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Abstract

Selecting the optimal Markowitz portfolio depends on estimating the covariance ma-
trix of the returns of N assets from T periods of historical data. Problematically, N is
typically of the same order as T, which makes the sample covariance matrix estima-
tor perform poorly, both empirically and theoretically. While various other general-
purpose covariance matrix estimators have been introduced in the financial
economics and statistics literature for dealing with the high dimensionality of this
problem, we here propose an estimator that exploits the fact that assets are typically
positively dependent. This is achieved by imposing that the joint distribution of
returns be multivariate totally positive of order 2 (MTP,). This constraint on the co-
variance matrix not only enforces positive dependence among the assets but also
regularizes the covariance matrix, leading to desirable statistical properties such as
sparsity. Based on stock market data spanning 30 years, we show that estimating
the covariance matrix under MTP; outperforms previous state-of-the-art methods
including shrinkage estimators and factor models.
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Given a universe of N assets, what is the optimal way to select a portfolio? When “optimal”
refers to selecting the portfolio with minimal risk or variance for a given level of expected
return, then the solution, commonly known as the Markowitz optimal portfolio, depends
on two quantities: the vector of expected returns u* and the covariance matrix between
returns X* (Markowitz, 1952). In practice, u* and T* are unknown and must be estimated
from historical returns. Since X* requires estimating O(N?) parameters while y* only
requires estimating O(N) parameters, the main challenge lies in estimating X*. A naive
strategy is to use the sample covariance matrix S to estimate X*. However, this estimator is
known to have poor properties (Marcenko and Pastur, 1967; Wachter, 1978; Bai and Yin,
1993; Johnstone, 2001; Johnstone et al., 2009), as can be seen by the following degrees-of-
freedom argument [see also (Engle, Ledoit, and Wolf, 2017, Section 3.1)]: as is common
when daily or monthly returns are used, the number of historical data points T is of the
order of 1000 while the number of assets N typically ranges between 100 and 1000. Since
in this case T < N2, only O(1) effective samples are used to estimate each entry in the co-
variance matrix, making the sample covariance matrix perform poorly out-of-sample
(Ledoit and Wolf, 2004, 2012; Engle, Ledoit, and Wolf, 2017).

Given the importance and the statistical challenges of covariance matrix estimation in
the high-dimensional setting, this problem has been widely studied in statistical and finan-
cial economics literature. In the statistical literature, a number of estimators have been pro-
posed based on banding or soft-thresholding the entries of S (Bickel and Levina, 2008; Wu
and Pourahmadi, 2009; Cai, Zhang, Zhou, 2010). Such estimators, which are equivalent to
selecting the covariance matrix closest to S in Frobenius norm subject to the covariance ma-
trix lying within a specified L; ball, were proven to be minimax optimal with respect to the
Frobenius norm and spectral norm loss (Cai, Zhang, Zhou, 2010). However, such estima-
tors may not output a covariance matrix estimate that is positive definite, which is required
for the Markovitz portfolio selection problem. Moreover, while such estimators are optimal
in a minimax sense for the Frobenius and spectral norm loss, these losses may not be rele-
vant to measure the excess risk that results from using an estimate of £* instead of X* itself
to compute the Markovitz portfolio; see Engle, Ledoit, and Wolf (2017, Section 4.1) for
details.

Another reason to consider estimators beyond those in Bickel and Levina (2008), Wu
and Pourahmadi (2009), Cai, Zhang, Zhou (2010) is that these methods do not exploit
some of the structure that often holds in X*. In particular, the eigenspectrum of X* is often
structured; we expect to find several important “directions” (i.e., eigenvectors) that well-
approximate S. For example, under the capital asset pricing model (Black, Jensen, and
Scholes, 1972), the eigenspectrum of £* contains a dominant eigenvector corresponding to
the market; as a consequence, S could be well-approximated by the sum of a rank one ma-
trix (the “market component”) and a diagonal matrix (the “idiosyncratic error
component”). More generally, covariance matrix estimators based on low-rank approxima-
tions of S are advantageous statistically since such estimators have smaller variance.!
In practice, low-rank covariance estimates are based on explicitly provided factors
(French and French, 1993; Fama and French, 2015; Black, Jensen, and Scholes, 1972),

1 If the covariance matrix estimator has rank M, then the effective number of parameters estimated
is O(NM) instead of O(N?) where M < N.
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or data-driven factors learned by performing principal component analysis (PCA) on §
(Fan, Liao, and Mincheva, 2013; Jianqing, Yuan, L., and Mincheva, 2011). Another related
popular strategy for estimating X* is based on the assumption that the eigenvalues of * are
well-behaved and exploit results from random matrix theory (El Karoui, 2008; Marcenko
and Pastur, 1967). In particular, various methods are considered regularizing the eigenval-
ues of S (Ledoit and Wolf, 2004, 2012; Engle, Ledoit, and Wolf, 2017; Jagannathan and
Ma, 2003; DeMiguel, Martin-Utrera, and Nogales, 2013); collectively, these methods can
be regarded as particular instances of empirical Bayesian shrinkage estimators (Haff, 1980;
Ledoit and Wolf, 2004; Stein, 1956). Finally, a number of papers have proposed covariance
estimators based on the assumption that the precision matrix is sparse (Friedman, Hastie,
and Tibshirani, 2008; Ravikumar et al., 2011). Such a constraint is motivated by the fact
that a sparse precision matrix implies that the induced undirected graphical model associ-
ated with the joint distribution is sparse, which is desirable both for better interpretability
and robustness properties.

In this article, we propose a new type of covariance matrix estimator for portfolio selec-
tion based on the assumption that the underlying distribution is multivariate totally positive
of order 2 (MTP;), which exploits a particular type of structure in the covariance matrix.
MTP, was first studied in Fortuin, Kasteleyn, and Ginibre (1971), Karlin and Rinott
(1980a), Belviken (1982), Karlin and Rinott (1983) from a purely theoretical perspective
and later also in the context of statistical modeling, in particular graphical models, in
Slawski and Hein (2014), Fallat et al. (2017) and Lauritzen, Uhler, and Zwiernik (2019a).
MTP; is a strong form of positive dependence that can be used in combination with
the above methods for covariance estimation. The structure we exploit is motivated by the
observation that asset returns are often positively correlated since assets typically move
together with the market. As an illustration, consider the sample correlation matrix S and
its inverse S™! based on the 2016 monthly returns of global stock markets shown in
Figure 1. Note that all correlations (i.e., off-diagonal entries of S) and all partial correla-
tions (i.e., negative of the off-diagonal entries of S~!) are positive.

Nasdaq Canada Europe UK Australia
1.000 0.606 0.731 0.618 0.613 Nasdaq
0.606 1.000 0.550 0.661 0.598 Canada
S=| 0.731 0.550 1.000 0.644 0.569 Europe
0.618 0.661 0.644 1.000 0.615 UK
0.613 0.598 0.569 0.615 1.000 Australia

Nasdaq Canada Europe UK Australia
2.629 —0.480 —1.249 -0.202 —0.490, Nasdaq
—0.480 2.109 —0.039 —-0.790 —0.459 | Canada
s 1| —1.249 —0.039 2.491 —0.675 —0.213 | Europe
—0.202 —0.790 —0.675 2.378 —0.482 UK
—0.490 —0.459 —-0.213 -0.482 1.992/  Australia

Figure 1. The sample correlation matrix of global stock market indices based on monthly returns from
2013 to 2016. “Canada,” “Europe,” “UK,” and Australia refer to the country names in the MSCI
Developed Markets Index. Notice that the covariance matrix contains all positive entries and the preci-
sion matrix is an M-matrix which implies that the joint distribution is MTP, (see Section 2.2 for
details).
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A multivariate Gaussian distribution with mean u and positive definite covariance ma-
trix £ is MTP, if and only if (X! )i < 0forallisj. Aprecision matrix satisfying this con-
dition is called a symmetric M-matrix (Bolviken, 1982; Karlin and Rinott, 1980a) and
implies that all correlations and partial correlations are non-negative (Ostrowski, 1937;
Dellacherie, Martinez, and San Martin, 2014). Hence, a multivariate Gaussian fit to the
2016 daily returns of the global stock market indices considered in Figure 1 is MTP,. This
is quite remarkable, since uniformly sampling correlation matrices, for example, using the
method described in Joe (2006), shows that less than 0.001% of all 5x 5 correlation
matrices satisfy the MTP, constraint. Since factor analysis models with a single factor are
MTP, when each observed variable has a positive dependence on the latent factor
(Wermuth and Marchetti, 2014), the capital asset pricing model implies MTP, when all
market betas are positive, which further motivates studying MTP; in the context of port-
folio selection.

