming from the study in the whole lower half-plane, by studying a model in a strip of finite length
with Neumann conditions at the bottom. While the study of the leading edge is purely local, and will
not need any more development, the condition lim

x→−∞
u(x, y) = 1 (resp. lim

x→−∞
u(x, y) = 1) uniformly in

y ∈ R− requires some additional care, that is presented in Section 3.

Theorem 1.3 is hardly incidental. It is in fact a general feature in reaction-diffusion equations in
the plane. The heuristic explanation is the following: looking down very far in the lower half plane,
we may think that the free boundary ΓD propagates like the 1D wave in its normal direction, that is,
Vn = c0. On the other hand, it propagates with speed cD horizontally: this imposes the angle αD.
For a rigorous proof of that, we take the inspiration from previous works on conical-shaped waves
for reaction-diffusion equations in the plane. A first systematic study may be found in [2], while the
stability of these objects is studied in [9]. Further qualitative properties are derived in [10]. Solutions
of the one phase free boundary problem for c∂xu−∆u = 0 are classified by Hamel and Monneau in [8].
One of their results will play an important role in the proof of Theorem 1.3, this will be explained in
detail in Section 4.

Although this work is clearly aimed at understanding the situation for large D (the case D ≤ d
poses interesting technical questions in for the one species model) we have not really provided a
systematic study of the limit D → +∞. This will be the object of a forthcoming paper. Another
interesting question is whether the free boundary has turning points. While the simulations cleary
point at convexity properties of the sub-level sets, we do not, at this stage, have real hints of what may
be true.

The paper is organised as follows. In Section 2, we provide some universal bounds on the velocities,
in therms of the diffusion on the road D. In Section 3, we construct the wave for the one species model
and prove Theorem 1.2. In Section 4, we indicate the necessary modifications for the two-species
model. In Section 5, we prove the exponential convergence of the level sets.

2. The one species model: Bounds on the velocity in a truncated problem

Solutions to (1.1) will be constructed through a suitable approximation in a finitely wide cylinder;
we set

ΣL = R × (−L, 0),

Mathematics in Engineering Volume 3, Issue 1, 1–25.
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from (a trivial modification of) [6], for L > 1, there is a solution (cL
D,Γ

L
D, u

L
D) to the auxiliary problem

−d∆u + c∂xu = 0 (x, y) ∈ ΣL ∩ {u > 0}
|∇u| = 1 ((x, y) ∈ Γ := ∂{u > 0} ∩ ΣL

−Duxx + c∂xu + 1/µuy = 0 for x ∈ R, y = 0
u(−∞, y) = 1, u(+∞, y) = (1 − y − L)+

u(x,−L) = 1.

(2.1)

In biological terms, this means that the boundary {y = −L} is lethal for the individuals. The limit
at x = +∞, namely the function (1 − y − L)+, is of course not chosen at random, it solves the one-
dimensional free boundary problem

−u′′ = 0 in (−L, 0) ∩ {u > 0}

|u′| = 1 on ∂
(
(−L, 0) ∩ {u > 0}

)
(that is, at y = 1 − L)

u(−L) = 1.

To ensure the maximum chance to retrieve, in the end, a solution that converges to 1 uniformly in y as
x→ −∞, we have imposed the Dirichlet condition u = 1 at the bottom of the cylinder.

2.1. Exponential solutions

At this point, we need to make a short recollection of what the exponential solutions of the linear
problem are. System (2.1), linearised around 0, reads

−d∆u + c∂xu = 0 (x, y) ∈ ΣL

−Duxx + c∂xu + 1/µuy = 0 for x ∈ R, y = 0
u(x,−L) = 0
u(−∞, y) = 0.

(2.2)

It has exponential solutions that decay to 0 as x → −∞, i.e., solutions of the form ψL
D(x, y) = eαxh(y)

(we have to put here the dependence on L and D. If L = +∞ we may choose the function h as an
exponential in y. We have

ψL
D(x, y) = eα

L
D xsh(βL

D(y + L)),

so that the exponents αL
D and βL

D satisfy
−d(α2 + β2) + cα = 0

−Dα2 + cα +
β

µ
cotanh(βL) = 0. (2.3)

Three types of limits will be considered.
Case 1. The limit D � L � 1, c bounded. We expect βL

D to go to 0 as D→ +∞, so that

βL
Dcotanh(βL

DL) ∼
1
L
.

Mathematics in Engineering Volume 3, Issue 1, 1–25.
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Then (2.3) yields estimates of the form

αL
D ∼

√
1

µLD
, βL

D ∼

√
c

d
√
µDL

. (2.4)

It is to be noted that these equivalents may be pushed up to c = o(
√

D).
Case 2. The limit D � L � 1, c �

√
D. This time we expect βL

D to go to infinity as D→ +∞, so that

cotanh(βL
D)→ 1.

We have

αL
D ∼

( c
dD2

)1/3

, βL
D ∼ µ

( c
√

D

)2/3

. (2.5)

We have here a first occurrence of the critical order of magnitude c ∝
√

D.
Case 3. The limit L � D � 1, c � 1. We expect that LβL

D will go to infinity, so that cotanh(βL
D) → 1.

In this setting, we have the estimates (2.5).

2.2. Universal upper bound

In the construction of a travelling wave for (1.1), the first task is to bound the velocity from above.
We will prove straight away the upper bound that will serve us in the later section, namely that cL

D
cannot exceed a (possibly large) multiple of

√
D.

Theorem 2.1. There is K > 0, independent of D and L, such that

cL
D ≤ K

√
D. (2.6)

Proof. Assume cL
D �

√
D � L � 1, so that (2.5) hold for αL

D and βL
D. Set

uL
D(x, y) = 1 − ψ2L

D (x, y).

The function uL
D vanishes on the curve Γ2L

D whose equation is

x = −
1
α2L

D

ln shβ2L
D (y + 2L).

In particular, for y = −L we have

x = −
1
α2L

D

ln sh(β2L
D L). (2.7)

Translate the solution uL
D(x, y) of (1.1) so that the leftmost point of ΓL

D is located at the vertical of the
origin. Then, from (2.7), Γ2L

D lies entirely to the left of ΓL
D. By the maximum principle we have

uL
D(x, y) ≥ uL

D(x, y).

