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Abstract: Autoencoders have been proposed as a powerful tool for model-independent
anomaly detection in high-energy physics. The operating principle is that events which
do not belong to the space of training data will be reconstructed poorly, thus flagging
them as anomalies. We point out that in a variety of examples of interest, the connection
between large reconstruction error and anomalies is not so clear. In particular, for data
sets with nontrivial topology, there will always be points that erroneously seem anomalous
due to global issues. Conversely, neural networks typically have an inductive bias or prior
to locally interpolate such that undersampled or rare events may be reconstructed with
small error, despite actually being the desired anomalies. Taken together, these facts are in
tension with the simple picture of the autoencoder as an anomaly detector. Using a series
of illustrative low-dimensional examples, we show explicitly how the intrinsic and extrinsic
topology of the dataset affects the behavior of an autoencoder and how this topology is
manifested in the latent space representation during training. We ground this analysis
in the discussion of a mock “bump hunt” in which the autoencoder fails to identify an
anomalous “signal” for reasons tied to the intrinsic topology of n-particle phase space.
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1 Introduction

Data of interest in the physical sciences often consists of features of low intrinsic dimension-
ality packaged in a high-dimensional space. For example, the variants of a gene might be
embedded in the much larger space of base pair sequences, or a single fundamental particle
might manifest itself as an N ×N -pixel (N � 1) jet image [1, 2] in a particle detector at a
high-energy physics experiment. A common task is to detect outliers, or “anomalies,” in a
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large data set; a common tool to perform this task is a neural network autoencoder [3, 4].1
The autoencoder architecture is quite simple: input data is processed and passed through
a feed-forward network to a latent layer of smaller width than the input. The output of
the latent layer is then processed and unpacked to an output layer of the same size as the
input layer. The intuition is that the data is being compressed in the smaller latent layer,
and uncompressed on its way out to the output layer. An autoencoder trained on a large
data sample is attempting to learn a compressed representation of the data, and a network
successful in this task should have small reconstruction error, measured for example by
taking the loss function to be the mean squared error between the output and the input.

Nearly all data sets of practical relevance in high-energy physics descend from the
manifold of Lorentz-invariant phase space. This manifold, which describes the energies
and momenta of particles produced in relativistic collisions, has dimension 3n − 4 for n
final-state particles, and has a natural embedding in R4n whose coordinates comprise the
n final-state 4-vectors. Training data for a machine learning task derived from these 4-
vectors, whether low-level [1, 2, 8–23] or high-level [24–30], must still at some level inherit
the geometry and topology of phase space [31–40]. In this context, we can make the notion
of “anomaly” more precise. If background events are drawn from a manifold of fixed particle
number n, events may be anomalous if they contain more than n particle-like features, in
other words if they lie on the m-particle phase space manifold with m > n. This situation
describes some jet substructure observables, specifically n-subjettiness [41]. Autoencoders
(and their generalizations, such as variational autoencoders [42]), have already shown some
success in performing this kind of anomaly detection [5, 43–51]. The geometric intuition is
that anomalous events lie off the background manifold, and thus the autoencoder will fail
to reconstruct these events because it is attempting to perform an extrapolation, a task on
which neural-network autoencoders tend to perform poorly.

On the other hand, some particles, such as leptons, may be well-characterized by
their 4-vectors rather than the more complicated jets characteristic of hadrons. A “bump
hunt” search for a new particle in events containing leptons will feature anomalous events
drawn from the same manifold as the background events, but localized to a submanifold.
For example, in the search for the Higgs in the 4-lepton “golden channel” H → ZZ∗ →
4µ [52, 53], the background events have 4 muons in the final state with a broad distribution
of invariant masses, and the “anomalous” Higgs decay events are distinguished by lying
on the submanifold of 4-particle phase space where the invariant mass of all four muons is
equal to m2

H . In this case, an autoencoder trained on a sideband data set of background
events excluding invariant masses of m2

H may attempt to perform an interpolation task
when run on a Higgs decay event. Such interpolation tasks are generally “easy” for neural
networks, and thus might be expected to lead to low autoencoder loss for the signal Higgs
events, which is the opposite of the desired behavior.

1Anomaly detection in high-energy physics using machine learning is a rich and growing field: some
other model-independent strategies include weakly supervised learning (such as classification without la-
bels), density estimation, and likelihood-free anomaly detection. See [5, 6] for a review of these and other
strategies, and also [7] for a summary of some of these techniques as applied to simulated data.
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In this paper, we will investigate how the topology of data manifolds may pose a number
of important obstructions to autoencoder performance on the second type of anomaly-
detection task, where anomalous events lie on a distinguished submanifold of the manifold
of background events. Consider an autoencoder trained on a set of 4-vectors sampled from
n-particle phase space. Since 4n > 3n − 4, the embedding space is clearly redundant,
and one might expect that after sufficient training, an autoencoder can achieve essentially
zero reconstruction error on the training set for latent dimension dl equal to the intrinsic
data dimension, 3n− 4. However, as we will show, this is impossible because phase space
does not have the trivial topology of R3n−4, but rather that of a sphere S3n−4. A generic
neural network autoencoder is a composition of continuous maps, so the nontrivial topology
makes unavoidable the existence of nearby points on the data manifold which are mapped
to distant points in the latent space, exactly as a Mercator projection distorts the poles of
the 2-sphere when mapped into R2.2

The easiest context in which to visualize this topological obstruction is the unit circle,
which we will study extensively in order to gain intuition for the breakdown of these maps
to the latent space. Points on the circle may be labeled by a single number, an angle φ, but
since φ and φ+ 2π represent the same point, an autoencoder which attempts to compress
points on the circle to their angular coordinate φ will rip apart nearby points in the data
manifold during the compression. More precisely, in the language of differential topology,
the latent space is a single chart on the data manifold, which can accurately capture the
local geometry but not the global topology, which requires additional charts with transition
functions between them.

The failure of the latent representation will imprint spurious features on the data. This
has two important and related consequences:

• If the data manifold has nontrivial topology, there will always be points or regions
in the training set with poor reconstruction error, even when the latent dimension
is equal to the intrinsic dimension of the data. These regions are not the desired
anomalies, but instead avatars of the topological obstruction to mapping the data
manifold into a topologically-trivial latent space.

• If anomalous events live on a submanifold (as in the Higgs example above), the
autoencoder may learn to interpolate smoothly across the submanifold even if the
training distribution had no support there, causing the would-be anomalous events
to have the same error distribution as background events.

These observations present obstacles to using autoencoders as practical anomaly detectors.
A necessary condition for a successful autoencoder is near-perfect (or at least uniform-loss)
reconstruction on the training set — otherwise the compression of the data is not faithful —
but the topology of the data manifold can render that impossible without additional priors
on the network. In addition, the background distribution itself may introduce additional
topological or geometrical features; in the physics context, a matrix element governing the

2One can also consider neural networks with discontinuous activation functions, like a perceptron, though
such activations are typically no longer used in practice.
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background process with poles or zeros at certain values of the kinematic variables may
concentrate the events with large loss away from the desired submanifold.

This paper is organized as follows. In section 2 we define our basic autoencoder archi-
tecture, where in particular we take the latent dimension dl equal to the dimension d of
the data. We then introduce a specific example in section 3 of an autoencoder failing to
perform a bump hunt in 3-particle phase space. The remainder of the paper is devoted to
understanding the features of that failure by studying a series of low-dimensional examples,
motivated by the fact that phase space has the topology of a sphere. We start in section 4
with the simplest example, the circle S1 embedded in R2, and show how the periodicity of
the angular coordinate on the circle poses an obstruction to training an autoencoder with a
latent layer R1. Moving to the 2-sphere in section 5, we construct an easily-visualized ana-
logue of the anomalous submanifold S1 ⊂ S2, and examine the interplay between topology,
extrinsic geometry, and sampling distributions with a double cone. We confirm that these
features persist in higher dimensions in section 6. Armed with this intuition, we return
to the example of 3-particle phase space in section 7. We briefly summarize the effects of
taking dl > d in section 8, arguing that this does not cure the issues we have identified,
and conclude in section 9. Additional details are provided in the appendices: appendix A
describes our hyperparameter choices, appendix B studies the S1 example in depth includ-
ing an analytic investigation of the trained network dynamics, and appendix C describes
our studies of spaces with topological obstructions even for dl > d.

Our goal in this work is not to claim that autoencoders are doomed to fail in the
high-energy physics context, but rather to make the point that the topology of phase space
and the inductive bias of autoencoders toward interpolation are important pieces of prior
knowledge which should be considered before attempting a black-box solution to generalized
anomaly detection.3 In fact, it is somewhat surprising that autoencoders appear to perform
worse on the nominally easier task of a bump hunt in leptons than on the superficially much
more complicated task of jet image recognition and classification, since leptons live on a
phase space of fixed dimension. The increasing prominence of “physics-inspired neural net-
works” — where networks with important symmetry principles (such as gauge equivariance
and Lorentz symmetry) hard-coded into the network architecture perform better than net-
works which are forced to learn these principles from scratch [54–56] — suggests that knowl-
edge of the topology may in fact be necessary to appropriately interpret the autoencoder
performance. We illustrate this point with the low-dimensional examples described above,
and speculate on how these principles might be applied in the context of phase space.4

3The recent LHC Olympics exercise [7] featured a data set with a new particle decaying via two decay
modes. Tellingly, this anomaly was not detected by any of the machine-learning strategies proposed by the
participants in the exercise. Prior to unblinding, no autoencoder architectures detected true anomalies and
several found spurious anomalies in a background-only data set.

4We note that similar considerations have been investigated in [57–60], though not in the context of
physics. In particular, [58] notes that nontrivial topological structure in the input data can require an
autoencoder with latent dimension larger than the intrinsic dimension of the data, [59] considers adding a
term to the loss function to force the latent layer to preserve topological structures of the data, and [60]
performs an in-depth study of the observations of [57] to understand how topology is transformed at each
layer of a feed-forward network.
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2 Autoencoder architecture

In this paper, we will implement an autoencoder as a multilayer neural network. Our
baseline network architecture will be as follows: a 5-layer, fully-connected network with
layer widths (din, dw, dl, dw, din) and loss function L = ||y− x||2, where x is the input and
y is the output. The second and fourth layers have dw � dl, din to ensure that for low-
dimensional examples we are not artificially penalizing ourselves by using a network with
too few parameters to accurately approximate the embedding of the data manifold to Rdl .
To verify that the number of network parameters is not the limiting factor in autoencoder
performance, we will sometimes add a second layer of width dw to both the encoder and
decoder, so that the full network has 7 layers.

