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BROWNIAN MOTION TREE MODELS ARE TORIC

BERND STURMFELS, CAROLINE UHLER AND PIOTR ZWIERNIK

Felsenstein’s classical model for Gaussian distributions on a phylogenetic tree is shown to be
a toric variety in the space of concentration matrices. We present an exact semialgebraic char-
acterization of this model, and we demonstrate how the toric structure leads to exact methods
for maximum likelihood estimation. Our results also give new insights into the geometry of
ultrametric matrices.
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1. INTRODUCTION

Brownian motion tree models are classical statistical models for phylogenetic trees. They
were introduced by Felsenstein [8] to examine continuous measurements of phenotypes
in evolutionary biology. The vertices of the tree represent real-valued random variables,
whose joint distribution obeys a Gaussian law.

Let T be a tree with no degree two vertices and with n + 1 leaves, labelled 0,1,...,n,
and let T be the rooted tree obtained from T by directing all edges away from 0. The
set V' of non-root vertices of T is in natural bijection with the set of edges of T'. A vertex
u € V is a descendant of v € V if there is a directed path from v to w in 7. The set
of all leaf-descendants of v is denoted by de(v) and called a clade of T. We fix a total
order on V such that u < v if de(u) C de(v). Given u,v € V', we write w = lca(u, v) for
their most recent common ancestor. This is the smallest w € V' with u,v € de(w). Our
running example is shown in Figure 1.

In the space S™ of symmetric n x n matrices ¥ = (0,;) we consider the subspace

Ly = {XeS": 05 =0y if lca(i, j) = lca(k,1) }.

Using parameters (t, : v € V'), the matrices in L satisfy o;; = t, for v = lca(i, 7). This
furnishes a representation of the tree T by a matrix, as shown in Figure 1.

We are interested in Gaussian distributions on R"™ with covariance matrix in L.
Their concentration matrices K = (k;;) form the |V|-dimensional algebraic variety

Lt ={K=x"':%eLr} c S-
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Fig. 1. A tree T with n=4 leaves, |V |=7 edges, and its matrix
representation.

We identify E;l with its Zariski closure in the projective space P(S™) ~ P("2")=1, n this
. L . . . . . ("‘*’1)71
paper we show that the variety £~ is linearly isomorphic to a toric variety in P\ 2 .
In tropical geometry [11, Remark 4.3.11] and algebraic combinatorics [2, Theorem 4.6],
one associates a toric ideal I with the unrooted tree 1" as follows. The ideal I7 has the
quadratic generators p;ppj; — pupjr Where {i,j} and {k,l} are cherries in the induced
4-leaf subtree on any quadruple 4, j, k,1 € {0,1,...,n}.
To reveal the toric structure, we introduce a change of coordinates in S™ as follows:

pij = —Kij for 1 <i<j<n, (1)
Pos 23.1:1 Rij for 1 S 7 S n.

With this, the concentration matrix K = (k;;) is the reduced Laplacian of the complete
graph on n+1 vertices with edge labels p;;. See [12, Example 4.9], where the matrix for

n = 3 is shown in equation (4.6). Here is the same scenario for n = 4:

Example 1.1. We fix coordinates poi,po2; ..., p34 on P(S*) =P by setting

Po1+pi2+p13+pia —pi12 —pi3 —Pi14
K = —p12 Po2+p12+p23+p24 —p23 —Pp24
—p13 —p23 Po3+pP13+p23+psa —P34

—Pi4 —p24 —P34 Poa+pra+p24+p3a

Fix the tree T' in Figure 1. The 6-dimensional toric variety 5;1 in PY is defined by

I; = (po1p23 —P02P13, Po1P24 —P02P14> P03P14 —P04P135 P03D24 —P04D23, P13D24 —P14D23 )-

These quadrics vanish for the inverse of any matrix with the structure in Figure 1.
The title of this paper is an abridged version of the following statement:

Theorem 1.2. The variety /L;l of concentration matrices in the Brownian motion tree
model, in coordinates (1), coincides with the toric variety defined by the ideal I;.
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The proof of this theorem will be given in Section 3. First, however, in Section 2, we
offer an introduction to the statistical model and its phylogenetic applications. Statisti-
cal models correspond to semialgebraic subsets of L or E;l. We are interested in two,
namely the spectrahedron L7 NS’} , obtained by intersection with the cone S7} of positive
definite matrices, and the polyhedral cone

Lrs = { Y e Lr: 0<0; <oy wheneverlea(s, j) < lca(k, l)}

We shall see that L7 > is a simplicial cone, contained in the spectrahedron L7 NS’ .

Matrices in L7 > play an important role in statistics. By Proposition 3.14 in [5], every
matrix ¥ in Lp > is an ultrametric matriz in S™, 1. e. it satisfies 0;; > min{ox, 051} > 0
for all ¢,j,k. By Theorem 3.16, every ultrametric matrix lies in L7 > for some tree
T. Ultrametric matrices appear in the potential theory of finite state Markov chains,
which is the context of [5]. Our motivation came from phylogenetics [8] and Gaussian
maximum likelihood estimation [17].

Every matrix ¥ in S7 represents a Gaussian distribution on R"™. Both L7 NS" and
Ly > belong to the class of linear Gaussian covariance models [1, 17].

The main result of this paper is Theorem 2.6. This is an extension of Theorem 1.2
which features toric inequalities p;rpji < pijpii in addition to the quadratic binomial
equations in I7. It offers an exact semialgebraic description of the model ﬁ;; in
nonnegative coordinates p;;. The proof of this result is presented in Section 5. It rests
on formulas that express p;; in terms of treks as in [15].

Section 4 is about fitting Brownian motion tree models to data, given by a sample
covariance matrix S in S7. We do so by maximizing the log-likelihood function

((X) = —logdetY — trace(SE1). (2)
This function is non-convex. The expression in terms of K = ¥~! equals
U(K) = logdet K — trace(SK). (3)

This function is convex in K, which motivates analyzing maximum likelihood estimation
for Brownian motion tree models as an optimization problem over E;l. As we will show
in Section 4, in this parameterization maximum likelihood estimation boils down to
solving a system of polynomial equations on E;l. The paper concludes with a brief
discussion on how Theorem 2.6 might be applied to likelihood inference.