Now, translate uL
D as much as this allows it to remain under uL

D. If λL
D is the maximum amount by which

one may translate uL
D, there is a contact point (xL

D, y
L
D) between uL

D(x, y) and uL
D(x − λL

D, y).

Mathematics in Engineering Volume 3, Issue 1, 1–25.
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Still from (2.7), we have yL
D > −L. So, it now depends on whether we have yL

D = 0 or yL
D ∈ (−L, 0).

In the first case, let ΓL
D intersect the line {y = 0} at the point (x̃L

D, 0). If xL
D = x̃L

D, we have ∂xuL
D(xL

D, 0) = 0
but we also have

∂xuL
D(xL

D, 0) < ∂xuL
D(xL

D, 0) < 0,

an impossibility. If not, we have xL
D < x̃L

D and this time we have

∂xuL
D(xL

D, 0) = ∂xuL
D(xL

D, 0), ∂xxuL
D(xL

D, 0) ≥ ∂xxuL
D(xL

D, 0), ∂yuL
D(xL

D, 0) < ∂yuL
D(xL

D, 0),

the last inequality because of the Hopf lemma. This prevents the Wentzell relation from holding at
(xL

D, 0). So, the only possibility left is yL
D < 0. By the strong maximum principle, the point (xL

D, y
L
D) is

on the free boundary ΓL
D. We have

∂yuL
D(xL

D, y
L
D) = −β2L

D eα
2L
D (xL

D−λ
L
D)chβ2L

D (yL
D + 2L),

that is,
|∂yuL

D(xL
D, y

L
D)| ≥ β2L

D eα
2L
D (xL

D−λ
L
D)shβ2L

D (yL
D + 2L) = β2L

D ,

because uL
D(xL

D, y
L
D) = 0. Thus, if D is sufficiently large, (2.5) implies

|∇uL
D(xL

D, y
L
D)| > 1,

contradicting the free boundary relation for uL
D. This proves the theorem. �

2.3. Universal lower bound

Theorem 2.2. There is L0 > 0 such that the velocity cL
D in Model (2.1) satisfies

lim
D→+∞

cL
D = +∞,

uniformly with respect to L ≥ L0.

The proof of Theorem 2.2 will be by contradiction. From now on, and until this has been proved
wrong, we assume that, cL

D is bounded, both with respect to L and D. Recall that ΓL
D, the free boundary,

is an analytic graph {x = ϕL
D(y)}. Moreover, from [6], we may always assume that it intersects the line

{x = 0}, so that we may always assume ϕL
D(0) = 0. Define x̄L

D as the last x such that, for all y ∈ (−L, 0),
then (x, y) < ΓL

D. Our main step is to prove that the front goes far to the left of the domain, this is
expressed by the following lemma.

Lemma 2.3. There is q > 0 universal such that

x̄L
D ≤ −q

√
D. (2.8)

Proof. Recall that we have
dϕL

D

dy
(0) > 0.

For every x < 0, let yL
D(x) be the first y such that x = ϕL

D(y). We will prove that

lim
ε→0

yL
D(−ε

√
D) = 0, uniformly in D ≥ 2 and L ≥ 2, (2.9)

Mathematics in Engineering Volume 3, Issue 1, 1–25.
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which implies Lemma 2.3. Assume (2.9) does not hold, and consider δ0 > 0 such that, for a sequence
(Dn, Ln)n, going to +∞, and a sequence (εn)n going to 0 as n→ +∞, we have

yLn
Dn

(εn

√
Dn) ≤ −δ0.

Obviously, we must assume the boundedness from below of the sequence (εn
√

Dn)n. For every n set

Xn = (−εn

√
Dn,−δ0/2), X̄n = (−εn

√
Dn, 0).

For ε0, to be chosen small in due time, the segment (X̄n, Xn) is at distance at least δ0/2 from the free
boundary. By nondegeneracy (recall the boundedness of (cLn

Dn
)n), there is q0 > 0 universal such that, for

all n:
uLn

Dn
(X) ≥ q0 on [X̄n, Xn]. (2.10)

On the other hand, recall that ∂yu
Ln
Dn

(x, 0) ≤ 1, this follows from [6]. So, the equation for uLn
Dn

(x, 0)
reads, simply

∂xxu
Ln
Dn

(x, 0) ≤ O(D−1), u(0, 0) = ux(0, 0) = 0.

Thus we have
uLn

Dn
(−εn

√
Dn, 0) ≤ O(εn).

This yields, for n large enough, the existence of δ′′0 > 0, universal, such that

∂yu
Ln
Dn

(x, 0) ≤ −δ′0, x ∈ (−ε0

√
Dn, εn

√
Dn). (2.11)

This comes from the Hopf boundary lemma. So now, we now write the equation for uLn
Dn

(x, 0) as

∂xxu
Ln
Dn

(x, 0) −
o(1)
√

D
∂xu

Ln
Dn

(x, 0) =
∂yu

Ln
Dn

(x, 0)

D
≤ −

δ0

D
, uLn

Dn
(0, 0) = ∂xu

Ln
Dn

(0, 0) = 0.

Integrating this equation on (−ε0
√

Dn, 0) and invoking (2.11) allows us to find a small constant δ′′0 > 0
such that

uLn
Dn

(−ε0

√
Dn, 0) ≤ −δ′′0 ,

a contradiction. �
Proof of Theorem 2.2. Recall that we have still assumed the boundedness of (cLn

Dn
)n. In order to allevite

the notations a little, we omit the index n. Integration of (2.1) over ΣL yields

(1/µ + L)cL
D =

∫
ΓL

D

∂νuL
D −

∫ +∞

−∞

|∂yuL
D(x,−L)|dx. (2.12)

This expression has to be handled with care, because each integral, taken separately, diverges. We will
see, however, that there is much less nonsense in (2.12) than it carries at first sight. The curve ΓL

D has
an upper branch, that we call ΓL

D,+, and that connects (0, 0) to XL
D; the latter point being a turning point.