In this article, we provide (i) a new MTP, covariance matrix estimator to model heavy-
tailed returns data and (ii) an extensive empirical comparison demonstrating the advantages
of this new estimator on stock market data spanning 30 years. The remainder of this article
is organized as follows: in Section 1, we review the Markowitz portfolio problem and exist-
ing techniques for covariance matrix estimation that we benchmark our method against in
Section 4. In Section 2, we define MTP, more precisely, motivate its usage for financial
returns data in more detail, and describe a method to perform covariance estimation under
this constraint. Finally, in Section 4 we empirically compare our method with several com-
peting methods on historical stock market data and show that covariance matrix estimation
under MTP, outperforms state-of-the-art methods for portfolio selection in terms of out-
of-sample variance, that is, risk. All data and code for this work are available at https:/
github.com/uhlerlab/MTP2-finance.

1 Problem Statement

After introducing some notation, we will review the Markowitz portfolio selection prob-
lem, explain how it relates to covariance matrix estimation, and discuss various covariance
estimation techniques.

1.1 Notation

We assume throughout that we are given N assets, which we index using the subscript 7,
from T dates (e.g., days), which we index using the subscript . We let 7;; denote the
observed return for asset i at date £ for 1 < i < N and 1 <t < T. The vector r, :=
(r1y- - ,rN,t)T consists of the returns of each asset on day ¢. Finally, u, :== E[r;] and X, :=
Cov(r;) denote the expected returns and the covariance matrix of the returns for day ¢,
respectively.

1.2 Optimal Markowitz Portfolio Allocation

Markowitz portfolio theory concerns the problem of assigning weights w € RN to a uni-
verse of N possible assets in order to minimize the variance of the portfolio for a specified
level of expected returns R. More precisely, the optimal portfolio weights w € RN on day ¢
are found by solving
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. T 5%
Minimize N w' Xw

N

. 1

subject to wTyr =R and E w; =1, (1)
=1

where uf and X} denote the true expected returns and covariance matrix of the returns for
day t. In practice, i} and X are unknown and must be estimated from historical returns.
Since the main difficulty lies in estimating T} (it requires estimating O(N?) parameters as
compared to O(N) for y;), a widely used tactic to specifically evaluate the quality of a co-
variance matrix estimator is by finding the global minimum variance portfolio, which does
not require estimating y* (Haugen and Baker, 1991; Jagannathan and Ma, 2003). Such a
portfolio can be found by solving

s Ty
MINIMIZE , pN w Xw
. > (2)
subject to Zwi =1,
i=1

where w is chosen to minimize the variance of the portfolio. Replacing the unknown true
covariance matrix of returns X; by some estimator X, yields the following analytical solu-
tion for Equation (2):

s

A natural choice for £, is the sample covariance matrix. Unfortunately, as discussed in
the introduction of this article, the sample covariance matrix is a poor estimator of the true
covariance matrix, particularly in the high-dimensional setting when the number of assets
N exceeds the number of periods T (the sample size). Although the sample covariance ma-
trix is an unbiased estimator of the true covariance matrix, in the high-dimensional setting
it is not invertible, has high variance, and is not consistent [e.g., the eigenvectors of S do not
converge to those of * (Marcenko and Pastur, 1967; Johnstone, 2001; Wachter, 1978; Bai
and Yin, 1993; Johnstone et al., 2009)]. Making structural assumptions about the true co-
variance matrix allows the construction of estimators that have lower variance with only a
small increase in bias.

2 Covariance Matrix Estimation under MTP,

We propose a new structure for modeling asset returns data, namely by exploiting that
assets are often positively dependent. In particular, we consider distributions that are
MTP,.

Definition 2.1 [Fortuin, Kasteleyn, and Ginibre (1971); Karlin and Rinott (1980b)]. A
distribution on X C RM is multivariate totally positive of order 2 (MTP,) if its density
function p satisfies

px)Pp(y) < plxAy)p(xVvy) forall xyed,

where N,V denote the coordinate-wise minimum and maximum, respectively.
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MTP; is a strong form of positive dependence that implies most other known forms includ-
ing, for example, positive association; see, for example, Colangelo, Scarsini, and Shaked
(20035) for a recent overview. Note that when p(x) is a strictly positive density, then
Definition 2.1 is equivalent to p(x) being log-supermodular. Log-supermodularity has a
long history in ecomomics, in particular in the context of complementarity and compara-
tive statics (Topkis, 1978; Milgrom and Roberts, 1990; Milgrom and Shannon, 1994;
Topkis, 1998; Athey, 2002; Costinot, 2009).

In Figure 1, we provided an example of five global stock indices, where the sample distribu-
tion is MTP;. To further motivate studying MTP; as a constraint for covariance matrix es-
timation for portfolio selection, we discuss its connection to latent tree models in Section
2.1. In particular, we show that the capital asset pricing model implies that the resulting
joint distribution is MTP, when all “market betas” (also known as “market loadings” or
“factor coefficients”) are positive. Then in Section 2.2, we discuss how to perform covari-
ance matrix estimation under MTP; in the Gaussian setting. Finally, in Section 2.3, we pro-
pose how to extend this estimator to heavy-tailed distributions.

2.1 Latent Tree Models

A powerful framework to model complex data such as stock market returns is through
models with latent variables. Factor models, which are widely used for covariance estima-
tion for portfolio selection (see Section 3.1) are examples thereof. A latent tree model is an
undirected graphical model on a tree (where every node represents a random variable that
may or may not be observed and any two nodes are connected by a unique path). For finan-
cial applications, latent tree models have been used, for example, for unsupervised learning
tasks, such as clustering similar stocks, or for modeling and learning the dependence struc-
ture among asset returns (Choi et al., 2011; Mantegna, 1999). A factor analysis model with
a single factor is a particular example of a latent tree model consisting of an unobserved
root variable that is connected to all the observed variables; see Figure 2 for a concrete ex-
ample of a single-factor analysis model and a more general latent tree model. The promin-
ent capital asset pricing model (CAPM) is a single-factor analysis model: the return of stock
i is modeled as

ri=1r+ Bi(rm —17) +ui B € R,

where 7¢is known as the risk-free rate of return, 7, is the market return, and #; is the uncor-
related, zero mean idiosyncratic error term. Typically, the parameters f; are positive, which
explains why the covariance between stock returns is usually positive.> Non-negative cor-
relation is in general necessary but not sufficient to imply MTP,. The following theorem
states that for latent tree models, non-negative correlation already implies MTP,. The proof
follows from Lauritzen, Uhler, and Zwiernik (2019a, Theorem 5.4).

Theorem 2.2. Let X € RM follow a multivariate Gaussian distribution that factorizes
according to a tree. If Cov(X) > 0, then X is MTP, and any marginal of X is MTP,.