We will be primarily concerned with autoencoders with dl < din but dl = d, so that
the latent representation has the same number of degrees of freedom as the manifold from
which the data is sampled. We will refer to the map Rdin → Rdl as the encoder or latent
representation and the map Rdl → Rdin as the decoder, each of which is a 1-hidden-layer
neural network. We will refer to the full autoencoder map Rdin → Rdin as the model. Our
default width will be dw = 64; this is small by the standards of networks used for e.g.
(jet) image recognition, but it is much larger than the din ≤ 12 we will be considering
in this paper. In each example we train the network with stochastic gradient descent
(SGD) for 20,000 epochs using a training set of size Ntrain and a test set of size Ntest, both
sampled from the same distribution. Our batch size and learning rate hyperparameters for
each example are given in table 1 in appendix A; we have checked that our conclusions
are robust to changes in these hyperparameters, because in essentially all examples the
networks will be trained to convergence but do not overfit the training data.

To visualize the output of the autoencoder, especially in low-dimensional examples,
we will plot both the test set data and the predictions of the model on the test set.
Occasionally, it will be convenient to present these on the same plot, to see both the density
of data points and the density of their images as predicted by the autoencoder. Since our
loss function is Euclidean distance, plotting them together can show how large-loss points
will be mapped far away from their true locations.

An important feature of an autoencoder is that for dl ≥ din, the global minimum of the
loss is always the identity function on Rdin . However, this is not a generalizable minimum,
since the loss would be zero on any input whatsoever, even one having nothing to do
with the data distribution which is a particular submanifold of Rdin . Since the goal of an
autoencoder is to learn a useful low-dimensional representation of the data — an encoding
— a successful autoencoder will find its way to a local minimum, which is zero (or close to
it) on the training and test sets, but is nonzero on other data. The function of the latent
layer with dl < din is to prevent the network from finding the trivial global minimum.5
Regardless, the existence of a global minimum for the family of autoencoder architectures
with different dl which is not the desired loss minimum means that initialization and
gradient descent algorithms may be an important component of the analysis, and suggests
a loss landscape for the autoencoder with a rich structure; we discuss a number of examples
in appendices B and C.

5Noise injected into the training data may serve the same purpose, though we do not consider that
strategy in this work.
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Figure 1. Left: cartoon of the geometry of the 3-vectors of particles Y , Y , and Z sampled from 3-
particle phase space. In the center-of-momentum frame, the particles are coplanar. Center: example
of a Dalitz plot for uniform sampling from 3-particle phase space, which uniformly populates a right
isosceles triangle in the sY Y − sY Z plane. Right: if the matrix element for the process contains a
resonance, say at sY Y = m2

X from the intermediate decay X → Y Y , there will be an oversampled
“stripe” (purple) in the Dalitz plot.

3 Failure of a bump hunt

The manifold Mn=3 of 3-particle phase space is defined by imposing energy/momentum
conservation (4 constraints) and putting the three particles on mass shell (3 constraints),
which imposes 7 algebraic constraints on the three 4-vectors (12 parameters) and yields a
5-dimensional manifold embedded in R12.6 As we will explain in section 7,Mn=3 has the
topology of the 5-sphere S5, which has important implications for autoencoder behavior.

To approximate the situation typically encountered at colliders (and also to simplify
the analysis), we will consider the final state Y + Y + Z where all final-state particles are
distinguishable and massless — the example we have in mind is a bump hunt in leptons,
where (say) Y is a muon and Z is a photon, and the collision energy is large enough that
the muon is approximately massless. In the center-of-momentum (COM) frame, the three
particles are coplanar (figure 1, left). The natural measure on phase space is the Lorentz-
invariant measure, which for 3-body phase space takes a particularly simple form [62]:∫

dΦ3 = 1
128π3s

∫
R
dsY Y dsY Z , (3.1)

where
√
s is the collision energy in the COM frame, and sY Y = (pY + pY )2 and sY Z =

(pY + pZ)2 are the invariant squared masses of the Y Y and Y Z pairs, respectively. The
shape of the region R depends on the masses of the final-state particles and is conveniently
visualized in a Dalitz plot. Events which are sampled uniformly from phase space will uni-
formly populate R in the sY Y −sY Z plane, which for the massless case is the right isosceles
triangle defined by sY Y , sY Z > 0 and sY Y +sY Z ≤ s (figure 1, center). The remaining three
phase space coordinates are Euler angles defining an element of SO(3) which orients the
event, and have been integrated over in eq. (3.1), making the Dalitz plot a particularly con-
venient 2-dimensional projection of the 5-dimensional manifold Mn=3. The boundaries of

6See ref. [61] for a detailed study of the geometry of phase space as a Riemannian manifold.
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Figure 2. Left: Dalitz plot of model predictions for a test set uniformly sampled on phase space
excising a region around sY Y = 0.25 to mimic a sideband analysis. The boundary of the sampled
region is shown in black, and only 5% of the test set is shown for clarity. Right: the 10 worst-loss
points in the sideband test set (blue) and their model predictions (red arrows). The worst loss is
located at isolated points near the boundary of the excised interval, and these points are mapped far
away in the Dalitz plane. However, the excised region is reproduced fairly well. The corners of the
Dalitz triangle are also reproduced poorly, but note that the density of points mapped to the corners
is large while the loss of any individual point there is considerably smaller than the worst-loss points.

R correspond to events where two particles are collinear, and the corners of the Dalitz tri-
angle for massless particles correspond to a soft particle whose energy goes to zero; for finite
final-state masses, these corners are rounded off. Note that the measure is uniform in any
pair of invariant masses, and for massless particles R is the same triangle for all three such
pairs. In real particle physics events, the matrix element for the desired process introduces
a non-uniform distribution on R: for example, if a resonance X of mass mX can decay to
Y Y , an oversampled “stripe” will appear in the Dalitz plot at sY Y = m2

X (figure 1, right).
In this work we will focus on the intrinsic topology of phase space and only sample uniformly
according to eq. (3.1), but we will comment throughout on the role of the sampling distribu-
tion, which may itself be incorporated into the geometry of the phase space manifold [61].

We perform a mock “bump hunt” by normalizing our units such that
√
s = 1 and

choosing a desired invariant mass, say sY Y = 0.25, corresponding to a heavy unstable
particle X of mass mX = 0.5 (m2

X = 0.25) which decays to Y Y . We then train a 7-layer
autoencoder with din = 12 and dl = 5 on “sideband” data sampled from the distribu-
tion (3.1) excluding the region 0.9 m2

X < sY Y < 1.1m2
X ; we use this deeper network rather

than the 5-layer autoencoder to ensure that there are no issues with network capacity that
would inhibit learning the full geometric structure of the phase space manifold. Our setup
mimics the standard procedure of fitting a background model to sidebands before exam-
ining the signal region. The choice of latent dimension is determined by the dimension of
phase space: since the sideband data is drawn from a 5-dimensional manifold, dl < 5 would
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Figure 3. Left: Dalitz plot for a “signal” test set with sY Y = 0.25 but uniformly sampled in
phase space otherwise. 5% of the data is plotted for clarity. The network trained on the sideband
distribution learns to interpolate through the signal region, such that the signal events are not
flagged as anomalous. Right: normalized loss distributions for the sideband test set (figure 2) and
signal test set. Remarkably, the loss distributions are almost identical for the two data sets.

fail to capture the full geometry of the background data and would result in large losses
across the whole data distribution, while dl > 5 would be a redundant parameterization
of the data. To distinguish signal from background, we generate two test sets: a sideband
test set sampled from the same distribution as the training data, and a signal test set with
sY Y = 0.25 but otherwise sampled uniformly in phase space.

The boundary of the sampling region for the training and sideband test sets, along with
the autoencoder output on the test set colored by loss, is shown in figure 2 (left). Note that
the autoencoder does a fairly good job of identifying the boundaries of the sideband region
around sY Y = 0.25, but has trouble at the corners of the Dalitz triangle which correspond
to kinematic endpoints where the energy of one particle goes to zero. While it is true that
the autoencoder task is only to minimize the Euclidean distance between the model and
the data point-by-point in phase space, the spurious features in the model output imply
correlations which will be imprinted on the loss distribution, which is the desired diagnostic
for anomaly detection. Furthermore, the largest-loss points (blue), with loss L ' 0.05, are
located near the boundary of the excised interval near sY Y = 0.25, as shown in figure 2
(right). While these large-loss points are mapped far away by the trained model, most
points near the excised interval are low-loss and are mapped close to their true locations.
Indeed, we will show in the remainder of this paper that the existence of a neighborhood
of large-loss points (i.e. those whose predictions are far away from the true value, and thus
have large loss as measured by Euclidean distance) is a direct consequence of phase space
having the topology of a sphere.

Next, we run the trained autoencoder on the signal test set. The Dalitz plot is shown
in figure 3, left. In the Dalitz plane, the signal data lives on a vertical line (the purple
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line in figure 1, right), and we see that despite the autoencoder never having seen points
in this region before, it can smoothly interpolate across it, reconstructing points in the
signal region with low loss except for a few isolated points. These points are not any more
or less anomalous than the rest of the signal data, but are simply the neighbors of the
large-loss points in the sideband test set which get mapped far away by the model. The
loss distributions of the two test sets (figure 3, right) are essentially identical. In particular,
there is no obvious large-loss tail for the signal events which would flag them as anomalies,
despite events with sY Y = 0.25 being entirely absent from the training set. There is no
reasonable decision boundary that one could draw to separate these two distributions.
Cutting on whatever small large-loss tail does exist, at say L = 10−2, would give a signal
efficiency of εS = 7.4 × 10−4 and background rejection power 1/εB = 3 × 103 ' 2/εS
, making this autoencoder an extremely poor anomaly detector for rare events and no
better than a random classifier at larger signal efficiency. This simple example should be
compared with e.g. ref. [43] where QCD and non-QCD jets have largely non-overlapping
loss distributions for a similar autoencoder architecture and reasonable ROC curves which
can achieve the same background rejection with εS ' 0.1.

