

# The feedback of cold wakes on tropical cyclones

Kristopher B. Karnauskas<sup>1,2</sup>, Lei Zhang<sup>1</sup>, Kerry A. Emanuel<sup>3</sup>

<sup>1</sup> Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder

<sup>2</sup> Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder

<sup>3</sup> Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology

Revised manuscript submitted to *Geophys. Res. Lett.*

March 12, 2021

## Corresponding Author

Kristopher B. Karnauskas

20 University of Colorado Boulder

21 311 UCB / 4001 Discovery Drive

22 Boulder, CO 80309-0311

23 kristopher.karnauskas@colorado.edu

24 **Abstract**

25 Tropical cyclones (TCs) cause negative sea surface temperature anomalies by vertical mixing and other  
26 processes. Such cold wakes can cover substantial areas and persist for a month or longer. It has long  
27 been hypothesized that cold wakes left behind by intense TCs reduce the likelihood of subsequent TC  
28 development. Here we combine satellite observations, a global atmospheric model, and a high-  
29 resolution TC downscaling model to test this hypothesis and examine the feedback of cold wakes on  
30 subsequent TC tracks and intensities. Overall, cold wakes reduce the frequency of weak to moderate  
31 events but increase the incidence of very intense events. There is large spatial heterogeneity in the TC  
32 response, such as a southward shift of track density in response to cold wakes similar to that generated  
33 by Florence (2018). Cold wakes may be important for modeling and forecasting TCs, interpreting  
34 historical records and understanding feedbacks in a changing climate.

35

36 **Key Points**

37 • The effect of hurricane cold wakes on subsequent storms is tested using a combination of  
38 models and high-resolution satellite observations

39 • Cold wakes reduce the frequency of weak to moderate Atlantic storms, but increase the  
40 incidence of extremely intense hurricanes

41 • Cold wakes in the main development region have the greatest local impact, while those situated  
42 on its periphery induce latitudinal shifts

43

44 **Plain Language Summary**

45 Despite the increasing coastal vulnerability to hurricanes, several scientific barriers remain to realizing  
46 their full predictability. Chief among them is understanding the complex interactions between the  
47 atmosphere and ocean within a hurricane season. For example, hurricanes tend to form and strengthen

48 over warm water, but ocean mixing by their strong winds leave colder surface temperatures in their  
49 wake. We modeled how cold wakes impact the next wave of hurricanes. We found that cold wakes  
50 have a strong impact on subsequent hurricanes over a broad swath of the Atlantic Ocean. The cold  
51 wake left by Hurricane Florence in September 2018, for example, reduced the likelihood of another  
52 landfall along the entire U.S. east coast but increased its likelihood around the Caribbean.

53 **1. Introduction**

54 Tropical cyclones (TCs) derive energy from the heat content of the upper ocean. The mechanisms  
55 involved in this heat transfer include turbulent vertical mixing, upwelling, and evaporation (Liu et al.,  
56 2011; Price, 1981). As a direct result, TCs tend to leave behind a wake of cold sea surface temperature  
57 (SST) anomalies in their path (Leipper, 1967; Stramma et al., 1986), the effects of which on SST and  
58 stratification may last up to two months for major hurricanes (Hart et al., 2007). A recent example of  
59 such cold wakes, produced by 2018 Hurricanes Florence (Category 4) and Helene (Category 2),  
60 illustrates the spatial extent and temporal persistence of the SST anomalies generated by TCs (Fig. 1).  
61 In mid-September 2018, a cold wake with amplitude greater than 1°C could be detected continuously  
62 from the west coast of Africa near Dakar, Senegal to the east coast of the United States where Florence  
63 made landfall in North Carolina.

64 SST anomalies lying in the projected path of a TC, whether produced by previous TCs or  
65 otherwise, are of interest to hurricane forecasters because of their potential to modulate the intensity  
66 of the storm. Indeed, it has been shown that one TC can stunt the development of the next one by  
67 reducing the heat available to be drawn from the ocean (Balaguru et al., 2014). Furthermore, regional  
68 atmospheric circulations respond to tropical (Trenberth et al., 1998) and extratropical SST anomalies  
69 (Kushnir et al., 2002) in ways that may also influence hurricane development and motion through  
70 changes in vertical wind shear and steering flow. Besides case studies and statistical analyses of  
71 observations, a systematic modeling approach has not been applied to the hypothesis that TCs “self-  
72 regulate their activity … on intraseasonal time scales” (Balaguru et al., 2014). The goal of this study is  
73 to quantify the effect of cold wakes on the TC climatology of the North Atlantic basin including  
74 landfall probabilities.

75 Our approach, described in greater detail in the following section, combines high-resolution  
76 satellite SST observations, a global atmospheric general circulation model (AGCM), and a high-

77 resolution TC downscaling model to reveal the underlying ways in which a realistic set of cold wakes  
78 modify a baseline TC climatology of the North Atlantic. In this framework (Fig. S1), we are able to  
79 include not only the local impact of SST and upper-ocean stratification on TCs passing overhead, but  
80 the indirect effects of those SSTs on the broader, regional atmospheric circulation representing the  
81 environment through which the TCs are propagating. In the real world, there are typically 10 to 20  
82 named TCs in the Atlantic basin per year. A significant advantage of this framework over conventional  
83 case-study modeling or statistical analysis of observations is the large number of synthetic TCs  
84 (thousands) that can be simulated in a small amount of time, which enables the unambiguous  
85 attribution of the responses to cold wake forcing including genesis, track and intensity.