2 Over 97% of the entries of the sample covariance matrix of 1000 assets (based on daily returns
from 1980-2015) are positive.
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Figure 2. Shaded nodes represent factors that are potentially unobserved, and unshaded nodes are
the observed returns of different companies. Figure (left) represents a simple model where an unob-
served market variable drives the returns of all stocks as in the CAPM. Figure (right) represents a more
complicated latent tree model where latent sector-level factors drive the returns of different assets.

While working with CAPM is convenient from a theoretical perspective, its simplicity often
comes at the expense of underfitting. In particular, there commonly are additional sector-
level factors that drive returns. Identifying these factors is an active area of research; for in-
stance, CAPM was recently extended to include three and then five new factors (French
and French, 1993, 2015). However, identifying relevant factors is in general a challenging
task; for example, learning the structure of a latent tree model from data is known to
beNP-hard (Cooper, 1990). We here propose to instead take a structure-free approach by
constraining the joint distribution over the observed variables to be MTP,. This approach
provides more flexibility than modeling stock returns using latent tree models and at the
same time allows overcoming the computational bottleneck of fitting a latent tree model. In
particular, we show in Section 2.2 that an MTP, covariance matrix estimator can be com-
puted by solving a convex optimization problem.

2.2 MTP2 Covariance Matrix Estimation Assuming Multivariate Gaussian
Returns
For multivariate Gaussian distributions, a necessary and sufficient condition for a distribu-
tion to be MTP, is that the precision matrix K := ™! is an M-matrix, that is, K; < 0 for
all i+#j; or equivalently, all partial correlations are non-negative (Karlin and Rinott,
1980a). Following Lauritzen, Uhler, and Zwiernik (2019a), we consider the maximum like-
libood estimator (MLE) of K subject to K being an M-matrix.

Recall that the log-likelihood function £ of K given data D := {r,},
to additive and multiplicative constants, given by

i'i&d'N(O,K) is, up
L(K; D) = logdetK — trace(KS), (4)

where § € RN*N denotes the sample covariance matrix of the returns {r,},_, or log returns.
Without the MTP; constraint, the MLE of K is obtained by maximizing £(K; D) over the set
of all positive semidefinite matrices and is given by S~ when N < T (i.e., the dimension of
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the covariance matrix is less than the number of samples). Note that when N > T, the MLE
does not exist, that is, the log-likelihood function is unbounded above. Remarkably, by add-
ing the constraint that K is an M-matrix (i.e., that the distribution is MTP,), then the MLE

K =arg max log detK — trace(KS) subject to Kj < 0 Vi#j, (5)

exists with probability 1 when T >2 for any dimension N (Slawski and Hein, 2014;
Lauritzen, Uhler, and Zwiernik, 2019a). Similarly, the popularCLIME estimator, which we
review in Equation (10) in the next section, could be extended to the MTP, setting by add-
ing the constraints K;; < 0 for all i # ;. It would be of interest to understand its properties.

The fact that a unique solution exists for Equation (5) for any N when T > 2 suggests
that the MTP, constraint adds considerable regularization for covariance matrix estima-
tion. In addition, the problem in Equation (5) is a convex optimization problem and com-
putationally efficient coordinate-descent algorithms have been described for computing K
(cf. Slawski and Hein, 2014; Lauritzen, Uhler, and Zwiernik, 2019a). Finally, another de-
sirable property is that the MTP, covariance matrix estimator K in Equation (5) is usually
sparse (Lauritzen, Uhler, and Zwiernik, 2019a, Corallary 2.9), which reduces the intrinsic
dimensionality of the model and hence reduces the variance of the estimator. Note that this
sparsity is achieved without the need for any tuning parameter, an immediate advantage
over methods that explicitly add sparsity-inducing L; penalties such as the graphical lasso
(Friedman, Hastie, and Tibshirani, 2008; Ravikumar et al., 2011) discussed in Section 3.3.
Nevertheless, to relax the MTP, constraint, one could always introduce a Lagrange multi-
plier (i.e., tuning parameter) to penalize for violating the MTP; constraint.®

2.3 Extensions to Heavy-Tailed Distributions
Asset returns are often computed as 7, = log 1% , where p;, is the price of the asset at time
t. Stock returns may be heavy-tailed and in such cases, the Gaussian assumption made for
estimating the covariance matrix in Section 2.2 may be problematic. Transelliptical distri-
butions form a convenient class of distributions that contain the Gaussian distribution as
well as heavy-tailed distributions such as the #-distribution. In the following, we provide an
extension of the estimator in Equation (3) to transelliptical distributions.

A random vector X with density function p(x), mean u € RM and covariance matrix
% € RMM follows an elliptical distribution if its density function can be expressed as

glx — )= (x — )

for some function g. More generally, X follows a transelliptical distribution if there exists
monotonically increasing functions f;, i = 1,..., M, such that (f1(X1),...,/m(Xm)) follows
an elliptical distribution. We denote the covariance matrix of this elliptical distribution by
3. The following result provides a necessary condition for a transelliptical distribution to
be MTPz.

3 Such a strategy can also be used to perform a sensitivity analysis to the MTP, assumption. We
thank an anonymous reviewer for raising this point. We leave an empirical evaluation of this strat-
egy to future work.
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Theorem 2.3.  Suppose that the joint distribution of (X1, ...,Xum) is MTP, and transellipti-
cal, that is, there exist increasing functions f;, i = 1,..., M, such that the density function of
(A(X1),....m(Xm)) can be written as g((x — ,u)TZ/Z1 (x — ). Then, 2’71 is an M-matrix.

We prove Theorem 2.3 in Online Appendix A. While Theorem 2.3 shows that the covari-
ance matrix of any elliptical distribution is an inverse M-matrix, the following example
shows that, unlike in the Gaussian setting, this is not a sufficient condition for MTP;.

Example 2.4. Suppose X is a two-dimensional t-distribution with one degree of freedom
and precision matrix

L[ 1 —01
= {—0.1 1 }
Then X is not MTPa, since for x = (—1,1) and y = (0, 0) its density function p(-) satisfies
px)p(y) > plx Ay)p(xVy). O

This shows that for transelliptical distributions, the constraint that £~! be an M-matrix
is a relaxation of MTP;. In terms of covariance matrix estimators for transelliptical distri-
butions (without the MTP, constraint), it was shown recently that replacing the sample co-
variance matrix S in Equations (9) and (10) by Kendall’s tau correlation matrix S, defined
in Equation (11) yields consistent estimators of X (Liu, Han, and Zhang, 2012; Barber and
Kolar, 2018). This is quite remarkable, since it does not involve any changes to the object-
ive function apart from replacing S by S;. Motivated by these results, we propose to extend
the MTP, covariance matrix estimator from Section 2.2 to heavy-tailed distributions using
the covariance matrix estimator in Equation (5) by simply replacing the sample covariance
matrix S by S..

In recent work, Rossell and Zwiernik (2020) provide a number of interesting theoretical
results for transelliptical distributions, including the theoretical analysis of our proposed
MTP; relaxation above. They show that our relaxation for transelliptical distributions has a
number of desirable properties, including positive partial correlations for arbitrary condition-
ing sets and the avoidance of Simpsons Paradox; see Rossell and Zwiernik (2020, Proposition
4.12) for details. Rossell and Zwiernik (2020) further motivate this relaxation by showing
that MTP; is in fact too strong a constraint for (non-Gaussian) transelliptical distributions in
Theorem 4.8 (e.g., there does not exist any transelliptical M TP, ¢-distributions).

3 Related Work

In this section, we review several models and techniques for covariance matrix estimation
that are commonly used in financial contexts. We compare our method to these estimators
in Section 4.