2. TREE MODELS AND THEIR PARAMETERS

Brownian motion is a stochastic process that describes the random motion of particles.
It is a Wiener process W; satisfying Wy = 0, with independent increments, and such
that Wy — Wy for t > s has a Gaussian distribution with mean zero and variance ¢ — s.
Brownian motion on a rooted binary tree T' can also be described using the Wiener
process. The process starts at node 0. At time ¢t = t5,_1, it splits into two, and each
of the two processes starts evolving independently at value Wy, . It again proceeds
according to the Wiener process until another splitting event occurs. We think about
this process as evolving along 7', where the parameters ¢, for inner nodes v represent
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the times of splitting events. This construction is a continuous interpretation of the
Gaussian structural equation model (4) discussed next.

Given a rooted tree T, we define a Gaussian distribution on 7' as follows. First,
set Yy = 0. Then to each node v € V we associate independently a Gaussian random
variable €, with mean zero and variance 6, > 0. The corresponding Markov process on
T is a collection of real-valued random variables Y, for v € V. They satisfy

Y, =Y, +e¢, foreveryedge u—vekE. (4)

Since a linear transformation of a Gaussian vector is also Gaussian, we conclude that the
random vector Y = (Y, ),ecv is Gaussian. The set of covariance matrices of the marginal
distributions on the leaf-variables (Y7, ...,Y},) is the polyhedral cone Lr >.

Proposition 2.1. The random vector (Y7,...,Y,) is normally distributed with mean
zero, and the entries 0;; = cov(Y;,Y;) of its covariance matrix Xy are
o = Y. 0, forij=1,...n (5)
v<lea(ig)

The resulting Gaussians on R™ are precisely those with covariance matrices in L >.

Proof. Using (4) recursively, we can write each Y; in terms of the error terms as

Y, = Zev.

v<1i

Equation (5) follows from this and the fact that all €’s are mutually independent. The
linear inequalities o;; < oy; that define the polyhedral cone L7 > inside the linear space
L7 are equivalent to the requirement that the 6;’s be nonnegative. O

Example 2.2. Consider the tree in Figure 1. The random variables along the nodes of
the tree are Yy =0, Y7 = €7, Ys = er + €5, Ys = €7+ €6, and Y7 = e7 + 65 + €1, Yo =
€7+ €5+ €2, Y3 =¢€7+ €+ €3, Yy =cr+eg+eq.

The €, are independent univariate Gaussians with mean 0 and variance 6,. Hence
the marginal distribution of (Y7,Y3,Y3,Ys) is Gaussian with the covariance matrix

01+ 65 + 67 05 + 07 07 07
Sy = 05 + 67 02 + 65 + 07 07 07 (6)
0+ 07 03 + 06 + 07 06 + 07
07 07 06 + 07 04+ 06 + 07

This is the matrix in (5) and in Figure 1. The constraint that the ¢; are nonnegative
translates into the inequalities t1,ts > t5 and t3,t4 > tg and t5,tg > t7 > 0.

The extreme rays of the polyhedral cone L > are as follows. Let g, € {0,1}" be the
vector with (g,); = 1 if ¢ € de(v) and (g,); = 0 otherwise. The corresponding rank one
matrices G, = g,g form a basis for Lr. In fact, the matrix in (5) equals

S = 0.G,. (7)

veV
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Corollary 2.3. The cone L7 > is a simplicial cone, spanned by the rank one matrices
G, associated with vertices v € V. It is contained in the spectrahedral cone L7 NS .

Note that this inclusion is strict. For instance, the matrix Xy in (6) is positive definite
if weset 6 =0, =03 =04, =5, 05 =0 =0 and 0; = —1. This means that the linear
covariance model is strictly larger than the Brownian motion tree model.

We next interpret our model in the context of distance-based phylogenetics. Using
the natural bijection between non-root vertices and edges, we label each edge of T' with
a parameter 6,. This is shown in the tree on the right in Figure 1. We think of 6, > 0
as the length of the associated edge. We compute the distance between any two leaves
of T by summing the lengths of edges on the unique path joining them. The collection
of resulting distances d;; for 4,5 = 0,1,...,n is a tree metric on T.

The correspondence between ultrametric n X n matrices and tree metrics on n + 1
taxa is known in phylogenetics as the Farris transform [13]. The formulae are

O = d()l' forlgzgn
Oij = %(dori-doj—dij) for1<i<j<n,

and these are equivalent to (5). The inverse is given by

dOi = 0y fOI'lSZSn
dij = Uii+0jj_20'ij fOflSZS]Sn

Proposition 2.4. The model L7 > is identified with the cone of tree metrics on T via
the Farris transform (d;;) — (oy;). The parameters 6, are the lengths of the edges.

Proof. The diagonal entry o;; of the covariance matrix is the sum of the lengths 6,
of the incoming edges for all vertices v on the path from the root 0 to leaf i. Therefore,
do; = o;; is the distance from 0 to 7 in the unrooted tree T. Each off-diagonal entry o;;
is the length of the path from the root 0 to lca(s, j). Hence o;; — 05 is the length of the
path from Ica(s, j) to the leaf i. We conclude that d;; = (04 — 045) + (0j; — o) is the
length of the path from leaf i to leaf j in 7. Since the Farris transform is an invertible
linear transformation, it identifies the two simplicial cones in R("). O

We next turn to the space of all tree metrics, which is a key object in phylogenetics.
A classical result of Buneman [3] states that a metric D = (d;;) on {0,...,n} is a tree
metric (for some tree) if and only if it satisfies the four point condition:

dij +diy < max{dik +dj;,diy + djk} for all 4,7,k,1 € {0, 1,... ,n}. (8)
If D is a tree metric on T then the following additional equation holds:
dir +dji = dia +djk if {i,j}, {k,1} are cherries in the quartet on i,7,k,I. (9)

The constraints (8) and (9) are well-known also in tropical geometry [11, §4.3] where one
identifies the space of tree metrics with the tropical Grassmannian that parametrizes
tropical lines in R™*1 /R1. This is related to Theorem 1.2 as follows.
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Remark 2.5. If we set p;; = e~ %4 then the linear relations (9) that hold for tree metrics
on T are precisely the equations p;xpjr = pup;r that define the toric ideal I5.

We now state our main result. It augments Theorem 1.2 by incorporating the in-
equalities in (8). The unrooted tree obtained from T by restricting to any four leaves
i,7.k, 1 is called a quartet of T. If equality holds in (8) then this four-leaf tree is a star
quartet. If the inequality in (8) is strict then we call it a trivalent quartet.

Theorem 2.6. Given any rooted tree T', the set £T - of concentration matrices in the
Brownian motion tree model is the set of positive definite matrices K satisfying

pij =2 0 forall 0<i<j<mn,
DikPji = DPiPjk = DPijPki for all star quartets ijkl, (10)
and DikPjl = PuPjk < DijDkl for all trivalent quartets 4j|kl.