86

## 87 **2. Methods**

### 88 *2.1. Defining Cold Wakes*

89 A set of SST anomalies characteristic of TC cold wakes were obtained based on satellite observations.  
90 We use the cold wakes produced by Hurricanes Florence and Helene in 2018, but our idealized  
91 modifications to the observed cold wake of Florence render it a suitable model representative of cold  
92 wakes in the North Atlantic rather than a limited case study.

93 The satellite observations used were from the Advanced Microwave Scanning Radiometer  
94 (AMSR), with  $0.25^{\circ}$  spatial resolution and 3-day averages. To obtain SST anomalies associated with  
95 cold wakes, we defined a 150 km radius around the National Hurricane Center (NHC) best track  
96 positions, extracted the minimum 3-day mean SST anomalies that occurred during the month of  
97 September 2018, interpolated onto the grid of the AGCM, and smoothed gently with a simple 9-point  
98 area average to avoid unnecessary granularity in the details of this particular event. The result of this  
99 process for Hurricanes Florence and Helene, on the final grid that both the AGCM and the TC  
100 downscaling are exposed to, can be seen in Fig. S2B–D. Comparison to the original satellite

101 observations (Fig. 1 and Fig. S3) confirms that the cold wakes as prescribed in the models are  
102 reasonable reproductions of the observations, and the various operations such as smoothing and  
103 regridding do not serve to exaggerate their size or amplitude.

104 In addition to the cold wakes as obtained from satellite SST observations following Hurricanes  
105 Florence and Helene, alternative cold wakes were produced by shifting the Florence wake northward  
106 and southward by approximately  $7^{\circ}$  latitude (Fig. S2E–F), scaling its amplitude by 0.5 (Fig. S2G), and  
107 linearly tapering its amplitude to approximately zero from the midpoint of the wake in the central  
108 Atlantic to the coast of Africa (Fig. S2H). Modeling these alternative cases enables exploration of the  
109 sensitivity of the results to such characteristics of a cold wake as latitude, amplitude, and zonal  
110 structure.

111

## 112 *2.2. Global Atmospheric Modeling*

113 The total, potential impact of an SST cold wake on a TC is not strictly through the local SST boundary  
114 condition, but also through the larger-scale atmospheric adjustment to the cold wake. A cold SST  
115 anomaly in the subtropical North Atlantic may, for example, alter (likely weaken) the vertical  
116 stratification of the atmosphere directly above (Ma et al., 2020). This may, then, have an influence on  
117 the atmospheric circulation (including vertical shear and steering-level winds) throughout the basin.  
118 Therefore, rather than simply exposing the TC downscaling model to cold wakes via the SST boundary  
119 conditions, we obtain the adjusted global atmospheric state in response to the same cold wakes using  
120 an AGCM, and then expose the TC downscaling model to both simultaneously. Our AGCM  
121 experiments are conducted using the Max Planck Institute (MPI) ECHAM version 4.6 (Roeckner et  
122 al., 1996) at T106 horizontal resolution (roughly  $1^{\circ}$  latitude by longitude) with 19 vertical levels up to  
123 100 hPa. We conducted 25-year simulations (discarding the first 5 years as spinup) wherein our cold  
124 wakes as specified above (Fig. S2) were superimposed as anomalies on top of a seasonally varying SST

125 climatology that is otherwise identical across all of the AGCM experiments. The resulting solutions of  
126 these AGCM experiments defines the atmospheric environment to which the TC downscaling model  
127 was exposed.

128

129 *2.3. Tropical Cyclone Downscaling*

130 The TC downscaling model introduced by (Emanuel et al., 2008) is used. In this model, synthetic TCs  
131 are produced with a random seeding in space and time over the North Atlantic basin. The TC tracks  
132 are then predicted by a beta-and-advection model driven by the large-scale winds from the climate  
133 models. Along each track, a very high resolution, deterministic model is used for intensity prediction.  
134 This is an axisymmetric atmospheric model phrased in angular-momentum coordinates and coupled  
135 to a one-dimensional ocean model that simulates the effect of vertical mixing on SST. Thermodynamic  
136 and dynamic inputs to this intensity model are also obtained from the observationally-derived SST  
137 fields and AGCM solutions described above, including daily mean vertical wind shear between 250  
138 and 850hPa, and monthly mean potential intensity, 600-hPa temperature, and specific humidity. We  
139 confirmed that a higher top AGCM configuration (70 hPa vs. 100 hPa) had no effect on potential  
140 intensity calculations or the results in general.

141 For each experiment, 4,000 synthetic TCs were generated through the random seeding process  
142 over the course of 20 years (where all SST and atmospheric inputs are the same in each year). Most  
143 seed vortices dissipate almost immediately; these are discarded. The survivors represent the  
144 downscaled TC climatology. For example, in the control run, 1,066,307 tracks were seeded to obtain  
145 4,000 surviving TCs meeting the critical threshold wind speed of 40 knots, yielding 200 TCs per year  
146 for inclusion in the analysis. The annual frequency is determined by the ratio of the surviving seeds to  
147 the total number of seeds, multiplied by a constant determined by calibration with observations. This  
148 constant does not vary from one simulation to another. Although the basin was seeded randomly with

149 synthetic vortices, the TC climatology in the control simulation exhibits a realistic spatial pattern of  
150 track density for both TCs and major hurricanes (Figs. S4–S5), consistent with previous analyses  
151 (Emanuel, 2010; Emanuel et al., 2006, 2008). The TC downscaling model is run with different  
152 combinations of SST forcing (with and without the presence of cold wakes) and large-scale  
153 atmospheric parameters (as perturbed and not perturbed by cold wakes). We are thus able to estimate  
154 the net impact of cold wakes on TCs, while disentangling the contribution of locally cooler SSTs from  
155 that of remotely-driven atmospheric anomalies.

