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Abstract

Selecting the optimal Markowitz portfolio depends on estimating the covariance ma-
trix of the returns of N assets from T periods of historical data. Problematically, N is
typically of the same order as T, which makes the sample covariance matrix estima-
tor perform poorly, both empirically and theoretically. While various other general-
purpose covariance matrix estimators have been introduced in the financial
economics and statistics literature for dealing with the high dimensionality of this
problem, we here propose an estimator that exploits the fact that assets are typically
positively dependent. This is achieved by imposing that the joint distribution of
returns be multivariate totally positive of order 2 (MTP2). This constraint on the co-
variance matrix not only enforces positive dependence among the assets but also
regularizes the covariance matrix, leading to desirable statistical properties such as
sparsity. Based on stock market data spanning 30 years, we show that estimating
the covariance matrix under MTP2 outperforms previous state-of-the-art methods
including shrinkage estimators and factor models.
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Given a universe of N assets, what is the optimal way to select a portfolio? When “optimal”

refers to selecting the portfolio with minimal risk or variance for a given level of expected

return, then the solution, commonly known as the Markowitz optimal portfolio, depends

on two quantities: the vector of expected returns l� and the covariance matrix between

returns R� (Markowitz, 1952). In practice, l� and R� are unknown and must be estimated

from historical returns. Since R� requires estimating OðN2Þ parameters while l� only

requires estimating O(N) parameters, the main challenge lies in estimating R�. A naive

strategy is to use the sample covariance matrix S to estimate R�. However, this estimator is

known to have poor properties (Mar�cenko and Pastur, 1967; Wachter, 1978; Bai and Yin,

1993; Johnstone, 2001; Johnstone et al., 2009), as can be seen by the following degrees-of-

freedom argument [see also (Engle, Ledoit, and Wolf, 2017, Section 3.1)]: as is common

when daily or monthly returns are used, the number of historical data points T is of the

order of 1000 while the number of assets N typically ranges between 100 and 1000. Since

in this case T � N2, only O(1) effective samples are used to estimate each entry in the co-

variance matrix, making the sample covariance matrix perform poorly out-of-sample

(Ledoit and Wolf, 2004, 2012; Engle, Ledoit, and Wolf, 2017).

Given the importance and the statistical challenges of covariance matrix estimation in

the high-dimensional setting, this problem has been widely studied in statistical and finan-

cial economics literature. In the statistical literature, a number of estimators have been pro-

posed based on banding or soft-thresholding the entries of S (Bickel and Levina, 2008; Wu

and Pourahmadi, 2009; Cai, Zhang, Zhou, 2010). Such estimators, which are equivalent to

selecting the covariance matrix closest to S in Frobenius norm subject to the covariance ma-

trix lying within a specified L1 ball, were proven to be minimax optimal with respect to the

Frobenius norm and spectral norm loss (Cai, Zhang, Zhou, 2010). However, such estima-

tors may not output a covariance matrix estimate that is positive definite, which is required

for the Markovitz portfolio selection problem. Moreover, while such estimators are optimal

in a minimax sense for the Frobenius and spectral norm loss, these losses may not be rele-

vant to measure the excess risk that results from using an estimate of R� instead of R� itself

to compute the Markovitz portfolio; see Engle, Ledoit, and Wolf (2017, Section 4.1) for

details.

Another reason to consider estimators beyond those in Bickel and Levina (2008), Wu

and Pourahmadi (2009), Cai, Zhang, Zhou (2010) is that these methods do not exploit

some of the structure that often holds in R�. In particular, the eigenspectrum of R� is often

structured; we expect to find several important “directions” (i.e., eigenvectors) that well-

approximate S. For example, under the capital asset pricing model (Black, Jensen, and

Scholes, 1972), the eigenspectrum of R� contains a dominant eigenvector corresponding to

the market; as a consequence, S could be well-approximated by the sum of a rank one ma-

trix (the “market component”) and a diagonal matrix (the “idiosyncratic error

component”). More generally, covariance matrix estimators based on low-rank approxima-

tions of S are advantageous statistically since such estimators have smaller variance.1

In practice, low-rank covariance estimates are based on explicitly provided factors

(French and French, 1993; Fama and French, 2015; Black, Jensen, and Scholes, 1972),

1 If the covariance matrix estimator has rank M, then the effective number of parameters estimated

is O(NM) instead of OðN2Þ whereM � N .
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or data-driven factors learned by performing principal component analysis (PCA) on S

(Fan, Liao, and Mincheva, 2013; Jianqing, Yuan, L., and Mincheva, 2011). Another related

popular strategy for estimating R� is based on the assumption that the eigenvalues of R� are

well-behaved and exploit results from random matrix theory (El Karoui, 2008; Mar�cenko

and Pastur, 1967). In particular, various methods are considered regularizing the eigenval-

ues of S (Ledoit and Wolf, 2004, 2012; Engle, Ledoit, and Wolf, 2017; Jagannathan and

Ma, 2003; DeMiguel, Martin-Utrera, and Nogales, 2013); collectively, these methods can

be regarded as particular instances of empirical Bayesian shrinkage estimators (Haff, 1980;

Ledoit and Wolf, 2004; Stein, 1956). Finally, a number of papers have proposed covariance

estimators based on the assumption that the precision matrix is sparse (Friedman, Hastie,

and Tibshirani, 2008; Ravikumar et al., 2011). Such a constraint is motivated by the fact

that a sparse precision matrix implies that the induced undirected graphical model associ-

ated with the joint distribution is sparse, which is desirable both for better interpretability

and robustness properties.

In this article, we propose a new type of covariance matrix estimator for portfolio selec-

tion based on the assumption that the underlying distribution is multivariate totally positive

of order 2 (MTP2), which exploits a particular type of structure in the covariance matrix.

MTP2 was first studied in Fortuin, Kasteleyn, and Ginibre (1971), Karlin and Rinott

(1980a), Bølviken (1982), Karlin and Rinott (1983) from a purely theoretical perspective

and later also in the context of statistical modeling, in particular graphical models, in

Slawski and Hein (2014), Fallat et al. (2017) and Lauritzen, Uhler, and Zwiernik (2019a).

MTP2 is a strong form of positive dependence that can be used in combination with

the above methods for covariance estimation. The structure we exploit is motivated by the

observation that asset returns are often positively correlated since assets typically move

together with the market. As an illustration, consider the sample correlation matrix S and

its inverse S�1 based on the 2016 monthly returns of global stock markets shown in

Figure 1. Note that all correlations (i.e., off-diagonal entries of S) and all partial correla-

tions (i.e., negative of the off-diagonal entries of S�1) are positive.