Remark 2.7. These inequalities are satisfied by pij = e %i where (d;;) is any tree
metric on 7. Thus, the collection of models ET -, where T' ranges over all rooted trees
on n leaves, is a multiplicative realization of the space of phylogenetic trees. This is
reminiscent of the space of phylogenetic oranges studied by Moulton and Steel [14].

We illustrate the contents of Theorem 2.6 for our running example.

Example 2.8. Fix the tree in Figure 1 with covariance matrix Xy in (6). Set s :=
det(Xg) > 0. Writing the concentration matrix K = ¥, ' as in Example 1.1, we have

p13s = 020407, p1as = 020307, pazs = 010407, pass = 010367, (pospi2 — pozp13)s = 0405,
(poapiz — po2p1a)s = 0305, (pPo1p3a — poap13)s = 0206, (Po2p3a — poap23)s = 6166,
(p12p3a — p1apas)s = 0506 + 0507 + 0607,
po1s = (0304 + 0306 + 0406)02, po2s = (0304 + 0306 + 0466)61 ,

Po3s = (‘9192 + 0105 + 9295)94 , DPoas = (9192 + 60105 + 9295)93 ,
p128 = 030405 + 030407 + 030506 + 030507 + 030607 + 040506 + 040507 + 040607 ,

D345 = 010206 + 010207 4 610506 + 010507 + 010607 + 020506 + 020567 + 020607.

The five quadratic binomials in I; are zero for these p;;. Assuming this, Theorem 2.6
says that these 15 expressions are nonnegative if and only if 61,...,607 > 0.

3. TORIC IDEALS FROM TREES

In this section we prove Theorem 1.2. The proof of Theorem 2.6 is given in Section 5.
The following code in Macaulay2 [9] provides the quadratic generators for our running
example. It also shows that the rooted tree 7" need not be binary.

Example 3.1. Example 1.1 can be verified in Macaulay2 [9] by running this code:

R
S

QQlt1,t2,t3,t4,t5,t6,t7,p01,p02,p03,p04,p12,p13,p14,p23,p24,p34];
matrix {{t1,t5,t7,t7},

{t5,t2,t7,t7},

{t7,t7,t3,t6},
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{t7,t7,t6,t4}};
K = matrix {{pOi+pi12+p13+p14, -pl2, -pl13, -pl4},
{-p12, p02+p12+p23+p24, -p23, -p24},
{-p13, -p23, p03+p13+p23+p34, —-p34},
{-p14, -p24, -p34, pO4+pl4+p24+p34}};
id4 = matrix {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
I = eliminate({t1,t2,t3,t4,t5,t6,t7},minors(1,S*K-1d4))
codim I, degree I, betti mingens I

As claimed, the toric ideal has codimension 3, degree 5 and five quadratic generators.

We now examine non-binary trees. First we replace the two occurrences of t6 by t7
in the covariance matrix S. The resulting tree has |V| = 6. By running the modified
Macaulay2 code, we see that the ideal is still toric. It has codimension 4, degree 8 and
7 quadratic generators. Finally, we replace both t5 and t6 with t7. Now the unrooted
tree T has |V| = 5. It is the star tree with leaves 0,1,2,3,4. Its toric ideal I; is the
ideal of the second hypersimplez. It has codimension 5 and degree 11, with 10 quadratic
generators. Modifying the code confirms these data.

Proof. (Proofof Theorem 1.2) We use the following parametric representation for the
toric variety of the ideal I associated with the unrooted tree T'. It is given by Laurent
monomials in the entries ¢, of the matrix representation of the rooted tree T":

Dij tlca(i,j)/(titj) for1 <i<j<n, (11)
Poi 1/t; for1 <i<n.

The ideal I is the kernel of the ring homomorphism R[p] — R[t*] given by (11). To
check that this parametrization by Laurant monomials is correct, one verifies that they
satisfy the binomial equations in (10) and that they span a multiplicative abelian group
of rank n + 1. For n = 4 and n = 5 this is a direct computation, and this implies the
result for larger trees since each binomial involves only four leaves, which may or may
not include the root.

The variety E;l is a cone in S” given parametrically by mapping a covariance matrix
¥ to its inverse K = ¥ ~!. Since the parametrization is homogeneous, we may replace the
inverse by the adjoint. By slight abuse of notation we set K = det(X)-X~!. The entries
kij of the matrix K are homogeneous polynomials of degree n — 1 in the parameters
t = (t,) for v € V. The same holds for the coordinates p;; in (1). We write P;;(t) for
these homogeneous polynomials. Our claim states that the toric ideal I7 coincides with
the kernel of the ring homomorphism R[p] — R[t], p;; — P;;(t).

To prove this, we examine the initial monomials and the irreducible factorization of
the polynomials P;;(t). Here we fix the degree reverse lexicographic order on R[t] given
by t, >ty if w <wvin T. For 1 < i < j < n, the polynomial P;;(t) is equal (up to
sign) to the determinant of the (n — 1) x (n — 1) submatrix of ¥ that is obtained by
deleting row ¢ and column j. The initial monomial is the product of the entries of that
submatrix which appear along the main diagonal. To be precise, we find

in(Py;(t)) = tita -ty - ticagi,j)/ (tit))-
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The polynomial Py;(t) is the determinant of the n x n matrix obtained from ¥ by
replacing the ith row with the all-ones vector (1,1,...,1). Its initial monomial equals

Hence, by (11), the relations among the initial monomials are precisely given by I7. We
claim that each of the quadratic binomial relations among the above Laurent monomials
lifts to exactly the same relation among the full polynomials P;;(t) and Pp;(t). We shall
prove this by examining the factorizations of these polynomials.

In what follows we first assume that T is a binary tree, i. e. every vertex in V\{1,2,...,n}
has precisely two children in T'. At the end of the proof, we shall derive Theorem 1.2
for non-binary trees from the same statement for binary trees.

For any inner vertex k in the rooted binary tree T, let T} denote the rooted tree
obtained from 7" by deleting all edges and vertices below k. Thus T} is a rooted tree
with leaves {k} U ({1,...,n}\de(k)). Let Dy(t) denote the determinant of its covariance
matrix. This is a homogeneous polynomial of degree n + 1 — |de(k)|. For any directed
edge u — v of the tree T, we consider the submatrix of ¥ with row indices de(u)\de(v)
and column indices (de(u)\de(v)) U {k}, for any fixed k € de(v). This matrix does not
depend on k, and it has one more column than rows. We make it square by placing the
all-ones vector (1,...,1) into the first row. We write E,, () for the determinant of that
square matrix. This is a homogeneous polynomial in (¢,),cy of degree |de(u)\de(v)|.
By convention, Fy, = 1 for the root edge 0 — v.