156 A final experiment with the TC downscaling model was conducted in which the subsurface  
157 ocean was modified in terms of mixed layer depth and stratification. The standard “Florence”  
158 experiment (not shifted, scaled, or tapered) was repeated, but with the mixed layer deepened by about  
159 15 m and the stratification weakened by about 1.3°C per 100 m. These prescribed changes in mixed  
160 layer depth and stratification were not spatially uniform; they were scaled by the local changes in SST  
161 as observed (and prescribed), where the above values happen to accompany a 2°C SST cooling. These  
162 prescribed changes were based on an average of *in situ* temperature profiles taken throughout the  
163 passage of Hurricane Florence in September 2018 (Sanabia & Jayne, 2020).

164

#### 165 *2.4. Diagnostics and mapping conventions*

166 Several TC-related metrics are calculated from the outputs of the TC downscaling model and analyzed.  
167 Track density is defined as the number of TC tracks to propagate through a 1° latitude by longitude  
168 grid cell per year, and are usually expressed as an anomaly relative to the control experiment. Genesis  
169 density is as in track density but for the number of TCs to have their origin there (i.e., the first time a  
170 seeded vortex reaches the critical wind speed of 40 knots).

171 The power dissipation index (PDI) is defined following (Emanuel, 2005) as

172

$$PDI = \int_0^\tau V_{max}^3 dt$$

173 where  $V_{max}^3$  is the maximum sustained wind speed at 10 m altitude and the integral is over  $\tau$ , the  
 174 lifetime of the TC. Potential intensity  $V_{pot}$  is defined following (Bister, 2002) as

175

$$V_{pot}^2 = \frac{SST}{T_0} \frac{C_k}{C_D} [CAPE^* - CAPE]|_m$$

176 where  $T_0$  is the outflow temperature,  $C_k$  is the exchange coefficient for enthalpy,  $C_D$  is the drag  
 177 coefficient,  $CAPE^*$  is the convective available potential energy of air lifted from saturation at sea level  
 178 in reference to the environmental sounding,  $CAPE$  is that of boundary layer air, and subscript  $m$   
 179 indicates evaluation at the radius of maximum winds.

180

181 **3. Results**

182 From a basinwide perspective, the prescribed cold wakes reduce the frequency of most TCs (Fig 2).  
 183 For example, the frequency decreases from about 11 TCs per year in the control simulation to 10 TCs  
 184 per year due to a single cold wake very similar to that produced by Hurricane Florence (2018). (We  
 185 actually simulate a fixed number of storms [200 in this case] per year. See Methods for how we  
 186 determine an annual frequency from the downscaling procedure.) This  $\sim 10\%$  reduction is not critically  
 187 sensitive to most minor adjustments to the cold wake including tapering its amplitude to zero in the  
 188 eastern Atlantic, reducing its amplitude by a uniform 50%, or superimposing an additional wake  
 189 feature to the north mimicking that of Hurricane Helene (2018). In comparison, the latitude of the  
 190 cold wake has a far greater effect on its impact on TC frequency. When the cold wake is shifted to the  
 191 south by about  $7^\circ$  latitude, the reduction in frequency is much more pronounced—by 33% for all TCs  
 192 and by 40% or more for hurricanes. When the cold wake is shifted northward by the same distance,  
 193 its impact on TC frequency is diminished almost entirely. Examining the most intense (and rarest)  
 194 TCs reveals that the presence of a cold wake serves to *shorten* the return period of hurricanes whose

195 lifetime maximum wind speeds exceed 150 knots (a strong Category 5). The return period for  
196 hurricanes with maximum winds of 180 knots, for example, exhibit an approximately sixfold  
197 shortening—from 350 years to about 55 years—in the presence of a Florence-like cold wake.

198 There is spatial heterogeneity in the TC response (Fig. 3A). A Florence-like wake induces a  
199 broad reduction of TC track density (by about 1 TC per  $1^{\circ}$  grid cell per decade), which begins about  
200  $10^{\circ}$  latitude south of the center of the cold wake and extends poleward throughout the domain where  
201 TC tracks are common. However, track density increases equatorward of  $10^{\circ}$  south of the cold wake.  
202 Overall, there is a southward shift of the climatological pattern of track density including a  $\sim 20\%$   
203 increase in the heart of the climatological maximum track density extending into the Caribbean (see  
204 Fig. S4E). These latitudinally-dependent results are echoed by changes in power dissipation (Fig. 3B)  
205 and landfall frequency (Fig. 3D). As there is no prescribed change in SST to the south of the cold  
206 wake, the increase in track density is explained by the change in genesis density (Fig. 3C) relative to  
207 the background potential intensity. There is a large horizontal gradient in the climatological potential  
208 intensity (Fig. S4B). The cold wake delays the development of westward propagating disturbances,  
209 thereby changing the location of genesis to one with a locally higher potential intensity, and feeding  
210 into a large-scale steering flow with more favorable conditions downstream. The possibility that  
211 potential intensity was increased to the south of the cold wake due to reduced heat flux to the  
212 atmosphere over the cold wake was investigated, but this was not the case and potential intensity  
213 indeed did not change by more than a few knots in the region south of the cold wake where track  
214 density increases.