Figure 1. The sample correlation matrix of global stock market indices based on monthly returns from

2013 to 2016. “Canada,” “Europe,” “UK,” and Australia refer to the country names in the MSCI

Developed Markets Index. Notice that the covariance matrix contains all positive entries and the preci-

sion matrix is an M-matrix which implies that the joint distribution is MTP2 (see Section 2.2 for

details).

Journal of Financial Econometrics 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbaa018/5902421 by R

obert G
ibbons on 28 M

ay 2021



A multivariate Gaussian distribution with mean l and positive definite covariance ma-

trix R is MTP2 if and only if ðR�1Þij � 0 for all i 6¼ j. A precision matrix satisfying this con-

dition is called a symmetric M-matrix (Bølviken, 1982; Karlin and Rinott, 1980a) and

implies that all correlations and partial correlations are non-negative (Ostrowski, 1937;

Dellacherie, Martinez, and San Martin, 2014). Hence, a multivariate Gaussian fit to the

2016 daily returns of the global stock market indices considered in Figure 1 is MTP2. This

is quite remarkable, since uniformly sampling correlation matrices, for example, using the

method described in Joe (2006), shows that less than 0.001% of all 5� 5 correlation

matrices satisfy the MTP2 constraint. Since factor analysis models with a single factor are

MTP2 when each observed variable has a positive dependence on the latent factor

(Wermuth and Marchetti, 2014), the capital asset pricing model implies MTP2 when all

market betas are positive, which further motivates studying MTP2 in the context of port-

folio selection.

In this article, we provide (i) a new MTP2 covariance matrix estimator to model heavy-

tailed returns data and (ii) an extensive empirical comparison demonstrating the advantages

of this new estimator on stock market data spanning 30 years. The remainder of this article

is organized as follows: in Section 1, we review the Markowitz portfolio problem and exist-

ing techniques for covariance matrix estimation that we benchmark our method against in

Section 4. In Section 2, we define MTP2 more precisely, motivate its usage for financial

returns data in more detail, and describe a method to perform covariance estimation under

this constraint. Finally, in Section 4 we empirically compare our method with several com-

peting methods on historical stock market data and show that covariance matrix estimation

under MTP2 outperforms state-of-the-art methods for portfolio selection in terms of out-

of-sample variance, that is, risk. All data and code for this work are available at https://

github.com/uhlerlab/MTP2-finance.

1 Problem Statement

After introducing some notation, we will review the Markowitz portfolio selection prob-

lem, explain how it relates to covariance matrix estimation, and discuss various covariance

estimation techniques.

1.1 Notation

We assume throughout that we are given N assets, which we index using the subscript i,

from T dates (e.g., days), which we index using the subscript t. We let ri;t denote the

observed return for asset i at date t for 1 � i � N and 1 � t � T. The vector rt :¼
ðr1;t; . . . ; rN;tÞT consists of the returns of each asset on day t. Finally, lt :¼ E½rt� and Rt :¼
CovðrtÞ denote the expected returns and the covariance matrix of the returns for day t,

respectively.

1.2 Optimal Markowitz Portfolio Allocation

Markowitz portfolio theory concerns the problem of assigning weights w 2 RN to a uni-

verse of N possible assets in order to minimize the variance of the portfolio for a specified

level of expected returns R. More precisely, the optimal portfolio weights w 2 RN on day t

are found by solving

4 Agrawal et al. j Covariance Matrix Estimation
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minimizew2RN wTR�
t w

subject to wTl�t ¼ R and
XN

i¼1

wi ¼ 1;
(1)

where l�t and R�
t denote the true expected returns and covariance matrix of the returns for

day t. In practice, l�t and R�
t are unknown and must be estimated from historical returns.

Since the main difficulty lies in estimating R�
t (it requires estimating OðN2Þ parameters as

compared to O(N) for l�t ), a widely used tactic to specifically evaluate the quality of a co-

variance matrix estimator is by finding the global minimum variance portfolio, which does

not require estimating l� (Haugen and Baker, 1991; Jagannathan and Ma, 2003). Such a

portfolio can be found by solving

minimizew2RN wTR�
t w

subject to
XN

i¼1

wi ¼ 1;
(2)

where w is chosen to minimize the variance of the portfolio. Replacing the unknown true

covariance matrix of returns R�
t by some estimator R̂t yields the following analytical solu-

tion for Equation (2):

ŵ :¼ R̂
�1

t 1

1T R̂
�1

t 1
: (3)

A natural choice for R̂t is the sample covariance matrix. Unfortunately, as discussed in

the introduction of this article, the sample covariance matrix is a poor estimator of the true

covariance matrix, particularly in the high-dimensional setting when the number of assets

N exceeds the number of periods T (the sample size). Although the sample covariance ma-

trix is an unbiased estimator of the true covariance matrix, in the high-dimensional setting

it is not invertible, has high variance, and is not consistent [e.g., the eigenvectors of S do not

converge to those of R� (Mar�cenko and Pastur, 1967; Johnstone, 2001; Wachter, 1978; Bai

and Yin, 1993; Johnstone et al., 2009)]. Making structural assumptions about the true co-

variance matrix allows the construction of estimators that have lower variance with only a

small increase in bias.

2 Covariance Matrix Estimation under MTP2

We propose a new structure for modeling asset returns data, namely by exploiting that

assets are often positively dependent. In particular, we consider distributions that are

MTP2.

Definition 2.1 [Fortuin, Kasteleyn, and Ginibre (1971); Karlin and Rinott (1980b)]. A

distribution on X � RM is multivariate totally positive of order 2 (MTP2) if its density

function p satisfies

pðxÞpðyÞ � pðx ^ yÞpðx _ yÞ for all x; y 2 X ;

where ^;_ denote the coordinate-wise minimum and maximum, respectively.

Journal of Financial Econometrics 5
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MTP2 is a strong form of positive dependence that implies most other known forms includ-

ing, for example, positive association; see, for example, Colangelo, Scarsini, and Shaked

(2005) for a recent overview. Note that when p(x) is a strictly positive density, then

Definition 2.1 is equivalent to p(x) being log-supermodular. Log-supermodularity has a

long history in ecomomics, in particular in the context of complementarity and compara-

tive statics (Topkis, 1978; Milgrom and Roberts, 1990; Milgrom and Shannon, 1994;

Topkis, 1998; Athey, 2002; Costinot, 2009).

In Figure 1, we provided an example of five global stock indices, where the sample distribu-

tion is MTP2. To further motivate studying MTP2 as a constraint for covariance matrix es-

timation for portfolio selection, we discuss its connection to latent tree models in Section

2.1. In particular, we show that the capital asset pricing model implies that the resulting

joint distribution is MTP2 when all “market betas” (also known as “market loadings” or

“factor coefficients”) are positive. Then in Section 2.2, we discuss how to perform covari-

ance matrix estimation under MTP2 in the Gaussian setting. Finally, in Section 2.3, we pro-

pose how to extend this estimator to heavy-tailed distributions.

