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Physics lab courses are integral parts of an undergraduate physics education, and offer a variety of
opportunities for learning. Many of these opportunities center around a common learning goal in
introductory physics lab courses: measurement uncertainty. Accordingly, when the stand-alone introduc-
tory lab course at the University of Colorado Boulder (CU) was recently transformed, measurement
uncertainty was the focus of a learning goal of that transformation. The Physics Measurement
Questionnaire (PMQ), a research-based assessment of student understanding around statistical measure-
ment uncertainty, was used to measure the effectiveness of that transformation. Here, we analyze student
responses to the PMQ at the beginning and end of the CU course. We also compare such responses from
two semesters: one before and one after the transformation. We present evidence that students in both
semesters shifted their reasoning in ways aligned with the measurement uncertainty learning goal.
Furthermore, we show that more students in the transformed semester shifted in ways aligned with the
learning goal, and that those students tended to communicate their reasoning with greater sophistication
than students in the original course. These findings provide evidence that even a traditional lab course can
support valuable learning, and that transforming such a course to align with well-defined learning goals can
result in even more effective learning experiences.
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I. INTRODUCTION

Lab courses are an important part of physics under-
graduate curricula [1,2]. These courses offer opportunities
for learning that is critical to becoming a physicist in many
different career paths. For example, lab courses are natural
settings for students to acquire experimental skills [3,4],
practice scientific communication in a wide range of
formats [3,5,6], and develop sophisticated beliefs and
epistemologies around the nature of science [7]; these
goals are not often a primary focus in lecture or theory-
focused courses [3,8]. Recent research has shown that there
are lab courses that meet some of these learning goals
[9–12], but that there is still room for improvement [13,14].
As such, an increasing number of lab educators are
considering the variety of learning goals possible in lab
courses, and working to align their courses to better achieve
these goals. Hand in hand, education researchers need to
better understand the range of learning that occurs in lab

courses, and identify teaching strategies that are effective at
facilitating such learning.

A. Measurement uncertainty as a learning goal

In this work, we focus on measurement uncertainty as
a learning goal of introductory physics lab courses.
Uncertainty analysis is a common learning goal in physics
lab courses [15], thus the specifics of how it is taught are as
varied as physics labs themselves. Here, we highlight a few
lab curricula that are discussed in literature that describe a
focus on measurement uncertainty, as well as some research
studies around learning of measurement uncertainty in labs.
The Scientific Community Laboratory (SCL), developed

at the University of Maryland, centers around a series of
research questions that aim to teach students how to produce,
analyze, and evaluate scientific evidence [16]. The SCL
elevates measurement concepts to the same level of impor-
tance as physics concepts, recognizing them as critical for
those broader skills. In particular, the SCL focuses on
sources of variation in data and the generalizability of
results based on statistical significance, and also includes
uncertainty considerations in experimental design [17].
The Student-Centered Activities For Large Enrollment

Undergraduate Programs (SCALE-UP) Project at North
Carolina State University includes labs with uncertainty
considerations as learning goals [18]. These activities focus
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on including uncertainties when reporting results, and
using uncertainty when comparing data. A test developed
specifically for SCALE-UP further explored student ideas
and approaches around measurement uncertainty [19].
The Investigative Science Learning Environment (ISLE),

developed at Rutgers University, includes inquiry activities
that focus on sources of experimental uncertainty and ways
to minimize them in the context of experimental design and
iteration [20,21]. ISLE integrates measurement uncertainty
ideas, particularly around systematic uncertainties, in
design of and reflection on laboratory experiments.
More recently, the Structured Quantitative Inquiry Lab

(SQILab) at the University of British Columbia aims to
teach measurement uncertainty in the context of critical
thinking [22]. SQILab includes explicit instruction around
skills and concepts related to distributions, and extends to
the formalisms comparing results using statistical tests.
Research on SQILab also includes attitudes and beliefs
related to measurement uncertainty [23].
Lastly, the physics labs that are part of the introductory

calculus-based physics sequences at Cornell University
have been transformed with measurement uncertainty as a
learning goal. The transformation frames its goals explicitly
in the context of the AAPT lab guidelines [3], and identifies
both statistical and systematic uncertainty learning out-
comes in the context of modeling and experimental design
[24]. While the course included conceptual introductions to
measurement uncertainty before it was transformed,
research has shown that the more integrated and explicit
approach in the transformed course resulted in more
students viewing uncertainty as important when deciding
if a result is trustworthy [25].

B. Measuring learning of measurement uncertainty

In addition to developing physics lab curricula, physics
education researchers have also studied student learning
and student ideas around measurement uncertainty, often in
conjunction with curriculum development [26–30]. Central
to those efforts is the development of several research-
based assessment tools related to measurement uncertainty
[31,32]. The Concise Data Processing Assessment (CDPA)
was developed around a decade ago to measure student
understanding of both measurement uncertainty and math-
ematical models of measured data [33]. It has since been
used to study pedagogical scaffolding [34] and gender
differences in physics labs [35]. Around the same time that
the course transformation project at CU was initiated, the
Laboratory Data Analysis Instrument (LDAI) was devel-
oped to measure data analysis skills within the context of a
single lab report [36]. While the LDAI does not focus on
measurement uncertainty exclusively, it includes many
aspects of measurement uncertainty as they relate to data
analysis. More recently, the Physics Lab Inventory of
Critical Thinking (PLIC) was developed to measure a
range of skills under the umbrella of critical thinking

[37]. Measurement uncertainty concepts are represented
in the PLIC in the context of this broader range of
experimental practice.
For this work, we use the Physics Measurement

Questionnaire (PMQ) [38] to study the introductory lab
course at the University of Colorado Boulder (CU), as both
the course and the PMQ focus on statistical measurement
uncertainty concepts at the introductory physics level. We
first describe the course in Secs. II A and II B. We then
describe the history and philosophical perspective of the
PMQ in Sec. II C, and the particular items (or probes) of the
PMQ on which this work focuses in Sec. III A.