Consider the path between any two leaves i and j in the unrooted tree 7. Each vertex
u in the interior of such a path has a unique child v in the rooted tree T" that is not on
the path. Here we are using the assumption that 7" is a binary tree. The only exception
is the top vertex u = lca(i, j) on the path between ¢ and j in 7T

We find that the polynomial Py, (t) is equal to the product of all determinants E,,,, ()
where u — v is any edge on the path from 0 to ¢. Similarly, the (n — 1) x (n — 1)
determinant Pj;(t) is equal to Dica(; jy(t) times the product of all Ey,(t) where the
vertex u # lca(z, j) is on the path from leaf ¢ to leaf j. One verifies this by examining
for which parameter values ¢ these expressions vanish, and by noting that the initial
monomials coincide with the products of the initial monomials of the factors:

in(Dg(t)) te-TI{t: : i €{1,...,n}\de(k)},
in(E,,(t) = [I{t: : i € de(v)}.

The above factorizations of Py, (¢) and P;;(t) into the determinants D, (t) and E,(t)
show that each generator p;ip;i —pupjr of I; vanishes on our variety. By our analysis of
the leading monomials, there are no relations among the polynomials P;;(¢) and Py;(t)
beyond those in I7. In fact, our analysis shows that these polynomials form a Khovanskii
basis (cf. [10]) for the reverse lexicographic monomial order on the ;.

We now know that Theorem 1.2 holds for all binary trees. It remains to derive from
this the same statement for all non-binary trees. The property for rooted trees to be
binary translates into the property for unrooted trees to be trivalent. Let T’ be any
non-trivalent tree and let [T] be the set of all trivalent trees U that are obtained by
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refining 7. We next note that that the following identity among toric ideals holds:

Iy = Y I (12)

UelT)

The inclusion of the right hand side in the left hand side is clear because the binomials in
I vanish on the parametrization for T'. For the converse we can argue that these binomi-
als form a squarefree Grobner basis and the equality of varieties holds set-theoretically.
A more conceptual explantion is given by [6, Theorem 1.7].

Similarly, the linear space L is the intersection of all the linear spaces L7, where U
runs over [T]. Since matrix inversion is a birational isomorphism, the variety £, is the
intersection of the toric varieties C{Jl where U runs over the trivalent trees in [T] The
Nullstellensatz implies that the sum of toric ideals (12) cuts out £;1 set-theoretically.

This shows that £3.' is a toric variety, with toric ideal in (12). O

Example 3.2. Consider the binary tree in Figure 1 and Examples 1.1 and 3.1. The
special determinants defined above are the following polynomials:

Esy =ty —1t5, Esp =ty —t5, Eez =t4 —ts, Ees =13 — 16,

1 1 1 1 1 1
Ers = det |t t3 tg R Erg = det |t1 t5 t7].
t7 te t4 t5 t2 t?

We are interested in the projective variety in P? that is parametrized by

po1 = ErsE51, po2 = ErsEs2, pos = EreEe3, poa = EreEes, p12 = Ds, p3a = De,
P13 = E51D7Eg3, p1a = Es51D7Ees, p23 = EsaD7Eg3, pas = Es2D7FEgy.

One verifies that this is the variety defined by the toric ideal I seen in Example 1.1. Fur-
thermore, the same toric variety is also parametrized by the initial monomials in(pg1) =
tatsts, in(poz) = titats, ... , in(pas) = titatr, and in(psza) = titate.

Remark 3.3. Tropical geometers know that the toric ideals I7 are precisely the monomial-
free initial ideals of the Pliicker ideal that defines the Grassmannian of lines. The latter
arises in a manner that is similar to our passage from covariance matrices to concen-
tration matrices, namely by inverting matrices ¥ that have a Hankel structure. This
is the content of [12, Proposition 7.2]. We do not know whether this is related to the
present paper. Is it possible to derive Theorem 1.2 by a degeneration argument from
the relationship between Hankel matrices ¥ and Bézout matrices K7

4. MAXIMUM LIKELITHOOD ALGEBRA

The log-likelihood function for Gaussian random variables is the function ¢(¥) in (2).
Here S = (s;;) is a fixed sample covariance matrix, i.e. S = X X7 where X is a real
n X N matrix whose columns are the observed samples. Maximum likelihood estimation
is concerned with maximizing the expression (2) over all covariance matrices ¥ = (oy;)
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in the model of interest. This optimization problem is equivalent to maximizing the
expression (3) over all concentration matrices K in the model.

The optimal solution to this problem is denoted by 3 = (&;;) or K = (&y;). This is
called the mazimum likelihood estimate (MLE) for the data S. Here the model is fixed
but the data S can vary. We therefore think of the MLE as a function of S.

In this section we study the MLE for the Brownian motion tree model L7 >. The idea
is to take advantage of the toric structure revealed in Theorem 1.2. Thus, we use the
coordinate change (1) that writes the concentration matrix K as the reduced Laplacian
for the complete graph on n + 1 vertices with edge labels p;;. With this, the expression
(3) is a function of the p;j, subject to the toric constraints in I7. This gives us the
flexibility to choose a convenient parametrization of the toric ideal.

In algebraic statistics, one distinguishes two kinds of polynomial constraints for a
statistical model, namely equations and inequalities. It is customary to first focus on
the equations and examine the MLE in that setting before incorporating inequalities.

In our paper, the model is given by the semialgebraic set £}1>. This set satisfies the
inequalities in Theorem 2.6. For the discussion of MLE in the current section, we ignore
the inequality constraints and identify the set £;71> with its Zariski closure, which is
the toric variety £' = V(I7). The critical points of the likelihood function ¢(K) on
that variety are defined by a system of polynomial equations, known in statistics as
the likelihood equations. These can be derived by using Lagrange multipliers, or via a
monomial parametrization of the toric variety V().

The mazimum likelihood degree of the model is, by definition, the number of complex
solutions to the likelihood equations for generic data S. This number is an algebraic
invariant of the ideal I;7. To compute it we take S to be a general symmetric n x n
matrix of full rank n and we count all complex critical points of /(K ). In the following
result by the caterpillar tree we mean the binary tree with clades {i} and {1,...,i} for
alli=1,...,n.

Proposition 4.1. The maximum likelihood degree of the Brownian motion tree model
on a caterpillar tree T' with n = 2,3,4,5,6,7,8 leaves is equal to 1,1,5,17,61,233,917.