215 Using the Florence-like cold wake as a general model but adjusting some of its characteristics  
216 further reveals the nature of the response of TCs to cold wakes in the North Atlantic. As hinted by  
217 the basinwide results, the latitude of the cold wake is a first order determinant of its probable impact  
218 on TCs. When the cold wake is shifted southward by  $7^{\circ}$ , the track density reduction is several times

stronger, and an adjacent track density increase is absent despite an increase in genesis density along the extreme western Caribbean (Fig. 3E–G). The southward-shifted cold wake has a profound impact on major hurricanes; the density of major hurricanes is locally reduced by over 50% (Fig. S6). Conversely, an equivalent cold wake but shifted northward has a negligible impact on track density anywhere in the domain (Fig. 3J). Given the baseline distributions of genesis density, track density and potential intensity (Fig. S4–S5), it appears that a cold wake simply has a higher probability of making an impact when it is in a region of high baseline TC activity. Relative to the original Florence-like cold wake, changes in the amplitude, length, and shape of the cold wake have less control on the TC response than does latitude (Fig. S7). Halving the amplitude of the cold wake lessens its impact without changing the spatial pattern of the response. Shortening the length of the cold wake from either the east or west causes modest changes to the zonal structure of the response without affecting its meridional dependence, including the decrease in track density near the cold wake and the increase in track density  $\sim 10^\circ$  south of the cold wake.

The thousands of synthetic TCs propagating through this model framework are subject to changes in both SST, which is a strong determinant of potential intensity, and to changes in the large-scale atmospheric environment driven by SST changes (which alters vertical wind shear, stability, mid-level humidity, potential intensity, and steering flow). Our sensitivity experiments wherein the TCs “see” an SST field modified by a cold wake but simply the baseline atmosphere, and vice versa, unequivocally show that the local SST anomalies are the primary cause of the results described thus far (Fig. S8). The response of the atmospheric circulation over the North Atlantic to a cold wake—even one as substantial as that produced by Florence in 2018—is simply not enough to override (or contribute appreciably to) the changes in TC climatology induced by SST through potential intensity. Our sensitivity experiment wherein the subsurface ocean was also modified with consistency to a cold wake (deeper mixed layer and weaker stratification) does not differ qualitatively from the simulation

243 with a non-perturbed subsurface, but the amplitude of the response is smaller (Fig. S9). The impact  
244 of changing the subsurface scales with TC intensity; the largest alteration of the results due to  
245 subsurface modification is for major hurricanes. The reduction of basinwide major hurricane  
246 frequency due to the cold wake is roughly halved by the effect of the modified subsurface ocean.

247 Finally, we illustrate the potential societal importance of cold wakes by casting our results in  
248 terms of landfall events. Landfall frequency as a function of cold wake is highlighted for four  
249 representative coastal regions: the Carolinas, South Florida, the U.S. Gulf Coast, and the Lesser  
250 Antilles. There is a systematic tendency for cold wakes to reduce landfall frequency in these regions,  
251 spanning the intensity scale from tropical storms to major hurricanes (Fig. 4). For example, the control  
252 simulation exhibits 21 landfalling tropical storms per century in the Carolinas region; the presence of  
253 a cold wake like the one produced by Hurricane Florence reduces the probability of a subsequent  
254 landfall by 20%, or by over 50% for a similar cold wake but shifted southward by  $\sim 7^\circ$ . The most  
255 profound change is in the Lesser Antilles, where the southward-shifted cold wake reduces the number  
256 of major hurricane landfalls from 14 per century to about 2.5 per century.

257

#### 258 **4. Summary and Discussion**

259 The feedback of cold wakes on subsequent tropical cyclones was investigated using a modeling  
260 framework that accounts for the direct effect of SST anomalies on the potential intensity of TCs as  
261 well as the adjustment of the broader atmosphere to those SST anomalies. Overall, the existence of  
262 cold wakes reduces the frequency of weak to moderate events, but increases the incidence of very  
263 intense TCs (strong Category 5 storms). A possible explanation is an overshooting recovery of TCs  
264 that have been weakened by their passage over cold wakes; when TCs are weakened by an external  
265 influence, they churn up less cold water ahead of their current position, making them more intense  
266 once they do travel over that water. These results indicate that cold wakes are indeed important to

267 account for in operational forecasting and numerical modeling including investigations of the  
268 influence of climate forcing on TC risk.

269 These results appear to be roughly linear with magnitude of the wakes, but nonlinearly  
270 dependent on their latitude—relative to the region of high potential intensity and climatological track  
271 density. There is large spatial heterogeneity in the above TC responses, including the possibility of a  
272 north-south shift of probable tracks in response to a cold wake like the one Florence left behind in  
273 2018. Such spatial shifts are possible because cold wakes can delay development, thereby changing the  
274 most likely region of genesis to one with a locally higher potential intensity and entrance point into  
275 the large-scale steering flow with more favorable conditions downstream. Most of the TC response to  
276 cold wakes is due to the direct effect of SST anomalies on TC intensity, with a very minor role for the  
277 broader atmospheric adjustment to the cold wakes. While SST anomalies lasting all season might  
278 change the circulation in ways that differ from those that last one month or less, we conclude that the  
279 large-scale atmospheric perturbations defined by the equilibrium AGCM response to cold wakes have  
280 a negligible impact relative to the direct SST forcing in the TC downscaling model.