II. BACKGROUND

A. Transformation of an introductory lab course

In the broader context of improving physics lab educa-
tion, the introductory lab course at the University of
Colorado Boulder was recently transformed and studied.
We describe the course and the transformation process
here; more details can be found in Refs. [10–12,32,39,40].
The introductory physics lab course at CU is a stand-alone

course typically taken by students in their second or third
semester of study at CU. For most students, it is the first
physics lab course that they take at the college level. The
course, both before and after it was transformed, consists of a
series of lab activities involving basic concepts frommechan-
ics, electricity and magnetism, and other topics from intro-
ductory physics. Students meet weekly in 2 h lab sessions to
work througheach activity, andoccasionally attendadditional
lecture sessions on background topics. There are only five to
six lectures throughout the course, making them a relatively
minor focus compared to the lab activities themselves. The
course has no midterms nor a final exam.
Beginning in 2016, author H. J. L. began teaching the

introductory physics lab course at CU. At the same time, she
initiated a project to transform this course. First, professors
in the physics department and various departments in the
College of Engineering andApplied Sciencewere surveyed,
and engaged in group discussions, in order to identify
learning goals for the course. These goals included an
alignment of students beliefs and epistemologies about
experimental physics with that of expert physicists, positive
attitudes about the course and about experimental physics
more generally, the ability to create quality graphs, and an
understanding of measurement uncertainty [12]. Based on
these learning goals, H. J. L., B. P., R. H., and others created
a new set of lab activities for the course, with corresponding
apparatus, analysis software, lab guides, grading rubrics,
prelab videos, and lectures. The transformed coursewas first
taught in Fall 2018, and continues to the present. H. J. L.
continued to teach the course throughout this process,
including all the semesters studied below.
Here, we highlight some salient aspects added in the

course transformation. In the transformed course, there are
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short prelab videos that students view before each activity,
which include embedded questions for students to respond
at particular points in each video [11]. Before the trans-
formation, students were instructed only to read the lab
guide ahead of time. In the original course, students wrote
lab reports after their in-person activities, and were graded
on these reports. In the transformed course, instead of lab
reports, students keep an electronic lab notebook while they
work, which they upload for grading and feedback at the
end of each activity. Graduate teaching assistants grade
these lab notebooks using rubrics provided to them by the
instructor [12].
While the transformed course was designed to meet the

identified learning goals, it is still distinct from the ideal
course that the designers would have wanted. This mis-
match is due mostly to logistical constraints such as those
arising from working with 20–30 graduate teaching
assistants, and the logistics of scheduling 35–45 separate
weekly lab sections in a single instructional space. Thus,
the transformed course still operates in many ways as a
traditional introductory physics lab course. For the context
of this work, we see traditional lab courses as highly guided
and prescriptive, focusing on conceptual rather than skills-
based learning, and consisting of verification experiments.
In particular for our transformed course, the lab activities
remained quite prescriptive, guiding students through
procedures with significant scaffolding throughout.
Nonetheless, most of the activities in the transformed
course focused on skills-based learning, and none were
verification experiments.

B. Transformation aspects related
to measurement uncertainty

In this work, we focus on the course transformation
learning goal concerning measurement uncertainty. Both
before and after the transformation, the lectures and lab
activities concerned measurement uncertainty concepts in
addition to other topics. However, the transformed intro-
ductory lab course at CU includes several aspects that
intentionally and specifically support learning around
measurement uncertainty beyond the original course.
First, each lab activity in the transformed course involves
students measuring a quantity or outcome that they would
not know before completing the measurement. These
activities are different than verification labs, in which
students are measuring a value that they learned in lecture
or could look up in a textbook. In the course before
transformation, five out of six activities were verification
labs, in our judgment. In addition to there being no
verification labs in the transformed course, many of the
lab activities ask students to use measurements they made
previously to make predictions about their present experi-
ment. Then, after making a measurement, many of the lab
activities ask students to discuss their result with their peers
in the classroom, comparing data to decide if their different

results agree with each other. These discussions provide
repeated opportunities for students to consider and com-
municate both the value and the uncertainty of a result, and
to discuss these results in the context of their choices
involving data collection and procedure.
Beyond the lab activities themselves, four out of the six

lectures in the transformed course focus entirely on
measurement uncertainty concepts, and a fifth includes
additional discussion of measurement uncertainty along
with a discussion of professional norms concerning graphs.
Lecture topics around measurement uncertainty in the
transformed course include the importance of measurement
uncertainty, estimating uncertainty from single and from
multiple measurements, the concepts of standard deviation
and standard deviation of the mean (also called standard
error), distributions in general and the normal distribution
in particular, sigma values and significance, making com-
parisons between measurements, and systematic errors in
comparison to random uncertainties. The sixth and final
lecture in the transformed course concerns Snell’s law, and
largely does not focus on measurement uncertainty. Overall
across these lectures, students first learn about distributions
and the act of measurement as sampling from a distribution.
The idea of uncertainty in measurement is presented as a
measure of such underlying distributions.
In contrast, while measurement uncertainty was included

in lectures before the transformation, it was not as much a
focus, and was presented with less of a conceptual under-
pinning, focusing more on the mechanisms of error
propagation and the proper structures for reporting results.
Lecture topics around measurement uncertainty in the
original course also included Poisson statistics, which
was absent in the transformed course. The original course
lectures also included many of the same topics as the
transformed course, including how to compare measure-
ments, estimating uncertainty from single and from multi-
ple measurements, systematic errors in comparison to
random uncertainties, the concepts of standard deviation
and standard deviation of the mean, distributions in general
and the normal distribution in particular, and sigma
values and significance. However, these topics tended to
be presented in a somewhat mechanistic way, rather than
focusing on conceptual underpinnings.

C. The Physics Measurement Questionnaire

The PMQ originated from studies by researchers in York,
UK with primary school students age 9–16 [41,42]. This
work stemmed from a need to evaluate a new national
curriculum that included school laboratory programs [43],
and resulted in a model for how students progressed in their
ideas about measurement that categorized students’ ideas
concerning experimental data as a progression through
eight levels. [44]. Soon after, researchers in Cape Town, ZA
attempted to use the materials from York in their physics
classes for first-year university students at the University of
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Cape Town. They found, however, that the materials were
not suitable in their context, so they created the PMQ by
adapting the instruments developed in York [38].
Similarly, as the Cape Town researchers interpreted

preliminary responses from their students, they extended
and adapted the frameworks from York to develop the point
and set paradigms [45,46]. The point and set paradigms
characterize two philosophical perspectives pertaining to
the statistical uncertainty of measured quantities. They are
described in detail in Refs. [38,47].

The point paradigm represents the idea that it would
be possible for a single measurement trial to completely
represent the true value of a physical quantity or
measurand, where deviations from that true value are
due to mistakes in the data taking procedure or unac-
counted-for effects in the measurement apparatus. The
point paradigm would maintain that the overall goal of a
good measurement procedure is to prevent, or identify
and eliminate, all mistakes and unaccounted-for effects,
allowing for a measurement trial that perfectly captures
the measurand. Thus, in the point paradigm, the results
of individual trials can be considered independently of
each other as long as all factors leading to deviation are
taken into account.
In contrast, the set paradigm represents the idea that each

individual measurement trial reveals some information
about the measurand, but that no individual measurement
can yield its true value. Thus, multiple trials must be
considered as a distribution, with each successive trial
revealing more information about the measurand. However,
perfect knowledge of the measurand with zero uncertainty
is impossible under the set paradigm. The set paradigm
stems from a probabilistic approach to measurement
uncertainty [46], and is often considered to be more aligned
with expertlike reasoning than the point paradigm.
It is also worth noting what is not captured by the point

and set paradigms. The paradigms, and by extension the
PMQ itself, were designed to characterize reasoning around
statistical measurement uncertainty. Discussions around
systematic errors, that is, any unwanted or unaccounted-for
effect that would not “average out” with repeated trials, are
outside the scope of the point and set paradigms. While
students’ responses in the PMQ often involve such reason-
ing, those elements are irrelevant in the framework of the
point and set paradigms. Additionally, skills and concepts
concerning the propagation of uncertainty throughout a
calculation are also outside the scope of the paradigms and
the PMQ. There are also more subtle distinctions to be
made when discussing statistical measurement uncertainty,
such as the differences between frequentist and Bayesian
perspectives, that are more complex than the distinctions
captured by the point and set paradigms. Despite its limited
scope, the PMQ is still a valuable tool for studying student
learning around measurement uncertainty, especially at an
introductory level. Likewise, the point and set paradigms

are nonetheless useful constructs for understanding over-
arching trends in learning regarding measurement uncer-
tainty at the introductory physics level.