We have checked that varying dl does not change this conclusion. For dl > 5 the
loss distributions for both background and signal have no large-loss tail (indicating near-
perfect reconstruction) and whatever tail exists for the background events exceeds the
signal events, so the signal events would be classified as “less anomalous.” For dl < 5, the
loss tails for both the background and signal distributions are large and nearly identical,
and moreover the network fails to identify the boundaries of the sideband intervals, so
no information is gained by further reducing the latent dimension. Similarly, changing
the length of training does not change our conclusions: the large-loss points persist for
both shorter and longer training, and the loss tails for the sideband and signal sets do not
separate. We have also verified that the results are identical including both 1% Gaussian
smearing on all 4-momenta coordinates and sampling the signal test set from a Breit-
Wigner distribution with 0.5% width, both of which resemble typical detector effects and
matrix element structures for realistic applications.

This result would seem to preclude using a standard neural network autoencoder to
perform a bump hunt in leptons, where the lack of soft and collinear radiation makes the
particle 4-vector a decent proxy for what is actually measured at a collider detector — in
other words, parton-level observables are nearly equivalent to detector-level observables —
unless additional features were incorporated into the autoencoder architecture. Given that
simple feed-forward autoencoders have already found some success in anomaly detection in
jet images [43], it is a priori somewhat surprising that the same network architecture fails
at what would naively seem to be an easier problem.7 As we will see in the remainder of
this paper, because the training data for the lepton bump hunt is sampled directly from

7That said, in [43] the jet image autoencoders were only trained on “cropped” images containing only
individual jets from a (presumably) multi-jet event. Our analysis suggests that similar issues might be en-
countered if the event were considered as a whole, since (for example) two QCD jets which were occasionally
almost collinear (which one would reasonably expect to be part of the background distribution whenever
the event in question had three or more partons) would be difficult to distinguish from a single fat jet.
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n-particle phase space, one can better understand these results from the perspective of
topology: the network uses its inductive bias toward interpolation to trivialize the topology
of S3n−4 in the most minimal way possible, which involves localizing all large losses near a
single point in phase space and interpolating everywhere else.

4 Dimension 1: intrinsic topology and the unit circle

To elucidate our observations about phase space, we will explore a series of low-dimensional
examples which encapsulate particular topological features and are more easily visualized.
In dimension 1, all closed manifolds without boundary have the same intrinsic topology as
the circle.8 Our examples in this section illustrate two key points:

1. If the manifold has nontrivial intrinsic topology then there will be some data points
on the manifold reconstructed with large loss despite not being anomalies of any kind;

2. The sampling distribution used during training can influence the location of those
badly reconstructed points.

To start, we consider the simple example of a training set of points (x, y) equidistantly
spaced on the unit circle S1. Since S1 has dimension 1, every point on the data manifold
can be represented by a single number, an angle φ ∈ (−π, π] such that (x, y) = (cosφ, sinφ).
Thus, a latent layer with dl = 1 should be able to fully capture the local geometric features
of this manifold. However, the periodicity of φ is a topological obstruction to learning the
global structure of the data manifold. In the language of differential geometry, a choice of
coordinates is a chart S1 → R, but the nontrivial topology of S1 means that it must be
covered by at least two charts; without additional structure in the autoencoder network, the
latent representation can only provide a single chart. Since φ is periodic, with φ and φ+2π
corresponding to the same point in the training set, the latent layer’s encoding function
(x, y) 7→ f enc(φ) will cover its range at least twice, with one arc of the circle mapping
onto the interval [min(f enc),max(f enc)] and its complementary arc mapping onto the same
interval. The reconstruction can be accurate on at most one of those arcs, so we expect the
autoencoder to make one of those arcs as large as possible and the other as small as possible.

Indeed, this is exactly what happens. Figure 4 (top left) shows the latent representation
as a function of the input φ after training the 5-layer network on a training set composed of
equidistant points on the unit circle. The representation fails quite obviously at a particular
angle φ0 (marked in red) which we refer to as the break point; this result is consistent with
the fact that the circle with a point excised is topologically equivalent to R.9 As can be

8Depending on the embedding S1 → Rn, the embedded curve may also have extrinsic topology, de-
pending on whether a projection into a plane R2 can yield a curve without self-intersections; the canonical
example of such nontrivial extrinsic topology is a knot, which we explore further in appendix C.1.

9Given that the training set is exactly uniform (to machine precision), the appearance of a preferred
angle φ0 is a textbook example of spontaneous symmetry breaking; as the size of the training set increases,
a continuous family of identical loss minima parameterized by φ0 emerges. In future work we plan to
investigate how this symmetry breaking is realized on the loss landscape of the autoencoder, given that φ0

is determined by the stochastic dynamics of network initialization and training.
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Figure 4. Performance of an S1 autoencoder with latent dimension dl = 1. The break point φ0 is
shown in red in all plots. Top left: latent representation as a function of input φ. Top right: model
φ as a function of input φ. Bottom left: model points (x, y) compared to data (x, y). Bottom right:
loss as a function of input φ for a uniformly-sampled test set.

seen in the plot of the model output (figure 4, top right, where we define the output φ as
tan−1(y/x)), the autoencoder maps points near φ0 all over the circle, with output values of
φ ranging from −π to π. This is also easily visualized by plotting the model as points in R2

(figure 4, bottom left). This leads to large reconstruction error in the neighborhood of φ0:
figure 4 (bottom right) shows the losses as a function of φ on a uniformly-sampled test set.
Losses at φ0 are on the order of 103 times the loss of a generic test set point, despite the fact
that the break point is not an anomalous point of any kind but rather just another generic
point on the circle. In appendix B, we solve the network dynamics for a generic activation
function and SGD training and demonstrate why a finite-sized break region around φ0
persists even after long amounts of training. The size of this break region is roughly
independent of the network width and depth for a fixed training length, shrinks very slowly
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Figure 5. Same as figure 4 (bottom row) but for a training set undersampled around φu (purple).
The break point φ0 is shown in red.

(perhaps logarithmically) with training, and depends primarily on the particular form of
the activation function and the training algorithm. We plan to return to the rich interplay
between topology and network dynamics illustrated by this simple example in future work.

In fact, the region around the break point persists even for the absurdly small training
set of 20 equidistant points on the unit circle. In that case, the loss at the worst point in the
training set is only ∼10 times the loss for a generic point after 100,000 epochs of training.
However, the network has not simply memorized the training data because the output map
fails to reconstruct at least one of the training set points. Indeed, a bad point seems to occur
as long as the density of the training set is high enough that the break region size exceeds the
spacing between data points (for the hyperparameters given in appendix A, this occurs for
training sets containing 15 or more equidistant points on the unit circle).10 We provide more
details in appendix B, including a number of other checks showing that the behavior we see
persists with different training algorithms and activations, and that near-perfect reconstruc-
tion error can be achieved if dl = 2 since the autoencoder finds the trivial global minimum.11

These observations are related to general considerations about the performance of
neural networks on interpolation and extrapolation tasks. To see this, consider a training
set which is undersampled near a randomly chosen point on the unit circle given by φu.
Figure 5 shows the result of training an autoencoder on points sampled from a normal
distibution with mean φu +π and standard deviation π/3. The break point now lies in the
undersampled region (with φu shown in purple), but all other aspects of the autoencoder

10We can also formulate this observation in terms of persistent homology, a method of identifying topo-
logical features of datasets [63]: if the data has persistent first homology H1 at the length scale defined
by the size of the break region, then it will behave like a topological circle and have a bad point in its
reconstruction.

11In this case, since with dl = 2 we have dl = din, the network is learning the identity map on all of R2.
More complicated topologies in higher dimensions may provide obstructions when d < dl < din, and we
study such an example in appendix C.2.
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behavior are similar to the equidistant training set. In effect, we are asking the autoencoder
to perform an interpolation task — on which neural networks typically have excellent
performance — but the nontrivial topology of the circle makes this task impossible. In this
1-dimensional example, points absent from the training set in the neighborhood of φu are
indeed reconstructed with large loss, but this is not because these points are anomalous per
se, but rather because the topology forces large loss to occur somewhere and the overall loss
is minimized by placing the break point in the region where the fewest training points exist.
Indeed, we can choose the location of the break point by changing the sampling distribution.
We emphasize again that the reconstruction error for an undersampled topologically-trivial
curve is not enhanced in the undersampled region; an autoencoder has no trouble learning
a distribution on an interval, except near the endpoints where the reconstruction task
changes from interpolation to extrapolation. Thus, topology precludes a simple 1-to-1
mapping between autoencoder loss and typicality of data. This behavior persists in higher
dimensions, as we discuss further in section 5.1 below.

5 Dimension 2

As we begin to investigate higher-dimensional data sets, visualizing both the latent repre-
sentation of the data and the data manifold itself will become more difficult. Visualization
is still manageable in d = 2, but to prepare for higher-dimensional examples, we will intro-
duce a useful tool, the loss-versus-distance plot. This is a scatter plot of the autoencoder
loss on points in the test set versus their Euclidean distance from the point of largest loss.
The intuition is that manifolds which suffer poor reconstruction error in the neighborhood
of a single point will show losses anti-correlated with distance from that break point, as in
the case of the circle. Indeed, since the n-sphere Sn with a single point excised can be cov-
ered with a single chart, all autoencoders trained on spheres should exhibit this behavior,
regardless of dimension (we will see this explicitly in section 6). If, on the other hand, the
loss appears to be uncorrelated with distance, then the manifold may have more complex
topology, requiring tearing along a submanifold (instead of just puncturing) to fit in Rn;
we study such examples in appendix C.

Our examples here will illustrate that the issue of intrinsic topology we identified in
1-dimensional data sets persists in d = 2. However, in dimension 2 we can have the qual-
itatively different situation of undersampling our data distribution along a 1-dimensional
submanifold, as opposed to dimension 1 where submanifolds are just isolated points. We
will see that, depending on the topology of the data manifold, most of the submanifold
may be reconstructed with small loss, despite being absent from the training set.

