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Giant cross sections for L changing in Rydberg-Rydberg collisions
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State changing in thermal-energy collisions between strontium atoms in very-high-n, n ≈ 300, n 1F3 Rydberg
states is studied. In collisions between Rydberg atoms, the dipole-dipole interaction generates an effective
electric field at each atom, which triggers Stark precession and the evolution of their angular momenta, L. Such
L-changing collisions are examined using both quantum and classical theory. The theoretical predictions are
experimentally verified by monitoring the damping of quantum beats induced by the sudden application of a DC
“pump” field. The present work shows that, due to the long-range nature of the interactions, the cross sections,
σ , for L changing are considerably larger than the geometric collision cross section. For thermal collisions the
cross section σ for n 1F3 Rydberg states with n � 300 is ≈ 8 × 10−5 cm2. Scaling rules derived in this paper
predict that for cold collisions σ may increase by a further factor of 4.
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I. INTRODUCTION

Interactions in many-body systems give rise to a rich
variety of phenomena of fundamental importance in different
fields of physics, among them in condensed matter physics
including the creation of three-dimensional solitons, roton-
maxon excitations, and supersolidity [1–3]. Many of these
phenomena are amenable to study in ultracold gases but the
effects of interactions depend strongly on their strengths. Sev-
eral approaches for obtaining stronger interactions have been
considered, including the use of systems such as ultracold
polar molecules [4,5] or atoms with large magnetic moments
[6]. Even stronger long-range interactions can be obtained by
taking advantage of the large dipole moments of high-n Ryd-
berg atoms, either through Rydberg dressing [2,7,8], in which
a small admixture of Rydberg character is introduced into
the atomic ground-state wave functions by illuminating them
with radiation tuned near the transition to a Rydberg state, or
by simply exciting a collection of Rydberg atoms themselves
[9]. The strength of Rydberg-Rydberg interactions can be
readily controlled by adjusting the atomic separations, by
varying the principal quantum number, n, and by manipulating
the atomic states [10–15]. Studies that exploit long-range
Rydberg-Rydberg interactions, however, are complicated by
collisions.

Collisions between Rydberg atoms can lead to a vari-
ety of outcomes [9,16–26]. Thermal energy collisions with
impact parameters, b, smaller than or comparable to that
associated with the geometric cross section, σg, i.e., with
bg � (σg/π )1/2 � 4n2, can lead to ionization if b � 3n2 or n-
changing processes if b � 5n2 [26,27] (atomic units are used
throughout unless otherwise noted). For larger impact parame-
ters, the energy exchange that can occur between the collision
partners is limited but is still sufficient to allow changes in
the angular momentum, L, within a single n manifold. Such
changes in L result from Stark precession [28,29] induced
by the effective electric field, Feff ∼ �di/R3 associated with

the dipole interaction Vint ∼ �d1 · �d2/R3 between the Rydberg
atoms, where �di is the dipole moment of the ith atom and
R is the internuclear separation. Understanding L-changing
processes is of interest not only for thermal-energy collisions
but also in cold atom clouds where long interaction times can
allow for a significant redistribution of angular momentum
even if the interactions are weak.

In this paper, we present a joint theoretical-experimental
study of L changing in Rydberg-Rydberg collisions. We per-
form quantum calculations for low-n (n � 30) and classical
trajectory Monte Carlo (CTMC) simulations for n up to
� 300, thereby probing classical-quantum correspondence
and scaling invariance. True quantum effects manifest them-
selves in terms of violation of such dilatation symmetry. These
theoretical predictions are tested experimentally by creating
a tightly collimated string of strontium Rydberg atoms in a
thermal atomic beam (T � 830 K) with approximately equal
initial separations of ≈ 150–200 μm but a distribution of ve-
locities which leads to Rydberg-Rydberg collisions. The final
collision products are analyzed by a pump-probe technique.
The “pump” pulse is provided by sudden application of a
field step with a short rise time tR � Tn, where Tn is the
classical orbital period, ≈ 4 ns at n ≈ 300. This creates a
Stark wave packet whose time evolution is sensitive to the n
and L distributions [30] that result from the Rydberg-Rydberg
collisions. The evolution of this wave packet is monitored
by application of a 600-ps-long “probe” pulse that ionizes a
(time-dependent) fraction of the Rydberg atoms. In Sec. II,
the experimental setup used in the current study is briefly
introduced. In Sec. III, the time evolution of the electronic
state during a collision of two Rydberg atoms is analyzed. The
methods employed to calculate the L- and n-changing cross
sections using both quantum and the classical theory [26] are
described in Sec. IV and their predictions are compared. The
comparison of these microscopic predictions with the exper-
iment requires the mesoscopic simulation [31] of excitation
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and collisions of an ensemble of Rydberg atoms in a thermal
beam within the excitation volume of the lasers involved.
It furthermore requires the simulation of the probe protocol
[30], again on the atomic scale, with which the collisional
state changes of Rydberg atoms are monitored. Both of these
simulation methods are briefly discussed in Sec. V. In Sec. VI,
we present the results where we find good agreement between
experimental observations and theoretical predictions. Our
results point to remarkably large cross sections for L changing
in collisions between strontium 5s297f n 1F3 Rydberg atoms
of the order of ≈ 8 × 10−5 cm2, much larger than the “hard-
sphere” collision cross section, 4πR2, where R ∼ 2n2 is the
maximum extent of the electron charge cloud. Furthermore,
application of the scaling relations established in this paper
suggests that the cross section should increase even further
for cold collisions down to temperatures of the order of
T � 70 K.