D. This work

In this work, we use the PMQ to measure the effective-
ness of the introductory lab course at CU at facilitating
student learning around statistical measurement uncer-
tainty. Such learning is directly related to one of our course
transformation’s learning goals. In full, this goal was stated
as, “Students should demonstrate a set-like reasoning when
evaluating measurements,” where “setlike” is a reference to
the set paradigm discussed in Sec. II C.
We aim to answer the research question, (Q1) Did

students respond to the PMQ in ways more aligned with
the set paradigm after taking the introductory lab course,
compared to when they began the course? In answering
(Q1), we consider both the original and transformed course,
despite the fact that the original course did not have
explicitly stated learning goals, to investigate whether an
entirely traditional physics lab course can achieve such a
learning outcome.
Furthermore, we use the PMQ to evaluate the effective-

ness of the transformation at achieving its learning goal
around measurement uncertainty. We aim to answer the
research question, (Q2) Did student responses to the PMQ
after the transformation show greater change towards the
set paradigm than responses before the transformation?
In Sec. III, we describe the probes of the PMQ that we

use in this work, as well as the students who take the
introductory physics lab course and our approach to
collecting and analyzing responses from them.
Section IV presents results from our analysis of these
PMQ responses, comparing responses from the start of the
course (pre) and after completing the course (post), and
from before the transformation and after it. We finish by
discussing these results in the broader context of physics
lab courses in Secs. V and VI.

III. METHODS

A. Probes of the PMQ

The entirety of the PMQ is based on an experiment
involving rolling a ball down a slope and then measuring
the distance it travels in free fall. Each item, or probe, of the
PMQ concerns a decision at one step in the measurement
process, from taking data to comparing the analyzed
results. While responses to each probe can be interpreted
using the point and set paradigms, the different contexts for
each probe mean that each probe measures reasoning
around measurement uncertainty in a distinct way. Each
probe asks students to make a choice, usually between two
or three multiple-choice options, and then to explain their
choice in open-response format.
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In this work, we analyze student responses to four
particular probes of the PMQ: RD, UR, SMDS, and
DMSS [48]. We chose to exclude the other probes of
the PMQ from our analysis for a combination of reasons.
Some probes (RT, DMOS, and DMSU) only appear on the
pre-test or the post-test version of the PMQ, but not on
both, so it was not possible to directly compare students’
responses to these probes between pre and post tests.
Additionally, when a fellow researcher in our group
adapted the PMQ from the original pen-and-paper format
to an online format using the Qualtrics online survey
platform [49], the SLG probe required significant adaption
to the online format, so we decided not to code responses to
that probe. Finally, when we consulted with one of the
creators of the PMQ, they recommended that we omit one
of the probes (RDA) from our analysis, as they gained
relatively little insight from that probe in their work.
As an example, the RD probe is shown in Fig. 1. The RD

probe concerns data collection, and measures reasoning in
that context [38]. RD stands for “repeating distance,”
referring to whether to repeat a trial that measures the
distance that a ball travels. The probe presents three
stances: to repeat the trial several more times, to move
on after performing only a single trial, or to repeat the trial
exactly one more time. Respondents are asked to choose

with which stance they agree, and to explain their choice in
a text box.
The other probes of the PMQ have the same general

format as RD, and are shown in Appendix. The UR probe,
which stands for “using repeats,” asks how to analyze data
to produce a final result. Thus, it probes reasoning in the
context of data processing [38] The SMDS probe, which
stands for “same mean, different spread,” concerns data
comparison, asking respondents to decide which of two
datasets is better. The two datasets have the same mean, but
different spread. Similarly, the DMSS probe, which stands
for “different mean, same spread,” also concerns data
comparison. However, the DMSS probe concerns two
datasets that have different means but the same spread.
These latter two probes share the context of comparison of
results [38], but differ in how the comparison is presented,
with SMDS focusing more on means and DMSS focusing
more on spreads.

B. Coding scheme development

Because every probe in the PMQ involves an open-
response component, responses must first be classified
qualitatively before additional analysis is performed. To
classify PMQ responses, the creators of the PMQ

FIG. 1. The RD probe of the PMQ. Reproduced from Ref. [47].

IMPACT OF A COURSE TRANSFORMATION … PHYS. REV. PHYS. EDUC. RES. 16, 020160 (2020)

020160-5



developed a coding scheme based on responses from their
students [42]. The coding scheme consists of a different set
of codes for each probe, and aims to capture the types of
reasoning students draw upon when reasoning about
uncertainty in the various stages of measurement in the
PMQ. This coding scheme was developed concurrently
with the paradigm model described above, and in the
current version each code is associated with either the point
paradigm, the set paradigm, or an “unknown” designation
if the code represents reasoning that does not unambigu-
ously align with one paradigm.
The first set of PMQ responses that were analyzed at

CU came from students in the course in Fall 2016, before
any of the responses that we present here. That early work
encountered a range of student reasoning in the 2016
dataset that was not captured by the coding scheme
developed by the creators of the PMQ, and thus B. P.,
R. H., H. J. L., and others expanded upon it to describe
responses from our different national, institutional, and
course context. These expanded codes were subsequently
consolidated into common themes by B. P., H. J. L., and
others, which were then reframed as code definitions to
create a new coding scheme for the PMQ. This new coding
scheme was then refined based on CU student responses
from Fall 2017, with a subset of those responses used to
check interrater reliability between two independent coders
(R. H. and B. P.). The process of creating and refining the
new coding scheme is described in more detail in Ref. [10].
After our coding scheme was developed and verified, we

applied it to data from the Spring 2017 and Spring 2018
semesters. We first matched pre- and postresponses by
student, and removed the responses that were not matched
from the dataset to make direct comparisons of pre- and
postdistributions straightforward. Then, for each probe, all
of the pre- and post-test responses from those two semes-
ters were anonymized, combined, and shuffled into a single
dataset, which RH coded without knowing from which
semester and pre- and postdesignation each response came.
After the codes were assigned, the data were separated back
into their respective categories for further analysis.