The lower branch, called ΓL
D,−, connects XL

D to (+∞,−L + 1), in other words it is asymptotic to the line
{y = −L + 1} as x goes to +∞. We decompose (2.12) into

(1/µ + L)cL
D

=

∫
ΓL

D,+

∂νuL
D −

∫ xL
D

−∞

|∂yuL
D(x,−L)|dx +

(∫
ΓL

D,+

∂νuL
D −

∫ +∞

xL
D

|∂yuL
D(x,−L)|dx

)
:= I − II + III.
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Let us remark that ∂yuL
D(x,−L) ≥ −1 for all x ∈ R. Indeed, the function uL

D(x, y) being decreasing in
x, it is larger than (1 − L − y)+. So, we have uL

D(x,−L) ≥ −1. Now, the graph ΓL
D has a discrete set

of turning points, due to its analyticity. Away from these turning points, for x ≥ xL
D, there is a finite

number of y′s: y1 > y2 > ...ynD(x) such that (x, yi) ∈ ΓL
D for 1 ≤ i ≤ nD. The point (x, y1) has already

been counted in the integration over ΓL
D,+, and so does not need to be counted again. Notice then that,

if x is not the abscissa of a turning point, then nD (or nD − 2) is even, because of the configuration of
ΓL

D. So, uν(x, yi) = uν(x, yi+1) = 1 for 1 ≤ i ≤ nD(x)−2: it suffices to consider the sole point (x, ynD(x)) in
the computation of III, however at this point we also have ∂νuL

D = 1. Therefore we end up with III ≥ 0.
Of course the integral giving III converges, but we do not even have to bother to prove it.

From Lemma 2.3, we have
I ≥ C

√
D,

for some universal C > 0. We already saw that III was nonnegative, so let us deal with II. By
nondegeneracy, there is A > 0 universal such that

uL
D(x, y) ≥ 1 − AψL

D(x, y), x ≤ xL
D − 1.

Notice that we do not change anything if, in II, we integrate up to xL
D − 1 instead of xL

D. We deduce,
because ψL

D(x,−L) = 0 and uL
D(x,−L) = 1:

∂yuL
D(x,−L) ≥ −A∂yψ

L
D(x,−L), x ≤ xL

D − 1.

This implies
II ≤ O(1) + O(c

√
DL)1/2.

This yields
cL

D
√

DL
≥

q
√

L
− O(

c
√

DL
)1/2,

for a universal q, as soon as we choose D � L � 1. This is an obvious contradiction. Now, note that,
because of the Dirichlet condition at y = −L, the sequence (cL

D)L, for fixed D, is increasing. This ends
the proof of the theorem. �

3. The one species model: Construction and properties of the free boundary

3.1. Global solutions of the free boundary problem in the plane

In this short section we recall a result of Hamel and Monneau that we will use to analyse the
behaviour of the free boundary at infinity. Consider a solution (c > 0,Γ, u) of the free boundary
problem in the whole plane

−∆u + c∂xu = 0 in Ω := {u > 0}
|∇u| = 1 on Γ := ∂Ω.

(3.1)

The result is a classification of the solutions of (3.1) having certain additional properties. We rephrase
it here to avoid any confusion, since the function u in [8] corresponds to 1 − u in our notations.

Theorem 3.1. (Hamel-Monneau [8], Theorem 1.6) Assume that

1). Γ is a C1,1 curve with globally bounded curvature,
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2). R2\Ω has no bounded connected component,
3). we have

lim inf
d(X,Γ)→+∞,X∈Ω

u(X) = 1. (3.2)

Then c ≥ c0 and, if we set
sinα =

c0

c
, (3.3)

either u is the tilted one-dimensional solution φ0(y cosα ± x sinα), or u is a conical front with angle
α to the horizontal, that is, the unique solution uα(x, y) of (3.1) such that Γ is asymptotic to the cone
∂Cα, with

Cα = {(x, y) ∈ R− × R :
x
|y|
≤ −cotanα}. (3.4)

Note that the fact that uα is unique is not exactly trivial, it is given by Theorem 1.3 of [8]. Let us
already notice that Properties 1 and 2 of this theorem are satisfied by the solution (cL

D,Γ
L
D, u

L
D) of (2.1):

Property 1 is clear, and Property 2 is readily granted by the monotonicity in x. Property 3 will be a
little more involved to check.

3.2. Construction of a solution in the whole half-plane

From then on, we fix D > 0 large enough so that Theorem 2.2 holds. Pick L0 such that cL0
D > c0,

this implies cL
D ≥ cL0

D > c0. Notice that we have almost all the elements for the proof of Theorem 1.1,
we just need, in addition, to control where the free boundary meets the line {y = 0}. Since we have this
freedom, we assume ΓL

D to intersect the line {y = 0} at the origin. Let X̄L
D = (x̄L

D, ȳ
L
D) the point of ΓL

D
that is furthest to the left, our sole real task will be to prove that XL

D cannot escape too far as L→ +∞.
Indeed, we notice that the property

lim
x→−∞

uL
D(x, y) = 1, uniformly with respect to y < 0 and L ≥ L0 (3.5)

holds easily. Indeed, from the maximum principle we have

1 ≥ uL
D(x, y) ≥ (1 − eγx)+, (3.6)

for all γ <
cL0

D

D
, as it is a subsolution to the equation for u in the plane and on the line {y = 0}, and

below uL
D on the bottom line and also the vertical segment {x = 0,−L ≤ y ≤ 0}. Hence, at that point, we

have almost everything for the construction of the wave in the whole half-plane, except the attachment
property.

Lemma 3.2. There is a constant KD > 0 independent of L such that |X̄L
D| ≤ KD.

Proof. Let us first assume that
lim

L→+∞
ȳL

D = −∞.