II. EXPERIMENTAL APPROACH

In the present work, ground-state strontium atoms con-
tained in a collimated beam produced using a heated
(≈ 830 K) oven are excited to Rydberg states through laser-
induced multiphoton excitation using crossed focused laser
beams that define a small excitation volume whose linear
dimensions, ≈ 50–70 μm, are less than the blockade radius,
Rb, ≈ 100 μm at n ≈ 300 [32]. Excitation of a Rydberg atom
in this volume suppresses further excitation until the atom has
typically traveled one blockade radius in the beam direction
which, given the mean velocity of atoms in the beam, v̄ ≈
4 × 102 m/s, typically requires ≈ 250 ns. (However, there is
a small but finite probability to excite a Rydberg atom within
the blockade radius [32]). Thus, when using high laser powers
such that excitation of an additional Rydberg atom occurs
quickly once a previously excited Rydberg atom has moved
more than a blockade radius, a string of Rydberg atoms can
be produced with approximately equal initial separations but
a distribution of initial velocities. Laser pulse widths of a few
microseconds are employed, sufficient to allow production of
multiple Rydberg atoms.

The present apparatus is shown in Fig. 1 and is described
in detail elsewhere [26]. Briefly, 88Sr n 1F3 Rydberg atoms
are created in near-zero (� 50 μV cm−1) electric field at the
center of an interaction region defined by three pairs of cop-
per electrodes. The three-photon excitation scheme employed
5s2 1S0 → 5s5p 1P1 → 5s5d 1D2 → 5sn f 1F3 is illustrated
in the inset in Fig. 1. The required radiation is provided by
diode laser systems whose wavelengths are stabilized using
Fabry-Perot transfer cavities that are locked to a 689-nm
“master” laser that is itself locked to the 5s2 1S0 → 5s5p 3P1

transition in 88Sr. (Three-photon excitation has the advantage
that sizable laser powers (>1 W) are available to drive the
final transition to the Rydberg state). The crossed 767- and
893-nm beams are focused to 1/e2 diameters of ≈ 50 and
≈ 70 μm, respectively, resulting in a strongly localized ex-
citation volume of ≈ 10−7 cm3 that typically contains many
tens of ground-state atoms.

Measurements are conducted in a pulsed mode. The out-
put of the 461-nm laser, which is not focused, is chopped
into a series of pulses with a pulse repetition frequency of
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FIG. 1. Schematic diagram of the apparatus. The inset shows the
three-photon excitation scheme employed.

≈ 5–10 kHz using an acousto-optic modulator. (The other
laser beams remain on at all times). Immediately following
excitation the effects of n,L changing during the laser pulse
are monitored by sudden application of a voltage step (rise
time ≈ 300 ps) to the upper pulse electrode which generates a
“pump” electric field, Fpump, and creates a Stark wave packet.
The time evolution of the wave packet is examined using a
600-ps-long unidirectional probe pulse (that is also applied
to the upper pulse electrode) and varying the time delay,
tprobe, between application of the pump and probe fields. The
range of delay times over which measurements are made
is short, � 300 ns, and any effects of collisions during this
interval are small. The number of surviving Rydberg atoms is
determined following the end of the probe pulse by selective
field ionization (SFI), which is accomplished by generating
a slowly increasing (rise time ≈ 3 μs) electric field in the
experimental volume by applying a linearly increasing voltage
ramp to the lower electrode. The number of electrons so
produced is determined by directing them through two fine-
mesh grids to a dual-microchannel-plate (MCP) detector. The
electron detection efficiency of the microchannel plates could
not be determined directly but is estimated to be 0.5 which,
when corrected for transmission through the grids, results
in an overall detection efficiency, η, of ≈ 0.3 [26]. Survival
probabilities were obtained by comparing the SFI signals
observed with and without the pump and probe fields applied.

III. DESCRIPTION OF RYDBERG-RYDBERG COLLISIONS

In a hot strontium atomic beam (kBT ≈ 2.5 × 10−3 a.u.
for T ≈ 830 K) and the reduced mass μ ≈ 8.0 × 104 a.u., the
thermal de Broglie wave length,

λd = 2π√
2μkBT

, (1)

is negligibly small (λd � 0.31 a.u.) compared to the size of the
interacting Rydberg atoms which have average radii 〈r〉n ∼
(3/2)n2, i.e., λd/〈r〉n � 1. Therefore, the translational motion
of the ionic cores during a collision is described throughout
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this paper classically. Moreover, the collision energy Ecoll

is, typically, much larger than the potential energy of the
interacting Rydberg atoms. In this limit, the relative motion
of the ionic cores can be described not only classically but
the curved trajectories can be approximated by straight-line
trajectories

�R(t ) = �R1(t ) − �R2(t ) = �b+ �vcollt (2)

with �b being the impact parameter vector and Ecoll =
(1/2)μv2

coll. The applicability of this straight-line impact pa-
rameter (IP) approximation [33] for n ≈ 300 and a Rydberg
atom density ≈ 107 cm3) is restricted to collision energies
above 10−8 a.u. which corresponds to thermal gases with T
above � 3 mK.