C. Coding scheme

The new coding scheme we created consists of 12–16
codes per probe. Each code is denoted by a letter and a
number, for example, “U3.” When it is necessary to
disambiguate between codes pertaining to different probes,
we prepend the probe’s acronym and a hyphen, for
example, “RD-U3.”
The letter is either S, P, or U, signifying whether the

code falls under the set paradigm, the point paradigm, or
unknown reasoning that does not unambiguously align
with one paradigm. Across all probes, there are 21 P codes,
22 S codes, and 13 U codes. The codes within each
paradigm further differentiate between student reasoning at
a finer-grained level. The number designation of each code

distinguishes between them, though we do not intend for the
numbers to be interpreted as an ordering. The relative merits
of each code are not inherent to the reasoning they represent,
and in practice will depend on the context of how the results
of analysis are interpreted. For example, when we use the
coding scheme here to measure the success of a course, we
compare codes in terms of the extent to which each code’s
reasoning aligns with the learning goals of the course.
Sometimes, student responses contain multiple distinct

lines of reasoning, and thus we allow multiple codes to be
assigned to a single response. In the datasets analyzed
below, 87.9% of the responses were assigned a single code,
11.9% were assigned two codes, and 0.3% were assigned
three codes. For the purposes of classifying a response into
a single paradigm, if a response was assigned multiple
codes from different paradigms, S and P codes both took
precedence over U codes. For example, if a response was
assigned a P code and a U code, the response was
considered pointlike overall. If both an S code and a P
code were assigned to a single response, which happened
in 1.7% of the responses in the dataset analyzed below,
we classify that response’s paradigm as U.
The complete code books of the new coding scheme, one

for each of the four probes we analyzed, are reproduced in
full in the Supplemental Material [50] accompanying this
work. Here, we present a subset of these codes in Table I.
As an illustration of the scope and depth of the coding
scheme, we discuss here three codes for the RD probe: S4,
P2, and U1. Each code represents a reason to perform more
than one trial, aligned with response A or C of the RD
probe (Fig. 1).

The S4 code argues that multiple measurements should
be performed in order to reduce the uncertainty of a mean
value, implying that the mean is the result that matters. This
argument aligns with the set paradigm. On the other hand,
the P2 code represents the idea that multiple measurements
are beneficial because they allow the experimenter to
identify outliers or mistakes in data collection. This argu-
ment aligns with the point paradigm.
Lastly, the U1 code represents responses that merely

state that more data is needed. In this case, the respondent
did not write a sufficient explanation to classify it into one
paradigm or the other. It is possible that, if discussing the
probe with the respondent in person, their underlying
reasoning would become apparent. It is also possible that
the respondent lacked the language to express their reason-
ing, or that they had not considered their reasoning to any
greater depth. It is even possible that the student was merely
pressed for time when completing the survey, and otherwise
they would have provided an explanation that aligned well
with another code. In any case, the PMQ coder has only the
written response to interpret, and as such, is forced to assign
a code such as U1 regardless of these hypothetical cases.
We note that, from the perspective of an expert exper-

imental physicist, there is validity behind the reasoning
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represented by both the S4 and the P2 codes, and even the
U1 code cannot be said to be incorrect. Therefore, we do
not intend to assign an inherent ranking or hierarchy to the
codes in our code book. They aim only to classify common
lines of reasoning used when responding to a given PMQ
probe. Even at the paradigm level, though the set paradigm
has been identified as more expertlike than the point
paradigm in previous work, that does not mean that
pointlike reasoning is not sometimes included in expert
approaches more generally. For example, outliers are often
the impetus for proposing causes and enacting revisions in
the larger context of modeling, and identifying systematic
errors is sometimes merely a more nuanced framing for
catching mistakes in the measurement procedure [51].
When using our coding scheme to measure the effective-
ness of a learning experience, as we do in this work, we
intend for our codes to be compared to each other only in
terms of how well they align with the goals of that learning

experience. In general, interpreting results from our coding
scheme by ranking codes relative to each other is best done
in the context of a learning goal.

D. Student-level paradigms

In addition to interpreting the codes assigned to each
students’ response to any particular probe, we also con-
solidate students’ responses to each of the four probes we
analyzed into a single designation of that student’s reason-
ing overall [32]. Because of the coarse-grained nature of
this consolidation, we characterize student’s reasoning only
at the paradigm level. These student-level paradigms
correspond to the number of probe-level paradigms emerg-
ing from each probe, as defined in Table II. A student’s
overall response is pointlike if their responses to the probes
are represented only by P and U codes and no S codes.
Conversely, an overall setlike response comes from

TABLE I. Selected codes from the new PMQ coding scheme.

Probe Identifier Name Definition: “Argument is that…”

RD S4 Reduce uncertainty of mean …multiple measurements will be used to reduce the error or uncertainty of
the mean or average.

RD P1 Measure the true value …the experimenter could measure the correct value in a single measurement.
RD P2 Identify the outliers after all

measurements
…repeated measurements are needed in order to know which measurements
were mistakes or outliers, after all measurements are taken. This code
includes the idea that the experimenter must get the same result at least
twice for it to be correct.

RD U1 Just take more data …experimenter needs to take more data. No statistical reasoning apparent.
UR S1 Simply average …I averaged, do the average, average is best, or it is the average, but does not

elaborate. Includes statements that simply say what the reported value is.
UR S3 Why average is appropriate in this

case
…reporting the average is best because all of this data matters, or because the
spread of this data is small enough. Includes reporting all data as well as
the average.

UR S4 Report average and spread …experimenter should report the average and the uncertainty, range, or
spread.

UR S5 How to compute …how to compute the average.
UR P1 Choose single value …experimenter should choose a single value to report (for any reason).
SMDS S2 Smaller spread is better, no mention of

external factors
…a smaller spread, uncertainty, range is better, more accurate, more precise,
etc. The response does not mention external factors, outliers, human error,
etc.

SMDS S3 Smaller spread is better, due to
external factors

…a smaller spread, uncertainty, range is better, more accurate, more precise,
etc. The response mentions external factors, outliers, human error, etc.

SMDS P1 The means are the same …the groups agree because the means are the same.
SMDS P4 Differences in carefulness …differences in the spread are due to differences in how carefully the

measurements were performed.
DMSS S3 Similar means and spreads, mentions

overlap
…the groups agree because the means and spreads are similar. Argument
considers the overlap between the means and/or spreads of the two
datasets.

DMSS S4 Chose A, blank explanation Respondent chose “A” but left the explanation blank.
DMSS P2 Means must match …the groups do not agree because the means are not the same (no mention of

spread)
DMSS P3 Means close enough, treats average as

point
…the groups agree because the means are close enough

DMSS U1 Not about statistics …only nonstatistical things, such as systematics, are mentioned.
DMSS U3 Misc. Argument that doesn’t fit into any of the other codes.
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responses to the probes that are represented only by S and
U codes and no P codes. A third designation, mixed, refers
to an overall response that includes both P and S codes, or
to when the response is entirely represented by U codes.
However, a response represented entirely by U codes only
occurred 0.2% of the time in the datasets analyzed here.