281 Finally, several important questions of climate dynamics are inspired by these results. If not  
282 for the cold imprint of recent TCs left upon the ocean surface, would the closing months of the  
283 Atlantic hurricane season be on average more active? Is there a similar negative feedback involved in  
284 the response of TCs to anthropogenic global warming, such that warmer SSTs would lead to more  
285 frequent (and more intense) TCs, which produce more (and stronger) cold wakes, which would then  
286 inhibit further TC development? How strongly would such an effect counteract the *deeper* mixed layers  
287 typically found following the complete SST recovery and restratification? Along similar lines, do the  
288 presence of cold wakes obfuscate the observed correlations between temporal SST and TCs, since the  
289 canonical, expected direction of causality is from SST to TCs? Finally, do cold wakes in other regions  
290 such as the North Pacific have important effects on TCs? Other numerical modeling approaches are

291 possible, including ones with more robust representations of coupling to the ocean including the  
292 transient recovery of the mixed layer and persistent, anomalous ocean currents excited by the passage  
293 of storms.

294 **Acknowledgements**

295 Authors KBK and KAE received funding from the U.S. National Science Foundation (NSF),  
296 Prediction of and Resilience against Extreme Events (PREEVENTS), Awards 1854980 and 1854929.

297

298 **Data Availability Statement**

299 All data used as inputs to the models are publicly available online. The Advanced Microwave Scanning  
300 Radiometer (AMSR) satellite observations are available at <http://www.remss.com/missions/amsr/>.  
301 The *in situ* temperature profiles taken throughout the passage of Hurricane Florence in September  
302 2018 by Sanabia & Jayne (2020) are available at <http://argo.whoi.edu/alamo.html> (all data) and  
303 <https://accession.nodc.noaa.gov/0210577> (quality-controlled data).

304 **References**

305 Balaguru, K., Taraphdar, S., Leung, L. R., Foltz, G. R., & Knaff, J. A. (2014). Cyclone-cyclone  
306 interactions through the ocean pathway. *Geophysical Research Letters*, 41(19), 6855–6862.  
307 <https://doi.org/10.1002/2014GL061489>

308 Bister, M. (2002). Low frequency variability of tropical cyclone potential intensity 1. Interannual to  
309 interdecadal variability. *Journal of Geophysical Research*, 107(D24), 4801.  
310 <https://doi.org/10.1029/2001JD000776>

311 Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. *Nature*,  
312 436(7051), 686–688. <https://doi.org/10.1038/nature03906>

313 Emanuel, K. (2010). Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–  
314 1958. *Journal of Advances in Modeling Earth Systems*, 2, 1.  
315 <https://doi.org/10.3894/JAMES.2010.2.1>

316 Emanuel, K., Ravela, S., Vivant, E., & Risi, C. (2006). A Statistical Deterministic Approach to  
317 Hurricane Risk Assessment. *Bulletin of the American Meteorological Society*, 87(3), 299–314.  
318 <https://doi.org/10.1175/BAMS-87-3-299>

319 Emanuel, K., Sundararajan, R., & Williams, J. (2008). Hurricanes and Global Warming: Results from  
320 Downscaling IPCC AR4 Simulations. *Bulletin of the American Meteorological Society*, 89(3), 347–  
321 368. <https://doi.org/10.1175/BAMS-89-3-347>

322 Hart, R. E., Maue, R. N., & Watson, M. C. (2007). Estimating Local Memory of Tropical Cyclones  
323 through MPI Anomaly Evolution. *Monthly Weather Review*, 135(12), 3990–4005.  
324 <https://doi.org/10.1175/2007MWR2038.1>

325 Kushnir, Y., Robinson, W. A., Bladé, I., Hall, N. M. J., Peng, S., & Sutton, R. (2002). Atmospheric  
326 GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation\*. *Journal of*

327 *Climate*, 15(16), 2233–2256. [https://doi.org/10.1175/1520-0442\(2002\)015<2233:AGRTES>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2)

