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ABSTRACT: Organic phosphates and phosphonates represent important yet
understudied constituents in our molecular understanding of the ocean. Herein, we
determined the critical concentration of sodium relating to the onset of surface
activity of alkyl phosphates and phosphonates at the air−water interface to further
understand the interfacial environment of sea spray aerosols emitted from the ocean’s
surface. A low pH range (1−5.6) was chosen to represent a model system for aged,
acidic marine aerosols. The protonation state and sodium binding properties of C16−
C18 alkyl phosphoric and phosphonic acids were explored using surface pressure−area
isotherms and infrared reflection−absorption spectroscopy. We found that increasing
pH and headgroup charge led to significant desorption of these semi-soluble
phosphorus-containing acids into bulk solution, while the neutral, fully protonated, and sodium complexed species were favored at
the interface. For the phosphonate species, the competition between sodium complexation and protonation reveals a critical sodium
chloride concentration of ≥2 M at pH 2 necessary to outcompete the acid−base equilibrium. The onset of this equilibrium shift
begins at concentrations as low as 0.1 M NaCl at pH 2, which demonstrates that ion pairing-mediated surface activity is highly
relevant in sea spray aerosol systems. We also show that competitive interfacial equilibria between speciation and binding cannot be
modeled by known bulk processes for the fully soluble methylphosphonic acid or through theoretical predictions from the Gouy−
Chapman model.
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■ INTRODUCTION

The interfacial microenvironment at the monolayer−water
surface has been shown to drive strong binding enhance-
ments,1−5 shift acid−base speciation,6−9 and alter the
hydration environment of ions10,11 as compared to the bulk
solution equivalent. Monolayer surfaces are often utilized as a
model proxy to study the thin organic coating on sea spray
aerosols (SSAs), which are emitted from the ocean’s
surface.12−19 SSA models thus need inputs from a molecular
understanding of the unique surface properties at SSA
interfaces and soluble bulk processes. We have chosen to
investigate the surface properties of organic phosphorus
species at low pH and high ionic strength (with NaCl) to
mimic the aging process of SSAs.20 Alkyl phosphates (C−O−
P) and phosphonates (C−P) were selected to represent
organic phosphorus species relevant to ocean chemistry,21,22

wherein both moieties play key roles in marine primary
production as nutrients.23,24 Interestingly, phosphonates were
found to have higher proportions in surface water than
phosphates due to the lower reactivity of the organic
phosphonate C−P bond.21,25 Our study seeks to explore the
molecular interactions of these species in model SSAs by
studying them at the surface of aqueous solutions.

We first qualitatively determined the protonation state of
these semi-soluble phosphonic and phosphoric acids (Figure
1) by following changes in surface pressure through surface
concentration measurements. These semi-soluble species form
insoluble monolayers as neutral species but become readily
soluble in the solution upon deprotonation. Interfacial acid−
base equilibria (apparent surface pKas) are still widely debated
in the literature and often vary from the pKas of the bulk
solution equivalents.6−9,26−33 Previous studies of amphiphilic
phosphoric and phosphonic acids revealed significant changes
in intermolecular interactions and hydration as a result of
varying pH.33−36 Thus, we utilized surface pressure−area
isotherms to study changes in the monolayer phases to gain
insight into the noncovalent interactions between molecules.
We predicted that these intermolecular interactions will be
greatly affected by speciation changes for the tightly packed
single-chain species. Infrared reflection−absorption spectros-
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copy (IRRAS) was also used to probe the vibrational modes of
the molecules as pH and surface concentration change. IRRAS
is a surface-sensitive spectroscopic technique that probes the
molecular monolayer by measuring reflectance-absorbance
(RA) of the monolayer surface, RA = −log(Rm/Ro), where
Rm is the reflectivity of the monolayer and Ro is the reflectivity
of the solution absent of the monolayer.37 Ultimately, we
observed the onset of the speciation changes from neutral to
singly deprotonated for these semi-soluble phosphonic and
phosphoric acids in the low pH range studied between pH 1
and 5.6. Our results demonstrate that the change in surface
speciation has a profound impact on the surface concentration
and the resulting surface coating of SSAs.
Additionally, we seek to unravel the complexity of interfacial