3.1 Factor Models

A common modeling assumption in financial applications is that the returns for day # are
given by a linear combination of a (small) collection of latent factors f,, for 1 < k < K,
which are either explicitly provided or estimated from the data. In such a factor model, the
returns are modeled as
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ri.t:ai""ﬂint‘i‘”i,t: fz = (fl.z,~-~7f1<,t)7 (6)

where u;; is the idiosyncratic error term for asset i that is uncorrelated with f,. Letting
B € RF*N be the matrix whose ith column is f8;, the covariance matrix of the returns can be
expressed as

%, =B"%,B+3,, for 1<t<T,

where X¢, := Cov(f;) and Z,; := Cov(u;). In practice, K < N factors are selected, making
BTE,rJB of low rank. This low-rank structure makes estimating X, easier since X7, and B
only have O(K?) and O(NK) free parameters, respectively. When K < N, and K < T2,
then by standard concentration of measure results, X/, can be estimated well by ﬁf.z, the
sample covariance matrix of the factors. Similarly, by Equation (6), the ith row of B can
be estimated by regressing the returns of asset i on the K latent factors, for example, using
ordinary least-squares. In this case, ; ~ B, and hence the error ;, is approximately equal
to the residual #;, :==7;; — /ff, — &;. Thus, £,; can be approximated by a covariance ma-
trix estimate 2141 based on the residuals. However, without additional assumptions on the
structure of X, ¥, is not necessarily easier to estimate than X,. As a result, many esti-
mators assume that %,, has some special structure such as being diagonal or sparse (see
below).

Several different types of factor models of varying complexity have been considered in
the literature: the general model in Equation (6) is known as a dynamic factor model. A
static factor model assumes that the covariance matrices X, and Xy, are time-invariant,
that is, Z,; =X, and Xr, = Z; do not depend on t. An exact factor model furthermore
assumes that the covariance matrix X, is diagonal, whereas an approximate factor model
assumes that =, has bounded L' or L? norm. In this article, we concentrate on static estima-
tors. The following static factor-based covariance matrix estimators are popularly used in
financial applications.

e POET: is based on an approximate factor model and was first proposed in Fan, Liao,
and Mincheva (2013). POET estimates BT, B by a rank K truncated singular value de-
composition of the sample covariance matrix £, which we denote by £x. 3, is estimated
by soft-thresholding the off-diagonal entries of the residual covariance matrix S; =
3 — 3 based on the method in Bickel and Levina (2008).

e EFM: is an estimator based on the exact factor model using the Fama—French factors
(Fama and French, 1993). )ff equals the sample covariance matrix of the factors {f;}
and £, equals the diagonal of S,;.

o AFM-POET: is an estimator based on an approximate factor model using the Fama—
French factors. £ is obtained as in EFM, whereas £,, is obtained by soft-thresholding
S; asin POET.

3.2 Shrinkage of Eigenvalues

Another way to impose structure on the covariance matrix is through assumptions on the
eigenvalues of the covariance matrix. Assuming that the true covariance matrix is well-
conditioned, the extreme eigenvalues of the sample covariance matrix are generally too
small/large as compared to the true covariance matrix (Marcenko and Pastur, 1967; Bai
and Yin, 1993). This motivates the development of covariance matrix estimators such as
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linear shrinkage (Ledoit and Wolf, 2004) and extensions thereof (cf. Ledoit and Wolf,
2012; Engle, Ledoit, and Wolf, 2017) that shrink the eigenvalues of the sample covariance
matrix for better statistical properties.

To be more precise, let

N
S = Z ).,‘l/,‘UtT,
i=1

be the eigendecomposition of the sample covariance matrix S, where 4; denotes the i-th
eigenvalue of S and v; the corresponding eigenvector. Then the linear shrinkage estimator is
given by

N
Zis= Z“/iViViT,
=1
where y; = pJ; + (1 — p)/ with /1 denoting the average of the eigenvalues of Sand 0 < p < 1
a tuning parameter that determines the amount of shrinkage. Note that £ ;¢ can equivalently
be expressed as

S5 =pS+ (1 - p)ilx, (7)

where Iy € RN*N denotes the identity matrix [Equation (7) follows from the uniqueness of
the eigenvalue decomposition]. Thus, 315 is obtained by shrinking the sample covariance
matrix toward a multiple of the identity, which from a Bayesian point of view can also be
interpreted as using the identity matrix as a prior for the true covariance matrix (Ledoit
and Wolf, 2004). The shrinkage estimator 215 is asymptotically efficient given a particular
choice of p that depends on the sample covariance matrix S, its dimension N (i.e., the num-
ber of assets) and the number of samples T (i.e., the number of dates) (Ledoit and Wolf,
2004).

An extension of linear shrinkage, known as nonlinear shrinkage, considers nonlinear
transforms of the eigenvalues according to the Marchenko-Pastur distribution, which
describes the asymptotic distribution of the eigenvalues of random matrices. This approach
has been shown to outperform linear-shrinkage empirically (Ledoit and Wolf, 2012). It is
also common to combine shrinkage estimators with factor models (e.g., such as those intro-
duced in Section 3.1). For example, AFM-LS and AFM-NLS apply linear shrinkage and
nonlinear shrinkage, respectively, to the residuals (by regressing out the Fama-French fac-
tors) to estimate X, (De Nard, Ledoit, and Wolf, 2018).

3.3 Regularization of the Precision Matrix

Another common technique for covariance matrix estimation is to assume that the true
underlying inverse covariance matrix K* := (£")!, also known as the precision matrix, is
sparse, that is, that the number of nonzero entries in K* is bounded by an integer x > 0.
Since estimating K under the constraint

IKll ==Y _I[Kyj #0] < x (8)

i#]
is computationally intractable as it involves solving a difficult combinatorial optimization
problem, a standard approach is to replace the Ly constraint in Equation (8) by an L
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constraint. In particular, assuming that the data follow a multivariate Gaussian distribu-
tion, the Li-regularized MLE (also known as graphical lasso) can be used to estimate K
(Friedman, Hastie, and Tibshirani, 2008; Ravikumar et al., 2011). Maximum likelihood es-
timation under the the L constraint leads to the following convex optimization problem:

K= arg max logdetK — trace(KS) subject to ||K||; < 4, 9)

where 2 > 0 is a tuning parameter. Instead of maximizing the log-likelihood, the popular
CLIME estimator (Liu, Han, and Zhang, 2012) finds a sparse estimate of the precision ma-
trix by solving

K :=argmax ||K||, subject to [SK —Ix]|,, < A (10)
K

and has similar consistency guarantees as the graphical lasso in the Gaussian setting.

To overcome the restrictive Gaussian assumption, recent work suggested replacing the
sample covariance matrix S in Equations (9) and (10) by Kendall’s tau correlation matrix S,
with (S.);; := sin(3 %), where

. 1 . .
Tij = VERY Z sign (X — Xir) sign(Xj — Xjr). (11)
( 2 ) 1<t<¢<T

Interestingly, the resulting estimators can also be used for data from heavy-tailed distri-
butions (including elliptical distributions such as the ¢-distribution) with almost no loss in
efficiency (Liu, Han, and Zhang, 2012; Barber and Kolar, 2018); see also Section 2.3.

4 Empirical Evaluation

In this section, we first describe both the data used for the evaluation and our experimental
setup, which closely follow De Nard, Ledoit, and Wolf (2018) for reproducibility. We then
present our empirical evaluation of the various methods discussed in this article based on
the global minimum variance portfolio problem and the full Markovitz portfolio problem.
All data and code for this work are available at https://github.com/uhlerlab/MTP2-finance.