2.1 Latent Tree Models

A powerful framework to model complex data such as stock market returns is through

models with latent variables. Factor models, which are widely used for covariance estima-

tion for portfolio selection (see Section 3.1) are examples thereof. A latent tree model is an

undirected graphical model on a tree (where every node represents a random variable that

may or may not be observed and any two nodes are connected by a unique path). For finan-

cial applications, latent tree models have been used, for example, for unsupervised learning

tasks, such as clustering similar stocks, or for modeling and learning the dependence struc-

ture among asset returns (Choi et al., 2011; Mantegna, 1999). A factor analysis model with

a single factor is a particular example of a latent tree model consisting of an unobserved

root variable that is connected to all the observed variables; see Figure 2 for a concrete ex-

ample of a single-factor analysis model and a more general latent tree model. The promin-

ent capital asset pricing model (CAPM) is a single-factor analysis model: the return of stock

i is modeled as

ri ¼ rf þ biðrm � rf Þ þ ui bi 2 R;

where rf is known as the risk-free rate of return, rm is the market return, and ui is the uncor-

related, zero mean idiosyncratic error term. Typically, the parameters bi are positive, which

explains why the covariance between stock returns is usually positive.2 Non-negative cor-

relation is in general necessary but not sufficient to imply MTP2. The following theorem

states that for latent tree models, non-negative correlation already implies MTP2. The proof

follows from Lauritzen, Uhler, and Zwiernik (2019a, Theorem 5.4).

Theorem 2.2. Let X 2 RM follow a multivariate Gaussian distribution that factorizes

according to a tree. If CovðXÞ 	 0, then X is MTP2 and any marginal of X is MTP2.

2 Over 97% of the entries of the sample covariance matrix of 1000 assets (based on daily returns

from 1980–2015) are positive.

6 Agrawal et al. j Covariance Matrix Estimation

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbaa018/5902421 by R

obert G
ibbons on 28 M

ay 2021



While working with CAPM is convenient from a theoretical perspective, its simplicity often

comes at the expense of underfitting. In particular, there commonly are additional sector-

level factors that drive returns. Identifying these factors is an active area of research; for in-

stance, CAPM was recently extended to include three and then five new factors (French

and French, 1993, 2015). However, identifying relevant factors is in general a challenging

task; for example, learning the structure of a latent tree model from data is known to

beNP-hard (Cooper, 1990). We here propose to instead take a structure-free approach by

constraining the joint distribution over the observed variables to be MTP2. This approach

provides more flexibility than modeling stock returns using latent tree models and at the

same time allows overcoming the computational bottleneck of fitting a latent tree model. In

particular, we show in Section 2.2 that an MTP2 covariance matrix estimator can be com-

puted by solving a convex optimization problem.

2.2 MTP2 Covariance Matrix Estimation Assuming Multivariate Gaussian

Returns

For multivariate Gaussian distributions, a necessary and sufficient condition for a distribu-

tion to be MTP2 is that the precision matrix K :¼ R�1 is an M-matrix, that is, Kij � 0 for

all i 6¼ j; or equivalently, all partial correlations are non-negative (Karlin and Rinott,

1980a). Following Lauritzen, Uhler, and Zwiernik (2019a), we consider the maximum like-

lihood estimator (MLE) of K subject to K being an M-matrix.

Recall that the log-likelihood function L of K given data D :¼ frtgT
t¼1 
i:i:d:Nð0;KÞ is, up

to additive and multiplicative constants, given by

LðK;DÞ ¼ log detK � traceðKSÞ; (4)

where S 2 RN�N denotes the sample covariance matrix of the returns frtgT
t¼1 or log returns.

Without the MTP2 constraint, the MLE of K is obtained by maximizing LðK;DÞ over the set

of all positive semidefinite matrices and is given by S�1 when N � T (i.e., the dimension of

Figure 2. Shaded nodes represent factors that are potentially unobserved, and unshaded nodes are

the observed returns of different companies. Figure (left) represents a simple model where an unob-

served market variable drives the returns of all stocks as in the CAPM. Figure (right) represents a more

complicated latent tree model where latent sector-level factors drive the returns of different assets.

Journal of Financial Econometrics 7
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the covariance matrix is less than the number of samples). Note that when N 	 T, the MLE

does not exist, that is, the log-likelihood function is unbounded above. Remarkably, by add-

ing the constraint that K is an M-matrix (i.e., that the distribution is MTP2), then the MLE

K̂ ¼ arg max
K�0

log detK � traceðKSÞ subject to Kij � 0 8i 6¼ j; (5)

exists with probability 1 when T 	 2 for any dimension N (Slawski and Hein, 2014;

Lauritzen, Uhler, and Zwiernik, 2019a). Similarly, the popularCLIME estimator, which we

review in Equation (10) in the next section, could be extended to the MTP2 setting by add-

ing the constraints Kij � 0 for all i 6¼ j. It would be of interest to understand its properties.

The fact that a unique solution exists for Equation (5) for any N when T 	 2 suggests

that the MTP2 constraint adds considerable regularization for covariance matrix estima-

tion. In addition, the problem in Equation (5) is a convex optimization problem and com-

putationally efficient coordinate-descent algorithms have been described for computing K̂

(cf. Slawski and Hein, 2014; Lauritzen, Uhler, and Zwiernik, 2019a). Finally, another de-

sirable property is that the MTP2 covariance matrix estimator K̂ in Equation (5) is usually

sparse (Lauritzen, Uhler, and Zwiernik, 2019a, Corallary 2.9), which reduces the intrinsic

dimensionality of the model and hence reduces the variance of the estimator. Note that this

sparsity is achieved without the need for any tuning parameter, an immediate advantage

over methods that explicitly add sparsity-inducing L1 penalties such as the graphical lasso

(Friedman, Hastie, and Tibshirani, 2008; Ravikumar et al., 2011) discussed in Section 3.3.

Nevertheless, to relax the MTP2 constraint, one could always introduce a Lagrange multi-

plier (i.e., tuning parameter) to penalize for violating the MTP2 constraint.3

2.3 Extensions to Heavy-Tailed Distributions

Asset returns are often computed as rt ¼ log pt

pt�1

� �
, where pt is the price of the asset at time

t. Stock returns may be heavy-tailed and in such cases, the Gaussian assumption made for

estimating the covariance matrix in Section 2.2 may be problematic. Transelliptical distri-

butions form a convenient class of distributions that contain the Gaussian distribution as

well as heavy-tailed distributions such as the t-distribution. In the following, we provide an

extension of the estimator in Equation (5) to transelliptical distributions.