Translate ΓL
D and uL

D so that X̄L
D becomes the new origin, the free boundary ΓL

D meets therefore the
horizontal line at the point (−x̄L

D,−ȳL
D). Up to a subsequence the triple (cL

D,Γ
L
D, u

L
D) converges to a

solution (c∞D ,Γ
∞
D , u

∞
D ) of the free boundary problem (3.1) in the whole plane. Moreover, the origin is its
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leftmost point. So, we may slide φ0 from x = −∞ to the first point where it touches u∞D , this can only
be at Γ∞D , thus at the origin. But then we have

φ′0(0) = ∂xu∞D (0, 0) = −1,

a contradiction with the Hopf Lemma. So this scenario is impossible, and the family (ȳL
D)L≥L0 is

bounded as L→ ∞.
To prove that the family (x̄L

D)L≥L0 is bounded, we consider

L̄ ≥ 2 lim sup
L→+∞

(−ȳL
D),

and integrate the equation for uL
D on ΣL̄ = R × (−L̄, 0), we obtain

(
1
µ

+
1
L̄

)cL
D =

∫
ΓL

D∩ΣL̄

∂νuL
D +

∫
{u(x,−L̄)>0}

∂yuL
D(x,−L̄)dx := I + II.

From (3.6) and elliptic estimates, we have

|∂yuL
D(x,−L̄)| ≤ Ceγx,

moreover the choice of L̄ implies that the rightmost point of {u(x,−L̄) > 0 is at the left of the origin.
Hence II is uniformly bounded with respect to L. On the other hand we have

I ≥ −x̄L
D,

which, from the uniform boundedness of cL
D in Theorem 2.1, yields the boundedness of the family

(x̄L
D)L≥L0 . �

Proof of Theorem 1.1. We send L to infinity, a sequence (cLn
D ,Γ

Ln
D , u

Ln
D )n will converge to a solution

(cD,ΓD, uD) of (1.1). Because of Lemma 3.2, the free boundary ΓD meets the line {y = 0} at a point
(−x̄D, 0) and the expansion (1.4) is granted by Theorem 1.4 of [6]. Notice also that the uniform limit
at −∞ is also granted because of (3.6). So, to finish the proof of the theorem, it remains to prove that,
for all y < 0, the positivity set of u only extends to a finite range. Such were it not the case, the limit

u∞D (x) = lim
x→+∞

uD(x, y)

would exist and be nonzero. It would solve the free boundary problem

−(u∞D )′′ = 0 on the positivity set, |(u∞D )′| = 1 at the free boundary points.

This only allows for u∞D (y) = (y + a)−, a contradiction to the bounedness of u∞D . �

3.3. The tail at infinity

Let (cD,ΓD, uD) the solution constructed in Theorem 1.1 as one of the limits L→ +∞ of (cL
D,Γ

L
D, u

L
D),

with
ΓD = {(ϕD(y), y), y ≤ 0},
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where ϕD is a smooth, locally Lipschitz function. Theorem 2.2 readily implies the first part of Theorem
1.3, that is

lim
D→+∞

cD = +∞,

simply because cL
D ≤ cD. The only use of this result that we are going to make in this section is that

there exists D0 > 0 such that cD > c0 for all D ≥ D0, which is the first part of Theorem 1.3. And so,
we drop the indexes D in the rest of this section, for the simple reason that the dependence with respect
to D will not appear anymore. To prove the second part of Theorem 1.3, we apply Theorem 3.1 to any
sequence of translates of u:

un(x, y) = u(ϕ(yn) + x, yn + y), (3.7)

to infer that any possible limit of un is the one-dimensional wave, tilted in the correct direction.
Properties 1 and 2 of the theorem being readily true, we concentrate on Property 3. The main step will
be to prove that φ is in fact globally Lipschitz in (any sub-plane of) the half plane, once this is done a
suitably designed Hamel-Monneau type [8] subsolution, placed under u, will give the property.

Proposition 3.3. The function ϕ is globally Lipschitz in (−∞, y0], for any y0 < 0.

Proof. Note that the lemma is trivially false if we inisist in making y vary on the whole half-line. Also,
as will be clear from the proof, the value of y0 will play no role as soon as it remains a little away
from 0. So, we will assume for definiteness y0 = −1. The main step of the proposition consists in
proving that no point of Γ ∩ {y ≤ −1} may have a horizontal tangent. Assume that there is such a point
X0 = (ϕ(y0), 0), y0 ≤ −1. Translate u and Γ so that it becomes the origin, still denoting them by Γ and
u. In a neighbourhood of 0 of size, say, ρ > 0, Γ may be written (recall that it is an analytic curve) as

Γ ∩ Bρ = {(x, ψ(x), |x| ≤ ρ}.

We have ψ(0) = ψ′(0) = 0. Two cases have to be distinguished. The first one is ψ ≡ 0 in [−ρ, ρ].
By analyticity and Cauchy-Kovalevskaya’s Theorem, this implies that ψ is defined and equal to 0 on
the whole line; actually this case may happen only if X0 is a point at infinity, that is, u is a limit of
translations of infinite size. But then we have

u(x, y) = y+ or u(x, y) = y−,

depending on whether the positivity set of u is above or below Γ. This is in contradiction with the
boundedness of u. The other case is ψ nonconstant in [−ρ, ρ], so that u is nonconstant either in Bρ. By
analyticity again, u has an expansion of the following type, in a neighbourhood of the origin:

u(x, y) = xn + yP(x) + y2R(x, y), (3.8)

with n ≥ 2, the functions P and R being smooth in their arguments. Because ∂xu it maximal at the
origin, we have uxy(0, 0) , 0 from the Hopf Lemma. Consider the situation where we have, for instance
uy(0, 0) = −1, uxy(0, 0) = β > 0. We have therefore

P(x) = −1 + βx + O(x2),

and
ψ(x) =

xn

−1 + βx + O(x2)
.
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Inside Bρ we also have

∇u(x, y) =

(
nxn−1 + y(2β + O(x) + y∂xQ(x, y)
−1 + 2βx + O(x2) + ∂y(y2R)(x, y)

)
so that

∇u(x, ψ(x))) =

(
nxn−1 + O(xn)
−1 + 2βx + O(x2)

)
This implies, because n ≥ 2:

|∇u(x, ψ(x))|2 = (1 − 2βx + O(x2))2 + O(x2n−2) = 1 − 4βx + O(x2).