4.1 Data

We use daily stock returns data from the Center for Research in Security Prices (CRSP),
starting in 1975 and ending in 2015. We restrict our attention to stocks from the NYSE,
AMEX, and NASDAQ stock exchanges, and consider different portfolio sizes
N € {100,200,500}. As in De Nard, Ledoit, and Wolf (2018), twenty-one consecutive
trading days constitute one “month.” To account for distribution shift over time, we use a
rolling out-of-sample estimator. That is, for each month in the out-of-sample period, we es-
timate the covariance matrix using the most recent T daily returns, and update the portfolio
monthly. We vary T with N to evaluate how sensitive different covariance estimators are
with respect to increasing dimensionality. In particular, for a given N, we vary T such that
the ratio N/T € {%7 1,2, 4}. We also include T=1260 (which corresponds to five years of
market data) in order to replicate the results in De Nard, Ledoit, and Wolf (2018). We con-
sider 360 months for evaluation, starting from August 1, 1986 and ending on December 2,
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20135, using the portfolio and covariance updating strategy described above. We index each
of these 360 investment periods by b € {1,...,360}.

For each investment period and portfolio size, we vary the investment universe because
many stocks do not have data for the entire period, and the most relevant stocks (i.e., by
market capitalization or volume) naturally vary over time. We use the same procedure as in
De Nard, Ledoit, and Wolf (2018) to construct the investment universe. Specifically, we
consider the set of stocks that have (i) an almost complete return history over the most re-
cent T=1260days and (ii) a complete return “future” in the next twenty-one days (which
is the investment period). Next, we remove one stock in each pair of highly correlated
stocks, defined as those with sample correlation exceeding 0.95. More precisely, for each
pair, we remove the stock with the lower market capitalization for period b. Finally, we
pick the largest N stocks (as measured by their market capitalization on the investment
date b) for the subsequent analysis. We use Ij, y to denote this investment universe, where
the subscripts emphasize the dependence on N and h.

4.2 Competing Covariance Matrix Estimators

We compare the performance of the proposed MTP, covariance matrix estimator to the
estimators described in Section 3. In addition, as a baseline, we also consider the equally
weighted portfolio denoted by 1/N. We evaluate each estimator in terms of its out-of-
sample standard deviation (see Section 4.3), Sharpe ratio (see Section 4.4), and information
ratio (see Online Appendix B). These results are also summarized in Tables 1 and 2. In the
following, we provide details regarding the implementation of the various covariance ma-
trix estimators included in our empirical analysis.

o LS: linear shrinkage, as described in Section 3.2, applied to the sample covariance matrix.

o NLS: nonlinear shrinkage, as described in Section 3.2, applied to the sample covariance
matrix; we used the implementation in the R package shrink (Dunkler, Sauerbrei, and
Heinze, 2016).

AFM-LS: approximate factor model, as described in Section 3.1, with five Fama-French

factors and linear shrinkage applied to estimate the covariance matrix of the residuals.

o AFM-NLS: approximate factor model, as described in Section 3.1, with five Fama-
French factors and non-linear shrinkage applied to estimate the covariance matrix of the
residuals.

e POET (k = 3): POET, as described in Section 3.1, using the top three principal compo-
nents; we used the implementation in the R package POET.

e POET (k = 5): POET, as described in Section 3.1, using the top five principal compo-
nents; we used the implementation in the R package POET.

GLASSO: graphical lasso, as described in Section 3.3, using the python implementation
in sklearn (Pedregosa et al., 2011); cross-validation is used to select the hyperparameter
25 we used the default parameters, that is, using three-fold cross-validation and testing 4
on a grid of four points refined four times (the parameter values for o and #;,, respect-
ively). We note that this results in a biased estimator due to the ¢;-penalty.

e CLIME: as described in Section 3.3; we used the implementation in the R package
CLIME with hyperparameter 2 = \/(logp)/n, which is asymptotically optimal; the
CLIME estimator using this hyperparameter only exists when T > N and hence we only
benchmarked CLIME in this range.
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Table 1. For each combination of N (portfolio size), T (estimation sample size), and covariance
matrix estimator, we report the out-of-sample standard deviation of the returns of the portfolio

N T 1/N LS NLS AFM-LS AFM-NLS POET POET
(k=3) (k=15)
100 50 18.724 13.452 12.976 13.159 13.193 12.498* 12.617
100 18.724 13.695 13.111 13.135 13.338 11.994* 12.595
200 18.724 12.560 12.347 12.357 12.480 12.348 12.707
400 18.724 12.451 12.347 12.352 12.344 12.744 13.255
1260 18.724 12.151 12.122 12.146 12.130 13.041 12.722
200 100 18.134 12.583 12.320 12.372 12.406 11.743 11.544
200 18.134 11.881 11.603 11.556 11.612 11.881 11.593
400 18.134 11.656 11.431% 11.552 11.469 12.559 12.103
800 18.134 11.670 11.424* 11.531 11.449 13.019 12.455
1260 18.134 11.665 11.534* 11.601 11.568 13.170 12.898
500 250 17.925 11.140 10.516 10.508 10.517 11.269 10.203*
500 17.925 11.934 10.793* 10.913 11.163 11.833 10.873
1000 17.925 11.373 10.838 10.856 10.816% 12.179 11.917
1260 17.925 11.469 10.943* 11.005 10.950 12.395 11.626
N T GLASSO CLIME CLIME-KT MTP, MTP2-KT
100 50 13.594 nan 15.484 12.655 12.623
100 13.822 nan 15.024 12.327 12.049
200 13.985 14.945 15.140 11.858 11.742%
400 13.607 15.127 15.223 12.294 12.114*
1260 13.631 15.253 15.316 12.087* 12.087*
200 100 13.522 nan 14.983 11.803 11.445%
200 13.719 nan 14.344 11.586 11.442%
400 13.920 14.563 14.964 11.880 11.905
800 14.096 14.778 14.862 11.635 11.661
1260 13.958 15.013 15.013 11.710 11.749
500 250 13.855 nan 15.677 10.455 10.512
500 14.171 nan 20.896 11.009 11.261
1000 14.283 15.523 14.330 11.031 11.273
1260 14.290 14.776 14.962 11.187 11.422

Note: The most competitive value in each row is marked with an asterisk.

o CLIME-KT: CLIME estimator as described above but using Kendall’s tau correlation
matrix instead of the sample correlation matrix. Since Kendall’s tau correlation matrix
is not singular, the CLIME-KT estimator exists even when T < N.

e MTP,: our method, as described in Section 2.2. We used the implementation from
Slawski and Hein (2014), which is a computationally efficient coordinate-descent algo-
rithm implemented in Matlab.*

4 The implementation can be found at https://sites.google.com/site/slawskimartin/code.
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Table 2. For each combination of N (portfolio size), T (estimation sample size), and covariance
matrix estimator, we report the out-of-sample Sharpe ratio