equilibria. The single-chain phosphonic acid species was
chosen for this model study because phosphonic acids are
highly relevant but underexplored in the atmospheric
community, although results can be applied to the phosphate
moiety as well. Figure 2 shows the phosphonic acid equilibria
expressions for the acid−base equilibrium and the sodium
complexation at low pH. By controlling the pH and sodium
chloride concentration, we drove the acid−base equilibrium of
the phosphonic acid and phosphonate and the sodium
complexation equilibrium of phosphonate binding to sodium
cations. At a constant pH of 2 (chosen to mimic an acidic
aerosol38), the competitive effects of these processes were
studied by shifting the competitive equilibria through a
constant addition of NaCl. In doing so, we have resolved the
concentration of sodium (≥2 M at pH 2) necessary to
outcompete the acid−base protonation equilibrium. Results
from this study illustrate that sodium can drive speciation
changes at the aqueous surface. Effectively, low pH and sodium
binding are competitive processes in which modulating the pH
and sodium concentration can shift the speciation of the
phosphonic acid species. We chose to interrogate the changing
state of the phosphonic acid for this model system plus our
results are applicable to other marine relevant, acidic species
including phospholipids and fatty acids, among others.

The unique properties at aqueous interfaces were previously
shown to drive different speciation and binding equilibria
compared to the bulk solution equivalent.3,4,6 The low
dielectric constant at the aqueous interface, which decreases

Figure 1. Structures of the compounds used in this study shown in their fully protonated forms. (a) 1-stearoyl lysophosphatidic acid (C18 LPA),
(b) 1-palmitoyl lysophosphatidic acid (C16 LPA), (c) hexadecylphosphonic acid (C16 phosphonic), and (d) 1,2-didecanoyl-3-phosphatidic acid
(didecanoyl PA). Hydroxyl groups are omitted in the schematic representations of C16 and C18 LPA for simplicity.

Figure 2. Competitive equilibria at the air−water interface. (a)
Schematic representation of the acid−base equilibrium resulting in
the desorption of the deprotonated phosphonate species at pH 5.6,
(b) sodium complexation to the phosphonate headgroup and driven
to the interface at pH 5.6, (c) acid−base equilibrium of phosphonate
and phosphonic acid at pH 2, and (d) competitive equilibria between
acid−base and sodium complexation at pH 2 with high sodium
chloride concentrations.
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to ∼2 in the topmost layers,39 has a profound impact on the
acid−base speciation, which should inherently shift with the
changing dielectric environment.40 Furthermore, the preorga-
nization of surface-active species confines the molecules to a
discrete microenvironment, which influences the protonation
state and sodium complexation through changes in non-
covalent interactions and packing arrangements.41 Results from
our study reveal that the competition between protonation and
sodium binding can be controlled and predicted at a critical
sodium chloride concentration ≥2 M at pH 2. Our model
system of semi-soluble phosphate and phosphonate species
shows that the interfacial microenvironment is key for a
molecular understanding of the stability, speciation, and
binding in SSA interfaces and opens up exciting new avenues
for future research on SSAs.

■ RESULTS AND DISCUSSION

The goal of this work is to determine both the critical role of
pH and sodium binding for a series of semi-soluble phosphate
and phosphonate species at the aqueous surface. Infrared
reflection−absorption spectroscopy (IRRAS) and surface
pressure (Π)−mean molecular area (A) compression iso-
therms were performed with several short-chain species: (a)
C18 lysophosphatidic acid (C18 LPA), (b) C16 lysophosphatidic
acid (C16 LPA), (c) C16 phosphonic acid, and (d) didecanoyl
phosphatidic acid (didecanoyl PA) to study surface activity
(Figure 3). This set of molecules differs in several features
including alkyl and acyl chain length, headgroup, and number
of chains. Overall, we aim to tune these molecular features to
determine their impacts on surface activity, protonation state,
and sodium complexation.
We first explore properties of the phosphate and

phosphonate semi-soluble species without sodium chloride to
establish that they are in fact fully protonated at pH 2. Π−A
isotherms for C16 and C18 LPA, C16 phosphonic acid, and

didecanoyl PA are shown in the pH range 1−5.6 (Figure 3).
The acidic pH range (1−5.6) was initially chosen to avoid the
addition of bases such as sodium hydroxide and circumvent
potential issues related to sodium binding to the negative
monolayer and countercation charge screening.42