5.1 The 2-sphere and the paraboloid: interpolation and extrapolation

As we did with the unit circle, we consider training an autoencoder on a uniformly-sampled
unit sphere S2 (in this example we use uniform sampling rather than equidistant points for
the training set, but this makes no material difference for the examples to follow), defined
by x2 +y2 +z2 = 1 in R3. Using the same training scheme as with the circle, but now using
an autoencoder with dl = 2, we find the results shown in figure 6: the loss is localized near a
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Figure 6. S2 autoencoder. Left: autoencoder output for a uniform test set showing a “hole”
analogous to the break point for the S1 autoencoder (here at upper left of the figure). Center:
Mollweide plot showing the autoencoder output in blue, along with the test set colored by loss,
showing that large losses are localized to the hole. Right: loss-versus-distance plot showing that
the loss falls monotonically with distance, indicating a localized tearing in the latent map. This
visualization more straightforwardly generalizes to higher dimensions.

Figure 7. Same as figure 6 for a training set with the region at the equator between the green
curves excised. The model map can interpolate most of the equator with low loss but breaks at a
point along the equator.

single point on the sphere (as with the circle, this point is randomly chosen by initialization
and stochastic dynamics), the autoencoder model punctures the sphere in a region around
that point, and the loss is ∼ 103 worse in this region than at a generic point in the test set.12

As with the circle, we can undersample the sphere at a point, and just as with the circle,
the break point of the model map falls in this undersampled region. However, because the
sphere is two-dimensional, we now have the opportunity to undersample along an entire
1-dimensional submanifold, for instance the great circle along the equator. This situation is
a closer analogy to our bump hunt example, where rare events tend to lie on submanifolds,
rather than at isolated points, of phase space. Since another way to trivialize the topology
of the sphere is to excise an entire great circle, yielding the topology of two disks, D2⊕D2,
we might expect that this will also be a local minimum of the autoencoder loss. However,
after training an autoencoder on a uniform distribution on the sphere but with the region

12Unsurprisingly, for dl = 1, the reconstruction is poor everywhere except on a randomly-chosen curve
on the sphere, which must have a break region because of the analysis of section 4.
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Figure 8. An autoencoder trained on a paraboloid z = x2 + y2, z ≤ 4, with the region z < 0.2
(green circle) excised, can interpolate the excised region better than it can extrapolate the boundary.

around the equator with |z| < 0.1 excised entirely, the model map (figure 7 left and center)
typically breaks at a random point along the equator; it has no trouble interpolating the
rest of the equator (which was absent from the training set entirely) because there is no
topological obstruction to doing so. The trained network does occasionally yield the output
with the D2 ⊕D2 topology; however, over many network realizations, the local minimum
with a single break point is much more common, and moreover has lower overall loss. The
situation we have described is thus complementary to the 1-dimensional case of the unit
circle. The best local minimum for the autoencoder is the one which distorts the data
manifold at the fewest number of points; since this can be done by removing a single point
on S2 (i.e. a submanifold of dimension 0), “anomalous” (i.e. undersampled) submanifolds of
dimension 1 will be interpolated with low loss except perhaps at an isolated point. Without
any additional way of influencing the latent representation, this behavior would seem to
preclude using autoencoders to learn this family of distributions on the 2-sphere.

To demonstrate that this interpolation is a generic feature of autoencoders, we train
a network with the same architecture and hyperparameters as for the sphere example on
a topologically trivial surface, the paraboloid z = x2 + y2 with the region z < 0.2 excised.
The test set is sampled uniformly in x and y up to x2 + y2 = 4. Figure 8 shows the
losses on a test set sampled from the full paraboloid with 0 ≤ z ≤ 4. The center region is
interpolated with much smaller loss than the largest-loss points, which are localized on the
boundary. Indeed, the finite extent of the training set implies the topology of a manifold
with boundary, and reconstructing the boundary accurately is an extrapolation task, which
is generally more difficult for neural networks than the interpolation task of filling in the
center. Despite this, the worst loss is more than two orders of magnitude smaller than the
worst loss for the excised sphere example, because (neglecting the boundary at z = 4) the
paraboloid has the same topology as R2.
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Figure 9. Double cone autoencoder. Left: training set sampled uniformly by height, thus over-
sampled at the tips. Center: autoencoder output, showing a break point as for the S2 autoencoder,
as well as somewhat poor reconstruction near the tips. Right: loss as a function of height, showing
the global maximum at the break point but local maxima at the tips.

5.2 The double cone: extrinsic geometry and non-uniform sampling

Any 2-manifold without boundary or handles is topologically equivalent to the 2-sphere S2.
However, the embedding in R3 can introduce an extrinsic geometry different than that of
the round metric on the sphere. For example, a double cone has two distinguished points
(the tips of the cones) where the embedding is not differentiable and the extrinsic curvature
diverges. As we will see in section 7 below, this is a decent low-dimensional cartoon of the
geometry of massless phase space, where the corners of the Dalitz plot represent the non-
differentiable embedding ofMn=3 in R12 at points where the energy of a massless particle
goes to zero. In anticipation of that analogy, we will also consider sampling the double
cone uniformly in height (analogous to sampling uniformly in the Dalitz triangle), which
effectively oversamples near the tips. Figure 9 (left) shows an example of a training set
drawn from this distribution, for a right circular cone of height h = 2 and equatorial radius
r = 1. As expected, the density of points near the tips is greater than at the equator.

After training an autoencoder with dl = 2 on the double cone sampled uniformly in
height, figure 9 (center) shows the output of the model on a test set drawn from the same
uniform-height distribution. Since the double cone has the topology of S2, there must be
a break point, and as with the example of S2 with an excised equator, the break point is
located in the “bulk” of the cone since the average loss is minimized by placing the break
point in the undersampled region. However, the large extrinsic curvature at the tips is
an obstruction to reconstructing them well by a smooth function, as can be seen visually
from the plot of the model output. In figure 9 (right) we plot the loss on the test set as
a function of the true height of the test set point. The global maximum is at the break
point, but there are also local maxima at the tips. The same result is obtained when the
equator of the double cone is excised entirely from the training set: the break point now
lies on the equator, but the remainder of the equator is interpolated with low loss, and
the local maxima at the tips persist. As we will show, the equator in this toy example is
analogous to the signal submanifold of fixed 2-particle invariant mass in 3-particle phase
space, and our results will be more or less equivalent to figure 9 (right).
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Figure 10. Loss-versus-distance plots for autoencoders trained on n-dimensional spheres. For
n = 4, 5, the autoencoder finds the latent map which approximates stereographic projection, with
only a single break point. The same is true for SU(2), which is diffeomorphic to the 3-sphere
embedded in R8.

6 Higher-dimensional spheres

Just like the case of S2, the n-dimensional sphere Sn can be mapped into Rn everywhere
except a single point, in a higher-dimensional analogue of stereographic projection. We
can see this explicitly in figure 10, where we have trained the deep 7-layer network with
dl = n on uniformly-sampled training points from the standard embeddings of round
spheres, S4 ⊂ R5 and S5 ⊂ R6. We also consider an example of a sphere embedded in
higher-dimensional space. The group SU(2), the set of complex 2×2 matrices U satisfying
U †U = I2×2, can be parameterized by a triplet of Euler angles (α, β, γ) and is diffeomorphic
to S3. An element of SU(2) can be mapped into a vector of 8 real numbers, the real and
imaginary parts of the matrix entries, and thus embedded in R8. As shown in figure 10,
the SU(2) autoencoder with din = 8 and dl = 3 shows almost identical behavior to the
spheres in other dimensions. These examples confirm that the behavior we have been
finding — in particular the utility of the loss-versus-distance plot to visualize the effect of
data topology on the autoencoder reconstruction — persists to higher dimensions. Note
that the magnitude of the loss at the break point compared to a generic point on the
training manifold, about 5 orders of magnitude, is also robust with respect to dimension
with the other network hyperparameters fixed.

7 3-body phase space

Armed with the intuition from the previous lower-dimensional examples, we return to 3-
particle phase space. As discussed in section 3, this 5-dimensional manifold Mn=3 has
a natural embedding in R12; here, we will show that it has the topology of the 5-sphere
S5. Intuitively, the mass-shell conditions and the conservation of spatial momenta are
topologically trivial, as they can be formulated by saying one variable is a single-valued
function of the others. Only the conservation of energy creates topology, and the level
sets of the energy function turn out to be spheres. More precisely, suppose the particles
have masses mi, energies Ei, and spatial momenta ~pi (i = 1, 2, 3). Then the mass-shell
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conditions are Ei =
√
|~pi|2 +m2

i for i = 1, 2, 3. Since each Ei is determined algebraically
by the pi, dropping the Ei coordinates preserves the topology. Let the total initial-state
4-momentum P = p1 + p2 + p3 have 4-vector components P = (E0, ~P0). Since each Ei
is a convex function of the pi, the inequality E0 ≤ E1 + E2 + E3 defines a convex origin-
symmetric ball in R9. Conservation of energy says that phase space lies on the boundary
of that ball with E = E0. Conservation of momentum slices that ball by the hyperplane
~p1 + ~p2 + ~p3 = ~P0, forming a 6-dimensional ball whose boundary, a sphere, is precisely
3-particle phase space.13 Note also that this argument generalizes straightforwardly to
n-particle phase space, which has the topology of S3n−4.

Visualizing the geometry and topology of high-dimensional manifolds can be difficult,
but the Dalitz plot introduced in section 3 provides a convenient starting point. A point
within the Dalitz triangle fixes the energies of the final-state particles. Momentum con-
servation implies the final-state particles are coplanar in the COM frame, and thus their
orientations are determined by three Euler angles (i.e. an element of SO(3)) which fix the
unit normal vector to the event plane and the orientation within the event plane. Locally,
then, the geometry of 3-body phase space is R2×SO(3). At the boundaries of the triangle,
a pair of particles becomes collinear and define an event vector rather than an event plane,
which introduces a redundancy because many elements of SO(3) contain the same S2 which
orients the event vector. Furthermore, at the vertices of the triangle, a particle becomes
soft (i.e. its energy goes to zero). The properties of the boundaries and the corners are
particularly important for relating the underlying topology to the extrinsic geometry. At
the boundaries, uniform sampling in the Dalitz plane leads to effective oversampling with
respect to the round metric on S5 because of the redundancy of SO(3) rotations when
two vectors are collinear, much as in section 7 where the double cone sampled uniformly
in height oversampled the tips compared to the uniform sampling of the 2-sphere. Fur-
thermore, the embedding of phase space in R12 is non-differentiable at the corners where
Ei → 0, leading to a singularity in the extrinsic curvature, a higher-dimensional analogue
of the tips of the double cone.