N T EQ-TW LS NLS AFM-LS AFM-NLS POET POET
(k=3) (k=3
100 50 0.544 0.348 0.361 0.334 0.338 0.462 0.496
100 0.544 0.328 0.397 0.344 0.340 0.486 0.394
200 0.544 0.374 0.419 0.389 0.376 0.500 0.413
400 0.544 0.437 0.471 0.502 0.475 0.532 0.474
1260 0.544 0.525 0.527 0.526 0.524 0.555 0.539
200 100 0.599 0.423 0.433 0.413 0.428 0.448 0.439
200 0.599 0.498 0.471 0.474 0.468 0.432 0.443
400 0.599 0.545 0.559 0.566 0.568 0.528 0.513
800 0.599 0.649 0.636 0.640 0.643 0.461 0.571
1260 0.599 0.588 0.585 0.593 0.585 0.491 0.481
500 250 0.599 0.649 0.639 0.641 0.638 0.538 0.664
500 0.599 0.628 0.609 0.653 0.668 0.534 0.685
1000 0.599 0.592 0.633 0.650 0.636 0.470 0.550
1260 0.599 0.595 0.628 0.646 0.642 0.505 0.589
N T GLASSO CLIME CLIME-KT MTP, MTP,-KT
100 50 0.589 nan 0.548 0.554 0.611*
100 0.616 nan 0.589 0.594 0.666*
200 0.589 0.580 0.636" 0.585 0.634
400 0.603 0.608 0.578 0.590 0.617*
1260 0.605* 0.535 0.523 0.582 0.547
200 100 0.611* nan 0.593 0.514 0.594
200 0.587 nan 0.632* 0.563 0.594
400 0.597 0.657* 0.568 0.573 0.581
800 0.596 0.605 0.552 0.650% 0.627
1260 0.620 0.593 0.632 0.638* 0.615
500 250 0.639 nan 0.341 0.755 0.779*
500 0.623 nan 0.313 0.705* 0.674
1000 0.637 0.572 0.818* 0.723 0.635
1260 0.635 0.585 0.539 0.701* 0.635

Notes: The out-of-sample Sharpe ratio is the ratio between the excess portfolio returns and the standard devi-
ation of excess returns based on 1 Year U.S. Treasury Rates. The most competitive value in each row is marked
with an asterisk.

o MTP,-KT: MTP, estimator as described above but using Kendall’s tau correlation ma-
trix instead of the sample correlation matrix; see Section 2.3.

4.3 Evaluation on the Global Minimum Variance Portfolio Problem

For each fixed portfolio size N, estimation sample size T, and investment period b, we let
iJTV,lh(I »n) denote the estimated covariance matrix between the assets in universe Ij n
obtained using estimator M. We then computed the portfolio weights &7 via Equation (3)
and the corresponding returns ;! for h = 1,...,360. We estimated the portfolio standard

deviation from these 360 returns for each estimator and multiplied each standard deviation
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by v/12 to annualize. Note that a smaller standard deviation implies a lower variance port-
folio, and hence better empirical performance.

Table 1 summarizes the results for each estimator. Each row corresponds to a particular
choice of N (size of investment universe) and T (estimation sample size). Each column cor-
responds to a different covariance matrix estimator. The best performing estimator in each
row is marked with an asterisk. While no estimator outperforms all other estimators across
all N and T, Table 1 shows that the MTP,, NLS, and POET estimators perform consistently
well in all settings.

As discussed in Section 2.3, to deal with the heavy-tailed nature of the distribution of
returns, Kendall’s tau correlation matrix can be used instead of the sample correlation ma-
trix in the CLIME and MTP, estimators which assume Gaussianity. Columns CLIME-KT
and MTP2-KT in Table 1 indicate that while using Kendall’s tau correlation matrix usually
does not make a significant difference in the performance, it can give a slight boost for the
MTP2 estimator in particular when N is 100 or 200.

Instead of comparing the covariance matrix estimators only based on one number,
the standard deviation of the returns of the resulting portfolios across the entire out-of-
sample period, it is also of interest to examine the performance of each estimator
throughout the out-of-sample period. Figure 3 shows the standard deviation of the
returns of the different estimators for N € {100,200, 500} and T=1260 when varying
the out-of-sample period from 60 to 360 (where 360 is the maximal number of total
out-of-sample months). Note that the ordering between the different estimators is rela-
tively consistent over time, indicating that the conclusions from the comparison of the
different estimators in Table 1 would remain unchanged even when varying the length
of the out-of-sample period.

4.4 Evaluation on Full Markowitz Portfolio Problem with Momentum Signal

We also benchmarked the different covariance matrix estimators based on the performance
of the portfolios selected by solving Equation (1), where X} is replaced by the estimator. A
standard performance metric is the Sharpe ratio, which is the ratio between the excess port-
folio returns and the standard deviation of excess returns.’ Hence, a higher Sharpe ratio
indicates better performance.

We selected the desired expected returns level R as in De Nard, Ledoit, and Wolf
(2018). Namely, we considered the EW-TQ portfolio which places equal weight on each of
the top 20% of assets (based on expected returns). We then set R equal to the expected re-
turn of the EW-TQ portfolio. In addition, since the true vector of expected returns u* is un-
known, we estimated it from the data. We do this using the momentum factor (Jegadeesh
and Titman, 1993) as in De Nard, Ledoit, and Wolf (2018), which for a given investment
period b and stock is the geometric average of returns of the previous year excluding the
past month.

The out-of-sample Sharpe ratio and information ratio of each estimator are shown
in Table 2 and B, respectively. As in Table 1, each row corresponds to a different choice of
N and T and each column corresponds to a different estimator for both tables. The best

5 We use 1 Year U.S. Treasury Rates to compute the risk-free rate.
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Figure 3. By varying the length of the out-of-sample period we examine the standard deviation of the
returns obtained by each estimator throughout time. “Full” is the cumulative average while “5-Year
MA" is a five-year moving average. Lower is better.

performing estimator in each row is marked with an asterisk. This analysis shows that the
MTP, estimator achieves the best performance for almost all choices of N and T. Although
the results are similar, comparing MTP, to MTP,-KT indicates that it is recommended to
use Kendall’s tau correlation matrix instead of the sample correlation matrix with the
MTP, estimator when N is 100 or 200.
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Figure 4. By varying the length of the out-of-sample period we examine the Sharpe ratio of the returns
obtained by each estimator throughout time. “Full” is the cumulative average while “5-Year MA” is a
five-year moving average. Higher is better.

Similar to Figure 3, in Figure 4 we show the Sharpe ratio of the returns of the different esti-
mators for N € {100,200, 500} and T'= 1260 when varying the out-of-sample period from 60
to 360. Note that while the ordering between the different estimators is still relatively consistent
over time, it varies more than for the standard deviation plotted in Figure 3 and could provide
additional valuable information regarding each estimator that is not captured in Table 2.
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5 Conclusion

In this article, we proposed a new covariance matrix estimator for portfolio selection based
on the assumption that returns are MTP,, which is a strong form of positive dependence.
While the MTP, assumption is strong, this constraint adds considerable regularization,
thereby reducing the variance of the resulting covariance matrix estimator. Empirically, the
added bias of MTP; is outweighed by the reduction in variance. In particular, the proposed
MTP;, estimator outperforms previous state-of-the-art covariance matrix estimators in
terms of the Sharpe ratio and the information ratio.

In our empirical evaluation, we observed that using Kendall tau’s correlation matrix in-
stead of the sample covariance matrix in the MLE under MTP, performed particularly well
for a portfolio size of 100 or 200. It would therefore be of interest to analyze the theoretical
properties of such covariance matrix estimators including MLE or CLIME under MTP, for
heavy-tailed distributions. In addition, while we only considered static covariance matrix
estimators in this article, the MTP, estimator naturally extends to the dynamic setting,
where the covariance matrix evolves over time. Specifically, we may adapt the techniques
developed in Engle, Ledoit, and Wolf (2017) to obtain a dynamic estimator under MTP,. In
future work, it would be interesting to compare the resulting estimator to other state-of-the-
art dynamic covariance matrix estimators. Another interesting future direction is the theoret-
ical analysis of the spectrum of symmetric M-matrices in the high-dimensional setting. If the
MTP; constraint already implicitly regularizes the spectrum sufficiently, then shrinkage
methods such as those developed in Ledoit and Wolf (2004, 2012), Engle, Ledoit, and Wolf
(2017), Jagannathan and Ma (2003), DeMiguel, Martin-Utrera, and Nogales (2013) may be
unnecessary under MTP;. Alternatively, covariance matrix estimators under MTP, could be
combined with shrinkage methods to potentially achieve even better performance.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.