Π−A isotherms for these semi-soluble species are shifted to
lower apparent mean molecular areas (MMAs) as pH increases
in the aqueous subphase. We define the apparent MMA as a
lowering of the experimentally observed MMA due to the
depletion of molecules in the monolayer. The shift in the
apparent MMA is attributed to the desorption of the
deprotonated, semi-soluble charged species into bulk solution
as the pH increases (Figure 3). These results indicate that the
fully protonated, neutral species are more favorable at the
aqueous interface, in agreement with previous studies.43,44 The
apparent MMAs at a constant Π = 15 mN/m are plotted for
each trial to compare results across different pH values (Figure
3, insets). The plot for C16 LPA shows a sharp drop in MMA
between pH 3 and pH 4, indicating that the charged species
becomes more dominant and the semi-soluble species begins
to desorb into bulk solution in this pH range. Desorption of
C18 LPA occurs between pH 4 and pH 5.6, which is higher
than the pH range observed for the C16 LPA desorption.
Although the chain lengths differ by only two methylene units,
there is a remarkable change in the isotherms at the same pH
for these molecules. There are greater dispersion forces upon
lengthening the chain length, which acts to increase the surface
propensity of the C18 LPA. As the packing density and
molecular environment changes, so should the acid−base
dissociation properties. Another plausible explanation in the
literature contributes this result to strong intermolecular
interactions between headgroups because it is more difficult
to deprotonate phosphate in a hydrogen-bonding network with
neighboring phosphates.6,32,45

Figure 3. Surface pressure (Π)−area (A) compression isotherms and apparent mean molecular areas (MMAs) taken at Π = 15 mN/m for (a) C16
LPA, (b) C18 LPA, (c) C16 phosphonic acid, and (d) didecanoyl PA on pH 1, 2, 3, 4, and water. Shaded bands represent one standard deviation.
Desorption of the monolayer is revealed as a shift to lower apparent MMAs as pH is increased.
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The C16 phosphonic acid and the didecanoyl PA showed a
similar shift in apparent MMA with increasing pH (Figure
3c,d). In addition to the C16 phosphonic acid and didecanoyl
PA, we also studied the C18 phosphonic acid and dioctanoyl
PA, but these did not form a semi-soluble species (Supporting
Information (SI), Figure S1a,b). The C18 phosphonic acid did
not desorb but instead formed an insoluble monolayer on both
water (pH 5.6) and low pH, whereas the dioctanoyl PA
remained semi-soluble at pH 1.46−49 The Π−A isotherms
agree with results from IRRAS, which are shown in the
Supporting Information (SI, Figure S2). IRRAS spectra of
these molecules at pH 1 and pH 5.6 show a net loss of the
semi-soluble species with increasing pH. The speciation of
these semi-soluble species is controlled by acid−base equilibria
in the pH range 1−5.6 without the addition of sodium
chloride. Consistently, Brewster angle microscopy (BAM) is an
imaging technique used to visualize morphological changes in a
surface from its reflection of light without contribution from
the solution. BAM images of these semi-soluble species reveal
changes in packing structure in the low pH range (SI, Figures
S3−S5).50 Whereas the isotherms at pH 5.6 showed some
extent of desorption for all of the semi-soluble species, the
addition of 0.1 M sodium chloride restores the surface activity
of the molecular monolayer (Figure 4), consistent with prior
work of palmitic acid and sodium chloride.42 Sodium binds to
the phosphonate through electrostatically driven interactions,
which was previously shown to be an influential driving force
in the low dielectric constant regime of the air−water
interface.3 With the knowledge that sodium chloride addition
plays an influential role in surface activity, we sought to study
the competition between sodium complexation and proto-
nation.
We used the C16 phosphonic acid for our model system to

study the effects of sodium chloride addition at low pH. The
IRRAS spectra of the C16 phosphonic acid at pH 2 (Figure 5a)
and pH 5.6 (Figure 5b) shows significant changes with

increasing sodium chloride concentrations. All vibrational
assignments for the C16 phosphonic acid surfactant were
approximated using density functional theory at the B3LYP/6-
31G* level of theory (SI, Figure S6, Tables S1 and S2).51−55