Thus the free boundary relation cannot be satisfied in Bρ, except at the origin.
We note that these situations exhaust what can happen on Γ. Indeed, if there is a sequence (Xn)n

of Γ, going to infinity, such that the tangent to Γ at Xn makes an angle αn with the horizontal, with
lim

n→+∞
αn = 0, the usual translation and compactness argument yields a solution of the free boundary

problem (3.1), where the tangent at the origin is horizontal. Once again we are in one of he above two
cases, that are impossible. �

The last step is to check a property that will imply Property 3 for any limiting translation of (Γ, u)
of the form (3.7). This is the goal of the next proposition.

Proposition 3.4. We have
lim inf

u(x,y)>0,y→−∞,d((x,y),Γ)→+∞
u(x, y) = 1. (3.9)

Proof. We use the notations of Theorem 3.1. Assume for definiteness that the leftmost point of Γ is
located at Xl = (0, yl) with yl < 0. Pick X̄ ∈ Ω, call M > 0 its distance to Γ, and also set X0 = (x0,−N),
both M and N will be assumed to be large, independently of one another. From Proposition 3.3 we
claim the existence of a cone Cβ (the notation is given by (3.4)), the angle β > 0 depending on the
Lipschitz constant of ϕ, but independent of M and N, and a point X̄M,N ∈ Ω, such that

1). we have d(X̄M,N ,Γ) ≥
√

inf(M,N),
2). we have X̄ ∈ X̄M,N + Cβ,
3). the upper branch of X̄M,N + ∂Cβ meets the line of fast diffusion {y = 0} at a point (xM,N , 0) with

xM,n ≤ −γ inf(M,N), (3.10)

γ > 0 independent of M and N.

Two cases have to be distinguished, depending on whether X̄ is below (see Figure 1) or above (see
Figure 2) its projection onto Γ (or, if the projection is not unique, the projection that we have selected).
Note that, in the first case, there is C > 0, once again independent of M and N, such that

N ≥ CM,

in such a case we have inf(M,N) = M. We now translate the origin to X̄M,N . Note that the line of fast
diffusion becomes the line {y = N}. Consider a smooth, nonpositive, concave, even function ϕM,N(y)
such that
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1). we have ϕM,N(0) = 0,

2). we have −ϕ′′M,N(y) ≤
1

inf(M,N)
,

3). we have |ϕ′M,N(y)| = 2cotanβ if |y| ≥
√

inf(M,N).

Let ΓM,N be the graph

ΓM,N = {(x, y) ∈ R− × R : x = −
√

inf(M,N) + ϕM,N(y)}.

It meets the line of fast diffusion at a point x̃M,N that satisfies an estimate of the form

x̃M,N − xM,N ≤ γ inf(M,N), (3.11)

with a universal γ > 0, possibly different from that of (3.10).

                                                                                                     
                          
                      -εM
                                                                                          N>γM
                                              (ΓM,N)                                                            
                                                                                                     

       M                            (Γ)

                                                                                              M1/2

                                                                                                                                     
                                                                                                     (ΓM) 

Figure 1. X̄ below Γ.

  -ε inf(M,N)
                                                                    N   
                                                                                      (ΓM) 
                                                                          
                                                                   M
                                                                        inf(M,N)1/2                                    (Γ)

       (ΓM,N)

  

Figure 2. X̄ above Γ.

Pick now any small ε > 0 and consider the function

u(x, y) = (1 − ε)
(
1 − eλ(x−ϕM,N (y))

)+

.

We claim that u ≤ u in ΓM,N ∩ {y ≤ N}. Indeed, recall that we have

lim
x−xM,N→−∞

u(x,N) = 1,
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this is a simple consequence of the uniform convergence of u(x, .) to 1 as x → −∞ in the original
variables, the fact that (xM,N ,N) is at the left of the leftmost point of Γ, and (3.11), and the fact that
u ≤ 1 − ε. Inside ΓM,N ∩ {y ≤ N}, we have

−∆u + c∂xu

=

(
−ϕ′′M,N + λϕ′M,N

2
− λ − c

)
λeλ(x−ϕM,N (y)

≤

( 1
√

inf(M,N)
− 4λcotan2β + λ − c

)
λeλ(x−ϕM,N (y)

≤ 0 as soon as λ is small enough and M,N large enough.

Therefore, u ≤ u, so that we have, if we still call X̄ the original point X̄ translated by X̄M,N:

u(X̄) ≥ 1 − e−λ(M−
√

inf(M,N)),

which is the sought for estimate. �

Proof of Theorem 1.2. Proposition 3.3 proves that any limit of a sequence of translations (un)n in (3.4)
satisfies the assumptions of Theorem 3.1. Therefore it is either a conical front uα (Case 1), a tilted
one-dimensional wave φ0(y cosα− x sinα) (Case 2), or a tilted wave φ0(y cosα+ x sinα) (Case 3). We
wish to prove that only Case 3 survives. Let us consider the set T of turning points of Γ, that is, the set
of all points (ϕ(y), y) such that ϕ′(y) = 0. From the analyticity of Γ, T is discrete:

T = {(ϕ(yn), yn), n ∈ N}.

If we manage to prove that it is finite we are done because this excludes Case 1 trivially, and Case 2
because u(x, y) → 1 as x → −∞, uniformly in y. So, assume that T is infinite. We claim the existence
of two sequences of T , decreasing to −∞, (yi

n)n, i ∈ {1, 2}, such that

• we have y1
n+1 ≤ y2

n ≤ y1
n for all n,

• we have lim
n→+∞

(y2
n − y1

n+1) = lim
n→+∞

(y1
n − y2

n) = +∞,

such that, if we set xi
n = ϕ(yi

n) we have

lim
n→+∞

u(xi
n + x, yi

n, y) = uα(x, y),

uniformly on compact sets in (x, y). Indeed, there is N0 ∈ N such that T may be organised in disjoint
clusters

T =
⋃
n∈N

Λn, y ≤ z if (ϕ(y), y) ∈ Λn+1, (ϕ(z), z) ∈ Λn,

each Λn having at most N0 elements, and

lim
n→+∞

(
min

(y,ϕ(y))∈Λn
y − max

(z,ϕ(z))∈Λn
z
)
= +∞.