Based on the results of our low-dimensional examples, these topological features should
be apparent when uniformly-sampled phase space is used to train an autoencoder with la-
tent dimension 5. In any realistic physics application, the distribution of events will also
be weighted by the matrix element for the relevant process, which could have almost arbi-
trary dependence on the Dalitz plane variables in a model-independent search of the kind
autoencoders are useful for. As we have seen in sections 4 and 5.1 with the undersampled
S1 and S2, the sampling distribution can interplay with the data topology in interesting
ways. For the example which follows, we will take a constant matrix element, leaving an
exploration of the effects of some common forms of matrix elements for future work.

Here, we sample events uniformly from massless 3-particle phase space (3.1) — as
opposed to our sideband distribution in section 3 — and train with a 7-layer autoencoder

13Recent work [61] proposes a convenient spinor interpretation of phase space as a double quotient of the
unitary group (U(n)/U(n − 2))/U(1)n. Ref. [61] further decomposes U(n)/U(n − 2) as a twisted product
of S2n−1 and S2n−3, and gives a measure which is defined simply in terms of each factor. Note that global
topology is still spherical; as in the Hopf fibration, the twisted product of spheres is another sphere.
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test set is uniformly sampled using the Lorentz-invariant measure (3.1) from an initial state with
unit energy. The resulting loss shows the single break point characteristic of S5 (figure 10, center).
Right: Dalitz plot showing the distribution of the model prediction (red) on a uniformly-sampled
test set (sampled from the interior of the outlined black triangle). Bottom: the 10 worst points
from the uniform test set and their model predictions. The largest-loss points are localized near a
generic point in the interior of the Dalitz triangle, while at the corners the loss is lower even as the
reconstruction is poor, in close analogy to the double-cone example of section 5.2.

with dl = 5. The loss-versus-distance plot is shown in figure 11 (left); as expected, the
largest loss is localized near a point, reflecting the topology of S5 (compare with figure 10,
center). The embedding in R12 does not change the topology, so just as SU(2) ⊂ R8

had the same loss-versus-distance plot as the standard embedding of the n-sphere in Rn+1

(figure 10, right),Mn=3 ⊂ R12 exhibits the same topological features as S5 ⊂ R6.
To visualize the autoencoder reconstruction, we plot the output of the model on the

Dalitz plane in figure 11 (right), exactly analogous to our bump hunt example in figure 2
of section 3. The corners of the triangle, where the extrinsic curvature is singular, are not
reproduced well, and there is a local maximum of the loss at each corner. The behavior is a
straightforward higher-dimensional analogue of the double cone of section 5.2. However, the
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Figure 12. Normalized loss distributions for the uniform test set (figure 11) and signal test set
with sY Y = 0.25 from figure 3. The loss tail for the signal events is smaller than for the background
events, the opposite of the desired behavior.

10 worst points (and hence the global maximum of the loss) are located near a generic point
inside the Dalitz triangle, as shown in figure 11 (bottom).14 In contrast to the sideband test
set of figure 2, or the double cone with the equator excised, there is no undersampled region
where the break point is preferred. The points near the break point are mapped far away in
the Dalitz plane, which is consistent with their large loss under the Euclidean metric. We
emphasize once again that none of these features have anything to do with anomalies, be-
cause we have uniformly sampled phase space according to the Lorentz-invariant measure,
so any point is as “typical” as any other. While it is true that the autoencoder task is only
to minimize the Euclidean distance between the model and the data point-by-point in phase
space, the spurious features in the predicted distribution point to correlations which will be
imprinted on the loss distribution, which is the desired diagnostic for anomaly detection.

From a topological perspective, the failure of the bump hunt described in section 3 is
now straightforward to understand. With 3-body phase space having the local geometry of
R2×SO(3), the submanifold with sY Y equal to a certain value in the interior of the Dalitz
triangle — i.e. the signal — is much like the equator of the sphere in section 5.1 or the
equator of the double cone in section 5.2, and interpolating through this region is topo-
logically trivial. The S5 topology means that a break point must exist, where the latent
representation rips the data manifold and test set points near the break point are mapped
far away. If the autoencoder is trained on a distribution with an undersampled region, the
break point will typically be placed nearby (figure 2), but the rest of the submanifold of
fixed sY Y will be reconstructed with low loss like any other generic point in phase space,

14Note that since the Dalitz plot is a 2-dimensional projection of 5-dimensional phase space, points that
are somewhat distant in the Dalitz plot can still be “close” in the SO(3) coordinates over each point; the
loss-versus-distance plot of figure 11 (left) makes clear that the 10 worst points are indeed close inMn=3.
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as we saw in figure 3. Said another way, the autoencoder will detect a point in phase space
as anomalous (representing a particular orientation of the final-state 3-vectors), but this is
only a set of measure zero on the submanifold of desired anomalous events. The situation is
even worse if the training set is uniform in phase space, because there is no guarantee that
the break point will even lie on the signal submanifold; as seen in figure 12, the loss tail
from pure signal events is smaller than the loss tail from the background events because the
network can achieve near-perfect reconstruction on the 4-dimensional signal submanifold
with dl = 5. It is clear that if trained on a smooth background distribution (no sidebands),
the autoencoder cannot detect anomalies in a test set with both signal and background,
since even the 100% signal sample is indistinguishable from the background. Finally, the
effective oversampling of the boundaries of the triangle with respect to the standard round
metric on S5 is analogous to the double-cone example of section 5.2: even though the av-
erage loss is minimized by placing the break point in the interior of the Dalitz triangle, the
model will struggle to reconstruct the corners where the extrinsic curvature is large, intro-
ducing additional distortions in the loss distribution. This strongly suggests that caution is
warranted when using an autoencoder as an anomaly detector for real physics events, where
the nontrivial matrix element will induce a non-uniform distribution in the Dalitz plane.

8 Changing the latent dimension

As most of our examples have focused on the case dl = d, it is worth asking to what
extent the topological obstructions to autoencoder reconstruction that we have identified
are robust to changes in the latent dimension. Here we briefly summarize a series of
examples illustrating that increasing dl beyond the intrinsic dimension of the data manifold
is not guaranteed to cure topological issues; further details are provided in appendix C for
the interested reader. Of course, if dl ≥ din, the network will learn the identity map, which
will not detect any anomalies, so we focus on the case d < dl < din.

• A circle may be embedded in R3 as a knot, with nontrivial extrinsic topology; even
for dl = 2, where perfect reconstruction is theoretically possible (as the circle does
embed in the plane), the training process gets stuck at a local minimum with self-
intersections in the latent space. However, the performance can be substantially
improved by modifying the loss function to force the network to learn a latent repre-
sentation without self-intersections.

• The torus T 2 may be embedded in R3 as the standard “donut” embedding, or in R4 as
a direct product of two circles, the Clifford torus. For din = 4, the global loss minimum
for dl = 3 is the donut embedding. After training an ensemble of networks, the latent
representations fall into two qualitative categories: infrequently, the network finds
the global loss minimum, but more often, the latent map pinches one of the circles
in two locations along the torus, yielding poor reconstruction. This demonstrates
that even though an embedding may be topologically possible, a randomly-initialized
autoencoder is not guaranteed to find it, raising concerns about the robustness of
autoencoder performance on data manifolds with nontrivial topology.
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• The group manifold SO(3) is locally isomorphic to SU(2), but has the topology of the
real projective space RP3, consisting of identifying antipodal points on SU(2) ∼= S3.
With din = 9 (i.e. flattening the 3× 3 SO(3) matrix into a 9-component real vector),
this global topological obstruction prevents good reconstruction even up to dl = 5,
which is the dimension in which SO(3) may be embedded in Rn.

While some of these examples may represent more complicated topology than a generic
data set in the wild (or even a practically-relevant data set in high-energy physics), they are
important illustrations of the fact that simply increasing the size of the latent space does
not guarantee that an autoencoder trained on data sampled from a topologically-nontrivial
manifold can achieve low uniform reconstruction error.

9 Conclusions

The importance of understanding the topology of input data has been recognized since the
1960s and was a pressing issue for Rosenblatt, the inventor of the perceptron (see [64]).
At the time, the question was not about a latent representation, but about the extrinsic
topology of the input, e.g. whether a circle was inside or outside a square in an input image
or whether two components of an image are connected or not. Early neural network models
struggled to identify these very global features of input images, as was famously elucidated
by Minsky and Papert in their famous critique of the perceptron model [65].

In this paper we have attempted to further understand this intertwining of data topol-
ogy and neural network performance via an extensive study of a rich variety of low-
dimensional input data sets exhibiting both nontrivial intrinsic and extrinsic topology.
In particular, we have identified several situations where the global topological features of
the data set pose an obstruction to faithfully compressing the data even when the latent
space dimension is equal to the intrinsic dimension of the data, which is a local feature. As
an application, we have shown that in the canonical example of anomaly-finding in high-
energy physics, a “bump hunt,” an neural network autoencoder trained on data drawn
from n-particle phase space (with n fixed) inevitably results in order-1 reconstruction error
for generic points in the training set, and moreover fails to flag as anomalies events with
invariant mass values that are entirely absent from the training set.

Since the issues of large reconstruction error are entirely due to the topologically-
impossible task of trying to cover a whole manifold with a single chart, they could in
principle be ameliorated by training multiple networks — the latent representations of
which would represent independent charts — and using the regions of faithful reconstruc-
tion in pairwise overlaps of charts to construct transition functions. Indeed, an ensemble
of networks has already been used in the context of weakly-supervised learning for col-
lider physics to mitigate the trials factor or “look-elsewhere” effect [66]. If the large-loss
points are uniformly distributed across the data manifold, a simple (but computationally-
expensive) way to do this would be to independently train a large number of randomly-
initialized networks and take the median of the outputs; specifically, for each test set point,
sort the list of autoencoder losses from each network and define the output of the ensemble
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to be the autoencoder output corresponding to the median loss in this list. A more sophis-
ticated solution would correlate the network parameters to construct transition functions
directly, along the lines of [58]. Such a strategy of multiple network realizations would also
be helpful in cases like the 2-sphere with the excised equator, where the trained ensemble
doesn’t concentrate on a single minimum. Alternatively, one could let a single network find
the transition functions itself using an architecture consisting of parallel sub-networks for
each chart, perhaps with suitable encouragement by modifying the loss function.15 How-
ever, for submanifold-type anomalies — such as the bump hunt in phase space — each of
the networks or sub-networks will be able to smoothly interpolate through the anomalous
submanifold, and no anomalies would be detected.