We assign the peak at ∼942 cm−1 to the symmetric
phosphonate νs (O = P−O−) stretch, which appears with
increasing sodium concentrations. This peak is diagnostic to
determine the protonation state because it is not present in the
phosphonic acid spectrum at pH 2 until 2 M (Figure 5b).
Furthermore, the bending mode δ(POH)56 at ∼998 cm−1

undergoes a red shift upon sodium addition (Figure 5c). As the
negatively charged C16 phosphonate electrostatically interacts
with sodium present in the solution, the environment of the
phosphonate headgroup changes and we observe this as a shift
in the δ(POH) mode. This is indicative of metal binding or
electron transfer from the bound sodium to the phosphonate
headgroup as previously shown.57,58 The shift is sometimes
also correlated with a change in intensity and is consistent with
a change in headgroup orientation and transition moment
strength. Even at a pH of 2, sodium begins to drive phosphonic
acid toward the phosphonate−sodium complex.
We normalized the peak positions of the δ(POH) mode

with sodium addition to our lowest and highest values (where
“0” corresponds to the peak position at pH 2 without NaCl
and “1” corresponds to the peak at pH 5.6 with 1 M NaCl)
(Figure 6a). Our results demonstrate that the precipice of the
phosphonate−sodium binding begins at concentrations >0.1
M NaCl and saturates at concentrations ≥2 M NaCl at pH 2.
We demonstrate that the speciation of the C16 phosphonic

species is highly influenced by the presence of sodium. We
propose that the protonation state of the C16 phosphonic
species can be controlled and shifted even at low pH based on
our experimental evidence. To compare our experimental
results with established theory, we employed the Gouy−
Chapman model modified with the Grahame equation, as
detailed in Tyrode and Corkery, 2018.59 While there are

Figure 4. Surface pressure (Π)−area (A) compression isotherms for (a) C16 LPA, (b) C18 LPA, (c) C16 phosphonic acid, and (d) didecanoyl PA
on 0.1 M NaCl at pH 5.6 and pH 5.6 without NaCl. The shaded region represents one standard deviation above and below the mean.
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several models to consider, and despite its simple assumptions,
the Gouy−Chapman model describes the electrostatic double
layer quite well for aqueous solutions containing monovalent
salts.60 More detail about the Gouy−Chapman calculation and
surface model is discussed in the Supporting Information,
Section 3. This model is used to calculate the theoretical
degree of deprotonation (α) with increasing sodium chloride
concentrations, [NaCl]∞ (eq 1).59,61
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Where AM is the mean molecular area (20 Å2 per phosphonate
molecule), e is the elementary charge, Ka is the acid

dissociation constant (pKa = 2.13), ε is the dielectric constant
of water, ε0 is the permittivity of free space, and k is the
Boltzmann constant.
The degree of deprotonation was solved for a bulk [H+]

concentration corresponding to pH = 2 and 6. Figure 6a shows
the results of this prediction alongside the normalized δ(POH)
peak positions. Results of phosphonic acid at pH 5.6 are
consistent with Gouy−Chapman if we consider the C16
phosphonic acid at pH 5.6 with 1 M NaCl to be fully
deprotonated and bound to sodium. The model fails to
recognize the influence of high sodium addition at low pH and
dramatically underestimates the degree of deprotonation at pH
2. Our results demonstrate clearly that Gouy−Chapman breaks
down at high concentrations, consistent with other re-
ports.62−65

We also compared our experimental result to the bulk
solution equivalent to confirm that the interfacial environment
cannot be modeled by known bulk processes. The water-
soluble species methylphosphonic acid was chosen for the bulk
model. Methylphosphonic acid has a weak binding constant to
sodium (Kcomplex = 100.54)66 and a pKa1 of 2.13.

67 By inputting
these values in hyperquad simulation and speciation software
(HySS),68 we can predict the critical sodium concentration
necessary to outcompete the protonation equilibrium in bulk
solution. Figure 6b shows the predicted speciation with HySS
in which it takes concentrations exceeding 4 M sodium
chloride to begin to outcompete the acid−base equilibria at a
pH of 1. Clearly, bulk values cannot be used to explain our

Figure 5. (a) C16 phosphonate species binding to increasing
concentrations of sodium at pH 5.6, (b) at a constant pH of 2,
sodium addition begins to shift the speciation of phosphonic acid to
the phosphonate species due to electrostatically driven binding, (c)
average peak position is plotted to show the stark changes resulting
from sodium binding shifting the speciation at a constant pH of 2.