E. Statistical methods

After responses were coded using the coding scheme
described above, we analyzed the distributions of the
assigned codes. Note that in this work, we compare
distributions of students within a semester and PMQ
administration (pre or post), rather than comparing matched
responses student by student. We compare distributions of
codes and demographic characteristics using Fisher’s exact
test [52], with a significance threshold of p < 0.05. When
considering the significance of multiple tests at once, we
apply the Holm-Bonferroni method [53] to correct for the
problem of m multiple comparisons. We compute these
tests using the base package included in the R program-
ming language, version 3.6.2 [54]. For an additional visual
indication of the uncertainty in counts or percentages of
codes or paradigms, we plot the binomial proportion
confidence interval at the 95% confidence level. When
plotting the difference between the number of postres-
ponses and preresponses for each code, we propagate these
confidence intervals for the plotted uncertainty bar of the
calculated difference. Finally, when two similarly measured
proportions are both statistically significant based on these
methods, we estimate the degree to which they are different
by calculating an effect size using Cohen’s h [55].

F. Course context

In this work, we compare two semesters of the intro-
ductory physics lab course at CU, one before the trans-
formation of that course (Spring 2017, the “original
course”) and one after the course was transformed
(Spring 2018, the “transformed course”). We compare
two spring semesters, though the course is also taught in
fall semesters, to avoid a range of factors that influence
students of differing backgrounds enrolling in the fall
versus in the spring. There were 641 students who
completed the course at CU in Spring 2017, and 722 in
Spring 2018. Of these students, 539 and 499, respectively,
completed both the pretest and post-test, and were included

in the dataset analyzed here. The self-reported gender, race
and/or ethnicity, major, and year of students in these two
semesters, collected using another research-based assess-
ment that was administered at the same times as the PMQ,
are shown in Table III. We include this information for
various reasons [56], including to provide context for our
research findings, as well as to enable metastudies that
combat normative whiteness and highlight inequities in
research [57]. We compared the proportions of students
identifying with each of these categories in Spring 2017
and Spring 2018 as an indication of the similarity of the
students entering the course during these two semesters.
The resulting p values from Fisher’s exact test are shown
by each category heading in Table III. Along each of these
dimensions, the populations of students in the two courses
were statistically equivalent (p > 0.05).
The PMQ was administered electronically to students at

the beginning (pre) and at the end (post) of the course
during both semesters. Students were sent an internet link
to complete the PMQ independently, and as an incentive for
completing the questionnaire, were offered a small amount
of participation-based course credit totaling 1–2% of their
final grade in the course. In the original course, students
completed the pretest and post-test as in-class assignments.

TABLE III. Self-reported gender, race or ethnicity, major, and
year of students enrolled in the course in both Spring 2017 and
Spring 2018. “Engineering” excludes the major Engineering
Physics, which is included in “Physics.” The p values from
Fisher’s exact test comparing the two semesters appear next to
each dimension heading.

Gender p ¼ 0.31
Female 23.6%
Male 75.1%
Other Gender 1.3%

Race or ethnicity p ¼ 0.81
American Indian or Alaska Native 0.9%
Asian 14.4%
Black or African American 2.2%
Hispanic or Latino 8.8%
Native Hawaiian or other Pacific Islander 0.7%
White 69.0%
Other race or ethnicity 4.0%

Major p ¼ 0.48
Physics 17.2%
Engineering 44.8%
Other STEM 35.1%
Other disciplines 3.0%

Year p ¼ 0.30
First year 48.9%
Second year 31.5%
Third year 11.4%
Fourth year 6.2%
Fifth year and above 2.0%

TABLE II. Definitions of overall student paradigms. Repro-
duced from Ref. [32].

Student paradigm Number of P’s Number of S’s

pointlike ≥1 0
setlike 0 ≥1
mixed ≥1 ≥1
mixed 0 0
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However, due to unavoidable scheduling circumstances,
students in the transformed course completed the surveys
outside of class. In that semester, students received the
pretest link five days after the course started, and were
required to complete their responses within seven days.
Previous research on other online research-based assess-
ments of student learning has shown little difference in
matched student responses when completed outside or
during class time, showing at most a small positive increase
from taking the assessment in class overall [58].
Additionally, because of the change in timeline in the

transformed course, the first lecture in that course occurred
before 64% of the respondents completed their presurvey
response. The content of that lecture touched on aspects
related to measurement uncertainty, specifically the impor-
tance of every measurement having an associated uncer-
tainty and how that uncertainty is used for comparing
measurements. For the post-tests, students received the link
close to the end of the semester, after they had completed all
activities for the course, and were required to complete their
response before the semester ended.

IV. RESULTS

Here, we present quantitative results from applying the
PMQ coding scheme developed at CU to two semesters of
the introductory physics lab course at CU: Spring 2017
(referred to as the original course, or before the trans-
formation) and Spring 2018 (referred to as the transformed
course, or after the transformation). For each semester, we
compare the distribution of responses from the pretest to
equivalent distributions from the post-test, as a “pre-to-
post” comparison. We first present these comparisons at the
student paradigm level, as the most simplified interpreta-
tion of our results. We then break down the results probe by
probe, still interpreting responses at the paradigm level.

Lastly, we consider each probe at a level beyond the
paradigms, comparing distributions of the codes that make
up the paradigms. At each level, we note how each finding
aligns or runs counter to the learning goal of the trans-
formed course. We further discuss this alignment more
broadly in the context of our research questions in Sec. V.

A. Paradigm-level results

Figure 2 shows the percentage of students whose
responses to the PMQ fell into each student-level paradigm,
pointlike, mixed, or setlike. The left panel shows the
semester before the transformation, while the right show
the semester after the transformation. Light gray bars
represent the pretest, while darker gray represent the
post-test.
The error bars in Fig. 2 suggest that, for both semesters,

there were significant differences between pre and post for
the number of mixed and the number of setlike responses.
Fisher’s exact test confirms those differences, all with
p ≪ 0.05. However, the proportions of pointlike responses
were statistically similar (p ¼ 1 for 2017 and p ¼ 0.34 for
2018). Overall, at the student level students shifted pre-
dominantly from the mixed to setlike paradigm, both before
and after the transformation.
Moving to the probe level, shifts between pre- and

postparadigms for each of the four probes we analyzed are
shown in Fig. 3. As before, the left panel shows the
semester before the transformation, while the right shows
the semester after the transformation. Within each panel,
the four probes are represented on the vertical axis. The
horizontal axis represents the proportion of students whose
responses were coded with either S or P codes. Solid
markers denote the proportion with an S code on the pre-
test, while open markers denote the proportion with a P
code on the pretest. The end of the corresponding arrows

FIG. 2. Pre-post shifts at the student paradigm level. (a) Before transformation; (b) after transformation. Error bars are the binomial
proportion confidence interval at the 95% confidence level.
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show the corresponding proportions on the post-test. The
significance of these shifts is also indicated.
Across all probes, students shifted to more S reasoning

and less P reasoning during the semester. However, only
some of these shifts were statistically significant. In the RD
probe, the transformed course showed larger shifts towards
S than the original course (with Cohen’s h effect sizes of
h ¼ 0.45 and h ¼ 0.21, respectively), while in the SMDS
probe, the transformed course showed no significant shifts
at all. The UR probe showed little practical significance in
either semester due to the large proportion of S responses,
even on the pretest. We have seen this saturation effect
before in the UR probe when analyzing responses from
CU students at the paradigm level [10,40].