As our examples with the undersampled circle and phase space have shown, some
knowledge of the data topology can be very useful in interpreting the output of an autoen-
coder. Specifically, knowing that there must be points with large loss could motivate a net-
work architecture which correlates that loss with the data distribution. It would be particu-
larly interesting to investigate how the topology of phase space is imprinted on jet substruc-
ture observables where the number of final-state particles is not fixed, and additional soft
and collinear radiation “dresses” the parton-level phase space with events near the bound-
aries of the higher-dimensional simplex defining the analogue of the Dalitz plot for hadron-
level phase space. Conversely, the autoencoder itself can be a useful diagnostic of the data
topology, by examining whether the points with large loss are correlated in distance.

Far from being some esoteric feature, we might expect that some nontrivial topology is
generic for data sets containing features with any degree of rotational symmetry, which ap-
plies to a number of examples outside of physics such as 3-dimensional objects viewed from
different perspectives. Indeed, refs. [67, 68] have used the nontrivial topology of the sphere
(in particular, distortions resulting from planar projections) to motivate SO(3)-equivariant
networks to perform machine learning tasks on datasets which live on spheres, which may
have applications for learning observables which are functions on phase space. There has
been some very interesting recent work on estimating the intrinsic dimensionality of generic
data sets [69, 70], but these techniques rely on various proxies for the data dimension after
the data has already passed through layers of the neural network, which as we have argued
is a good probe of local dimension but necessarily misses the global topological features.
Depending on how that local dimension is being used in the downstream machine learning
task, it might be necessary to adapt such methods further to account for cases of nontrivial
topology. Given the considerable recent work which has focused on incorporating nontrivial
priors about the data set, including symmetry properties, into the network architecture,
we hope this work has motivated including data topology into that set of priors.
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Example Section Sample Size Learning Rate Batch Size
Unit S1 4 Ntrain =Ntest = 1000 10−2 64
Sparse S1 4, appendix B.2 Ntrain = 12,20 10−2 Ntrain

S2 5.1 Ntrain =Ntest = 3000 10−2 64
Paraboloid 5.1 Ntrain =Ntest = 3000 10−2 64
Double cone 5.2 Ntrain =Ntest = 3000 10−2 64

S4 6 Ntrain =Ntest = 104 10−2 64
S5 6 Ntrain =Ntest = 105 0.1 512

SU(2) 6, appendix C.3 Ntrain =Ntest = 104 10−2 64
Phase space 3, 7 Ntrain =Ntest = 105 0.1 512

Trefoil Appendix C.1 Ntrain =Ntest = 1000 10−2 64
Torus Appendix C.2 Ntrain =Ntest = 3000 10−2 64
SO(3) Appendix C.3 Ntrain =Ntest = 104 10−2 64

Table 1. Autoencoder hyperparameters.

work is supported by the National Science Foundation under Cooperative Agreement PHY-
2019786 (The NSF AI Institute for Artificial Intelligence and Fundamental Interactions,
http://iaifi.org/).

A Hyperparameters

Our autoencoder neural networks were fully-connected nets constructed with Pytorch,
using default initializations and trained with stochastic gradient descent (SGD) for 20,000
epochs. In the examples described in the main text, we used tanh activations for all layers
except the output of the encoder and the output of the decoder; other activation functions
and training algorithms for the S1 autoencoder are discussed in appendix B below. The
hyperparameters for each of the examples are shown in table 1.

We increased the number of sample points as the dimension increased, and for the
highest-dimensional examples we also increased the batch size by about an order of mag-
nitude and as such increased the learning rate accordingly [71].

B Further investigation of the S1 autoencoder

In section 4, we argued that the appearance of a break point in an autoencoder with latent
dimension 1 is an unavoidable feature of a data set with the topology of S1. In principle,
one could imagine that with sufficient training, the break point would be placed in between
finitely-spaced training points, such that the network could achieve perfect reconstruction
on the training set. In practice, we find that this is not true, and the appearance of a
finite-sized break region encompassing multiple training points seems generic and robust
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Figure 13. Output of the S1 autoencoder with different network architectures but all other
hyperparameters from table 1 held fixed: 5-layer networks with dw = 32 (left) and dw = 128
(center), and a 7-layer network with dw = 64 (right). The finite-sized break region persists in all
cases, though it is reduced somewhat in the 7-layer network.

with respect to changes in the network hyperparamters and architecture. In this appendix
we will justify these statemements and perform a simple analytical analysis of the network
dynamics to relate the topological requirement of a break region to the network parameters
which determine it. While nothing in this appendix has anything to do with physics per se,
we find the richness of this simple example worthy of serious investigation in future study
as it touches on notions of spontaneous symmetry breaking, topology of finite data sets,
and the neural network loss landscape.

B.1 Changing hyperparameters

We first note that the persistence of the break region is insensitive to changes in the width
or depth of the network. Figure 13 shows the S1 autoencoder with three different architec-
tures: a 5-layer network with dw = 32 (left) and dw = 128 (center), and a 7-layer network
with dw = 64 (right). In addition, we experimented with changing the activation function:
figure 14 shows results for our default architecture with a ReLU activation function (left),
as well as modified tanh activation functions 1

β tanh(βx) with varying “temperature” β
(center and right). The ReLU and β > 1 activation functions seem to result in a somewhat
smaller gap, but one which is still easily visible and encompasses multiple data points from
the training set of 1000 equally-spaced points. We also tried a different training algorithm:
figure 15 shows the results for the Adam [72] optimizer compared to SGD. As expected,
Adam converges to the gradient descent minimum faster than SGD. This results in a smaller
gap for the same amount of training, though once again the finite gap remains even after
20,000 epochs. Finally, we verified that the topological obstruction was indeed arising from
a latent dimension dl = 1 rather than any issues with inadequate network capacity. After
training the default S1 autoencoder with dl = 2 on 1000 equally-spaced points on the unit
circle, figure 16 shows the output of the autoencoder on a test set of 3000 points uniform on
the whole square−1 ≤ x, y ≤ 1. The loss is smallest on the training set (green), as expected,
but the fact that the loss is of the same order everywhere else in the square except at the
corners strongly suggests that the network is learning the trivial map on R2 for x2 +y2 ≤ 1.
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Figure 14. Output of the S1 autoencoder with different activation functions: ReLU (left), and
1
β tanh(βx) with β = 0.5 (center) and β = 5 (right).

Figure 15. Output of the S1 autoencoder with identical hyperparameters but different training
algorithms: SGD (left) (same as figure 4), and Adam [72] (right).

B.2 Sparse circle

The S1 autoencoder exhibits interesting behavior when the size of the training set is very
small, as shown in figure 17. For the same hyperparameters as given in table 1 but with
100,000 epochs of training, a training size of Ntrain = 12 allows the network to memorize
the training set but at the cost of a rather poor reconstruction on a larger test set of size
Ntest = 1000 uniformly sampled from the circle. This is obviously an avatar of overfit-
ting. Next, increasing to Ntrain = 20 gives the familiar behavior with a break region as
described above, with the network unable to memorize the full training set because the
spacing between training points is smaller than the break region. As anticipated above, by
changing the activation to 1

β tanh(βx) with β = 5, the size of the break region can be re-
duced, allowing the network to perfectly reconstruct the training set while still maintaining
accurate reconstruction of the larger test set by placing the break region between training
points. However, for Ntrain & 100, even the β = 5 activation function cannot memorize the
training set after 100,000 epochs.
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Figure 16. The S1 autoencoder with d = 2 learns the identity map on all of R2. Losses are
concentrated outside the region x2 + y2 = 1 which defined the training set, because extrapolation
is required in that region.

Figure 17. Output of the S1 autoencoder with sparse training sets of size 12 (left) and 20 (center
and right) after 100,000 epochs of GD training. The right plot shows the results for a modified
activation function 1

β tanh(βx) with β = 5.

B.3 Dynamics of training in the S1 encoder

To gain some analytic understanding of the behavior of the circle autoencoder with dl = 1,
we examine the structure of the autoencoder network explicitly. The encoder map f enc(x)
with x = (x, y) is a map R2 → R1, while the decoder map fdec(q) is a map R1 → R2.
Restricting the input data to the unit circle, the encoder can be thought of as a map f enc(φ)
from S1 to R1, with x = cosφ and y = sinφ. The model map is f(x) = fdec(f enc(x)), and
the loss function is the mean squared error,

L = 1
N

N∑
j=1
||f(xj)− xj ||2, (B.1)

where xj and f(xj) are points in R2 and the norm is the usual Euclidean norm.
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Explicitly, the encoder map with a single hidden layer of width dw is

f enc(φ; θα) = b2 +
dw∑
i=1

W
(2)
i σ(Wix cosφ+Wiy sinφ+ bi), (B.2)

where σ is the activation function on the hidden layer output, and θα =
{Wix,Wiy,W

(2)
i , bi, b2} are the encoder parameters: Wix and Wiy are the weights going

to the hidden layer, W (2)
i are the weights going to the output of the encoder, and bi and

b2 are the biases. It will be convenient to define

zi(φ) = Wix cosφ+Wiy sinφ+ bi (B.3)

as the pre-activation at neuron i of the first hidden layer. A necessary condition for the
network to be at a loss minimum after training is that the gradient of the loss with respect
to the encoder parameters θα vanishes:

∇αL = 2
N

N∑
j=1

[
(f(xj)− xj) ·

(
dfdec

df enc

)]
∇αf enc(φj) = 0. (B.4)

The point of this expression is to note that at the loss minimum, one of three things must be
true (absent accidental orthogonalities), data point by data point: either the reconstruction
is perfect (f(xj) = xj), or the derivative of the decoder vanishes, or the gradient of the
encoder vanishes.