Within the IP approximation, the motion of the ionic cores
is fixed and provides time-dependent fields controlling the
dynamics of the effective two-electron system of two colliding
atoms governed by the Hamiltonian

H = H0 +Vint (t ), (3)

where

H0 =
2∑

i=1

[
p2
i

2
+Vc(ri )

]
(4)

and

Vint (t ) = − 1

|�r1 + �R(t )| − 1

|�r2 − �R(t )|
+ 1

|�r1 − �r2 + �R(t )| + 1

R(t )
. (5)

Each atom is separately described by a single active electron
model and Vc(r) represents the model core-ion potential seen
by the Rydberg electron. For the electronic dynamics, we will
perform both quantum and classical simulations. In the quan-
tum simulations, the intraatomic interaction with the core will
be parameterized by the quantum defects. Correspondingly,
in the classical simulation we employ for the potential the
explicit form

Vc(r) = −1

r

[
1 + (Z − 1)e−a1r + a2e

−a3r

− αcp

2r4
(1 − e−(r/rc )6

)

]
, (6)

where Z = 38 is the atomic number. The parameters a1 = 3.3,
a2 = 6.0, a3 = 1.3, and αcp = 5.3 are optimized to reproduce
the measured quantum defects. In the present study, our focus
is on the dynamics of distant collisions with very large impact
parameters b. Therefore, the Rydberg-Rydberg interaction
potential Vint (r) reduces to purely Coulombic two-center in-
teractions [Eq. (5)].

Thermal collisions between Rydberg atoms with impact
parameters comparable to the size of the Rydberg charge
cloud (b � 3n2) can result in the destruction of Rydberg atoms
by nonadiabatic transitions to the continuum, i.e., ionization
[27]. However, previous studies [26] using a similar experi-
mental arrangement showed that, for experimental conditions
such as those employed here, the probability of collisional
ionization is small, at most a few percent. In the present

experiments, the great majority of Rydberg atoms experience
only distant collisions and undergo state-changing processes
without ionization.

For collisions with R � 〈r〉n, the leading-order term of the
Taylor expansion of the interaction potential [Eq. (5)] gives
the dipole-dipole interaction

Vint (t )
R�〈r〉n−−−−→ Vdd(t ) � �r1 · �r2

R(t )3
− 3[�r1 · �R(t )][�r2 · �R(t )]

R(t )5
. (7)

Accordingly, the collision process can be viewed as a pertur-
bation of Rydberg atom i by an effective field induced by atom
j which is of the order of Feff (t ) ∼ �r j/R(t )3. In consequence,
L-changing collisions can be interpreted as dynamical Stark
mixing by the time-dependent electric field produced by atom
j as it passes by atom i. As will be shown below, this
simplified model leads to an estimate for the L-changing cross
section.

Our quantum simulations of the electronic dynamics in
Rydberg-Rydberg collisions proceed by solving the time-
dependent Schrödinger equation (TDSE) described by the
Hamiltonian [Eq. (3)] with the interaction Vint � Vdd approx-
imated by the dipole-dipole interaction [Eq. (7)]. The matrix
elements of H0 are evaluated using quantum defects extrapo-
lated from the measured data [34] representing the electron-
core interaction Vc(r). By solving this Hamiltonian nonper-
turbatively, the van der Waals interaction, which appears to
second order in Vdd, is fully accounted for. Here, we focus
on large impact parameters for which collisions populate a
broad distribution of L states. In contrast, collisions populate
only a narrow band of n levels centered near the initial n level,
nini ≈ 300. Thus, the TDSE

i∂t |�(t )〉 = H |�(t )〉 (8)

can be numerically solved as time-dependent coupled
channels (TDCC) equations [35] using the basis states
of the two noninteracting Rydberg atoms labeled as
|n1,L1,M1; n2,L2,M2〉, with a limited number of n levels
(nini − 	n < n1,2 < nini + 	n) and all L and M states in-
cluded. In practice, for nini ≈ 300 and 	n = 1, more than
20 billion basis states (even after taking into account the
symmetry of Vdd) would be required. To reduce this number
to a workable size, calculations are only performed for nini �
35, which reduces the basis size to less than 4 million. The
eigenenergies of the unperturbed Hamiltonian H0 are deter-
mined by the quantum defects and the dipole matrix elements
for Vdd are evaluated in the large n-limit [36], assuming that
the quantum defects are n independent. (We note that due to
the interaction between the two valence electrons the quantum
defects for strontium show weak n dependences for lower n
states [34,37,38]. By neglecting this weak n dependence, the
extrapolation of the quantum results to n ≈ 300, as discussed
below, becomes straightforward). We initially take both atoms
to be in the Rydberg state (n,L,M ) = (nini, 3, 0), to be far
apart with a separation R‖ = 20n2

ini in the direction parallel
to �vcoll, and have impact parameter b. (�vcoll defines the quan-
tization axis). The Schrödinger equation is integrated by the
iterative Lanczos method [39,40] and the L and n distributions
after the collision evaluated. Cross sections can be obtained
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from the resulting probability distributions PnL(b) via

σnL = 2π

∫ ∞

0
dbbPnL(b), (9)

where we have used the rotational symmetry about the veloc-
ity �vcoll axis. For the comparison with the measured data pre-
sented later, we perform a rotational average over all M (i.e.,
an isotropic distribution in the orientation of �L). As a test of
classical-quantum correspondence for lower n � 20–40 and
for applications to very high n(� 100) for which full quantum
simulations are no longer feasible, we perform in parallel
classical trajectory Monte Carlo (CTMC) simulations. Here,
the classical approximation refers to the electronic degree
of freedom. Accordingly, the quantum wave function of the
initial state is represented by an ensemble of classical elec-
trons taken to be restricted microcanonical ensembles [41,42].
The time evolution of the ensemble is calculated by solving
the Liouville equation for the Hamiltonian [Eqs. (3)–(6)].
Upon conclusion of the collision, the classical phase space
distributions are binned according to their energy and angular
momenta from which probability distributions PnLM (b) can
be deduced. Within the CTMC approximation, unlike for the
full quantum simulation, it is straightforward to employ the
full interaction potential Vint [Eq. (5)] rather than its limiting
case Vdd [Eq. (7)] and also to include curved rather than
straight-line trajectories, thereby allowing detailed tests of
those approximations. For the range of parameters used in the
current study, these tests confirm the validity of the straight-
line IP approximation and the usage of Vdd.