Proof. This result was found by symbolic computation, namely using the Grobner
basis package in the computer algebra system maple. For n > 6 the computation was
carried out over a finite field. O

This result is complementary to the usual approach in computational statistics where
one maximizes the likelihood function using a local numerical method, such as the
Newton-Raphson algorithm. Local methods perform best in a regime where the like-
lihood function is concave. Such a regime was identified in [17], where concavity was
shown to hold with high probability when the dimension n is small relative to the sample
size N. In that analysis it was essential to use all constraints of the model, i. e., not just
the equations but also the inequalities.

The maximum likelihood degree being equal to one means that the MLE can be
written as a rational function of the data. Proposition 4.1 says that this happens for
our model when n = 2 and n = 3. We next present the formulas for these two cases.
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Example 4.2. (n =2) The toric ideal I; equals {0}, so our model is the full Gaussian
family. This means that the MLE equals the sample covariance matrix:

G011 = S11, 012 = S12, 022 = S22.

Since the MLE of the parameters is & = $11, ta = S92, {3 = S12, this leads to valid
parameters for the Brownian motion tree model if min{si, so2} > $12 > 0.

Example 4.3. (n = 3) We label the rooted tree T' so that {1,2} is a clade. Hence
{1,2} and {0,3} are the cherries in the unrooted tree T'. Our toric ideal is principal:

IT = <p01p23 - P02P13> = </<11 Ko3 — K12K13 + K12K23 — H13/€22>-

This is equivalent to setting 013 = 093 in the covariance matrix ¥ = K~'. The MLE is
a rational function of the entries s;; of the sample covariance matrix S. We define

¢ = (s11 — 2812 + S22)833 — (813 — 523)%.

The entries 6;; of the estimated covariance matrix ¥ satisfy 633 = s33 and

011 = S11— 2(813—523)(811833—312833—5%3+813323)(311823—512813—512523+513822)/027
012 = S12— (513*523)(511533*8%3*522533+5%3)(511523 — 812813 — S12823 + 513522)/02,
G2 = S22 — 2(813—823)(812833—813823—8228334-8%3)(811823—812813—812823+813822)/C2~

The remaining two matrix entries must be equal:

G135 = s13 — (813 — 523)(511833 — ST — S12833 + S13823)/c
= 023 = 523 — (S23 — 513)(S22833 — 835 — S12833 + S13823)/c.

The following two linear forms are preserved when passing from data to MLE:
011 — 2612 + G22 = 811 — 2812 + S22 and 033 = 833.

Writing K = (k;;) = S~! for the sample concentration matrix, we note that K — K
is a rank 2 matrix which depends only on s33, s13 — S23, and s11 — 2812 + S90. Also,
Cc = (kll + 2]€12 + kQQ)/det(K)

Example 4.4. (n = 4) We consider the tree T in Figure 1. Its toric variety V(I7) =
E;l C P? was discussed in Examples 1.1, 3.1 and 3.2. We shall prove that the MLE for
this model cannot be expressed in radicals. For this, we fix the parametrization

Po1 = U1, Po2 = U2, P03 = U3, Po4 = U4, P12 = U1U2U6, P13 = U1U3US5, (13)
P14 = U1U4U5, P23 = U2U3U5, P24 = U2U4U5, P34 = U3U4LUT.

We substitute this into the concentration matrix K in Example 1.1. The determinant
of that 4 x 4 matrix is a polynomial of degree 10 with 81 terms:

4 2 3,2 2 3, 2. 3 2
det(K) = ujugusususzue—+3ujuzugtats e +ujUgUs Uy + - -+ -+ Uj UgUg Uy U7 + Ui UgUsUyg.
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For our computation we now take the sample covariance matrix

(14)

N = W Ot
— = ot W
W Ut = =
N L

Thus trace(SK) = dujusug + 8ujugus + - - - + duz + 4duy. Our goal is to maximize the
likelihood function log(det(K)) — trace(SK) where (u1,us,...,u7) ranges over R”. Tts
seven partial derivatives are rational functions in the u;. We clear denominators and
impose det(K) # 0. This results in a system of polynomial equations. We fix the
lexicographic term order with uy > us > --- > uy, we compute the reduced Grébner
basis in maple, and we find that it has a triangular shape. For i = 1,2,...,6, the
Grobner basis has an element u; — p;(ur), where p; is a univariate polynomial of degree
six with large rational coefficients. In addition, we see the quintic polynomial

5955844829180400 uf — 203897411425749580 uf + 129689372089999498 3

— 139971736881354888 u2 + 44907572962723196 ur — 5517030143672333. (15)

This polynomial has precisely one real root at 47 = 33.607528.... By back-substitution,
we compute the estimated concentration matrix K, and we find its inverse to be

4.757115029565996
3.040016668717226
1.418803877886187
1.418803877886187

i:

3.040016668717226
5.322918307868457
1.418803877886187
1.418803877886187

1.418803877886187
1.418803877886187
5.295621559259030
3.094192269251272

1.418803877886187
1.418803877886187
3.094192269251272 |
3.892762979243514

Using maple, we also check that the Galois group of the polynomial (15) over Q is
the symmetric group on 5 letters. Hence @7 cannot be written in radicals over Q. This
implies that the MLE cannot be written in radicals.

Proposition 4.1 only applies to rooted trees T' that are binary. This raises the question
what happens for degenerate tree topologies. At first glance, one might think that the
ML degree decreases for special trees. However, this is not the case:

Example 4.5. (n = 4 revisited) Let T be the star tree on five leaves, so T is the
directed tree obtained from the tree in Figure 1 by shrinking the edges labeled 65 and
6. Recall from Example 3.1 that I; has codimension 5 and degree 11. It has 10
quadratic generators. We obtain a parametrization by setting us = ug = w7 in (13).

Performing the same computation as in Example 4.4, we find that the ML degree of
this star tree model is 21. For the sample covariance matrix S in (14), we find

3.350776006974025
3.350776006974025
11.10861203686456
3.350776006974025

3.350776006974025
3.350776006974025
3.350776006974025 |
5.509927633167128

3.350776006974025
5.654229276230780
3.350776006974025
3.350776006974025

2.945585253871356
3.350776006974025
3.350776006974025
3.350776006974025

\o)
I

The matrix entries in & are algebraic numbers of degree 21 over Q.

In the case of star trees, the MLE problem can be formulated via (2) as follows:
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e Minimize log(detX) — trace(SE ') over the set of symmetric matrices ¥ € STt
whose off-diagonal entries are equal and smaller than the diagonal entries.