Because of the topological issues previously noted in section 4, it is impossible for
the network to satisfy the first condition near the break point. The second condition, the
vanishing of the decoder derivative, would imply that the decoder is independent of the
latent representation to first order, which would mean the network is not actually learning
anything from the latent representation and nearby points in the latent space get mapped
to the same point in the model.16 We therefore expect that near the break point φ0, the
third condition holds, ∇αf enc(φ0) = 0. To the extent that this is true, the appearance and
position of the break point is entirely driven by the encoder, which greatly simplifies the
analysis since there is only a single hidden layer. We will use the explicit expression (B.2)
to relate ∂f enc/∂φ to ∇αf enc(φ).

Treating the encoder as a function of the input variable φ, we have

∂f enc

∂φ
=

dw∑
i=1

W
(2)
i (−Wix sinφ+Wiy cosφ)σ′(zi), (B.5)

16Of course, a good decoder will map nearby latent points to nearby points in the model, but this implies
a nonzero (if small) derivative.
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where σ′ is the first derivative of the activation function. Similarly, treating the encoder
as a function of θα, the derivatives of f enc with respect to the network parameters are

∂f enc

∂W
(2)
i

= σ(zi), (B.6)

∂f enc

∂Wix
= W

(2)
i cosφσ′(zi), (B.7)

∂f enc

∂Wiy
= W

(2)
i sinφσ′(zi), (B.8)

∂f enc

∂bi
= W

(2)
i σ′(zi), (B.9)

∂f enc

∂b2
= 1. (B.10)

Note that because ∂f enc/∂b2 never vanishes, there are no true critical points for f enc.
However, since there are 4dw additional parameters, if dw � 1 then the gradient will be
dominated by the other parameters, so we can attempt to minimize those derivatives to
find a quasi-minimum.

To make further progress, let’s suppose the activation function σ(z) vanishes only at
z = 0 and furthermore that σ′(0) 6= 0, which is true for example for the tanh, and popular
smooth approximation of the ReLU (though not ReLU itself) such as the GELU [73]
and SWISH [74] activations. The derivatives with respect to the second-layer weights,
∂f enc/∂W

(2)
i , can only vanish if zi = 0, but since σ′(0) 6= 0 by assumption, the remaining

derivatives with respect to the first-layer weights and biases can only vanish if W (2)
i =

0. Therefore, the global quasi-minimum is for all of the second-layer weights to vanish,
which a trivial model with poor reconstruction error, since from eq. (B.5), f enc(φ) is then
independent of φ. Empirically, what the network tries to do instead is minimize all but
a few of the W (2)

i ; the ones that remain nonzero stop evolving when their corresponding
pre-activations vanish. Indeed, let i∗ = argmax|W (2)

i |, and φ0 be a solution to zi∗(φ) = 0:

Wi∗x cosφ0 +Wi∗y sinφ0 + bi∗ = 0 (B.11)

Then by eq. (B.5), |∂f enc/∂φ| is large at φ = φ0 since it is dominated by |W (2)
i∗ | and σ′(zi∗) 6=

0. At most input values φ, the derivative of the encoder is small and nearly constant,
allowing it to approximate a linear map where the encoder learns the φ parametrization.
Since f enc is continuous, however, there is a short interval in φ where f enc must retrace
the path traversed by the rest of the input domain, incurring a large derivative; the “break
point” φ0 is near the center of that interval (see figure 4). Note further that this quasi-
minimum has a flat direction at the break point φ0:(

Wi∗x
∂f enc

∂Wi∗x
+Wi∗y

∂f enc

∂Wi∗y
+ bi∗

∂f enc

∂bi∗

)∣∣∣∣∣
φ=φ0

= 0, (B.12)

which follows from eq. (B.11) and thus implies that the first-layer weights and biases can
continue to evolve even when the behavior of f enc near φ0 doesn’t change.
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Figure 18. Left: encoder derivative ∂f enc/∂φ as a function of input data coordinate φ. The break
point φ0 is shown in red. Center and right: pre-activations zi(φ) of the hidden layer node i∗ with
the largest outgoing weight (center) and of the paired node i′∗ (right) as a function of input φ for the
trained circle network. Note that the point of largest derivative of the encoder, which corresponds to
the break point φ0, is one of the zeros of the pre-activation corresponding to the largest magnitude
weight |W (2)

i∗ |. The second zero of the largest weight, φ′0, is also a zero of the paired pre-activation
zi′∗; the second zero of the paired weight, φ′′0 , is also a point of large encoder derivative.

The analysis is somewhat different for a ReLU activation; in that case, a quasi-
minimum can be found when all zi < 0 since σ(zi) = σ′(zi) = 0 for zi < 0. However,
∂f enc/∂φ is proportional to σ′(zi), and thus would vanish everywhere which would map all
of the input data to a single point in the latent space. Thus, the competing requirements of
simultaneously needing σ′(zi) 6= 0 and 0 < σ(zi)� 1 push zi∗ towards zero as in the case of
a tanh activation, leading to qualitatively similar behavior. The discontinuous derivative
makes this case more difficult to analyze analytically, though, so we focus our discussion
on smooth activation functions from here on but show an example below of the network
dynamics with ReLU activation.

To summarize, at the end of training, the break point φ0 typically corresponds to a
solution to zi∗ = 0 where i∗ = argmax|W (2)

i |. We have also qualified this statement with
“typically” because it may happen that two of the weights have similar magnitudes, and it
might be the case that φ0 is determined by the second-largest one, as we discuss below.

Figure 18 shows zi∗(φ) and ∂f enc/∂φ for the trained network shown in figure 4 with
σ = tanh, which was initialized with random weights and biases drawn from a uniform
distribution between −1/

√
dw and 1/

√
dw (the default in Pytorch). As anticipated by

the analysis above, the magnitude of the derivative of the encoder is largest at the break
point φ0 (red), which satisfies zi∗(φ0) = 0, where i∗ is determined by the largest-magnitude
weight. However, since zi∗(φ) is a linear combination of sines and cosines plus an offset, it
can be written as A cos(φ+ δ) + b. For sufficiently small b/A, this function always has two
zeros. The second zero, labeled by φ′0 (green), does not correspond to a large ∂f enc/∂φ

despite the fact that its pre-activation is near zero. Instead, what happens is that there is
another weight with large magnitude, W (2)

i′∗ ≈ −W
(2)
i∗ , whose pre-activation also contains

a zero at φ′0. We can see this empirically in figure 19, which shows the evolution of
the weights W (2) and the pre-activations zi(φ0) and zi(φ′0); as expected from this analysis,
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Figure 19. Evolution of the encoder parameters during training, with the weights and pre-
activations at nodes i∗ and i′∗ shown in red and green, respectively. Weights evolve in pairs to large
positive and negative values (left). The pre-activation zi∗(φ0) is driven to zero while zi′∗(φ0) 6= 0
(center), resulting in a break point where f enc has large derivative, while zi∗(φ′0) and zi∗(φ′0) are
both driven to zero (right).

Figure 20. Same as figure 19 for a ReLU activation function.

weights evolve in tandem to large positive and negative values, with the corresponding pre-
activations driven to zero. This paired weight approximately cancels the large derivative at
φ′0 (some remnants of the imperfect cancellation can be seen in the “wiggles” of ∂f enc/∂φ

at φ′0), but absent a fine-tuning of the Wix and Wiy, the second zero φ′′0 will be different
from φ0, so the large derivative at φ0 remains.

On the other hand, there is now a partially uncancelled zero at φ′′0 (magenta), resulting
in a large ∂f enc/∂φ of opposite sign, which can also be seen in figure 18. The difference
|φ′′0 − φ0| is thus responsible for the “gap” around the break point, which looks potentially
logarithmic as a function of training epoch, since cancelling the zero at φ′′0 requires the
network to find its way to a finely-tuned quasi-minimum, or equivalently, for the com-
position of continuous maps to yield a discontinuous latent representation which has a
delta-function derivative. As noted in appendix B.1, we have verified that increasing the
hidden layer width, or adding another layer to the encoder, does not affect the size of the
break region (as measured by the gap in the decoder), which appears to depend mostly
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on the length of training (for a fixed learning rate) and to some extent on the particular
form of the activation function, including the derivative at the origin as measured by β.
Figure 20 shows the evolution of the encoder parameters for a ReLU activation, showing
the same qualitative behavior as for tanh. The key differences are that zi∗(φ0) is not nec-
essarily driven to zero but can remain positive because the pre-activation derivative σ′(z)
is identical for any z > 0; in addition, the weights W (2) which do not determine the break
point are not driven to zero as fast as for the tanh activation. In this example the break
point is also determined by the second-largest |W (2)|. Nonetheless, the main feature which
determines the break point, namely the pair of weights of equal magnitudes evolving in
parallel, persists independent of the activation function, since it is required by topology.

Finally, we consider trying to initialize the network to give a break point at a prescribed
value of φ0. Given that φ0 is determined by the largest second-layer weightW (2)

i , we expect
that if we initialize one of the weights, say i = i∗, to a large value compared to the width
of the distribution from which the rest of the weights are drawn (1/

√
dw = 0.125 for our

default network parameters), φ0 will be determined somehow by the corresponding pre-
activation zi∗ . From the update equations, the network will prefer to move along the flat
direction for the first-layer weights and biases, so to choose φ0 we can also initialize Wi∗x,
Wi∗y, and bi∗ such that φ0 is a solution to zi∗ = 0. Figure 21 shows the results of initializing
W

(2)
i∗ = 3 and zi∗(φ0) = 0 with φ0 = π/4. The quasi-minimum the initialized network finds

is qualitatively different than the randomly-initialized network. One break point ends up
close to the target φ0, but the second zero of the pre-activation φ′0 remains uncancelled, and
the encoder develops two break points, as shown in figure 21. This behavior is qualitatively
similar to the latent representation of the Clifford torus in R4 in appendix C.2 below. The
interplay between initialization and training is fertile ground for future work, especially in
this simple example where analytic approaches may be tractable.