The DMSS probe shows a larger shift towards S
reasoning in the transformed course than in the original
course. However, this shift is due to a difference in the
proportion of S responses in the pretests, rather than the
post-tests. Such a difference stands in contrast to the other
three probes, which show similar pretest proportions
between the two semesters. Furthermore, this difference
in pretest responses stands in contrast to all of the
information we have available on the distribution of
students who enrolled in the class for these two semesters,
which would suggest that the two groups of students are
similar. Our best guess as to the cause of this difference in
the DMSS pretest proportions concerns the differences in
the timelines of the two semesters. We speculate that
responses in the transformed semester to the DMSS probe
in particular were affected by the first lecture of the course,
for the 64% of students who completed the survey after that
lecture. That lecture touched on the idea that uncertainty is

used for comparing measurements in a generalized way,
an idea that relates to the DMSS probe. However, it also
relates to the SMDS probe, from which the paradigms of
preresponses seem similar before and after the transforma-
tion. Given this uncertainty, we proceed with caution when
further analyzing DMSS responses from these two semes-
ters, remembering that the full story around this portion of
the dataset remains unclear.

B. Code-level results

We now analyze results beyond the level of paradigms,
considering the individual codes themselves in the context
of the course transformation. For each probe and semester,
we plot the difference between the number of responses to
each code on the post-test and on the pretest. In addition
to the error bars that represent the uncertainty of these
differences, we use blue bars to represent codes in which
the pre- and post-test distributions are statistically different
using Fisher’s exact test (p < 0.05), and yellow bars for
the codes in which the pre- and post-test distributions are
statistically the same (p > 0.05). We apply the Holm-
Bonferroni correction, withm as the number of codes in the
given probe’s code book, to the p values from Fisher’s
exact test before determining statistical significance.

1. The RD probe

A comparison for the codes in the RD code book is
shown in Fig. 4. In both semesters, the code with the largest
change from pre to post was S4. The prominent increase in
S4 is encouraging, as it is aligned with the learning goals of
the course, in particular the idea that all numbers have an

FIG. 3. Pre-post shifts at the probe paradigm level. (a) Before transformation; (b) after transformation. The horizontal axis
represents the proportion of students responding in either the point or set paradigm, on each of four probes along the vertical axis.
The shapes at the start of each arrow represent the pre-test proportion, while the location of the arrowhead represent the post-test
proportion. Solid shapes represent the set paradigm proportion, while open shapes represent the point paradigm proportion. Star
shapes represent a statistically significant pre-to-post shift using Fisher’s exact test at the 95% confidence level; circle shapes
represent a shift that is not significant by that same test. Shaded boxes represent the pre-test binomial proportion confidence interval
at the 95% confidence level, as a guide to the eye.
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uncertainty, including the mean of a set of data. Before the
transformation, the other code that increased was U1, while
that code did not significantly change after the trans-
formation. U1 represents a response that does not display
more sophisticated reasoning than the other codes.
Therefore, the lack of an increase in U1 after the trans-
formation compared to before could suggest that students
articulated their reasoning with greater sophistication in the
transformed course.
Considering the codes that decreased from pre to post,

there were two codes that showed a significant pre-to-post
decrease, and they were the same codes in both the trans-
formed and the original course. As they were both pointlike,
that change is aligned with the goals of the transformation.

2. The UR probe

Figure 5 shows a comparison of the codes in the UR
code book. In both semesters, the most prominent
change was an increase of a single setlike code. This
consolidation phenomenon in UR responses is discussed
in Ref. [10]. In the original course, the code into which
students consolidated was S1, while in the transformed
course the code as S4. S1 represents reporting the
average as the result of a set of measurements, while
S4 represents reporting an average as well as a spread.
S4 aligns with the transformation’s learning goals, as it
recognizes the importance of the spread of a distribution
and aligns with the idea that all numbers have an
uncertainty.

FIG. 4. Pre-post differences in code counts for the RD probe, for the original course (a) and the transformed course (b). Blue bars are
statistically significant differences using Fisher’s exact test at the 95% confidence interval, adjusted using the Holm-Bonferroni method.
Orange bars are not significant by that same test. Error bars are the binomial proportion confidence interval at the 95% confidence level.

FIG. 5. Pre-post differences in code counts for the UR probe, for the original course (a) and the transformed course (b). (b) Reproduced
from Ref. [10]. Blue bars are statistically significant differences using Fisher’s exact test at the 95% confidence interval, adjusted using
the Holm-Bonferroni method. Orange bars are not significant by that same test. Error bars are the binomial proportion confidence
interval at the 95% confidence level.
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There were no other statistically significant pre-post
decreases in UR responses in the original course. However,
there were three significant decreases in the transformed
course: P1, S3, and S5. P1 represents canonical pointlike
reasoning, that one should choose the value from a single
trial to represent the result of an experiment. A decrease in
this code is aligned with the goals of the transformation.
The other two codes that decreased in the transformed
course were setlike. One of them, S3, discusses the purpose
of reporting an average, representing conceptual reasoning
around the role of averages in experimentation. The second,
S5, states the mathematical process of calculating an
average, and represents the basic skill or practice of
reporting an average. The transformation’s goals included
the reasoning represented by both of these codes, sug-
gesting that the decreases in S3 and S5 may represent
further room for improvement.

3. The SMDS probe

We compare responses to the SMDS probe in Fig. 6.
Overall, the magnitude of the shifts on any of these codes
are relatively small, suggesting that the type of reasoning
solicited by the SMDS probe is relatively stable in our
population of students. In fact, in the transformed course,
no single probe showed a statistically significant change
pre to post.
Before the transformation, the code that significantly

increased was S3, which states that a smaller spread is
better because of external factors such as “air resistance” or
“human error.” While the recognition of spread playing a
role in data comparison is aligned with setlike reasoning,
and thereby the goals of the transformation, the focus on
external factors over inherent statistical variation is more
pointlike than setlike. The code that decreased pre to post

before the transformation was P4, which talks about
differences in carefulness between the two experimenters.
This idea aligns with the point paradigm if the lack of
carefulness manifests as mistakes in individual trials.
However, there is a subtle difference between this line
of reasoning and the idea that the spread of a dataset overall
is affected by differing tendencies of experimenter care.
Taken together, the SMDS trends observed in the original
course contain elements that are both closer and further
away from setlike reasoning.