328

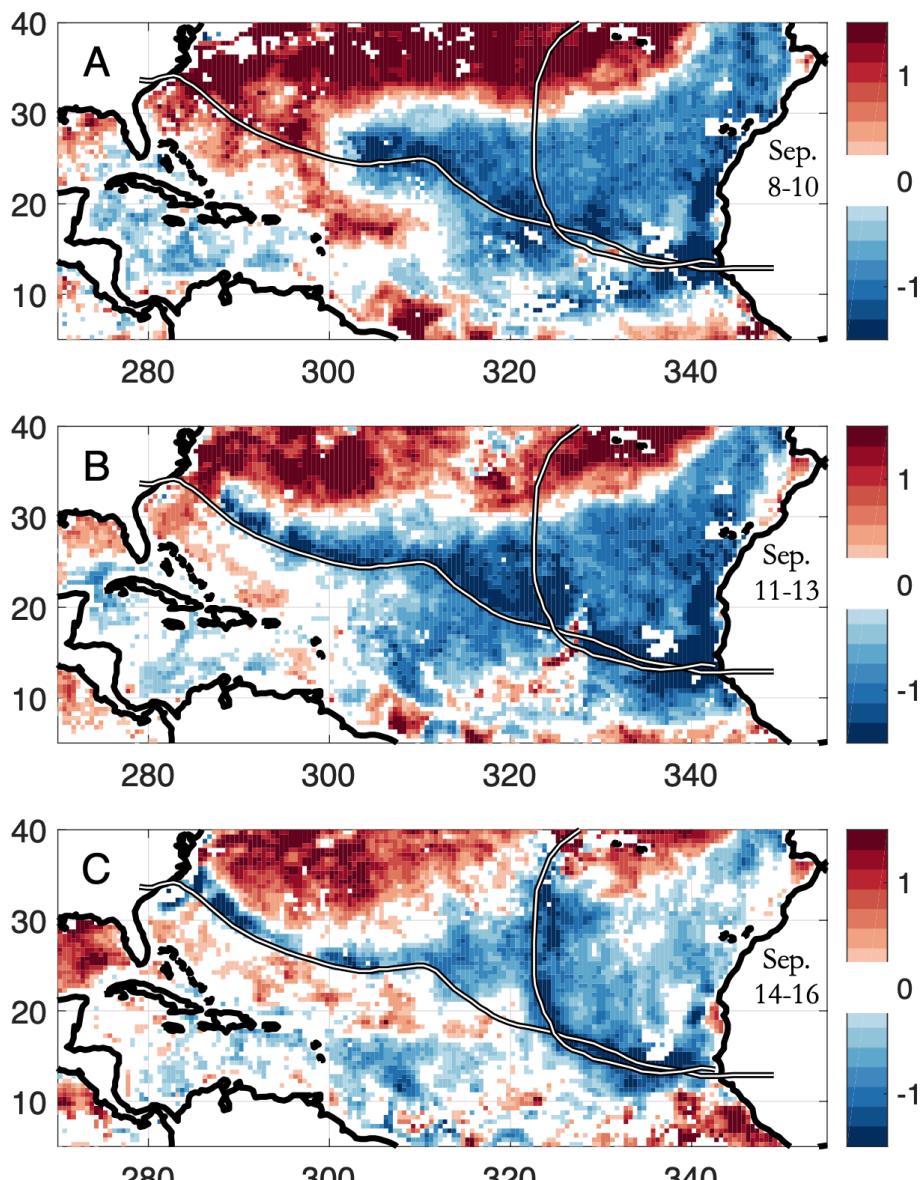
329 Leipper, D. F. (1967). Observed Ocean Conditions and Hurricane Hilda, 1964. *Journal of the*  
330 *Atmospheric Sciences*, 24(2), 182–186. [https://doi.org/10.1175/1520-0469\(1967\)024<0182:OOCAGH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAGH>2.0.CO;2)

331

332 Liu, J., Curry, J. A., Clayson, C. A., & Bourassa, M. A. (2011). High-Resolution Satellite Surface  
333 Latent Heat Fluxes in North Atlantic Hurricanes. *Monthly Weather Review*, 139(9), 2735–2747.  
334 <https://doi.org/10.1175/2011MWR3548.1>

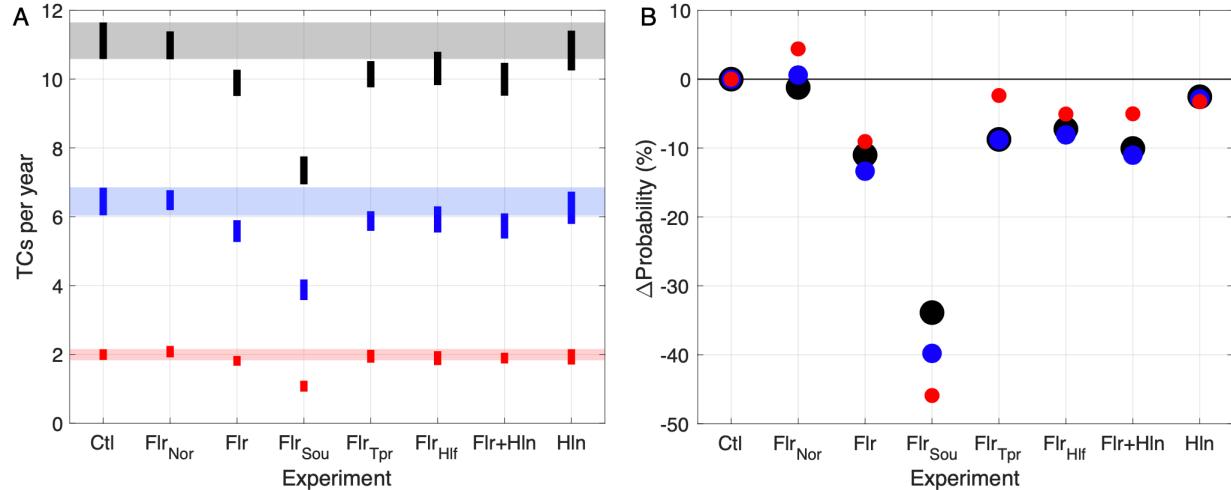
335 Ma, Z., Fei, J., Lin, Y., & Huang, X. (2020). Modulation of Clouds and Rainfall by Tropical  
336 Cyclone's Cold Wakes. *Geophysical Research Letters*, 47(17).  
337 <https://doi.org/10.1029/2020GL088873>

338 Price, J. F. (1981). Upper Ocean Response to a Hurricane. *Journal of Physical Oceanography*, 11(2), 153–  
339 175. [https://doi.org/10.1175/1520-0485\(1981\)011<0153:UORTAH>2.0.CO;2](https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2)


340 Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Duemenil, L., et al. (1996). The  
341 atmospheric general circulation model ECHAM-4: Model description and simulation of  
342 present-day climate.