This is because of the fact that uα has a finite number of turning points and that the convergence of
u to its limits implies the convergence of the free boundaries in C1 norms. We claim that (x1

n, y
1
n) and

(x2
n, y

2
n) cannot be in two consecutive clusters, because of the orientation of Cα. So, if Λi

n is the cluster
of (xi

n, y
i
n), let Λ3

n be a cluster in-between. Let (x3
n, y

3
n) be the leftmost point of Λ3

n. From the definition of
Λ3

n, there is Rn → +∞ such that (x3
n, y

3
n) is the leftmost point of Γ in BRn(x3

n, y
3
n). Let u∞(x, y) be a limit

of translations of u with the sequence of points (x3
n, y

3
n), it does not converge to any of the functions

prescribed by Theorem 3.1, which is a contradiction. This finishes the proof of Theorem 1.2. �
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4. The model with two species

The first thing one must understand is (1.2) in the truncated cylinder ΣL, namely

−d∆v + c∂xv = 0 (x, y) ∈ ΣL ∩ {v > 0}
|∇v| = 1 ((x, y) ∈ Γ := ∂{v > 0} ∩ ΣL

−Du′′ + cu′ + 1/µvy = 0 for x ∈ R, y = 0
dvy(x, 0) = µu(x) − v(x, 0) for x ∈ R

v(−∞, y) = 1, v(+∞, y) = (1 − y − L)+

v(x,−L) = 1.

(4.1)

4.1. Exponential solutions

System (4.1), linearised around 0, reads

−d∆v + c∂xv = 0 (x, y) ∈ ΣL

−Du′′ + cu′ + 1/µvy = 0 for x ∈ R, y = 0
dvy(x, 0) = µu(x) − v(x, 0) for x ∈ R
v(x,−L) = 0
v(−∞, y) = 0.

(4.2)

The solutions that decay to 0 as x→ −∞ are looked for under the form

(φL
D(x), ψL

D(x, y)) = eα
L
D x(1, γsh(βL

D(y + L)),

so that the exponents αL
D and βL

D satisfy
−d(α2 + β2) + cα = 0

−Dα2 + cα +
dβµch(βL)

sh + dβch(βL)
= 0. (4.3)

Once again we consider types of limits.
Case 1. The limit D � L � 1, c bounded. We expect βL

D to go to 0 as D→ +∞, so that

dβch(βL)
sh(βL) + dβch(βL)

∼
1
L
.

Then (4.3) yields estimates of the form

αL
D ∼

√
µ

LD
, βL

D ∼

√
c
√
µ

d
√

DL
. (4.4)

And, once again, the estimate may be pushed up to c = o(
√

D).
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Case 2. The limit D � L � 1, c �
√

D. This time we expect βL
D to go to infinity as D→ +∞, so that

dβch(βL)
sh(βL) + dβch(βL)

→ 1.

We have

αL
D ∼

( c
dD2

)1/3

, βL
D ∼

1
µ

( c
√

D

)2/3

. (4.5)

Case 3. The limit L � D � 1, c � 1. We expect that LβL
D will go to infinity, so that

dβµch(βL)
sh(βL) + dβch(βL)

→ 1. In this setting, we have the estimates (4.5).

4.2. Estimates on the velocity

Let (cL
D,Γ

L
D, v

L
D) a solution to (4.1), we may infer its existence from a once again slight modification

of Theorem 1.1 of [6]. We assume that it meets the line {y = 0} at the point (0, 0).

Theorem 4.1. There is a constant K > 0, independent of L and D, such that

cL
D ≤ K

√
D. (4.6)

Moreover there is L0 > 0 such that we have

lim
D→+∞

cL
D = +∞, (4.7)

uniformly in L ≥ L0.

Proof. That of (4.6) is similar to that of Theorems 2.1, one compares (uL
D, v

L
D) to

(uL
D(x), vL

D(x, y)) = (
1
µ
− φL

D(x), 1 − ψL
D(x, y)).

As for (4.7), the only point to prove is that, under the assumption that (cL0
D )D is bounded, the width L0

being large but fixed, then the leftmost point of ΓL
D, denoted by (x̄L0

D , ȳ
L0
D ) satisfies

x̄L0
D ≤ −δ0

√
D. (4.8)

Once this is proved, the proof of the theorem proceeds much as that of Theorem 2.2, using in particular
estimates (4.4) for the linear exponentials. So, assume (4.8) to be false, that. is, there are two diverging
positive sequences (Dn)n and (xn)n, and a positive constant d0 such that

lim
n→+∞

xn
√

Dn
= 0, min

x≤−xn
{y < 0 : (x, y) ∈ Γ

L0
Dn
} ≤ −d0. (4.9)

By nondegeneracy, there is γ > 0 such that

v(x,−
d0

2
) ≥ γ for x ≤ xn. (4.10)

Mathematics in Engineering Volume 3, Issue 1, 1–25.



19

Choose another sequence (x′n)n such that

lim
n→+∞

xn

x′n
= lim

n→+∞

x′n
Dn

= 0.

Then we have
lim

n→+∞
‖uL0

Dn
‖L∞(−x′n,−xn) = 0,

just by integrating the ODE for uL0
Dn

. But then, the Robin condition ∂yv
L0
Dn

+vL0
Dn

= o(1) on (−x′n,−xn)×{0},
together with (4.10) and the Hopf Lemma, yields the existence of γ′ > 0 such that

vL0
Dn

(x, 0) ≥ γ′ for −x′n ≤ x ≤ xn.

The equation for uL0
Dn

becomes

−(uL0
Dn

)′′ + cDn L0(uL0
Dn

)′ ≤ µ1(−xn,0)(x) −
γ′

2
1(−x′n,−xn),

as soon as n is large enough. This implies uDn L0(−x′n) < 0, contradiction. �
From then on, the rest of the study of the two species model parallels exactly that of the one species

model.