Figure 6. (a) Normalized peak position of the δ(POH) mode at pH 2
with increasing sodium addition on the left axis and the predicted
speciation of the C16 phosphonic acid based on the Gouy−Chapman
(GC) model (pKa = 2.13, pH 2 and pH 6) on the right axis. At pH 5.6
(upper curve), the C16 phosphonate species follows the Gouy−
Chapman (GC) model; however, at pH 2, there is a large
disagreement between the experiment and the model. This
demonstrates the incompatibility of the GC model for predicting
sodium binding interactions of the C16 phosphonate species at low
pH. (b) Bulk equilibria of methylphosphonic acid predicted using
HySS software.
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observations at the air−water interface, confirming that the
interfacial microenvironment can drive complex speciation.
Under the typical basic pH conditions of the ocean (pH ∼

8.1−8.2) and ignoring the contributions of salts, the semi-
soluble species will be deprotonated and desorb into bulk
solution, as depicted in Figure 7a. However, in an acidic aged

aerosol environment, where conditions possibly transcend a
pH of 2, the species will be fully protonated and become
surface active (Figure 7a). However, there is also a competition
between protonation and sodium binding that must be
considered (Figure 7b). At a critical sodium chloride
concentration of 2 M in an acidic pH 2 environment, the
interfacial acid−base equilibrium will shift, which results in
enhanced sodium binding to the phosphonate species.

■ SURFACE ATMOSPHERIC IMPLICATIONS
Our study demonstrates the importance of competitive binding
and its relationship to the partitioning of semi-soluble species
to the interfacial regime for aged SSAs. As SSAs acidify in the
atmosphere, aerosol chemistry will change as the semi-soluble
species restructure the air−water interface.69 Moreover, in
aged, acidic environments, there will be a competition between
ion complexation and protonation state. This is particularly
relevant for molecules with an acidic headgroup. Additionally,
phosphonates represent an important yet understudied
component of marine phosphorus. The phosphonate species
2-aminoethyl-phosphonic acid comprises 10% of the dissolved
organic phosphorus in the ocean,22 and in general,
phosphonates are found in lipids and macromolecular material
of several marine phyla.70 2-aminoethyl-phosphonic acid is the
primary phosphorus source and product of several oceanic
bacteria,24 prokaryotic phytoplankton, and other aquatic
organisms.22,70 Due in part to their abundance and C−P
stability, which renders them more resistant to hydrolysis, the
long-chain phosphonates should demonstrate strong surface
activity.71−74

Our study helps further the molecular understanding of
semi-soluble phosphonates and phosphates and their surface
activity. As wave-breaking processes in the ocean form foams
and entrained bubble plumes, these biological surfactants,
dependent on chain length and under the right conditions as
shown here, will partition to the air−water interface, resulting
in the formation and release of SSA with an organic
coating.75−77 It is reasonable to expect semi-soluble species
to undergo increased sodium interaction via aerosol aging or
evaporation during an airborne lifetime.20,78 Additionally, as

the protonated phosphonic acids and sodium-bound phos-
phonates reside at aerosol surfaces, they will participate
differently in heterogeneous chemistry with atmospheric
gases, further changing the SSA composition.79,80 There will
be changes in packing density, mixing properties, and
intermolecular interactions in the different pH environments
as speciation changes, which will also greatly affect gas uptake.
Finally, the competition studies between protonation speci-
ation and sodium complexation demonstrate that even at low
pH, the semi-soluble species binds to sodium and effectively
outcompetes the protonation equilibria. This opens questions
about the irrelevance of pKa and the relevance of ion pairing, as
metal ions are shown here to outcompete protonation even at
low pH. Moreover, aerosols that travel from marine regions to
more arid continental regions will be impacted by evaporative
effects.81−86 Once the sodium concentration reaches 2 M (at ∼
a 75% loss of water87), the partitioning of semi-soluble species
from Na+ complexation will then be stabilized in the interfacial
region and will not desorb into the bulk aqueous phase. This
scenario shows a turnover point of ≥2 M NaCl concentration
and provides a lower limit given that more strongly interacting
metal ions (e.g., Mg2+, Ca2+, and transition metal ions) will also
be available for complexation. This situation gives rise to
increasing surface stability of semi-soluble species at the
aqueous interface.

■ CONCLUSIONS

The competition between binding and acid−base speciation is
an important concept for sea spray aerosol modeling that
warrants further exploration. Our results illustrate that surface
activity is highly influenced by pH (1−5.6) and low
concentrations of sodium chloride for a series of semi-soluble
phosphoric and phosphonic acids. We studied the phosphonic
acid species further in a competition study between speciation
and sodium complexation at low pH to model an acidic, aged
sea spray aerosol. Our results reveal that there is a critical
concentration of sodium chloride (≥2 M) at pH 2 to begin
shifting the interfacial equilibria toward the deprotonated
phosphonate species. We demonstrate that in an acidified
aerosol environment, the concentration of sodium cations can
be more influential than pH to determine the protonation state
of organic acidic species.
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