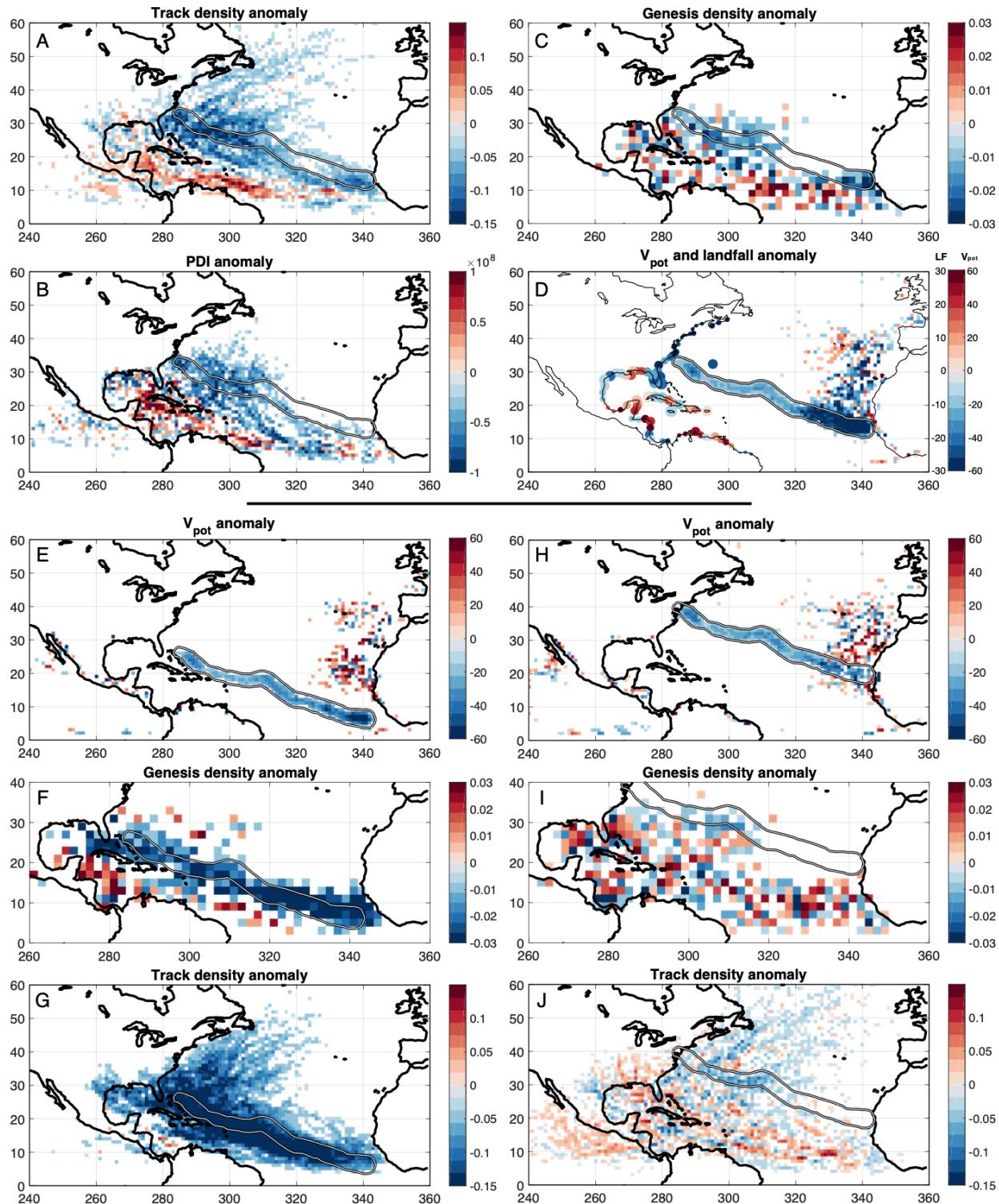
343 Sanabia, E. R., & Jayne, S. R. (2020). Ocean Observations Under Two Major Hurricanes: Evolution  
344 of the Response Across the Storm Wakes. *AGU Advances*, 1(3).  
345 <https://doi.org/10.1029/2019AV000161>

346 Stramma, L., Cornillon, P., & Price, J. F. (1986). Satellite observations of sea surface cooling by  
347 hurricanes. *Journal of Geophysical Research*, 91(C4), 5031.  
348 <https://doi.org/10.1029/JC091iC04p05031>


349 Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. (1998).  
350 Progress during TOGA in understanding and modeling global teleconnections associated

351 with tropical sea surface temperatures. *Journal of Geophysical Research: Oceans*, 103(C7), 14291–  
352 14324. <https://doi.org/10.1029/97JC01444>  
353