5. Exponential convergence

In this section, we assume that all the requirements on the coefficients are fulfilled, and we drop the
index D for the velocity c, the free boundary Γ and the solution u. Theorem 1.4 is proved by deriving
a differential ineqaulity for ϕ, exploiting Theorem 1.3 and the fact that ϕ′ as a limit at infinity. This
allows indeed to write the free boundary problem for u in a suitable perturbative form, and translate
the double Dirichlet and Neumann boundary condition into the sought for differential inequality.

In the whole section, the considerations will be rigorously identical for the one species model or the
two species model, except the global estimate in Proposition 5.2 below, where the computations are
slightly different - but left to the reader. Thus we will concentrate on the one species model (1.1).

Recall from [1] that Γ is an analytic graph. Theorem 1.3 readily implies

Proposition 5.1. We have
lim

y→−∞
ϕ′′(y) = lim

y→−∞
ϕ′′′(y) = 0.

This entails the following improvement of Proposition 3.4.

Proposition 5.2. There is ρ > 0 such that , if u(x, y) > 0 we have

u(x, y) ≥ 1 − e−ρdist((x,y),Γ).

Proof. For ε > 0 consider ψε(y) smooth whose derivative ψ′ε satisfies
ψε(y) = ϕ′(y) if y ≤ −

1
ε4

ψ′ε(y) = −ε if −
1
ε2 y ≤ y ≤ 0

−ε ≤ ψ′ε(y) ≤ 0 everywhere,
|ψ′′ε | ≤ ε everywhere.
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Note that this function exists due to Theorem 1.3 and Proposition 5.1. For ρ > 0 consider

ū(x, y) = eρ(x−ψε(y)),

it can be estimated by e−δερdist((x,y),Γ) for a suitable δε > 0, because of Theorem 1.3 again. In the lower
half plane we have

−d∆ū + c∂xū =

(
−d(ρ − ψ′′ε + ρ(ψ′ε)

2) + c
)
ρeρ(x−ψε(y)) ≥ 0 if ρ ∈ (0, c) and if ε small enough.

On the line we have, on the same pattern:(
−D∂xx + c∂x +

1
µ
∂y

)
ū =

(
−ρD + c −

ε

µ

)
ρeρx ≥ 0 if ρ ∈ (0,

c
D

) and if ε small enough.

And so, as soon as ρ ∈ (0,
c
D

) and ε > 0 is small enough, the function u := (1 − ū)+ is a sub-solution
to the equations for u in the region {u > 0}, moreover ∂{ū > 0} coincides Γ sufficiently far in the lower
half plane. The maximum principle implies the proposition. �
Proof of Theorem 1.4. From now on, translate the origin so that we are in the following situation:
Γ ∩ R2

− is the graph
{(x, φ(x)), x > 0},

with φ′(x) < 0 and lim
x→+∞

φ′(x) = −tanα. Actually, the translation may be adjusted so that φ′(x) is as
colse as we wish to −tanα, this will be quantified later. The following chain of transformations is then
made.

1). Rotate the coordinates by the angle α, so as to obtain the new set (x,Y) given by

X = x cosα − y sinα, Y = x sinα + y cosα.

In this new system the free boundary may be written as Y = ψ(X), with, by Proposition 5.1:

lim
X→+∞

ψ′(X) = lim
X→+∞

ψ′′(X) = lim
X→+∞

ψ′′′(X) = 0.

2). Straighten the free boundary by setting

X′ = X, Y ′ = ψ(X).

In this new coordinate system, u solves the over-determined problem

−∂X′X′u − (1 + ψ′2)∂Y′Y′u + ψ′′∂Y′u − 2ψ′∂X′Y′u
+c cosα∂X′u + (c0 − cψ′ cosα)∂Y′u = 0 (X′ > 0,Y ′ < 0)

u(X′, 0) = 0, ∂Y′u(X′, 0) =
1√

1 + ψ′2(X′)

(5.1)

3). A standard compactness/uniqueness argument shows that

lim
X′→+∞

u(X′,Y ′) = φ0(Y ′),
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uniformly in Y ′ < 0. As we will not need any additional change of coordinates, let us, for
notational simplicity, revert to the initial notation

x := X′, y := Y ′.

The function u(x, y) is this looked for under a perturbation of φ0(y): u(x, y) = φ0(y) + ũ(x, y). The
free boundary condition writes

∂yu(x, 0) = −
ψ′2(x)√

1 + ψ′2(x)
.

The full PDE for ũ will not be written, as we need another change of unknowns.
4). In order to transform (5.1) into an over-determined problem with fixed boundary, we look for ũ

under the form

ũ(x, y) = v(x, y) −
ψ′2(x)

1 + ψ′2(x) +
√

1 + ψ′2(x)
γ0(y),

with γ0 smooth, compactly supported, γ(0) = 0, γ′(0) = 1. As ψ appears in the equations only in
the form of ψ′, we set h(x) = ψ′(x).

The system for (h, v) is thus

−∂xxv − (1 + h2)∂yyv + h′∂yv− 2h∂xyv + c cosα∂xv + (c0 − ch cosα)∂yv
= (h′ + hc cosα)φ′0 + R[h](x, y) (x > 0, y < 0)

v(x, 0) = 0, ∂yv(x, 0) = 0,
(5.2)

the function R[h](x, y) being:

R[h](x, y) =

( h2

1 + h2 +
√

1 + h2

)′′
+

h2γ′′0 (y)
√

1 + h2

1 +
√

1 + h2
−

h2h′γ′0(y)

1 + h2 +
√

1 + h2

+2h
( h2

1 + h2 +
√

1 + h2

)′
γ′0(y) − c cosα

( h2

1 + h2 +
√

1 + h2

)′
γ0(y)

−(c0 − hc cosα)
h2γ′0(y)

1 + h2 +
√

1 + h2
+ h2φ′′0 (y)

While the expression of R[h](x, y) is utterly unpleasant, its structure is quite simple: It is quadratic in
h and its derivatives up to order 2, which are known to vanish at infinity. Finally, set

S[h, v](x, y) = h2vyy − h′vy + 2hvxy + hc cosαvy.