A random vector X with density function p(x), mean l 2 RM and covariance matrix

R 2 RM�M follows an elliptical distribution if its density function can be expressed as

gððx � lÞTR�1ðx � lÞÞ

for some function g. More generally, X follows a transelliptical distribution if there exists

monotonically increasing functions fi, i ¼ 1; . . . ;M, such that ðf1ðX1Þ; . . . ; fMðXMÞÞ follows

an elliptical distribution. We denote the covariance matrix of this elliptical distribution by

Rf. The following result provides a necessary condition for a transelliptical distribution to

be MTP2.

3 Such a strategy can also be used to perform a sensitivity analysis to the MTP2 assumption. We

thank an anonymous reviewer for raising this point. We leave an empirical evaluation of this strat-

egy to future work.
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Theorem 2.3. Suppose that the joint distribution of ðX1; . . . ;XMÞ is MTP2 and transellipti-

cal, that is, there exist increasing functions fi, i ¼ 1; . . . ;M, such that the density function of

ðf1ðX1Þ; . . . ; fMðXMÞÞ can be written as gððx � lÞTR�1
f ðx � lÞÞ. Then, R�1

f is an M-matrix.

We prove Theorem 2.3 in Online Appendix A. While Theorem 2.3 shows that the covari-

ance matrix of any elliptical distribution is an inverse M-matrix, the following example

shows that, unlike in the Gaussian setting, this is not a sufficient condition for MTP2.

Example 2.4. Suppose X is a two-dimensional t-distribution with one degree of freedom

and precision matrix

R�1 ¼ 1 �0:1
�0:1 1

� �
:

Then X is not MTP2, since for x ¼ ð�1;1Þ and y ¼ ð0; 0Þ its density function pð�Þ satisfies

pðxÞpðyÞ > pðx ^ yÞpðx _ yÞ. h

This shows that for transelliptical distributions, the constraint that R�1 be an M-matrix

is a relaxation of MTP2. In terms of covariance matrix estimators for transelliptical distri-

butions (without the MTP2 constraint), it was shown recently that replacing the sample co-

variance matrix S in Equations (9) and (10) by Kendall’s tau correlation matrix Ss defined

in Equation (11) yields consistent estimators of Rf (Liu, Han, and Zhang, 2012; Barber and

Kolar, 2018). This is quite remarkable, since it does not involve any changes to the object-

ive function apart from replacing S by Ss. Motivated by these results, we propose to extend

the MTP2 covariance matrix estimator from Section 2.2 to heavy-tailed distributions using

the covariance matrix estimator in Equation (5) by simply replacing the sample covariance

matrix S by Ss.

In recent work, Rossell and Zwiernik (2020) provide a number of interesting theoretical

results for transelliptical distributions, including the theoretical analysis of our proposed

MTP2 relaxation above. They show that our relaxation for transelliptical distributions has a

number of desirable properties, including positive partial correlations for arbitrary condition-

ing sets and the avoidance of Simpsons Paradox; see Rossell and Zwiernik (2020, Proposition

4.12) for details. Rossell and Zwiernik (2020) further motivate this relaxation by showing

that MTP2 is in fact too strong a constraint for (non-Gaussian) transelliptical distributions in

Theorem 4.8 (e.g., there does not exist any transelliptical MTP2t-distributions).

3 Related Work

In this section, we review several models and techniques for covariance matrix estimation

that are commonly used in financial contexts. We compare our method to these estimators

in Section 4.

3.1 Factor Models

A common modeling assumption in financial applications is that the returns for day t are

given by a linear combination of a (small) collection of latent factors fk;t for 1 � k � K,

which are either explicitly provided or estimated from the data. In such a factor model, the

returns are modeled as

Journal of Financial Econometrics 9
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ri;t ¼ ai þ bT
i ft þ ui;t; ft :¼ ðf1;t; . . . ; fK;tÞ; (6)

where ui;t is the idiosyncratic error term for asset i that is uncorrelated with ft. Letting

B 2 RK�N be the matrix whose ith column is bi, the covariance matrix of the returns can be

expressed as

Rt ¼ BTRf ;tB þ Ru;t; for 1 � t � T;

where Rf ;t :¼ CovðftÞ and Ru;t :¼ CovðutÞ. In practice, K � N factors are selected, making

BTRf ;tB of low rank. This low-rank structure makes estimating Rt easier since Rf ;t and B

only have OðK2Þ and O(NK) free parameters, respectively. When K � N, and K � T2,

then by standard concentration of measure results, Rf ;t can be estimated well by R̂f ;t, the

sample covariance matrix of the factors. Similarly, by Equation (6), the ith row of B can

be estimated by regressing the returns of asset i on the K latent factors, for example, using

ordinary least-squares. In this case, b̂ i � bi and hence the error ui;t is approximately equal

to the residual ûi;t :¼ ri;t � b̂
T

i ft � â i. Thus, Ru;t can be approximated by a covariance ma-

trix estimate R̂u;t based on the residuals. However, without additional assumptions on the

structure of Ru;t; Ru;t is not necessarily easier to estimate than Rt. As a result, many esti-

mators assume that Ru;t has some special structure such as being diagonal or sparse (see

below).

Several different types of factor models of varying complexity have been considered in

the literature: the general model in Equation (6) is known as a dynamic factor model. A

static factor model assumes that the covariance matrices Ru;t and Rf ;t are time-invariant,

that is, Ru;t ¼ Ru and Rf ;t ¼ Rf do not depend on t. An exact factor model furthermore

assumes that the covariance matrix Ru is diagonal, whereas an approximate factor model

assumes that Ru has bounded L1 or L2 norm. In this article, we concentrate on static estima-

tors. The following static factor-based covariance matrix estimators are popularly used in

financial applications.

• POET: is based on an approximate factor model and was first proposed in Fan, Liao,

and Mincheva (2013). POET estimates BTRf ;tB by a rank K truncated singular value de-

composition of the sample covariance matrix R̂, which we denote by R̂K. R̂u is estimated

by soft-thresholding the off-diagonal entries of the residual covariance matrix Sû ¼
R̂ � R̂K based on the method in Bickel and Levina (2008).

• EFM: is an estimator based on the exact factor model using the Fama–French factors

(Fama and French, 1993). R̂f equals the sample covariance matrix of the factors fftg
and R̂u equals the diagonal of Sû .

• AFM-POET: is an estimator based on an approximate factor model using the Fama–

French factors. R̂f is obtained as in EFM, whereas R̂u is obtained by soft-thresholding

Sû as in POET.