We obtained the following result concerning the algebraic degree of this optimization
problem. Just like Proposition 4.1, this was found using computations with maple.

Proposition 4.6. The maximum likelihood degree of the Brownian motion star tree
model with n=2,3,4,5,6,7,8,9 is equal to 4, = 1,7,21,51,113,239,493,1003.

It is natural to conjecture that this degree always satisfies §,, = 21 — (2n + 3).

Remark 4.7. The estimated matrix & in Example 4.5 lies in the spectrahedron L ﬂSj_.
It is not in the model L7 > for the star tree T because the upper left entry is smaller
than the off-diagonal entry in the first row. This discrepancy motivates studying the
inequalities in Theorem 2.6, whose proof is given in the next section.

5. BEING ON TREK IN SEMIALGEBRAIC STATISTICS

In this section, we prove that the inequalities in Theorem 2.6 are valid for our model.
Namely, we show that p;; and p;;pr; — pupjr are nonnegative on L7, >. This is done by
applying the theory of treks due to Sullivant, Talaska and Draisma [15].

A symmetric n x n-matrix K is an M-matriz if K is positive definite and ;; < 0 for
all i # j. Moreover, K is diagonally dominant if |k;;| > 37, ,; |ki;| for all 4. If K is an
M-matrix then it is diagonally dominant if and only if the vector K1 has nonnegative
entries. Therefore, a matrix K = [k;;] is a diagonally dominant M-matrix if and only
K €8 and the quantities p;; = —r;; and po; = E?:1 Ki; in (1) are nonnegative.

It is known in linear algebra [16, Theorem 2.2] that the inverse of any symmetric
ultrametric matrix is a diagonally dominant M-matrix. This explains why all points in
L7% have nonnegative coordinates. This constraint is the first in (10). The validity of
the other inequality constraints arises from the following key lemma.

Lemma 5.1. The determinant det(X) times the quantity p;;jpr — papjr in (10) is a
sum of products of parameters 6;, so it is nonnegative when the 6; are nonnegative.

The proof of this lemma is given below. The case n = 4 was seen in Example 2.8. To
provide some intuition, we now prove Lemma 5.1 and Theorem 2.6 for n < 3.

Example 5.2. (n < 3) Let n = 2. There are no constraints in (10), and we have

K= sl — 01 + 03 03 - _ 1 02 + 03 —0s
Os 02405 010, + 0105 + 0205 | —0s 014065

Assuming that K lies in S, then the vector (po1,poz,pos) is nonnegative if and only if
(61,02,03) = det(X)-(po2, po1, p12) is nonnegative. This proves Theorem 2.6 for n = 2.

Let n = 3 and T be the binary tree with clade {1,2}. Theorem 2.6 asserts that the
model Kil> is equal to the set of all diagonally dominant M-matrices satisfying

Po1P23 = Po2P13 < PosP12- (16)
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The former is contained in the latter because a direct calculation reveals that

Po1 det Y = 92937 Po2 det Y = 91637 Po3 det X = 9102 + 9164 + 92047
P12 det Y = 9394 + 9395 + 9495, P13 det Y = 9295, P23 det Y = 9195, (17)
(Po3p12 — po1p2s) det ¥ = 0.

Conversely, let K be a diagonally dominant M-matrix satisfying (16). By Theorem 1.2,
the equation in (16) implies that K € £7'. Since K is invertible, we can define ¥ = K 1.
Then ¥ = ¥y for some real vector (61,...,605) that satisfies (17). From (16) we obtain
04 > 0. Nonnegativity of po;, p;; implies that 61, 02,03, 05 are either all nonpositive or all
nonnegative. We want to show that they are all nonnegative. Suppose they are negative.
Since pg3det X > 0 and p1s det ¥ > 0, we have

9192 0395

0, < — .
4 ‘= 03 + 05

o _91-5-92’

However, det¥ = 04(01 + 02)(03 + 05) + 6102(03 + 05) + (61 + 02)0505 > 0 and so

00 005
0, +6; 03+05

04 >

which is a contradiction and hence Theorem 2.6 holds for n < 3.

Fix the tree T with n leaves as before. A trek from leaf i to leaf j is a pair v =
(P, Pr), where Py, is a directed path from some vertex v to ¢ and Pg is a directed path
from v to j. The leaf i is the initial vertez, the leaf j is the final vertez, and v = v(7) is
the top of the trek. The parameter 0, is the weight of the trek. We also allow treks
between i = 0 and j, in which case the associated weight is 1. Given two sets A and
B with the same cardinality, a trek system T' from A to B consists of |A| treks whose
initial vertices exhaust the set A and whose final vertices exhaust the set B. The weight
of a trek system is the product of the weights of all its treks.

In our application either A = {1,...,n}\{j} and B={1,...,n}\{i}if 1 <i<j <mn,
or A={0,1,...,n}\{j} and B={1,...,n} if 0 =i < j < n. We assume that all treks
are mutually vertex-disjoint. Equivalently, we consider the set 7;; of trek systems I'
from A to B that consist of the following |A| vertex-disjoint treks:

(i) one trek from ¢ to j,
(ii) |AN B| treks from k to k for each k € AN B.

In Figure 2 we show all eight trek systems of that form between {1,3,4} and {2, 3,4}
for the tree in our running example.

Proposition 5.3. The following identity holds for all indices 0 < i < j < n:

pijdety = Z Hev(’Y)

reT;,; vel

Moreover, each monomial appears in this sum only once.
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Fig. 2. Eight trek systems from A = {1,3,4} to B ={2,3,4}. Treks
are indicated by solid edges. Dots mark the tops of the treks.

Proof. We first prove the second assertion: each trek system in 7; ; gives a different
monomial. Suppose there are two different trek systems I', I'V such that Hv crbu(y) =
nyeF’ O,(+)- Let 7,7 be two treks in I, I with the initial point k& and the final point
(either kK = [ or k = i, I = j). Both v(y) and v(y’) lie on the path between 0 and
lea(k,l). If v(y) # v(v') then one lies above the other, say 0 < v(y) < v(v'). But then
v(v’) lies on the trek of T from k& to [ and so it cannot be at the top of another trek in
T because treks must be mutually disjoint. This leads to a contradiction unless v = ~'.
We conclude that T' = T".
We now prove the main formula. Consider first the case 1 < i < j < n. We have

Kij detd = (—1)i+j detEAB,

where A = {1,...,n}\{j} and B = {1,...,n}\{i}. Let A = [A\y,] € {0,1}V*V be the
matrix with Ay, = 1 if u = v in T and A\, = 0 otherwise, and let Dy be the diagonal
matrix with entries § = (,). The covariance matrix of the model (4) equals

(1]

= (I=A)"TDg(r —A)*

The principal submatrix of = corresponding to the leaves of T' is 3. Hence det ¥4 p =
det =4 p. Every trek system between A and B gives rise to a permutation 7 € S,,_;
and we define sign(I') := sign(nw). If I € T; ; then sign(mr) = (=1)"**! unless i = j in
which case 7 is the identity. Using equation (2) in [7], we conclude that

ZFeTi,i Hwer 9})(7) ifi =7,
- ZFGTM (=1 H'yEF Oury 177

The formula in [7] involves all trek systems between A and B but the sum can be
restricted to trek systems with no sided intersections [7, Definition 3.2]. In our case this

detZA,B = {
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is equivalent to treks being mutually vertex-disjoint. It follows that

Yorer., [er oy ifi=1,
—2rer,; [er oy Hi# .