By elliptic regularity, all derivatives of v go to 0 as x→ +∞, uniformly in y. Problem (5.3) now reads

−∆v + c cosαvx + c0vy = (h′ + hc cosα)φ′0
+R[h](x, y) + S[h, v](x, y) (x > 0, y < 0)

v(x, 0) = 0, ∂yv(x, 0) = 0,
(5.3)

We will use the estimate

|R[h](x, y)| + |S[h, v](x, y)| ≤ θ(x, y)(|h′(x)| + |h(x)|)1(0,1)(y), (5.4)
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with θ(x, y) a positive function that tends to 0, uniformly in y, as x → +∞. It only remains to apply
Proposition A1 of the appendix together with (5.4)), with the data

f (x) = h′(x) − h(x)c cosα, g(x, y) = R[h](x, y) + S[h, v](x, y).

From Proposition 5.2, estimate (A1) holds, so that the function h solves the differential inequality

|h′(x) − h(x)c cosα| ≤ θ̃(x)(|h′(x)| + |h(x)|),

the function θ̃(x) going to 0 as x→ +∞. This implies the exponential estimate. �
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2013-2014, Palaiseau: Ecole Polytechnique, exposé XIX.
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Appendix: Compatibility relations for over-determined equations with right handside

The goal of this section is to prove that the right handside of the solution of an elliptic equation in
the lower half plane, both with Dirichlet and Neumann condition, has to satisfy an integral equation.
Proposition A1. Consider f (x) and g(x, y) two smooth, bounded functions defined on R+ (resp. R+ ×

R−). Set e0(y) = ec0y. Assume the existence of ρ > 0 such that

(A1) |g(x, y)| = O(eρy), y ≤ 0, uniformly in x ∈ R+.

Let u(x, y) solve

(A2)
{
−∆u + c cosαux + c0uy = f (x)e0(y) + k(x, y) (x > 0, y ≤ 0)

u(x, 0) = uy(x, 0) = 0,

in the classical sense. Also assume that u and its derivatives satisfy the estimate (A1). There is a
continuous function K(x, y), defined on [2,+∞) × R−, such that, for all ε > 0 we have

|K(x, y)| = O(e(β−ρ−ε)y−ρx), x ≥ 2, y ≤ 0,

and such that

f (x) =

∫ 0

−∞

K(x, y)g(x, y)dy, x ≥ 2.

Proof. First, transform (A2) into a problem on the whole line by setting

v(x, y) = γ(x)u(x, y),

where γ is a smooth function, supported on (1,+∞), and equal to 1 on [2,+∞). the equation for v is
thus

(A3)
{
−∆v + c cosαvx + c0vy = γ(x0 f (x)e0(y) + k(x, y) (x ∈ R, y ≤ 0)

v(x, 0) = vy(x, 0) = 0,

with
k(x, y) = γ(x)g(x, y) + γ′′(x)u(x, y) + 2γ′(x)ux(x, y).

In other words, the right handside of (A3) equals that of (A2) as soon as x ≥ 2.
A second observation is that the general Dirichlet problem

(A3)


−∆u + c cosαux + c0uy = F(x, y) (x > 0, y ≤ 0)

u(x, 0) = 0
u(0, y) = u0(y)
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is well-posed as soon as the Dirichlet datum u0(y) and the right handside F(x, y) satisfy the estimate
(A1), with any ρ < c0. Indeed, the classical change of unknown u(x, y) = eρyv(x, y) changes (A3)
into an elliptic equation the the zero order term ρc0 − ρ

2. Thus it is enough to assume tht g and k
are compactly supported in y, in order to perform Fourier transforms. An easy density argument then
allows to treat general data satisfying (A1).

Set w(x, y) = e(c cosαx+c0y)/2v(x, y), the equation for w is now

(A4)
{

−∆w + β2w = F(x)e0(y) + G(x, y) (x ∈ R, y ≤ 0)
w(x, 0) = wy(x, 0) = 0.

The new data are

F(x) = e−c cosα/x/2γ(x) f (x), G(x, y) = e−(c cosαx−c0y)/2k(x, y), E0(y) = ec0y/2,

and we have set

β2 =
c2

0 + c2 cos2 α

4
.

Thanks to both Dirichlet and Neumann conditions, the function w(x, y) may be extended evenly over
the whole plane R2, where it solves the same equation as (A4), with G and E0 also extended evenly.
The new unknown and data are still denoted by w, E0 and G. Let ŵ(ξ, ζ) be the Fourier transform of w,
as well as F̂(ξ), Ê0(ζ) and Ĝ(ξ, ζ) the Fourier transforms of the data. Thus we have

ŵ(ξ, ζ) =
F̂(ξ)Ê0(ζ) + Ĝ(ξ, ζ)

β2 + ξ2 + ζ2 .

Now, the Dirichlet condition for w entails
∫
R

ŵ(ξ, ζ)dζ = 0, that is

F̂(ξ) = −

(∫
R

Ê0(ζ)
β2 + ξ2 + ζ2 dζ

)−1∫
R

Ĝ(ξ, ζ)
β2 + ξ2 + ζ2 dζ.

From Plancherel’s Theorem, we have∫
R

Ê0(ζ)
β2 + ξ2 + ζ2 dζ ∝

1

c0/2 +
√
β2 + ξ2

,

and, if we still denote by Ĝ(ξ, y) the partial Fourier transform of G with respect to x, we have, again by
Plancherel’s theorem ∫

R

Ê0(ζ)
β2 + ξ2 + ζ2 dζ ∝

∫ +∞

−∞

Ĝ(ξ, y)e−|y|
√
β2+ξ2

dy.

Inverting the Fourier transform in x yields, by the residue theorem:

F(x) =∝ e−c cosα|x|/2
∫
R2

G(x, y)eixξ−|y|
√
β2+ξ2

dξdy.

Shifting the integration line in ξ from R to R + iρ yields, for x > 0:∫
R

eixξ−|y|
√
β2+ξ2

dξ = e−ρx
∫
R

eixξ−|y|
√
β2+ξ2−ρ2+2iρξdξ
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and
√
β2 + ξ2 − ρ2 + 2iρξ has nonzero real part. This entails the proposition. �
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