3.2 Shrinkage of Eigenvalues

Another way to impose structure on the covariance matrix is through assumptions on the

eigenvalues of the covariance matrix. Assuming that the true covariance matrix is well-

conditioned, the extreme eigenvalues of the sample covariance matrix are generally too

small/large as compared to the true covariance matrix (Mar�cenko and Pastur, 1967; Bai

and Yin, 1993). This motivates the development of covariance matrix estimators such as
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linear shrinkage (Ledoit and Wolf, 2004) and extensions thereof (cf. Ledoit and Wolf,

2012; Engle, Ledoit, and Wolf, 2017) that shrink the eigenvalues of the sample covariance

matrix for better statistical properties.

To be more precise, let

S ¼
XN

i¼1

kiviv
T
i ;

be the eigendecomposition of the sample covariance matrix S, where ki denotes the i-th

eigenvalue of S and vi the corresponding eigenvector. Then the linear shrinkage estimator is

given by

R̂LS ¼
XN

i¼1

civiv
T
i ;

where ci ¼ qki þ ð1 � qÞ�k with �k denoting the average of the eigenvalues of S and 0 < q < 1

a tuning parameter that determines the amount of shrinkage. Note that R̂LS can equivalently

be expressed as

R̂LS ¼ qS þ ð1 � qÞ�kIN ; (7)

where IN 2 RN�N denotes the identity matrix [Equation (7) follows from the uniqueness of

the eigenvalue decomposition]. Thus, R̂LS is obtained by shrinking the sample covariance

matrix toward a multiple of the identity, which from a Bayesian point of view can also be

interpreted as using the identity matrix as a prior for the true covariance matrix (Ledoit

and Wolf, 2004). The shrinkage estimator R̂LS is asymptotically efficient given a particular

choice of q that depends on the sample covariance matrix S, its dimension N (i.e., the num-

ber of assets) and the number of samples T (i.e., the number of dates) (Ledoit and Wolf,

2004).

An extension of linear shrinkage, known as nonlinear shrinkage, considers nonlinear

transforms of the eigenvalues according to the Marchenko–Pastur distribution, which

describes the asymptotic distribution of the eigenvalues of random matrices. This approach

has been shown to outperform linear-shrinkage empirically (Ledoit and Wolf, 2012). It is

also common to combine shrinkage estimators with factor models (e.g., such as those intro-

duced in Section 3.1). For example, AFM-LS and AFM-NLS apply linear shrinkage and

nonlinear shrinkage, respectively, to the residuals (by regressing out the Fama–French fac-

tors) to estimate Ru (De Nard, Ledoit, and Wolf, 2018).

3.3 Regularization of the Precision Matrix

Another common technique for covariance matrix estimation is to assume that the true

underlying inverse covariance matrix K� :¼ ðR̂�Þ�1, also known as the precision matrix, is

sparse, that is, that the number of nonzero entries in K� is bounded by an integer j > 0.

Since estimating K under the constraint

jjKjj0 :¼
X
i6¼j

I½Kij 6¼ 0� � j (8)

is computationally intractable as it involves solving a difficult combinatorial optimization

problem, a standard approach is to replace the L0 constraint in Equation (8) by an L1
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constraint. In particular, assuming that the data follow a multivariate Gaussian distribu-

tion, the L1-regularized MLE (also known as graphical lasso) can be used to estimate K

(Friedman, Hastie, and Tibshirani, 2008; Ravikumar et al., 2011). Maximum likelihood es-

timation under the the L1 constraint leads to the following convex optimization problem:

K̂ :¼ arg max
K�0

logdetK � traceðKSÞ subject to jjKjj1 � k; (9)

where k 	 0 is a tuning parameter. Instead of maximizing the log-likelihood, the popular

CLIME estimator (Liu, Han, and Zhang, 2012) finds a sparse estimate of the precision ma-

trix by solving

K̂ :¼ argmax
K

kKk1 subject to kSK � INk1 � k: (10)

and has similar consistency guarantees as the graphical lasso in the Gaussian setting.

To overcome the restrictive Gaussian assumption, recent work suggested replacing the

sample covariance matrix S in Equations (9) and (10) by Kendall’s tau correlation matrix Ss
with ðSsÞij :¼ sin p

2 ŝÞ
�

, where

ŝ ij :¼
1

T
2

� � X
1� t� t0 �T

signðXit � Xit0 Þ signðXjt � Xjt0 Þ: (11)

Interestingly, the resulting estimators can also be used for data from heavy-tailed distri-

butions (including elliptical distributions such as the t-distribution) with almost no loss in

efficiency (Liu, Han, and Zhang, 2012; Barber and Kolar, 2018); see also Section 2.3.

4 Empirical Evaluation

In this section, we first describe both the data used for the evaluation and our experimental

setup, which closely follow De Nard, Ledoit, and Wolf (2018) for reproducibility. We then

present our empirical evaluation of the various methods discussed in this article based on

the global minimum variance portfolio problem and the full Markovitz portfolio problem.

All data and code for this work are available at https://github.com/uhlerlab/MTP2-finance.

4.1 Data

We use daily stock returns data from the Center for Research in Security Prices (CRSP),

starting in 1975 and ending in 2015. We restrict our attention to stocks from the NYSE,

AMEX, and NASDAQ stock exchanges, and consider different portfolio sizes

N 2 f100; 200;500g. As in De Nard, Ledoit, and Wolf (2018), twenty-one consecutive

trading days constitute one “month.” To account for distribution shift over time, we use a

rolling out-of-sample estimator. That is, for each month in the out-of-sample period, we es-

timate the covariance matrix using the most recent T daily returns, and update the portfolio

monthly. We vary T with N to evaluate how sensitive different covariance estimators are

with respect to increasing dimensionality. In particular, for a given N, we vary T such that

the ratio N=T 2 1
2 ; 1;2; 4

	 

. We also include T¼ 1260 (which corresponds to five years of

market data) in order to replicate the results in De Nard, Ledoit, and Wolf (2018). We con-

sider 360 months for evaluation, starting from August 1, 1986 and ending on December 2,
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2015, using the portfolio and covariance updating strategy described above. We index each

of these 360 investment periods by h 2 f1; . . . ;360g.

For each investment period and portfolio size, we vary the investment universe because

many stocks do not have data for the entire period, and the most relevant stocks (i.e., by

market capitalization or volume) naturally vary over time. We use the same procedure as in

De Nard, Ledoit, and Wolf (2018) to construct the investment universe. Specifically, we

consider the set of stocks that have (i) an almost complete return history over the most re-

cent T¼ 1260 days and (ii) a complete return “future” in the next twenty-one days (which

is the investment period). Next, we remove one stock in each pair of highly correlated

stocks, defined as those with sample correlation exceeding 0.95. More precisely, for each

pair, we remove the stock with the lower market capitalization for period h. Finally, we

pick the largest N stocks (as measured by their market capitalization on the investment

date h) for the subsequent analysis. We use Ih;N to denote this investment universe, where

the subscripts emphasize the dependence on N and h.