This proves the desired formula for p;; det X in the case when i # 0.
It remains to consider the case i = 0. Here we have

pojdetE = (Iijj+Z/€jk)detE = Z H@U(,y)—z Z HQU(’Y)'

k#j LeTj,jvel k#j T€T),k vel

Rij detd = {

We claim that this expression equals > . ; HﬂﬂeF Oy(y). For a fixed k, pick I' € Tj

with associated monomial [ . 0,(,). Replace the trek (Pr, Pr) from j to k in I' with

the trek (Pg, Pg) from j to j. The resulting trek system I' € 7;.; has the same weight.
This shows that the monomials in the second sum all appear in the first sum. Since each
monomial appears at most once in a trek system, they mutually cancel each other out.
The only terms of the first sum that remain are the ones not containing 6, for v < j.

These are precisely the monomials in 3 po7 [l er 0 O

yer Yu(v)-

Example 5.4. Fix the tree in Figure 1. We use Proposition 5.3 to confirm the formula
for p1odet X in Example 2.8. There are eight vertex-disjoint trek systems from A =
{1,3,4} to B = {2,3,4} as shown in Figure 2. The trek systems in the first row have
the weights 030405, 0405605, 030505, 040507. In the second row we get 036467, 0,0507,
030607, 0305607. The sum of these eight monomials equals pi5 det X.

We shall now prove the key lemma that was stated at the beginning of this section.

Proof. (Proof of Lemma 5.1) Let ij|kl be a trivalent quartet in 7. Our goal is to
show that p;;jpri — pikp;i is a sum of products of the parameters 0,. Let s = det ¥. By
Proposition 5.3, we have

(pijpk'l 7pikpjl)s2 = Z Z H 01}(7) H 01}(7) - Z Z H ov('y) H 91}('\/)'

TE€T:,; T'€T vED =I TETix TVET; 1 vET ~er

(18)

It suffices to show that each term in the right sum lies also in the left sum. Fix a pair
it € Tik, L1 € T;1. We will construct trek systems I';; € 7, ;, I'yy € Ty; such that

II oon II 0oy = I 0oy 11 Oor (19)

yET ik veT vy€el; YET k1

The idea of the construction is shown in Figure 3.

Since ij/kl is a trivalent quartet in 7', either v(v;x) < j or v(7;;) < i. Otherwise the
paths ik and jl do not intersect. Similarly, either v(v;z) <1 or v(v;;) < k. Without loss
of generality, we consider the case v(7y;x) < j and v(v;x) < . (The proof is similar for
the other three cases). Replace Pg in ;, = (Pr, Pg) with a path from v(v;) to j to
obtain trek +y;; from i to j. Replace Pj in v; = (Py, Pr) with a path from v(v;;) to k
to obtain trek 7 from k to .
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Fig. 3. Illustration of the construction for (19) in the proof of
Lemma 5.1.

The quartet ij]kl has two inner nodes u, v. Removing the path @o between u and v in
T together with all the incident edges induces a split of T" into > 4 blocks. Because uv is
part of both ~;, and ;;, it cannot be a part of any other trek in Iy, I'j;. Therefore, all
treks in both trek systems (apart from ~;x,y;;) are entirely contained in one of the > 4
blocks. Denote the blocks containing j, k by A;, Ak, respectively. Let I';; be the trek
system obtained from I';y by replacing v;, with ~;; and all treks in A; U A, with the
treks of I'j; contained in A; U Ay. Similarly, let I'y; be the trek system obtained from
I'j; by replacing v;; with vy, and all treks in A; U Ay, with the treks of I'y, contained in
Aj U Ayg.

By construction, the power of 6, coincides on both sides of (19) and so the corre-
sponding terms in (18) will cancel out. What is left is a sum of weights of trek systems,
and hence a sum of products of parameters 6;. O

Remark 5.5. A similar construction, also based on Proposition 5.3, can be used to
show that the terms in p;xpj;s? are precisely equal to the terms in p;p;rs®. This gives
an alternative proof of the equations in (10) and hence of Theorem 1.2.

We now prove the semialgebraic characterization of Brownian motion tree models.

Proof. (Proof of Theorem 2.6) We first claim that it suffices to show the result for
binary trees. Indeed, just like in (12), non-binary models are intersections of binary
models:

Lry = () Lok (20)

Ue[T)

Moreover, the inequalities for 7" in (10) are those for binary U, as U runs over [T]. Hence
we can assume that 7' is binary. Suppose that K € Ei1>. By [16, Theorem 2.2], we
know that K is positive definite and p;; > 0 for all 0 < i < j < n. Theorem 1.2 shows
that K satisfies the equalities in (10). In Lemma 5.1 we saw that the inequalities in (10)
hold for K. Hence all constraints in (10) are satisfied for K.
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For the converse, let K € S satisfy (10). By Theorem 1.2, the equations in (10)
imply that K € E;l. Since K is invertible we can define ¥ = K ! and ¥ = %, for some
real vector 6. To complete the proof, we must show that 6 is nonnegative.

For any subset A C {1,...,n} denote by T4 the tree whose vertices V4 are lca(i, 7)
for i, 7 € A. There is a directed edge u — v in T4 if there is a directed path from u to
v in T containing no other vertices of T4. As before, we attach an auxiliary node 0 to
the root. Moreover, if T' has edge weights 0, for v € V then T4 has edge weights

0, = Y b for u — v in T4. (21)

u<w<v

For example, if T is the tree in Figure 1 and A = {1,2,3} then T4 has vertices
Va={1,2,3,5,7} and edges 0—7, 7—3, 7—5, 5—1, 5—2. The weights of T4 are

01 =01, 0y=0y 035=05+0s 05=05 0;=0r

If ¥ lies in the subspace L1 of S™, with weights 6, € R, then its principal submatrix
Y a,4 lies in the subspace L1, of SI4l. Indeed, the entries of Y44 are

045 = Z Gv = Z év.

v<lca(i,j) veVa: v<lca(i,j)

In other words, ¥4 4 can be written as a matrix in £, with edge weights (21).