The results of quantum calculations are extrapolated to
high n by taking advantage of the invariance of the pure
Coulomb problem. To this end, the results are discussed using
the scaled phase-space variables, denoted by subscripts 0,

b = n2
inib0, t = n3

init0, vcoll = vcoll,0/nini,

Feff = Feff,0/n
4
ini. (10)

Since the temperature T of the atomic beam is approximately
proportional to collision energy, i.e., T ∝ (1/2)μv2

coll, the
temperature scales as T = T0/n2

ini.

IV. CLASSICAL-QUANTUM CORRESPONDENCE
FOR DYNAMICAL L MIXING

The time evolution of the L distribution during a Rydberg-
Rydberg collision is shown in Fig. 2(a) and is calculated for
the scaled impact parameter b0 = 5 and collision velocity
vcoll,0 = 0.025, which represent typical values for the cur-
rent experimental conditions. (Note that the maximum scaled
impact parameter for a “hard-sphere” collision, for which
the two charge clouds have substantial overlap, is b0 � 3).
The trajectory is started at R‖,0 = vcoll,0|t0| with t0 = −800.

When the scaled interatomic distance R0(t0) =
√
b2

0 + (v0t0)2

decreases below R0 � 9, at t0 > −300, the angular momen-
tum L starts to evolve due to Stark precession. This evolution
becomes more rapid as the two atoms move toward their
distance of closest approach at t0 = 0 (indicated by the arrow).
Since �Feff varies in both magnitude and direction during the
collision, Stark precession leads to creation of states with a
broad distribution of L encompassing the entire range 0 to
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FIG. 2. (a) Time evolution of the L distribution during a collision
of two L = 3 Rydberg atoms (nini = 30) for b = 5n2

ini and vcoll =
0.025/nini. The calculation is performed by solving the Schrödinger
equation. The time of closest approach at t = 0 is indicated by the
arrow. (b) Final L distribution following collisions with different
impact parameters as indicated. The results of classical simulations
are also shown (dashed line). (c) Quantum-mechanically-calculated
L distributions following collisions involving atoms with the values
of nini indicated plotted as a function of scaled angular momentum.
(d) Quantum and (e) classical calculations of the probability that an
atom remain in the initial L = 3 state after collision as a function of
scaled impact parameter for several values of nini. The vertical dotted
lines in panel (d) indicate the threshold bqd,0 = [9nini/(4δF )]1/3 above
which Stark precession is suppressed (see text).

n − 1. However, Stark precession is dramatically suppressed
by increasing the impact parameter. Final L distributions
at t0 = 800 are shown in Fig. 2(b) for several impact pa-
rameters. As the scaled impact parameter becomes larger
than the threshold value, bqd,0(L) � 9, where the influence
of the quantum defect δL starts to dominate, the probability
for creation of high-L states decreases and the probability
that an atom will remain in its initial L = 3 state grows.
Indeed, when b0 = 10, L evolution is frozen and nearly no L
changing occurs. This threshold effect is due to the finite-size
quantum defect of the F state (δF = 0.087). For larger b0, the
nonadiabatic coupling to the degenerate manifold of high-L
states is too weak to overcome the energy gap to the nearby
quasihydrogenic manifold. Since this excitation gap is a true
quantum effect it is not present in the classical dynamics
and, as shown in Fig. 2(b), the CTMC simulations start to
deviate from the quantum calculations. For smaller values of
b0, good agreement between the classical and quantum result
is found, except for the local maximum at L = 3, the state
with sizable quantum defect [Fig. 2(b)]. For b0 < bqd,0(L),
the L distribution calculated from the Schrödinger equation
is approximately scaling invariant [Fig. 2(c)]. The probability
densities, PnL(b), expressed as a function of the scaled angular
momentum L0 = L/nini for different values of nini become
nearly indistinguishable. Only the peak near L0 = 3/nini is nini

dependent and decreases with increasing nini. Since the major
difference between the classical and quantum simulations is

022805-4



GIANT CROSS SECTIONS FOR L CHANGING IN … PHYSICAL REVIEW A 102, 022805 (2020)

100 200 300
nini

0

20

40
S

C
A

L
E

D
 IM

P
A

C
T

 P
A

R
A

M
E

T
E

R
bqd,0

bS,0 (v0=0.025)

bS,0 (T=830K)

bS,0 (T=70K)

qdb

1R

R2

Sb
51   mμ 94   mμ70   mμ

1 2|R  − R  | < b S
1 2|R  − R  | < b qd

Rex

(a)