C Other topologies and geometries

C.1 The trefoil knot: extrinsic topology in dimension 1

Consider a circle embedded with nontrivial extrinsic topology in R3: namely, the trefoil
knot, defined by

x = (R+ r + cos 2φ) cos 3φ, y = (R+ r + cos 2φ) cos 3φ, z = r + sin 2φ, (C.1)

where we take r = 1 and R = 2 for concreteness. In this context, extrinsic topology refers
to the fact that the knot cannot be continuously deformed into the circle in R3 without
tearing, despite these two manifolds having the same intrinsic topology of the circle. As
with the S1 autoencoder, we train on an equidistant training set in φ, for both dl = 1 and
dl = 2; the results of the output map are shown in the top row of figure 22. Just as with
the circle, the output map contains break points, which in the case of dl = 2 correspond
to self-intersections in the latent representation (figure 22, bottom right). The typical size
of the error is much larger for dl = 1, but in both cases the largest errors are confined
to neighborhoods of isolated points, as was the case for the circle. Here, though, we are
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Figure 21. Attempts to determine the break point of the S1 autoencoder by initialization: one
weight is initialized to a value 3, larger than the other initialized weights, and the corresponding first-
layer parameters are initialized such that z(φ0) = 0 at φ0 = π/4. Left: output of the autoencoder.
Right: derivative of the encoder ∂f enc/∂φ. The network never cancels the second break point, and
the trained minimum is poorer quality than the one achieved with random initialization.

seeing nontrivial intrinsic and extrinsic topology, the latter of which makes it difficult to
learn the global geometry of the knot even for dl larger than the intrinsic dimension of the
data, because a generic initialization of the network will lead to a latent representation
with self-intersections.

We can cure the topological issues in two ways. First, by taking dl = 3, we can have
near-perfect reconstruction of the knot, but at the price of learning the trivial map in the
region enclosed by the knot. We can also do something more clever and force the network
to learn that the knot is a parametric curve. Consider modifying the loss function to

L̃ = ||f(x)− x||2 + λ||f enc(x)− xφ||2 (C.2)

where f(x) is the output of the full network, f enc(x) is the output of the latent layer (i.e.
the encoding of x), xφ is the parametric representation of the knot of the same dimension
of the latent layer, and λ is a hyperparameter. The new loss L̃ penalizes the network
for learning a latent representation different from the parametric representation by φ; for
dl = 1, xφ = φ, and for dl = 2, xφ = (cosφ, sinφ). Figure 23 shows the results of training
with L̃, setting λ = 10 with all other hyperparameters the same. For dl = 1, the latent
representation cannot overcome the intrinsic S1 topology of the knot, and while the output
is clearly better at approximating the shape of the knot than the case for the unmodified
loss function, the knot still breaks around a point as did the unit circle. For dl = 2,
the latent representation can learn the 2-dimensional representation of the circle, and we
get much better reconstruction. We have checked that this network is not learning the
trivial representation on R3, since there is still a compression with dl < din. We conclude
that autoencoders can untie knots (i.e. evade obstructions associated to nontrivial extrinsic
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Figure 22. Top row: the trefoil knot (blue) with model output (green) for dl = 1 (left) and dl = 2
(right). Bottom row: trefoil latent representations and losses on the test set, for dl = 1 (left) and
dl = 2 (right). For dl = 2, the largest losses are localized to the self-intersections in the latent
representation.

topology), as long as we tell the network to do so with a suitable modification to the loss.
Indeed, this extra term in the loss is a toy example of the incorporation of priors based on
topology which can help improve network performance.

C.2 The torus: quotient spaces

Moving to d = 2, we consider the torus T 2, which can be embedded in R3 by

x = (R+ r cosα) cosβ, y = (R+ r cosα) sin β, z = r sinα (C.3)

We take r = 1 and R = 3, and generate training and test sets uniformly sampled in α and
β. Since the topology of the torus is that of a quotient space, S1 ⊗ S1 = R2/Z2, the torus
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Figure 23. Model output and latent representation for the trefoil for with the loss function modified
to include a penalty when the latent representation deviates from the parametric representation of
the data. The left plots show the results for dl = 1 and the right plots show dl = 2. Even with the
modified loss, the dl = 1 network still has a break point because of the intrinsic topology of the
knot, but forcing the latent representation to approximate a circle for dl = 2 leads to much better
reconstruction.

has a nontrivial fundamental group and cannot be covered with a single chart by excising
a single point, unlike the sphere. Anticipating that this may make the autoencoder more
difficult to train, we use both the 5-layer network and a deeper 7-layer network as defined
in section 2. The results are shown in figure 24. While the deeper network reduces the
loss overall for a generic point on the test set, there are still numerous points with order-1
loss which are far away from the worst point, and numerous points with low loss which
are close to the worst point, indicating that the latent representation is non-local. Since
at least an S1 ∧ S1 must be excised from a torus to embed the complement in R2, this
behavior is expected.
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Figure 24. Loss vs. distance plots for the torus T 2 in R3 with dl = 2, for the 5-layer network (left)
and the 7-layer network (right).

To explore the role of the extrinsic topology of the data manifold in training an au-
toencoder, we consider a nontrivial embedding of the torus into a high-dimensional space
din > 3 and train an autoencoder with latent dimension dl = 3. Since din > dl, the autoen-
coder cannot learn the trivial identity map, but it should be able to learn the standard
3-dimensional embedding given in eq. (C.3) as the latent representation. Indeed, such a
high-dimensional embedding exists in R4, known as the Clifford torus,

(x, y, z, w) = (cosα, sinα, cosβ sin β). (C.4)

Using a training set of uniformly-sampled points on the Clifford torus, and training multiple
instantiations of a 7-layer network, we find two qualitatively different results, shown in
figure 25. Occasionally, the network will find the global minimum of the loss where the
latent representation is homeomorphic to the embedding T 2 ⊂ R3. More often, though,
the network finds its way to a poor local minimum for the second S1 factor where it
“pinches” at two points, rather than the optimal global minimum of the embedding in
R3.17 Indeed, the Clifford torus parametrization makes the product-space structure of the
torus T 2 = S1 × S1 explicit, and the latent representation suggests that the autoencoder
is learning both circles independently, rather than the global structure required for the
embedding in R3. Thinking about the autoencoder in terms of an ensemble — defined by
the different possible realizations of weights and biases and learning dynamics — we see
that the ensemble doesn’t concentrate on one minimum, but rather a discrete set of them.
This lack of typicality is problematic from an application standpoint, as the two minima
will have wildly different behaviors when employed as anomaly detectors. This example

17As noted in appendix B, the poor local minimum for S1 which splits at two points rather than one also
occurs for some choices of the network initialization for the S1 autoencoder with dl = 1, in particular when
one weight is initialized large compared to the others.
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Figure 25. Two realizations of an autoencoder trained on the Clifford torus. Top: the network
approximates the global minimum of the loss, where the latent representation is the embedding
T 2 ⊂ R3. Bottom: the network finds a poor local minimum where one circle of the S1 × S1

topology is pinched at two points.

illustrates once again the richness of the autoencoder loss landscape and the dependence
of performance on initialization.

C.3 SU(2) and SO(3): topology versus geometry, or global versus local

The Lie groups SU(2) and SO(3) have the same local structure with isomorphic Lie algebras,
but the global structure of the groups differs in a nontrivial way. Both SU(2) and SO(3)
are 3-dimensional, but are topologically distinct, with SU(2) the double cover of SO(3).
As both groups can be parametrized with a triplet of Euler angles (α, β, γ), which can
be mapped into a vector of 8 real numbers (the entries of a complex 2 × 2 SU(2) matrix
U satisfying U †U = I2×2) or 9 real numbers (the entries of a real 3 × 3 SO(3) matrix O
satisfying OTO = I3×3), looking at the differing behavior of autoencoders trained on these
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Figure 26. Two Lie groups with the same Lie algebra but different topology. Left: loss-versus-
distance plot SO(3) with dl = 3. Right: loss as a function of training for various dl. The SU(2)
network approaches perfect reconstruction with dl = 4 because it has the topology of the 3-sphere
S3, but SO(3) with the more complicated quotient space topology of RP3 has similar losses for
dl = 3, 4, 5.

two manifolds can isolate the topological features from the geometric ones. In particular,
since SU(2) is diffeomorphic to S3, the SU(2) autoencoder will provide an example of a
topologically nontrivial manifold embedded in a much higher-dimensional space R8, which
will again be analogous to our phase space example.

Since the geometric structure of these manifolds is difficult to visualize, instead of
plotting the output directly, we will evaluate the performance of the autoencoder with the
loss-versus-distance plot introduced in section 5, as well as examining the loss on the test
set as a function of training epoch. We generate training sets by uniformly sampling each
group according to the Haar measure, the unique invariant measure on Lie groups. The
matrices are then flattened row-by-row into an 8-component or 9-component real vector
for SU(2) and SO(3), respectively. Figure 26 shows the performance of the deep 7-layer
autoencoder trained on these two group samples.18 Based on the results from the circle
and the 2-sphere, it is not surprising that a 3-dimensional latent layer is not able to fully
reconstruct the data, while a 4-dimensional latent layer can do so: SU(2) ∼= S3 can be
embedded in R4. On the other hand, for SO(3), the size of the loss after the same amount
of training is orders of magnitude larger than for SU(2) and barely improves going from
dl = 3 to dl = 4. This is due to topology: SO(3) is diffeomorphic to real projective space
RP3, as it is the quotient of SU(2), a 3-sphere, by a Z2 action, and a classical theorem
of Mahowald states that RP3 does not embed in R4 [75]. The loss versus distance plot
is suggestive of this same phenomenon, where loss is clearly anti-correlated with distance
from the worst point for SU(2) (see figure 10) but not for SO(3): the points maximally

18Note that the MSE loss is computed on the flattened 8- or 9-dimensional vector, which implies a
Euclidean metric on those vectors and is different from the natural metric on the group.

– 38 –



J
H
E
P
0
4
(
2
0
2
1
)
2
8
0

distant from the worst point cover 4 orders of magnitude in loss. Even for dl = 5, which is
the embedding dimension of RP3, the loss is of the same order as dl = 3; as was the case
for the Clifford torus, the embedding exists but appears to be difficult for the network to
find during training. This suggests that there are some topological embeddings which are
naively hard for neural networks to untangle.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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