4.2 Competing Covariance Matrix Estimators

We compare the performance of the proposed MTP2 covariance matrix estimator to the

estimators described in Section 3. In addition, as a baseline, we also consider the equally

weighted portfolio denoted by 1=N. We evaluate each estimator in terms of its out-of-

sample standard deviation (see Section 4.3), Sharpe ratio (see Section 4.4), and information

ratio (see Online Appendix B). These results are also summarized in Tables 1 and 2. In the

following, we provide details regarding the implementation of the various covariance ma-

trix estimators included in our empirical analysis.

• LS: linear shrinkage, as described in Section 3.2, applied to the sample covariance matrix.

• NLS: nonlinear shrinkage, as described in Section 3.2, applied to the sample covariance

matrix; we used the implementation in the R package shrink (Dunkler, Sauerbrei, and

Heinze, 2016).

• AFM-LS: approximate factor model, as described in Section 3.1, with five Fama–French

factors and linear shrinkage applied to estimate the covariance matrix of the residuals.

• AFM-NLS: approximate factor model, as described in Section 3.1, with five Fama–

French factors and non-linear shrinkage applied to estimate the covariance matrix of the

residuals.

• POET (k 5 3): POET, as described in Section 3.1, using the top three principal compo-

nents; we used the implementation in the R package POET.

• POET (k 5 5): POET, as described in Section 3.1, using the top five principal compo-

nents; we used the implementation in the R package POET.

• GLASSO: graphical lasso, as described in Section 3.3, using the python implementation

in sklearn (Pedregosa et al., 2011); cross-validation is used to select the hyperparameter

k; we used the default parameters, that is, using three-fold cross-validation and testing k

on a grid of four points refined four times (the parameter values for a and niter, respect-

ively). We note that this results in a biased estimator due to the ‘1-penalty.

• CLIME: as described in Section 3.3; we used the implementation in the R package

CLIME with hyperparameter k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog pÞ=n

p
, which is asymptotically optimal; the

CLIME estimator using this hyperparameter only exists when T 	 N and hence we only

benchmarked CLIME in this range.
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• CLIME-KT: CLIME estimator as described above but using Kendall’s tau correlation

matrix instead of the sample correlation matrix. Since Kendall’s tau correlation matrix

is not singular, the CLIME-KT estimator exists even when T � N.

• MTP2: our method, as described in Section 2.2. We used the implementation from

Slawski and Hein (2014), which is a computationally efficient coordinate-descent algo-

rithm implemented in Matlab.4

Table 1. For each combination of N (portfolio size), T (estimation sample size), and covariance

matrix estimator, we report the out-of-sample standard deviation of the returns of the portfolio

N T 1/N LS NLS AFM-LS AFM-NLS POET POET

(k ¼ 3) (k ¼ 5)

100 50 18.724 13.452 12.976 13.159 13.193 12.498* 12.617

100 18.724 13.695 13.111 13.135 13.338 11.994* 12.595

200 18.724 12.560 12.347 12.357 12.480 12.348 12.707

400 18.724 12.451 12.347 12.352 12.344 12.744 13.255

1260 18.724 12.151 12.122 12.146 12.130 13.041 12.722

200 100 18.134 12.583 12.320 12.372 12.406 11.743 11.544

200 18.134 11.881 11.603 11.556 11.612 11.881 11.593

400 18.134 11.656 11.431* 11.552 11.469 12.559 12.103

800 18.134 11.670 11.424* 11.531 11.449 13.019 12.455

1260 18.134 11.665 11.534* 11.601 11.568 13.170 12.898

500 250 17.925 11.140 10.516 10.508 10.517 11.269 10.203*

500 17.925 11.934 10.793* 10.913 11.163 11.833 10.873

1000 17.925 11.373 10.838 10.856 10.816* 12.179 11.917

1260 17.925 11.469 10.943* 11.005 10.950 12.395 11.626

N T GLASSO CLIME CLIME-KT MTP2 MTP2-KT

100 50 13.594 nan 15.484 12.655 12.623

100 13.822 nan 15.024 12.327 12.049

200 13.985 14.945 15.140 11.858 11.742*

400 13.607 15.127 15.223 12.294 12.114*

1260 13.631 15.253 15.316 12.087* 12.087*

200 100 13.522 nan 14.983 11.803 11.445*

200 13.719 nan 14.344 11.586 11.442*

400 13.920 14.563 14.964 11.880 11.905

800 14.096 14.778 14.862 11.635 11.661

1260 13.958 15.013 15.013 11.710 11.749

500 250 13.855 nan 15.677 10.455 10.512

500 14.171 nan 20.896 11.009 11.261

1000 14.283 15.523 14.330 11.031 11.273

1260 14.290 14.776 14.962 11.187 11.422

Note: The most competitive value in each row is marked with an asterisk.

4 The implementation can be found at https://sites.google.com/site/slawskimartin/code.
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• MTP2-KT: MTP2 estimator as described above but using Kendall’s tau correlation ma-

trix instead of the sample correlation matrix; see Section 2.3.

4.3 Evaluation on the Global Minimum Variance Portfolio Problem

For each fixed portfolio size N, estimation sample size T, and investment period h, we let

R̂
M
T;hðIh;NÞ denote the estimated covariance matrix between the assets in universe Ih;N

obtained using estimator M. We then computed the portfolio weights ŵM
h via Equation (3)

and the corresponding returns rMh for h ¼ 1; . . . ; 360. We estimated the portfolio standard

deviation from these 360 returns for each estimator and multiplied each standard deviation

Table 2. For each combination of N (portfolio size), T (estimation sample size), and covariance

matrix estimator, we report the out-of-sample Sharpe ratio

N T EQ-TW LS NLS AFM-LS AFM-NLS POET POET

(k ¼ 3) (k ¼ 5)