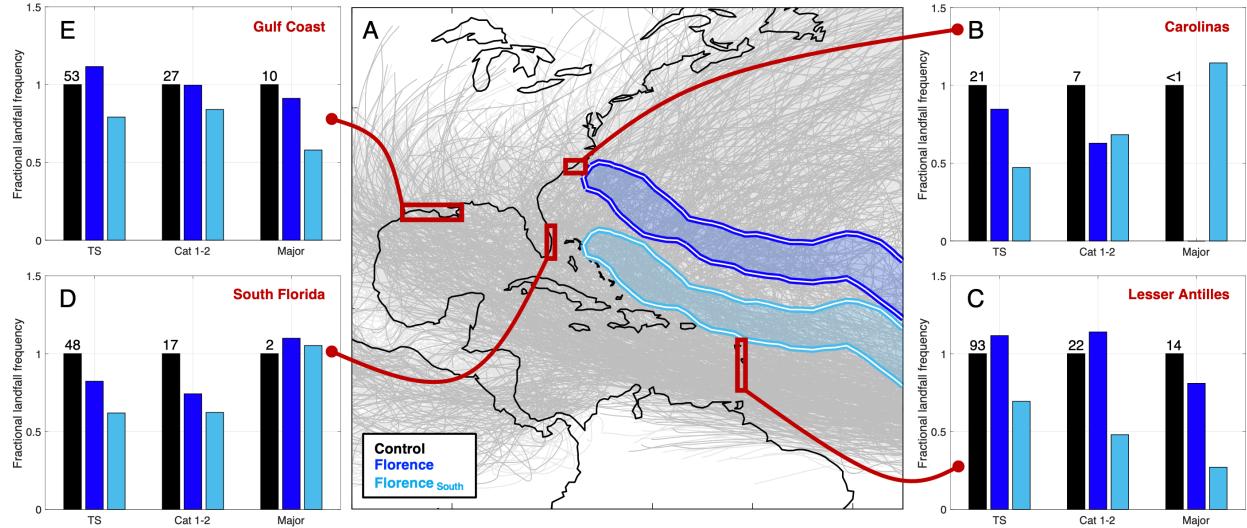



355

356 **Figure 1.** Sea surface temperature anomaly averaged from (A) 8–10, (B) 11–13 and (C) 14–16  
 357 September 2018. Anomalies are relative to the same three calendar days averaged over 2002–2017.  
 358 Data from the Advanced Microwave Scanning Radiometer (AMSR)–E (2002–2011) and AMSR–2  
 359 (2012–2018). For this figure, AMSR data were linearly interpolated onto a  $0.5^{\circ}$  grid (from the original  
 360  $0.25^{\circ}$  product). Values less than  $\pm 0.25^{\circ}\text{C}$  are masked (white). See Methods for more details.



361


362 **Figure 2.** (A) Mean annual number of TCs (black), hurricanes (blue) and major hurricanes (red) in  
 363 the control simulation (labeled Ctl on the x-axis) and all wake experiments. Bar heights represent the  
 364 90% confidence intervals on the mean values (transparent shaded bars simply extend the 90%  
 365 confidence intervals on the control mean values across the entire plot for comparison). (B) As in (A)  
 366 but normalized such that each mean value is expressed as a percent difference from the control mean  
 367 value for each intensity classification. Wake experiments labeled Flr<sub>Nor</sub>, Flr<sub>Sou</sub>, Flr<sub>Tpr</sub>, and Flr<sub>Hlf</sub> represent  
 368 northward shifted, southward shifted, tapered (to zero in the east), and uniformly halved (in amplitude)  
 369 variants on the Florence (Flr) wake, respectively. Wake experiments labeled Flr+Hln and Hln  
 370 represent both Florence and Helene wakes simultaneously present, and only the Helene wake present,  
 371 respectively. See Fig. S2 for a depiction of the SST forcing associated with each of these experiments.



372

373 **Figure 3.** Anomaly maps for (A) track density (TCs per  $1^{\circ}$  grid cell per year), (B) power dissipation  
 374 index (PDI;  $m^3 s^{-2}$ ), (C) genesis density (TCs per  $2^{\circ}$  grid cell per year), and (D) potential intensity ( $V_{pot}$ ;  
 375 knots) and landfall frequency anomaly (bubbles along the North and South American coastline; %

376 change). Landfall bubble size is proportional to the annual number of landfalls per year in the control  
377 simulation. (E–G) Potential intensity anomaly (knots), genesis density anomaly (TCs per  $2^{\circ}$  grid cell  
378 per year) and track density anomaly (TCs per  $1^{\circ}$  grid cell per year) for the Florence-South wake. (H–  
379 J) as in (E–G) but for the Florence-North wake. All anomalies are relative to the control simulation.  
380 The  $-0.5^{\circ}\text{C}$  SST anomaly isotherm of the applicable wake is contoured on each panel for reference.



381

382 **Figure 4.** (A) Overview map of the Atlantic basin with all 4,000 synthetic TC tracks generated in the  
 383 control simulation (darker gray for major hurricanes), the  $-0.5^{\circ}\text{C}$  SST anomaly isotherms associated  
 384 with the Florence (royal blue) and Florence-South (light blue) wakes, and four representative coastal  
 385 regions highlighted. (B) Fractional landfall frequency results at the Carolinas coastal region (extending  
 386 roughly from Morehead City, NC to Myrtle Beach, SC) for three different intensity classifications  
 387 (tropical storms, category 1–2 hurricanes, and major hurricanes [category 3+]) and three different  
 388 experiments (control, Florence wake, and Florence-South wake). All bars are expressed as fractions  
 389 of the control simulation results. Control results (numbers of landfalls per century) for each intensity  
 390 classification are listed above each control bar. (C–E) as in (B) but for the Lesser Antilles region, South  
 391 Florida region and the northwestern U.S. Gulf Coast region, respectively.