References

Athey, S. 2002. Monotone Comparative Statics under Uncertainty. The Quarterly Journal of
Economics 117: 187-223.

Bai, Z. D. and Y. Q. Yin. 1993. Limit of the Smallest Eigenvalue of a Large Dimensional Sample
Covariance Matrix. The Annals of Probability 21: 1275-1294.

Barber, R. and M. Kolar. 2018. ROCKET: Robust Confidence Intervals via Kendall’s Tau for
Transelliptical Graphical Models. The Annals of Statistics 46: 3422-3450.

Bickel, P. and E. Levina. 2008. Covariance Regularization by Thresholding. The Annals of
Statistics 36: 2577-2604.

Black, F., M. Jensen, and M. Scholes. 1972. The Capital Asset Pricing Model: Some Empirical
Tests. In M.C, Jensen (ed), Studies in the Theory of Capital Markets. New York: Praeger.

Bolviken, E. 1982. Probability Inequalities for the Multivariate Normal with Non-Negative
Partial Correlations. Scandinavian Journal of Statistics 9: 49-358.

Cai, T., C. Zhang, and H. Zhou. 2010. Optimal Rates of Convergence for Covariance Matrix
Estimation. The Annals of Statistics 38:2118-2144.

Choi, M., V. F. Tan, A. Anandkumar, and A. Willsky. 2011. Learning Latent Tree Graphical
Models. Journal of Machine Learning Research 12: 1771-1812.

120z Ae gz uo suoqqio Magoy Aq L Z#z065/810eequ/oaulll/e60 | 01 /10p/a]oie-a0uBAPE/D8)[/WO0 dNO"dlWapede//:sdiy WOl papeojumod


https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbaa018#supplementary-data

20 Agrawal et al. | Covariance Matrix Estimation

Colangelo, A., M. Scarsini, and M. Shaked. 2005. Some Notions of Multivariate Positive
Dependence. Insurance: Mathematics and Economics 58: 3713-3726.

Cooper, G. 1990. ‘The Computational Complexity of Probabilistic Inference Using Bayesian
Belief Networks’. Artificial Intelligence 42: 393-405.

Costinot, A. 2009. An Elementary Theory of Comparative Advantage. Econometrica 77: 1165-1192.

De Nard, G., O. Ledoit, and M. Wolf. 2018. “Factor Models for Portfolio Selection in Large
Dimensions: The Good, the Better and the Ugly.” Technical report.

Dellacherie, C., S. Martinez, and J. San Martin. 2014. Inverse M-Matrices and Ultrametric
Matrices, Vol. 2118, Springer.

DeMiguel, V., A. Martin-Utrera, and F. Nogales. 2013. Size Matters: Optimal Calibration of
Shrinkage Estimators for Portfolio Selection. Journal of Banking & Finance 37: 3018-3034.

Dunkler, D., W. Sauerbrei, and G. Heinze. 2016. Global, Parameterwise and Joint Shrinkage
Factor Estimation. Journal of Statistical Software 69: 1-19.

El Karoui, N. 2008. Operator Norm Consistent Estimation of Large-Dimensional Sparse
Covariance Matrices. The Annals of Statistics 36: 2717-2756.

Engle, R., O. Ledoit, and M. Wolf. 2017. Large Dynamic Covariance Matrices. Journal of
Business ¢& Economic Statistics 0: 1-13.

Fallat, S., S. Lauritzen, K. Sadeghi, C. Uhler, N. Wermuth, and P. Zwiernik. 2017. Total Positivity
in Markov Structures. The Annals of Statistics 45: 1152-1184.

Fama, E. and K. French. 1993. Common Risk Factors in the Returns on Stocks and Bonds. Journal
of Financial Economics 33: 3-56.

Fama, E. and K. French. 2015. A Five-Factor Asset Pricing Model. Journal of Financial Economics
116: 1-22.

Fan, J., Y. Liao, and M. Mincheva. 2013. Large Covariance Estimation by Thresholding Principal
Orthogonal Complements. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 75: 603-680.

Fortuin, C. M., P. W. Kasteleyn, and J. Ginibre. 1971. Correlation Inequalities on Some Partially
Ordered Sets. Communications in Mathematical Physics 22: 89-103.

Friedman, J., T. Hastie, and R. Tibshirani. 2008. Sparse Inverse Covariance Estimation with the
Grapbhical Lasso. Biostatistics 9: 432-441.

Haff, L. R. 1980. Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix. The
Annals of Statistics 8: 586-597.

Haugen, R. and N. Baker. 1991. The Efficient Market Inefficiency of Capitalization-Weighted
Stock Portfolios. The Journal of Portfolio Management 17: 35-40.

Jagannathan, R. and T. Ma. 2003. Risk Reduction in Large Portfolios: Why Imposing the Wrong
Constraints Helps. The Journal of Finance 58: 1651-1683.

Jegadeesh, N. and S. Titman. 1993. Returns to Buying Winners and Selling Losers: Implications
for Stock Market Efficiency. The Journal of Finance 48: 65-91.

Jianging, F., L. Yuan, and M. Mincheva. 2011. High-Dimensional Covariance Matrix Estimation
in Approximate Factor Models. The Annals of Statistics 39: 3320-3356.

Joe, H. 2006. Generating Random Correlation Matrices Based on Partial Correlations. Journal of
Multivariate Analysis 97: 2177-2189.

Johnstone, 1. 2001. On the Distribution of the Largest Eigenvalue in Principal Components
Analysis. The Annals of Statistics 29: 295-327.

Johnstone, I., A. Lu, B. Nadler, B. Witten, T. Hastie, R. Tibshirani, and J. Ramsay. 2009. On
Consistency and Sparsity for Principal Components Analysis in High Dimensions. Journal of the
American Statistical Association 104: 682-703.

Karlin, S., and Y. Rinott. 1980a. Classes of Orderings of Measures and Related Correlation
Inequalities. i. multivariate Totally Positive Distributions. Journal of Multivariate Analysis 10:
467-498.

120z Ae gz uo suoqqio Magoy Aq L Z#z065/810eequ/oaulll/e60 | 01 /10p/a]oie-a0uBAPE/D8)[/WO0 dNO"dlWapede//:sdiy WOl papeojumod



Journal of Financial Econometrics 21

Karlin, S. and Y. Rinott. 1983. M-Matrices as Covariance Matrices of Multinormal Distributions.
Linear Algebra and Its Applications 52: 419-438.

Lauritzen, S., C. Uhler, and P. Zwiernik. 2019a. Maximum Likelihood Estimation in Gaussian
Models under Total Positivity. The Annals of Statistics 47: 1835-1863.

Lauritzen, S., C. Uhler, and P. Zwiernik. 2019b. “Total Positivity in Structured Binary
Distributions,” arXiv:1905.00516.

Ledoit, O. and M. Wolf. 2004. A Well-Conditioned Estimator for Large-Dimensional Covariance
Matrices. Journal of Multivariate Analysis 88: 365-411.

Ledoit, O. and M. Wolf. 2012. Nonlinear Shrinkage Estimation of Large-Dimensional Covariance
Matrices. The Annals of Statistics 40: 1024-1060.

Liu, H., F. Han, and C. Zhang. 2012. “Transelliptical Graphical Models.” In Advances in Neural
Information Processing Systems, pp. 809-817.

Mantegna, R. N. 1999. Hierarchical Structure in Financial Markets. The European Physical
Journal B - Condensed Matter and Complex Systems 11: 193-197.

Marcenko, V. and L. Pastur. 1967. Distribution of Eigenvalues for Some Sets of Random
Matrices. Mathematics of the USSR-Sbornik 1: 457.