4. The DMSS probe

Lastly, a comparison of DMSS codes appears in Fig. 7.
In both semesters, the most prominent pre-to-post increase
was S3, with an especially large increase in the transformed
course. S3 represents the most complete way to compare
results under the set paradigm, by looking for overlap
between the means and spreads of the two datasets.
The S4 code, choosing the best multiple choice answer

but leaving the explanation field blank, also increased
significantly in the original course. There could be many
reasons for that difference between the two semesters,
including time limitations stemming from the different
settings in which the survey was administered. The differ-
ence in S4 responses yields little insight into student
learning or the transformation. Similarly, the U3 code,
which decreased in both semesters, represents miscella-
neous reasoning, and yields little insight without further
qualitative interpretation of these responses. Likewise
the U1 code, which decreased in the transformed course,
represents non-statistical reasoning and itself offers little
insight. That is not to say that these responses, which likely
contain sophisticated reasoning about systematic effects
and other experimental considerations, are not worthy of

FIG. 6. Pre-post differences in code counts for the SMDS probe, for the original course (a) and the transformed course (b). Blue bars
are statistically significant differences using Fisher’s exact test at the 95% confidence interval, adjusted using the Holm-Bonferroni
method. Orange bars are not significant by that same test. Error bars are the binomial proportion confidence interval at the
95% confidence level.
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study. They are simply outside the scope of the point and
set paradigms and the focus of the PMQ.
Two remaining codes decreased in prevalence during the

transformed course: P2 and P3. Both consider only the
mean of the two data sets when comparing them, P2
concluding that the means must match for the results to
agree, and P3 concluding that the means are close enough
to agree. Both responses lack reasoning around distribu-
tions or statistical uncertainty. A decrease in their preva-
lence after the transformation, given the absence of such a
decrease before the transformation, is an indication that the
transformation was effective.

V. DISCUSSION AND CONCLUSIONS

In this section, we synthesize the results presented
above through the lens of the course transformation’s
learning goal around measurement uncertainty, which
was, “Students should demonstrate a setlike reasoning
when evaluating measurements.” We apply the lens of that
learning goal to both the original and the transformed
course. We consider the original course, in addition to the
transformed course, through that lens for two reasons: first,
as a baseline of comparison for the transformed course, and
second as an example of an entirely traditional physics lab
course that nonetheless achieved measurable and desirable
learning outcomes.

A. (Q1) Effectiveness of course overall

Regarding (Q1), Did students respond to the PMQ in
ways more aligned with the set paradigm after taking the
introductory lab course, compared to when they began
the course?, on each of the levels of analysis presented
here, both the original and the transformed course met the

learning goal to some extent. At the most simplified level
of student paradigms, our analysis shows increases in
setlike reasoning and decreases in mixed reasoning in both
semesters, which is aligned with the learning goal. At a
finer level of detail looking at paradigms probe by probe,
each of the four PMQ probes that we analyzed showed, in
both semesters, pre-to-post increases in setlike reasoning
and pre-to-post decreases in pointlike reasoning. In all but
two cases, these increases were statistically significant.
Finally, in the most fine-grained interpretation of the
results, looking at individual codes beyond their paradigms,
there were pre-to-post changes in each of the four probes
that aligned with the learning goal to some extent. In
particular, significant increases in RD-S4 and DMSS-S3,
and significant decreases in RD-P1 and RD-P2, were
observed in both semesters, and unambiguously align with
the learning goal.
We speculate that these two probes, RD and DMSS,

showed significant and consistent changes in both semes-
ters because of the particular contexts they concern. The
RD probe centers around data collection, and thus touches
on larger ideas of experimental design, epistemology, and
the nature of measurement. This broad scope perhaps made
RD more open ended than the contexts of the other probes,
and thus allowed for a more pronounced pre-to-post change
in responses, as students were able to draw on the content
of the course (specifically the uncertainty of the mean in
RD-S3) in the post test. On the other hand, the DMSS probe
presents a specific example of data comparison, and thus
has a more narrow conceptual scope than the RD probe, in a
sense. Furthermore, the comparison presented in DMSS
highlights the role of spread in making comparisons, as
opposed to the other data comparison probe, SMDS, which
focuses more on mean values. Again, we speculate that

FIG. 7. Pre-post differences in code counts for the DMSS probe, for the original course (a) and the transformed course (b). Blue bars
are statistically significant differences using Fisher’s exact test at the 95% confidence interval, adjusted using the Holm-Bonferroni
method. Orange bars are not significant by that same test. Error bars are the binomial proportion confidence interval at the
95% confidence level.
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students were readily able to draw on the content of the
course in the context of the DMSS probe (specifically
concepts around spreads and distributions in DMSS-S3) in
the post test, leading to the pronounced changes we
observed in this probe.

B. (Q2) Effectiveness of transformation

Regarding (Q2), Did student responses to the PMQ after
the transformation show greater change towards the set
paradigm than responses before the transformation?,
there were several indications that the transformed course
achieved the learning goal to a greater extent than the
original course. There were also some indications that it did
not, suggesting directions for future improvement.
However, all of these indications lie at finer levels of
analysis than that of student paradigms, in which the
semesters before and after transformation appear similar
in all respects.
At the level of paradigms for each probe, the RD probe

showed a striking pre-to-post increase in S codes after
the transformation, with an effect size of h ¼ 0.45, as
compared to the corresponding increase before the trans-
formation with an effect size of h ¼ 0.21. This difference
suggests that the course transformation was especially
successful in the context of evaluating choices in data
collection.
On the other hand, in the SMDS probe, we observed

significant pre-to-post shifts in the original course, but not
in the transformed course. This suggests that there is more
for students to learn in the transformed course around data
comparison, particularly in the context presented by this
probe: when the two datasets being compared have
identical means but different spreads. In such a situation,
deciding whether the results agree is very simple, and once
can entirely ignore the spreads of the two distributions.
Accordingly, the most common SMDS pointlike code
across both semesters was SMDS-P1 (18% of all responses
in the data set), which represents this simple approach.
However, there is more to consider when deciding not

whether the results agree, but which result is better overall.
The SMDS probe asks respondents to do this latter task.
With this broader task in mind, the fact that one result has a
smaller spread becomes relevant, as represented by the
SMDS-S2 code, the most common code of any paradigm
assigned to SMDS responses (53% of all responses in the
dataset). Nonetheless, it is possible that the probe does not
prompt setlike reasoning as directly as other probes, as the
same means encourage students to stop there without
considering the dataset at a deeper level. For the trans-
formed course to improve further, results from the SMDS
probe suggest that students could be better supported in
using setlike thinking all the time, not just when the
situation lends itself to it. Perhaps including more focused
or nuanced discussions around what makes a dataset
better or worse would result in more favorable SMDS

responses, and more importantly, further improve physics
laboratory instruction.
Regarding the other two probes, less can be drawn from

the paradigm-level results. While pre-to-post shifts in the
UR probe were statistically significant only in the trans-
formed course, and in directions aligned with the learning
goal, the overwhelming prevalence of S responses in all
cases makes this result have little practical significance.
The effect sizes of the DMSS probe are also more favorable
in the transformed course, but because this difference is due
to differences in pretest proportions rather than post-test
proportions, we hesitate to interpret it further.
Finally, analyzing pre-to-post differences in each indi-