(b)

excitation region
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√
T . (b) Schematic illustration for bqd and bS of strontium n = 300 1F3 Rydberg atoms with vcoll,0 = 0.025 in the

plane of (R1,R2) (i.e., the positions of two Rydberg atoms). For visualization, the excitation region of each atom is reduced to one dimension
and Rex is set to the larger one of the linear dimensions of the atomic excitation region (50 × 70 μm in diameter). The regions |R1 − R2| < bS
(dark brown) and |R1 − R2| < bqd (light brown) defined in terms of the relative coordinate are indicated.

the height of the peak at L = 3, this can be used as a measure
of the importance of residual quantum effects in L-changing
processes. This is illustrated in Figs. 2(d) and 2(e), which
show the probability for remaining in the initial L = 3 state
as a function of scaled impact parameter, b0. The quantum
simulations [Fig. 2(d)] show that, with increasing b0, the
interaction becomes weaker and this probability increases.
In contrast, only small increases are seen in the classical
simulations [Fig. 2(e)]. This observation indicates that as b0

increases quantum effects become increasingly important.
The threshold values bqd,0 above which quantum defects

suppress L mixing can be approximately estimated from the
condition that the peak strength of the dipole field during
the collision at the point of closest approach remains below the
field strength at which the low-L state crosses the neighboring
quasihydrogenic manifold

〈r〉n
b3

qd

= 2δL

3n5
ini

. (11)

In Eq. (11), we have estimated the order of magnitude of the
dipole moment by the radial size of the n shell, 〈r〉n. Equation
(11) implies a critical scaled impact parameter

bqd,0 =
(

9nini

4δL

)1/3

. (12)

(We note that for the states with δL > 1 the principal quan-
tum number nini should be replaced by the nearest inte-
ger �neff� of the effective quantum number neff = nini − δL
and the quantum defect δL by |neff − �neff�|). The thresh-
old value [Eq. (12)] explicitly depends, even though only
weakly, on nini, thereby directly manifesting the quantum-
defect-induced breakdown of the classical scaling invariance.
Equation (12) predicts quite accurately the n dependence of
the impact parameter above which the initial L = 3 state

population observed in the quantum simulation remains un-
changed [Fig. 2(d)]. For strontium Rydberg n 1F states at
the predicted thresholds (bqd,0 � 8.0 for nini = 20, 8.6 for
nini = 25, 9.1 for nini = 30, and 9.7 for nini = 35), ≈ 90% of
colliding pairs remain in the initial state. With further increase
of nini, the value of bqd,0 at which quantum effects become
important increases, extending the validity of classical simula-
tions to a wider range of impact parameters [see Fig. 3(a)]. For
n 1F3 states of strontium with n ≈ 300, bqd,0 � 19.8, which is
more than a factor of 4 larger than the “hard sphere” impact
parameter.

For b0 < bqd,0, the cross sections for L changing can be
accurately predicted by CTMC simulations. Its approximate
size, however, can also be analytically estimated. In this
regime, quantum-defect-induced subshell splittings can be
neglected and the Stark manifold can be treated as fully de-
generate. Accordingly, L changing results from collisionally
induced Stark precession. The corresponding precession angle
� is given by [28,29]

� =
∫ ∞

−∞
ωF (t ) dt =

∫ ∞

−∞

3

2
niniFeff (t ) dt = 9

2b2
0vcoll,0

,

(13)
where ωF (t ) = (3/2)niniFeff (t ) is the time-dependent Stark
precession frequency. Estimating a precession angle of � π/2
as the threshold for Stark mixing, significant L changing will
occur for all b0 < bS,0 with

bS,0 = 3√
πvcoll,0

. (14)

Note that bS,0 is, unlike Eq. (12), fully scaling invariant, i.e., is
independent of nini, as expected in an effectively hydrogenic
system. Combining the results for dynamical Stark mixing
and for its suppression by the quantum defect, the scaled cross
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section for L changing is of the order of

σL,0(vcoll,0) = π min
(
b2
S,0, b

2
qd,0

)
. (15)

For nini = 30 and a scaled velocity vcoll,0 = 0.025, which
corresponds to a thermal collision at T � 83000 K, bS,0 =
10.7 is close to bqd,0 = 9.2, resulting in a cross section
σL = n4

iniσL,0 = 265.9n4
ini = 2.2 × 108 (a.u.). Extrapolating to

nini = 300, while still using v0 = 0.025 (corresponding to
T � 830 K), quantum effects first become important for val-
ues of bqd,0 = 19.8 (or 94 μm) while classical suppression
begins for values of bS,0 = 10.7 (or 51 μm) [Fig. 3(a)].
Therefore, L changing can be expected for impact parameters
as large as 50 μm corresponding to a giant cross section
σL � 8 × 10−5 cm2. It should be noted that according to
Eq. (15) the size of the quantum defects limits the size of the
cross section only if bqd < bS . Therefore, high-n 1P1 Rydberg
states, despite their large quantum defect (δP = 2.73), should
feature similarly large L-changing cross sections controlled
by bS as bqd,0 = 13.6 for nini = 300 remains above bS,0. Only
for lower nini is the cross section delimited by the size of
the quantum defect. The crossover bqd = bS occurs for P
states near nini = 225 and near nini = 150 for F states. For
1F3 states and a smaller scaled velocity vcoll,0 ≈ 7.3 × 10−3,
which corresponds to a thermal collision of T = 70.8 K at
nini = 300, the threshold for Stark mixing bS,0 approaches
the threshold bqd,0 = 19.8 for quantum suppression, yielding
in this case an upper bound for σL of 2.8 × 10−4 cm2. For
such large n, CTMC simulations should provide an accurate
prediction of the final L distribution. Such large cross sections
can be probed by the present experiment as the critical impact
parameter for L-changing at nini = 300 is bS = 50 μm and,
thus, comparable to the linear dimension of the excitation

volume (50 × 70 μm). [See Fig. 3(b) for the relation between
the size of the excitation region and the impact parameter].
Consequently, as two Rydberg atoms within the excitation
volume pass by each other, L-changing occurs with near unit
probability. We will later test this prediction by comparison
with the experiment. For measurements with larger excitation
volumes and higher laser powers, tests of these predictions for
even higher nini(>300) would become possible.