Markowitz, H. 1952. Portfolio Selection. The Journal of Finance 7: 77-91.

Milgrom, P. and J. Roberts. 1990. Rationalizability, Learning, and Equilibrium in Games with
Strategic Complementarities. Econometrica 58: 1255-1278.

Milgrom, P. and C. Shannon. 1994. Monotone Comparative Statics. Econometrica 62: 157-180.

Ostrowski, A. 1937. Uber Die Determinanten Mit Uberwiegender Hauptdiagonale. Commentarii
Mathematici Helvetici 10: 69-96.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel et al. 2011.
‘Scikit-Learn: Machine Learning in Python’. Journal of Machine Learning Research 12:
2825-2830.

Ravikumar, P., M. J. Wainwright, G. Raskutti, and B. Yu. 2011. ‘High-Dimensional Covariance
Estimation by Minimizing l;-Penalized Log-Determinant Divergence’. Electronic Journal of
Statistics 5: 935-980.

Rossell, D. and P. Zwiernik. 2020. “Dependence in Elliptical Partial Correlation Graphs,” arXiv:
1905.00516.

Slawski, M., and M. Hein. 2014. Estimation of Positive Definite M-Matrices and Structure
Learning for Attractive Gaussian Markov Random Fields. Linear Algebra and Its Applications
Stein, C. 1956. “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal
Distribution.” Proceedings of the Third Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics. Berkeley, CA: University of

California Press, pp. 197-206.

Topkis, D. M. 1978. Minimizing a Submodular Function on a Lattice. Operations Research 26:
305-321.

Topkis, D. M. 1998. Supermodularity and Complementarity. Princeton University Press.

Wachter, K. 1978. The Strong Limits of Random Matrix Spectra for Sample Matrices of
Independent Elements. The Annals of Probability 6: 1-18.

Wermuth, N. and G. Marchetti. 2014. Star Graphs Induce Tetrad Correlations: For Gaussian as
Well as for Binary Variables. Electronic Journal of Statistics 8: 253-273.

Wu, W. and M. Pourahmadi. 2009. Banding Sample Autocovariance Matrices of Stationary
Processes. Statistica Sinica 19: 1755-1768.

120z Ae gz uo suoqqio Magoy Aq L Z#z065/810eequ/oaulll/e60 | 01 /10p/a]oie-a0uBAPE/D8)[/WO0 dNO"dlWapede//:sdiy WOl papeojumod



22 Agrawal et al. | Covariance Matrix Estimation

Appendix A. Proofs

The proof of Theorem 2.3 requires the following simple lemma.
Lemma A.1.  Suppose g(x) is differentiable, non-negative, and [ g(x)dx = 1. Then, for any
8, M > 0, there exists an x* > M such that g(-) is strictly decreasing on the interval (x*,x* + 3).

Proof. Let I = {x : g/(x) > 0}. Then, the Lebesgue measure of I is finite since g(-) is non-
negative and integrates to one. Suppose toward a contradiction that there was no such x*.
Then, for any x > M, g(-) is not monotonically decreasing on (x,x + J). Hence, by continu-
ity of g(-), there exists an interval I, of length A, contained in (x,x + J) such that g(-) is
monotonically increasing on I,. Let L, I,; be some disjoint covering of {x : x > M}, where
I := (xj,x; + J]. Then, by our previous argument, I, contains an interval of length A,
where g(-) is monotonically increasing. By assumption, inf; A, > 0 and liminf; . A, > 0.
Hence, >; Ay, = oo which contradicts that I has finite Lebesgue measure. [J

Proof of Theorem 2.3. Note that by (Karlin and Rinott, 1980a, Equation 1.13), if X is MTP,,
then sois (f1(X1), ..., fm(Xm)). Hence Z; > 0 for all i # j. To complete the proof, we need to
show that (E’l)i/ < 0 for all 7 # j. Without loss of generality, we assume that u= 0. We con-
sider the two points x = sie; — s¢; and y = —x, where ¢}, € RM denotes the k-th unit vector
and s; € R. For ease of notation, let 2;-1 =a, Z/-’J-l = b, and Z,-ff-l = 2;,-1 = ¢. Notice that

p(x) =p(y) = g(s?a+s3b — 2s152¢) and p(xVy) = (x Ay) = g(s3a + s3b + 2s152¢).
Hence, since (f1(X1), .. .,fm(Xum)) is MTP,, it holds that

g(s2a+s3b —2s155¢)* < g(sta+ s3b + 2s1s0¢)7,

which simplifies to g(s3a + s3b — 2s1s2¢) < g(s3a + s3b + 2s152¢). Let s = i and d = 4|c|.
If ¢ =0, the claim trivially holds. Therefore, suppose |¢| > 0. Then, Lemma A.1 implies that
there exists an x* such that g(-) is monotonically decreasing on (x*,x* + 4|c|). Since the
range of the function h(s) = as®> + 4 is (M, 00) for some M >0, then by Lemma A.1 there
must exist s; € R such that x* = s3a + %. Since g(x* — 2¢) < g(x* + 2¢), then

x"=2c>x"+2c

by monotonicity, which implies ¢ < 0 as desired. [J

Appendix B. Information Ratio Results

In Section 4.4, we compared the methods in terms of the Sharpe ratio. Here, we provide
similar results except for the information ratio, which is the ratio between the expected
portfolio returns and portfolio standard deviation.
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Table B.1. For each combination of N (portfolio size), T (estimation sample size), and covariance
matrix estimator, we report the out-of-sample information ratio (ratio of the average return to
the standard deviation of return) of the portfolio

N T EQ-TW LS NLS AFM- AFM- POET POET
LS NLS (k=13) (k=35)
100 50 0.694 0.625 0.648 0.617 0.621 0.760 0.791
100 0.694 0.600 0.682 0.628 0.620 0.797 0.690
200 0.694 0.670 0.720 0.691 0.675 0.802 0.706
400 0.694 0.736 0.772 0.803 0.776 0.824 0.753
1260 0.694 0.831 0.834 0.832 0.831 0.841 0.831
200 100 0.757 0.719 0.735 0.715 0.728 0.766 0.762
200 0.757 0.812 0.793 0.796 0.790 0.747 0.764
400 0.757 0.864 0.885 0.888 0.892 0.825 0.820
800 0.757 0.967 0.961 0.962 0.967 0.747 0.870
1260 0.757 0.906 0.907 0.913 0.906 0.773 0.770
500 250 0.764 0.985 0.995 0.997 0.993 0.869 1.030
500 0.764 0.940 0.955 0.995 1.003 0.849 1.027
1000 0.764 0.918 0.976 0.993 0.980 0.772 0.861
1260 0.764 0.920 0.967 0.984 0.982 0.806 0.909
N T GLASSO CLIME CLIME-KT MTP, MTP,-KT
100 50 0.858 nan 0.788 0.849 0.905*
100 0.885 nan 0.837 0.896 0.975*
200 0.855 0.830 0.882 0.899 0.950*
400 0.877 0.852 0.823 0.892 0.924*
1260 0.878 0.778 0.767 0.890* 0.855
200 100 0.887 nan 0.844 0.829 0.918*
200 0.859 nan 0.896 0.885 0.919*
400 0.865 0.916* 0.821 0.886 0.893
800 0.862 0.860 0.805 0.970* 0.945
1260 0.887 0.845 0.885 0.955* 0.931
500 250 0.908 nan 0.596 1.112 1.133*
500 0.887 nan 0.511 1.045* 1.005
1000 0.897 0.828 1.101* 1.061 0.993
1260 0.896 0.858 0.806 1.034* 0.958

Note: The most competitive value in each row is marked with an asterisk.
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