As the main step in the proof, we will now show that the constraints in (10) behave
nicely with respect to marginalization to the subtree induced on the subset A. Namely,
we claim that K = (¥4 4)~" is a diagonally dominant M-matrix satisfying

DikDji = Dubjr < DijPri (22)

for all 4,7, k,1 € AU {0} such that the paths 7j, kl in T4 have no edges in common.
The fact that K = (¥4,4)7 ! is a diagonally dominant M-matrix follows directly from
[4, Corollary 2]. To show the second part of the claim, we shall assume |A| = n — 1, say
A={1,...,n—1}. The general case will then follow by induction.
If K =%""!then K = Kaa— %KA,nKn,A, by taking the Schur complement. Hence

Dij = Dij + ﬁpmpm for all i,j € A,
~ —1 .
Poi = DPoi t Pin — %pm dioi Pin = Doit+ ,il PonPin for i € A.

For the quartet ij|kl we conclude
Pixbjt = PikPjl + 5o DikPinPin + 5= PinDknDjt + w2 PinPinPlnPin,
Pabik = Pubjk + mooPilinPin + 5 DinPinPik + 53 DinDjnPknPin-
By assumption, p;xpji = pup;r. We must show that the following expression is zero:
. . 1
DikPjl — PilPjk = 7 (pikpjnpln + PinDknPjl — DilDjnPkn — pinplnpjk) . (23)

nn
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n

Fig. 4. The five cases for adding a leaf n to the quartet ij|kl.

Figure 4 shows the five cases of where n can be located in T’ First rewrite (23) as

1

Rnn

(Pjn(PikPin — DitPkn) + Pin(PknDji — DinPjk)) -

In the three cases in the top row of Figure 4, the paths in and jn do not intersect with the
path kl. This implies, by our assumption on K, that p;;pin —PiPrn = PknPjt —PinPjr = 0
and so (23) is zero. For the remaining two cases we write (23) as

L (pin (pikpjn — PinPjk) + Pkn(PinPji — PiPin)) -

Knn

Since the path 7j does not intersect the paths kn and In, we conclude the identities
DikPjn — PinPjk = PinPjl — DitPjn = 0. This again implies that (23) is zero.
It remains to show that pyp;r < pijDri. Similarly as above we obtain

o o 1

PiilPjk —PigPkl = (pilpjk _pijpkl)+ ? (pilpjnpkn + DinPinPjk — PijPknPin — pmpjnpkl) .
nn

By assumption pupjr — pijpr < 0. We will show that the second term, denoted by C,

is also nonpositive. Again consider the five cases in Figure 4 and write C in two ways:

C = = (PenPiapjn — PijPin) + Pin(PinPjk — PinPii))

= L (pinPupkn — Pinbrt) + Pin(PinPik — PijPrn)) -

Rnn

(24)

The following table shows the signs of the four relevant terms according to each case:
|1 ]2 [3 |4]5 |1 ]2 [3 |4]5

O |+ | —|—-1- PilPkn — PinDkl - | —|+10

0 |+ PinDjk — PijPkn | + | 0 | —

PilPjn — PijPin
PinDjk — PjnPkl

Writing C' as in the first line of (24) implies nonpositivity in cases 1, 3, and 4. For the
two remaining cases we use the second line. We conclude that C' < 0 in all five cases.
This completes the proof of the claim (22).

We now finally show that 6, > 0 for every edge u — v in T. Fix A = {i,j,k} C
{1,...,n} such that v = Ica(i,j) and k € de(u)\de(v) so that lca(i, k) = lca(j, k) = u.
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Here we allow for ¢ = j if v is a leaf and no k if u = 0. These two cases with |A] = 2 will
be considered separately; for now assume |A| = 3. Consider the induced tree T4. By
construction, u — v is an edge of T4. By the claim above, ¥4 4 € L, is parameterized
by 0 with 6, = 6,. Example 5.2 ensures that 6 is a nonnegative vector; in particular
0, = 6, > 0. The case when v is a leaf or when u = 0 are similar, but here |A| = 2,
so we use the case n = 2. This shows that, for any ¥ satisfying the constraints (10), it
follows that X1 € Ei1>. This completes the proof. a

Theorem 2.6 offers a geometric understanding of maximum likehood estimation for
Brownian motion tree models. Given any sample covariance matrix S, the estimated
concentration matrix K satisfies (10). If all inequalities are strict for the estimates
Dij then we are in the situation studied in Section 4. Otherwise, we have p;; = 0 or
DuPjk = PijPri for some choice of indices in (10). This corresponds to S =K1 lying
on a proper face of the simplicial cone L7 >. It is interesting to record these faces.

Example 5.6. (n =4) Fix the tree T in Figure 1. The following experiment was per-
formed 1000 times. We fix the parameters 6; = --- = #; = 1 and the sample sizes N =5
and N = 20. We sample N vectors from R* using the Gaussian distribution ¥y and we
record the resulting sample covariance matrix S. In each case we computed the MLE
)y using the standard function for constrained optimization in the statistical software
R. For every iteration we checked the KKT conditions to see whether the convergence
criterion was met. In the affirmative case we identified the face of the 7-dimensional
cone Lr > that contains $ in its relative interior. In the following table we show the
empirical distribution of the codimension of the faces that were found:

codim 0 1 2 3 | >3
N =20 | 816 | 183 1 0 0
N=5 487 | 374 | 119 | 20 | O

The numbers in the last column are zero because the faces of dimension less than four
have empty intersection with the cone of positive definite matrices. In the majority of
the experiments, the MLE occurred in the interior of L7 >. Here that the analysis in
Example 4.4 applies: the MLE 3 has algebraic degree five over the data S.

Every face of the simplicial cone L7 > has the form L/ >, where T” is obtained from
T by contracting some edges. If MLE ¥ lies on that face, then the algebraic complexity
of the MLE is governed by the ML degree for 7”. This underscores the relevance of
results like Proposition 4.6, even if the tree T' of interest is not binary.

Theorem 2.6 implies that the facial structure of the simplicial cone Lr > translates
into a stratification of the boundary of L. 1>. This enables a detailed geometric analysis
of the MLE across all strata. We shall pufgue this in a forthcoming paper.
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