100 50 0.544 0.348 0.361 0.334 0.338 0.462 0.496

100 0.544 0.328 0.397 0.344 0.340 0.486 0.394

200 0.544 0.374 0.419 0.389 0.376 0.500 0.413

400 0.544 0.437 0.471 0.502 0.475 0.532 0.474

1260 0.544 0.525 0.527 0.526 0.524 0.555 0.539

200 100 0.599 0.423 0.433 0.413 0.428 0.448 0.439

200 0.599 0.498 0.471 0.474 0.468 0.432 0.443

400 0.599 0.545 0.559 0.566 0.568 0.528 0.513

800 0.599 0.649 0.636 0.640 0.643 0.461 0.571

1260 0.599 0.588 0.585 0.593 0.585 0.491 0.481

500 250 0.599 0.649 0.639 0.641 0.638 0.538 0.664

500 0.599 0.628 0.609 0.653 0.668 0.534 0.685

1000 0.599 0.592 0.633 0.650 0.636 0.470 0.550

1260 0.599 0.595 0.628 0.646 0.642 0.505 0.589

N T GLASSO CLIME CLIME-KT MTP2 MTP2-KT

100 50 0.589 nan 0.548 0.554 0.611*

100 0.616 nan 0.589 0.594 0.666*

200 0.589 0.580 0.636* 0.585 0.634

400 0.603 0.608 0.578 0.590 0.617*

1260 0.605* 0.535 0.523 0.582 0.547

200 100 0.611* nan 0.593 0.514 0.594

200 0.587 nan 0.632* 0.563 0.594

400 0.597 0.657* 0.568 0.573 0.581

800 0.596 0.605 0.552 0.650* 0.627

1260 0.620 0.593 0.632 0.638* 0.615

500 250 0.639 nan 0.341 0.755 0.779*

500 0.623 nan 0.313 0.705* 0.674

1000 0.637 0.572 0.818* 0.723 0.635

1260 0.635 0.585 0.539 0.701* 0.635

Notes: The out-of-sample Sharpe ratio is the ratio between the excess portfolio returns and the standard devi-

ation of excess returns based on 1 Year U.S. Treasury Rates. The most competitive value in each row is marked

with an asterisk.
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by
ffiffiffiffiffiffi
12

p
to annualize. Note that a smaller standard deviation implies a lower variance port-

folio, and hence better empirical performance.

Table 1 summarizes the results for each estimator. Each row corresponds to a particular

choice of N (size of investment universe) and T (estimation sample size). Each column cor-

responds to a different covariance matrix estimator. The best performing estimator in each

row is marked with an asterisk. While no estimator outperforms all other estimators across

all N and T, Table 1 shows that the MTP2, NLS, and POET estimators perform consistently

well in all settings.

As discussed in Section 2.3, to deal with the heavy-tailed nature of the distribution of

returns, Kendall’s tau correlation matrix can be used instead of the sample correlation ma-

trix in the CLIME and MTP2 estimators which assume Gaussianity. Columns CLIME-KT

and MTP2-KT in Table 1 indicate that while using Kendall’s tau correlation matrix usually

does not make a significant difference in the performance, it can give a slight boost for the

MTP2 estimator in particular when N is 100 or 200.

Instead of comparing the covariance matrix estimators only based on one number,

the standard deviation of the returns of the resulting portfolios across the entire out-of-

sample period, it is also of interest to examine the performance of each estimator

throughout the out-of-sample period. Figure 3 shows the standard deviation of the

returns of the different estimators for N 2 f100; 200; 500g and T¼1260 when varying

the out-of-sample period from 60 to 360 (where 360 is the maximal number of total

out-of-sample months). Note that the ordering between the different estimators is rela-

tively consistent over time, indicating that the conclusions from the comparison of the

different estimators in Table 1 would remain unchanged even when varying the length

of the out-of-sample period.

4.4 Evaluation on Full Markowitz Portfolio Problem with Momentum Signal

We also benchmarked the different covariance matrix estimators based on the performance

of the portfolios selected by solving Equation (1), where R�
t is replaced by the estimator. A

standard performance metric is the Sharpe ratio, which is the ratio between the excess port-

folio returns and the standard deviation of excess returns.5 Hence, a higher Sharpe ratio

indicates better performance.

We selected the desired expected returns level R as in De Nard, Ledoit, and Wolf

(2018). Namely, we considered the EW-TQ portfolio which places equal weight on each of

the top 20% of assets (based on expected returns). We then set R equal to the expected re-

turn of the EW-TQ portfolio. In addition, since the true vector of expected returns l� is un-

known, we estimated it from the data. We do this using the momentum factor (Jegadeesh

and Titman, 1993) as in De Nard, Ledoit, and Wolf (2018), which for a given investment

period h and stock is the geometric average of returns of the previous year excluding the

past month.

The out-of-sample Sharpe ratio and information ratio of each estimator are shown

in Table 2 and B, respectively. As in Table 1, each row corresponds to a different choice of

N and T and each column corresponds to a different estimator for both tables. The best

5 We use 1 Year U.S. Treasury Rates to compute the risk-free rate.
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performing estimator in each row is marked with an asterisk. This analysis shows that the

MTP2 estimator achieves the best performance for almost all choices of N and T. Although

the results are similar, comparing MTP2 to MTP2-KT indicates that it is recommended to

use Kendall’s tau correlation matrix instead of the sample correlation matrix with the

MTP2 estimator when N is 100 or 200.

Figure 3. By varying the length of the out-of-sample period we examine the standard deviation of the

returns obtained by each estimator throughout time. “Full” is the cumulative average while “5-Year

MA” is a five-year moving average. Lower is better.
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Similar to Figure 3, in Figure 4 we show the Sharpe ratio of the returns of the different esti-

mators for N 2 f100;200;500g and T¼ 1260 when varying the out-of-sample period from 60

to 360. Note that while the ordering between the different estimators is still relatively consistent

over time, it varies more than for the standard deviation plotted in Figure 3 and could provide

additional valuable information regarding each estimator that is not captured in Table 2.

Figure 4. By varying the length of the out-of-sample period we examine the Sharpe ratio of the returns

obtained by each estimator throughout time. “Full” is the cumulative average while “5-Year MA” is a

five-year moving average. Higher is better.

18 Agrawal et al. j Covariance Matrix Estimation

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbaa018/5902421 by R

obert G
ibbons on 28 M

ay 2021



5 Conclusion

In this article, we proposed a new covariance matrix estimator for portfolio selection based

on the assumption that returns are MTP2, which is a strong form of positive dependence.

While the MTP2 assumption is strong, this constraint adds considerable regularization,

thereby reducing the variance of the resulting covariance matrix estimator. Empirically, the

added bias of MTP2 is outweighed by the reduction in variance. In particular, the proposed

MTP2 estimator outperforms previous state-of-the-art covariance matrix estimators in

terms of the Sharpe ratio and the information ratio.