Similar analytical estimates can also be made for n-mixing
cross sections. The mixing of adjacent n levels requires peak
field strengths greater than Fn = 1/(3n5) at which the most
red-shifted Stark state with principal quantum number n and
the most blue-shifted Stark state with n − 1 cross. Such a
peak field strength is reached for scaled impact parameter
b0 < bn,0 = (9nini/2)1/3. The threshold values of bn,0 are 4.5
for nini = 20 and 11.1 for nini = 300 and are well below the
thresholds for the suppression of L mixing due to quantum
defects. The numerically calculated n distributions following
collisions with different impact parameters b0 (see Fig. 4)
show little n mixing for b0 = 5 while for the smaller impact
parameter, b0 = 4 � bn,0, population transfer to the neigh-
boring n = nini ± 1 states becomes significant. Under these
conditions, the product n distribution obtained by solving the
Schrödinger equation is well approximated by the CTMC
simulations. This results because the probability to be in a
particular n level is obtained by integration over a noninteger
range of classical actions between n − 1/2 < ncl < n + 1/2,
which averages out the effect of the quantum defect. At an
even smaller impact parameter b0 = 3.5, the effective field
Feff changes more rapidly as the atoms pass by each other
and the likelihood of transitions to the continuum increases.
Consequently, collisions can lead to excitation to very high-n
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states or to ionization in which one of the collision partners is
de-excited to a lower n level. This is apparent in the CTMC
simulations, which yield an n-distribution peaked at n = nini

but with a long tail extending into the high-n regime (and
above the ionization threshold) and an additional small but
noticeable peak around n � nini/

√
2 [Fig. 4(a)]. This latter

peak mirrors the high density of states in the vicinity of
the ionization threshold. Given the broad range of accessible
final states, it is not possible to obtain converged results
using the current quantum simulations and a limited set of
basis states that includes only bound states with 14 � n � 23.
Additionally, at small b0, the higher order interaction terms
beyond Vdd become non-negligible. However, any ionized
atoms are discriminated against in the present pump-probe
measurements. Furthermore, the ionizing fields used for SFI
are such that any product atoms with n � nini/

√
2 (� 210

for nini = 300) are not detected. For large impact parameters
b > bn, the fraction of the atoms that remain in the parent
nini level is nearly independent of nini [see Fig. 4(b)] which
is consistent with classical scaling invariance and further
supports use of classical simulations for atoms undergoing
n-changing processes with small 	n. We note that good
agreement between the classical and quantum simulations is
obtained only when the model potential in Eq. (6) is used
in the classical simulations. For a pure Coulomb potential
n-changing processes are strongly suppressed in the CTMC
simulations.

V. SIMULATION OF THE PUMP-PROBE MEASUREMENT

For a quantitative comparison between the theoretical
predictions for L changing in Rydberg-Rydberg collisions
discussed above and experimental data, the results of the
microscopic description of the electron dynamics during the
collision are used as input to a mesoscopic simulation of
scattering of an ensemble of atoms in a thermal atomic
beam. The distribution of relative velocities vcoll and impact
parameters b for the Rydberg atoms formed in a hot atomic
beam are required to model the thermal averages of the (n,L)
distributions that will result from collisions between two Ry-
dberg atoms. Such averaged distributions will, in turn, serve
as the input to the simulation of the subsequent pump-probe
sequence employed in the measurement.

The population of excited Rydberg atoms in the excita-
tion volume and beyond accounting for blockade effects is
described by a set of rate equations [26,31] which we solve
by a Monte Carlo algorithm. This Monte Carlo method should
not be confused with the CTMC approach to the microscopic
electronic dynamics in a binary Rydberg-Rydberg collision
discussed above. Once an ensemble of Rydberg atoms is
created, the distribution of b and vcoll is determined. The
simulations of the current experimental setup indicate that
more than 90% of Rydberg atom pairs have an impact pa-
rameter below bS,0 = 10.7 (or 51 μm) and for about 33% the
impact parameter lies within the range 30 μm < b < 51 μm.
Thus, given the large predicted cross sections, the effects of
L-changing interactions should be readily apparent. The final
(L, n) distribution after collisions follows from convolution of
the b and vcoll distributions with the probability distribution
for L changing [Eq. (9)] discussed in Sec. IV. As a typical
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FIG. 5. (a) Calculated (L, n) distribution of Rydberg atoms fol-
lowing excitation by a 6-μs-long laser pulse with power sufficient
to create 〈NRyd〉 ≈ 15 Rydberg atoms. [(b), (c)] Reduced L and
n distributions obtained by integrating the distributions in panel
(a) over n or L.

example, we show in Fig. 5 the calculated (L, n) distribution,
PnL, following a 6-μs-duration laser excitation pulse. Of the
parent Rydberg atoms, ≈ 34% remain in the initial nini = 297,
L = 3 state. Those Rydberg atoms that undergo collisions
have a broad distribution of final L states ranging from 0 to the
maximum value n − 1 and high-L states (L > 100) are mainly
populated. The n distribution remains centered on n = nini but
is slightly broadened.