vidual code yields further insight into the success of the
transformation. In the RD probe, an absence of an increase
in RD-U1 after the transformation indicates not only that
more students communicated in alignment with the learn-
ing goal (as established earlier in this section), but also
that the transformation allowed them to do so with greater
sophistication. In the UR probe, a consolidation of
responses into UR-S4 in the transformed course, rather
than UR-S1 in the original course, is additional evidence of
more sophisticated reasoning, this time regarding the idea
that every number has an uncertainty. However, decreases
in UR-S3 might suggest that the transformed course also
deemphasized a more sophisticated conceptual understand-
ing of the role of means, which could be a focus of further
improvement. In the SMDS probe, there were no clear
messages from analyzing pre-post differences code by
code, underscoring the inherent consistency of responses
to this probe. While the changes in the original course seem
at first to align with the learning goal, further consideration
of the reasoning they represent complicates this picture (as
discussed above). More qualitative study is needed to better
understand how students are interpreting, reasoning, and
responding to the SMDS probe.
In the DMSS probe, the observed decrease in DMSS-P2

and DMSS-P3 in the transformed course would suggest
that the transformation was successful at encouraging
setlike reasoning around data comparison. However, the
irregularities around the DMSS probe, as discussed above
and in the next section, cast doubt on the full implications
of this finding.

C. Successes and limitations

We start by noting a success regarding research meth-
odology, noting that qualitatively different insight emerged
as we proceeded to each deeper level of analysis detail.
Indications that the transformation was successful at meet-
ing the learning goal around measurement uncertainty
emerged only when considering responses probe by probe,
and evidence about the depth of that learning emerged only
when investigating responses code by code. More gener-
ally, these observations are merely a reminder that there is
far more to learning around measurement uncertainty than
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is captured by the point and set paradigms. However, this
bigger picture also comes with a limitation: here, we can
study only the reasoning prompted by the probes of the
PMQ, which is a smaller scope than all that is important to
student learning around measurement uncertainty.
Furthermore, studying responses to surveys come with

limitations in general, as the administration of surveys
precludes the ability to ask follow-up questions. When
applying our coding scheme in this work, we had only the
written survey responses to interpret, complete with any
ambiguities in what the student was actually thinking.
These ambiguities often forced us to assign U codes to such
responses. For those students, more interactive methods
(such as interviews) would allow us to better distinguish
their ability to communicate reasoning from the nature of
their reasoning itself.
We also note that the responses we analyze came from a

single institution, CU, which is a large, research-focused,
highly resourced, primarily white institution of a type that
is overrepresented in literature [57]. A broader range of
students and institutions is needed to determine whether
these findings hold beyond CU. Additionally, we studied
student reasoning at the introductory undergraduate level,
and we expect these findings to apply only to students at
similar academic levels.
While we did not directly compare pre- and postres-

ponses student by student in this analysis, we still included
in our dataset only matched responses, that is, only those
students who completed both pre- and post-test. We did this
because we focused our analysis on measuring the effec-
tiveness of our course, rather than making any direct
comparisons to other courses or institutions. This framing
is distinct from the motivations outlined in Ref. [59],
which calls for using statistical methods to model student
responses and predict the missing responses from students
with unmatched data. However, our comparisons between
the original and the transformed course, given the similarity
in student demographics between the two semesters, and
that they come from the same institutional context and
instructor, are less affected by the bias identified in that
reference. Furthermore, it would require a larger dataset
than currently available to apply the techniques described
in Ref. [59] to the nominal data of paradigm or coding
designations. Nonetheless, and unavoidably, there could be
some bias in the changes we observe based on exogenous
factors that affect both a student’s reasoning around
measurement uncertainty and their likelihood to complete
both the pre- and post-tests.
Because of the straightforward pretest and post-test

methodology we employ in this study, and the lack of
any data between these two survey administrations, we can
only speculate on which particular aspects of the trans-
formation resulted in the changes we observed, or when
during the semester they occurred. Moreover, given that
learning occurs as interactions between many factors that

persist and evolve throughout a course, connecting indi-
vidual factors to measured learning outcomes would
require a more careful design study in which changes to
the course were made one at a time. Thus, while it is
tempting to tie changes to particular aspects of the trans-
formation, we leave such rich and compelling questions to
further studies. Here, we aim only to attribute the changes
we measured to the course transformation as a whole.
Lastly, the differences in timing of the pre-test between the

original and transformed courses casts some doubt if the
pretest in the transformed course is a valid baseline to which
to compare the post-test of that semester. With 64% of
students completing the pretest after the first lecture in the
transformed semester, this could potentially bias, but not
eliminate, any measured learning outcomes from that first
lecture. However, considering the focus on measurement
uncertainty throughout the course, the first lecture is a very
small portion of all of the learning opportunities that the
students experienced throughout the course. Furthermore,
when answering (Q2) by comparing the transformed course
to the original one, additional instructional opportunities
before the pretest in the transformed course would cause
measured pre-to-post changes to have a smaller effect size
than otherwise, assuming the instruction has an overall effect
aligned with the learning goal. Results from (Q1) suggest
that instruction does indeed shift students toward the set
paradigm overall, thus, the difference in timing would result
in a decrease in apparent shifts towards setlike reasoning in
the transformed course. Given that we observe evidence for
the opposite effect, the timing difference is less of a concern.
However, irregularities in the transformed course pretest
results, specifically in the DMSS probe, remain a mystery,
and require further investigation before results from that
probe can be taken at face value.

VI. SUMMARY

Here, we used the PMQ to measure the effectiveness
of the introductory lab course at CU, and a recent trans-
formation of that course. We aimed to answer two research
questions: (Q1), Did students respond to the PMQ in ways
more aligned with the set paradigm after taking the
introductory lab course, compared to when they began
the course?, and (Q2), Did student responses to the PMQ
after the transformation show greater change towards the
set paradigm than responses before the transformation?
With regards to (Q1), we see strong evidence of PMQ
responses that are more aligned with the set paradigm in the
post-tests from both semesters, compared to the corre-
sponding pretests, and we see this evidence at all levels of
analysis, from the coarsest to the finest grain sizes. With
regards to (Q2), we see evidence that PMQ responses in the
transformed course shifted pre to post towards more
prevalent setlike reasoning compared to those from the
original course. Furthermore, we also see some evidence
that the responses from the transformed course tend to shift
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towards more sophisticated reasoning than in the original
course. We also identified specific aspects of a sophisti-
cated understanding of measurement uncertainty that were
less apparent in responses from the transformed course
than from the original course, suggesting areas for further
improvement. These findings add to the growing body of
evidence that physics lab courses, even traditional ones,
have value by creating opportunities for students to learn
important aspects of conceptual physics and to develop
expert physics practices.
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APPENDIX: PMQ PROBES

The first probe of the PMQ is the RD probe, which
appears in Fig. 1.

FIG. 8. Contextual information for the PMQ. This information precedes the probes themselves. Reproduced from Ref. [47].
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FIG. 9. The UR probe of the PMQ. Reproduced from Ref. [47].
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FIG. 10. The SMDS probe of the PMQ. Reproduced from Ref. [47].
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