In our empirical evaluation, we observed that using Kendall tau’s correlation matrix in-

stead of the sample covariance matrix in the MLE under MTP2 performed particularly well

for a portfolio size of 100 or 200. It would therefore be of interest to analyze the theoretical

properties of such covariance matrix estimators including MLE or CLIME under MTP2 for

heavy-tailed distributions. In addition, while we only considered static covariance matrix

estimators in this article, the MTP2 estimator naturally extends to the dynamic setting,

where the covariance matrix evolves over time. Specifically, we may adapt the techniques

developed in Engle, Ledoit, and Wolf (2017) to obtain a dynamic estimator under MTP2. In

future work, it would be interesting to compare the resulting estimator to other state-of-the-

art dynamic covariance matrix estimators. Another interesting future direction is the theoret-

ical analysis of the spectrum of symmetric M-matrices in the high-dimensional setting. If the

MTP2 constraint already implicitly regularizes the spectrum sufficiently, then shrinkage

methods such as those developed in Ledoit and Wolf (2004, 2012), Engle, Ledoit, and Wolf

(2017), Jagannathan and Ma (2003), DeMiguel, Martin-Utrera, and Nogales (2013) may be

unnecessary under MTP2. Alternatively, covariance matrix estimators under MTP2 could be

combined with shrinkage methods to potentially achieve even better performance.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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Appendix A. Proofs

The proof of Theorem 2.3 requires the following simple lemma.

Lemma A.1. Suppose g(x) is differentiable, non-negative, and
Ð1
�1 gðxÞdx ¼ 1. Then, for any

d;M > 0, there exists an x� > M such that gð�Þ is strictly decreasing on the interval ðx�; x� þ dÞ.

Proof. Let I ¼ fx : g0ðxÞ > 0g. Then, the Lebesgue measure of I is finite since gð�Þ is non-

negative and integrates to one. Suppose toward a contradiction that there was no such x�.

Then, for any x>M, gð�Þ is not monotonically decreasing on ðx;x þ dÞ. Hence, by continu-

ity of gð�Þ, there exists an interval Ix of length Dx contained in ðx;x þ dÞ such that gð�Þ is

monotonically increasing on Ix. Let t1
j¼1Ixj

be some disjoint covering of fx : x > Mg, where

Ixj
:¼ ðxj; xj þ d�. Then, by our previous argument, Ixj

contains an interval of length Dxj

where gð�Þ is monotonically increasing. By assumption, infj Dxj
> 0 and liminfj!1 Dxj

> 0.

Hence,
P

j Dxj
¼ 1 which contradicts that I has finite Lebesgue measure. h

Proof of Theorem 2.3. Note that by (Karlin and Rinott, 1980a, Equation 1.13), if X is MTP2,

then so is ðf1ðX1Þ; . . . ; fMðXMÞÞ. Hence Rij 	 0 for all i 6¼ j. To complete the proof, we need to

show that ðR�1Þij � 0 for all i 6¼ j. Without loss of generality, we assume that l¼ 0. We con-

sider the two points x ¼ s1ei � s2ej and y ¼ �x, where ek 2 RM denotes the k-th unit vector

and si 2 R. For ease of notation, let R�1
i;i ¼ a;R�1

j;j ¼ b, and R�1
i;j ¼ R�1

j;i ¼ c. Notice that

pðxÞ ¼ pðyÞ ¼ gðs2
1a þ s2

2b � 2s1s2cÞ and pðx _ yÞ ¼ ðx ^ yÞ ¼ gðs2
1a þ s2

2b þ 2s1s2cÞ:

Hence, since ðf1ðX1Þ; . . . ; fMðXMÞÞ is MTP2, it holds that

gðs2
1a þ s2

2b � 2s1s2cÞ2 � gðs2
1a þ s2

2b þ 2s1s2cÞ2;

which simplifies to gðs2
1a þ s2

2b � 2s1s2cÞ � gðs2
1a þ s2

2b þ 2s1s2cÞ. Let s2 ¼ 1
s1

and d ¼ 4jcj.
If c¼0, the claim trivially holds. Therefore, suppose jcj > 0. Then, Lemma A.1 implies that

there exists an x� such that gð�Þ is monotonically decreasing on ðx�;x� þ 4jcjÞ. Since the

range of the function hðsÞ ¼ as2 þ b
s2 is ðM;1Þ for some M>0, then by Lemma A.1 there

must exist s1 2 R such that x� ¼ s2
1a þ b

s2
1

. Since gðx� � 2cÞ � gðx� þ 2cÞ, then

x� � 2c 	 x� þ 2c

by monotonicity, which implies c< 0 as desired. h

Appendix B. Information Ratio Results

In Section 4.4, we compared the methods in terms of the Sharpe ratio. Here, we provide

similar results except for the information ratio, which is the ratio between the expected

portfolio returns and portfolio standard deviation.
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Table B.1. For each combination of N (portfolio size), T (estimation sample size), and covariance

matrix estimator, we report the out-of-sample information ratio (ratio of the average return to

the standard deviation of return) of the portfolio

N T EQ-TW LS NLS AFM- AFM- POET POET

LS NLS (k ¼ 3) (k ¼ 5)

100 50 0.694 0.625 0.648 0.617 0.621 0.760 0.791

100 0.694 0.600 0.682 0.628 0.620 0.797 0.690

200 0.694 0.670 0.720 0.691 0.675 0.802 0.706

400 0.694 0.736 0.772 0.803 0.776 0.824 0.753

1260 0.694 0.831 0.834 0.832 0.831 0.841 0.831

200 100 0.757 0.719 0.735 0.715 0.728 0.766 0.762

200 0.757 0.812 0.793 0.796 0.790 0.747 0.764

400 0.757 0.864 0.885 0.888 0.892 0.825 0.820

800 0.757 0.967 0.961 0.962 0.967 0.747 0.870

1260 0.757 0.906 0.907 0.913 0.906 0.773 0.770

500 250 0.764 0.985 0.995 0.997 0.993 0.869 1.030

500 0.764 0.940 0.955 0.995 1.003 0.849 1.027

1000 0.764 0.918 0.976 0.993 0.980 0.772 0.861

1260 0.764 0.920 0.967 0.984 0.982 0.806 0.909

N T GLASSO CLIME CLIME-KT MTP2 MTP2-KT

100 50 0.858 nan 0.788 0.849 0.905*

100 0.885 nan 0.837 0.896 0.975*

200 0.855 0.830 0.882 0.899 0.950*

400 0.877 0.852 0.823 0.892 0.924*

1260 0.878 0.778 0.767 0.890* 0.855

200 100 0.887 nan 0.844 0.829 0.918*

200 0.859 nan 0.896 0.885 0.919*

400 0.865 0.916* 0.821 0.886 0.893

800 0.862 0.860 0.805 0.970* 0.945

1260 0.887 0.845 0.885 0.955* 0.931

500 250 0.908 nan 0.596 1.112 1.133*

500 0.887 nan 0.511 1.045* 1.005

1000 0.897 0.828 1.101* 1.061 0.993

1260 0.896 0.858 0.806 1.034* 0.958

Note: The most competitive value in each row is marked with an asterisk.
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