In the experiment, the distribution of product states formed
through collisions is monitored by a pump-probe pulse se-
quence. The pump pulse consists of the sudden turn-on of a
constant electric field Fpump. While this electric field also in-
duces Stark precession [to be distinguished from collisionally
induced precession (see below)], the short rise time triggers
nonadiabatic transitions, which broaden the n distribution.
Consequently, the resulting coherent superposition of n levels
forms a wave packet evolving with the Kepler frequency
νK = (En − En−1)/(2π ) � 1/(2πn3). In the current experi-
mental setup, Fpump is much larger than the effective field
Feff induced by collisions and the pulse duration is short
(≈ 400 ns). Therefore, while the pump field is applied, Stark
precession is dominated by the pump pulse and is largely
unaffected by collisions. The probe pulse is about 600 ps long,
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much shorter than the inverse Kepler frequency ν−1
K , i.e., the

classical orbital period of the Rydberg electron, ≈ 4 ns for
nini ≈ 300. Therefore, by varying the time delay between the
application of the pump and the probe pulses both the slow
Stark precession and fast Kepler motion can be resolved. The
probe pulse �Fprobe(t ), polarized along the z axis, delivers a
momentum transfer 	pẑ = − ∫ ∞

−∞ �Fprobe(t )dt to the excited

electron. In the impulsive limit [i.e., �Fprobe(t ) = −	pẑδ(t )],
the probe pulse transfers energy 	E = 	p2/2 + pzi	p to the
Rydberg electron that depends on its initial z component of
momentum, pzi . By choosing 	p ∼ −1/nini, electrons with
negative pzi are ionized while those with positive pzi remain
bound. Therefore, for stationary states, which provide a con-
venient reference, ≈ 50% of the atoms will be ionized. For a
finite-duration probe pulse, the kick strength 	p also needs
to be adjusted to obtain an ionization probability of about
50%. For wave packets generated by the pump pulse, the
survival probability will oscillate around this value displaying
“quantum” beats due to both n mixing (Kepler beats) and L
mixing (Stark beats). While the angular momentum �L evolves
with the frequency νF = ωF/(2π ), the ionization probability
depends only on the magnitude L (or, more precisely, its
square L2) and, therefore, evolves with the frequency νS =
2νF . The frequency of the Stark quantum beats is typically
much smaller than the Kepler frequency.

The information extracted from this pump-probe protocol
can be simulated by another microscopic CTMC simulation
[30] treating single Rydberg atoms interacting with pump
and probe fields rather than Rydberg atom–Rydberg atom
interactions. Accordingly, the atomic rather than the molec-
ular Hamilton function [Eqs. (3)–(6)] enters the equations of
motion and the initial phase-space distribution of these simu-
lations corresponds to the electronic wave packet in the atom
formed by the collision. We first demonstrate that pump-probe
sequences of the type just discussed succeed in extracting in-
formation on the changes in the n and L distributions induced
by collisions. The encoding of the information on the L distri-
bution in the pump-probe signal is illustrated in Fig. 6 which
shows the survival probabilities (i.e., one minus the ionization
probability) of Rydberg atoms initially with PnL = δn,297δL,Li
calculated for a 300-ps rise-time pump pulse with Fpump =
9.3 mV/cm and a 600-ps probe pulse with 	p = −0.85/nini

for several initial angular momenta Li [Figs. 6(a)–6(d)]. The
orientation of �Li (i.e., the magnetic quantum number M)
is randomly distributed. The low-frequency oscillations cor-
respond to Stark precession (νS � 10 MHz) and the fast
oscillations to Kepler beats (νk � 250 MHz). Figures 6(e)–
6(h) show the modulus of the Fourier amplitudes, | f (ν)|, of
the survival probabilities and reveal the additional presence
of higher harmonics of the Stark frequency. Moreover, the
peak associated with the Kepler beats is split into two peaks
with frequencies νK ± νF separated by νS = 2νF (indicated
by arrows). Quantum mechanically, the dipole matrix ele-
ments 〈n′, k′,m|z|n, k,m〉 [43] decay rapidly with increasing
n − n′ and |k − k′|. Therefore, the expectation value 〈z(t )〉 is
dominated by a superposition of states coupled by the dipole
matrix elements with n′ = n ± 1 and k′ = k ± 1 which evolve
with frequencies νK ± νF . Classically, the Stark frequencies
νk ± νF appear in the Fourier spectrum of trajectories whose
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FIG. 6. [(a)–(d)] Calculated survival probabilities and [(e)–(h)]
their Fourier amplitudes | f (ν )| for a Rydberg atom with nini = 297
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Runge-Lenz vectors are aligned parallel or antiparallel to the
pump field. The dependence of the amplitudes and damping of
these beats on the angular momenta involved can be analyzed
by frequency filtering (see Fig. 7). For initial angular momenta
Li = 3 and Li = 100, the Fourier amplitudes [Figs. 6(e) and
6(f)], display a Stark split Kepler frequency component ν =
νk ± νF . Resolution of this frequency splitting is consistent
with the slow damping of the Kepler beats [see Figs. 7(a)
and 7(b)]. For Li = 200 and 296, these two peaks coalesce
to one broad peak with width δν � νS [see Figs. 6(g) and
6(h)]. Correspondingly, the Kepler beats are quickly damped
on a timescale of ≈ 1/νS � 100 ns. In contrast, the Stark
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in Figs. 6(a) to 6(d) obtained by taking the inverse Fourier transform
of f (ν ) within frequency windows of [(a)–(d)] 200 to 300 MHz and
[(e)–(h)] 2.5 to 120 MHz.

022805-8



GIANT CROSS SECTIONS FOR L CHANGING IN … PHYSICAL REVIEW A 102, 022805 (2020)

0 0.1 0.2 0.3 0.4 0.5
Pcoll

0.2

0.3

0.4

0.5

A
S
 (

M
H

z)

0 100 200
Li

0

0.3

0.6

A
S
 (

M
H

z)

δn=0
δn=1
δn=2
δn=5

(a)

(b)

AS=0.54-0.44 Pcoll

FIG. 8. (a) Integrated area AS under the peak around the Stark
frequency νS in the Fourier amplitude of the survival probability (see
Fig. 6). The initial state is approximated by ensembles of trajectories
with principal action following a Gaussian distribution centered at
nini = 297 with a standard deviation δn varying between 0 and 5.
(b) Stark beat strength AS as a function of the collision probability
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pump field and probe impulse are set to Fpump = 9.3 mV/cm and
	p = −0.85/nini, respectively.

beat signals [Figs. 7(e)–7(h)] on which we will focus in the
following do not show any sign of significant damping within
400 ns (the typical timescale used in the experiments). Their
overall amplitudes, however, depend markedly on Li. The beat
amplitudes decrease with increasing Li up to a local minimum
near Li � 200, after which the amplitudes rise again but are
accompanied by a π phase shift.

The beat strength can be quantified by the integrated
Fourier amplitude

AS =
∫ (3/2)νS

(1/2)νS

| f (ν)|dν. (16)

AS exhibits a strong Li dependence with a minimum around
Li � 200 [see Fig. 8(a)]. This minimum at the intermediate
values of Li results from two competing trends. For initial
angular momenta at both ends of the L spectrum, i.e., Li � 0
and Li � n − 1 � 300, Stark mixing leads to a rapid increase
(or decrease) of L within the classical ensemble resulting in
Stark beats with large amplitude AS . For intermediate initial
Li � 210 corresponding to L2

i � n2/2, the classical ensemble
contains subensembles of trajectories of similar weights for

which the Stark precession leads to either an increase or a
decrease of L. Even when the n distribution is broadened,
i.e., PnL ∝ δL,Li exp ( − (n − nini )2/[2(δn)2]) [Fig. 8(a)], the
small changes 3δnFpump induce little dephasing in the Stark
beats and the beat strength AS is reduced only slightly with
increasing δn. This demonstrates that AS provides a good
measure for L-changing processes even when the n distribu-
tion is broadened. Since the initial Rydberg state with Li =
3 yields a large Stark beat amplitude, any reduction in AS

indicates a change in L or a broadening in the L distribution
PnL. Indeed, as seen in Fig. 8(b), the Stark beat strength AS

decreases steadily with increasing collision probability Pcoll

for a Rydberg atom to pass by another Rydberg atom. In
practice, the collision probability is determined within the
Monte Carlo simulation of the collisional interaction in the
thermal atomic beam by recording the number of Rydberg
atoms passing by another Rydberg atom (i.e., reaching the
minimum distance R = b) within the duration of excitation
laser. The probability of an L-changing collision, Pcoll,L, is
proportional to this collision probability, i.e., Pcoll,L = OLPcoll,
where OL is the fraction of the atoms in the excitation volume
for which the impact parameter for Rydberg-Rydberg colli-
sion is b < bS [see Fig. 3(b)]. Accordingly, OL is a measure for
the L-changing cross section. With increasing pulse duration,
〈NRyd〉 increases and so does Pcoll. When Pcoll approaches
unity and simultaneously AS is strongly damped, nearly all
Rydberg atoms must undergo L-changing collision, i.e., OL �
1. Consequently, AS � 0 at Pcoll � 1 is a clear signature that
the cross section σL is as large as πR2

ex, where Rex is the
linear dimension of the excitation volume [Fig. 3(b)]. On
the other hand, when bS is smaller than a linear dimension
of the excitation volume, the Stark beat strength will remain
finite even in the limit of Pcoll = 1 from which the value of OL

can be extracted. By extrapolating to Pcoll = 1, the simulation
[Fig. 8(b)] yields AS � 0.1, indicating that the L-changing
cross section is comparable to the excitation region (50 ×
70 μm). Indeed, a detailed analysis of the simulation gives
OL � 90–96%, consistent with a linear dimension of 70 μm
of the excitation volume slightly larger than bS � 50 μm. This
method will be used later to extract the L-changing cross
section from the experimental data. We note that, though AS

is large at L � 0 and n − 1 [Fig. 8(b)], a broadening of the L
distribution results in a suppression of AS . This is due to the
destructive interference of Stark beats which oscillate with the
opposite phase for L � 0 and n − 1 (Fig. 6).

VI. RESULTS

For the experimental results presented in the following,
the amplitudes of the pump pulses used to generate the
pump fields were selected to generate steady-state fields of
9.3 mV cm−1 (see below). The magnitude of the probe pulse
was adjusted to achieve an average survival probability of
≈ 50% to maximize the amplitudes of the quantum beat os-
cillations. Results were recorded for collisions involving two
5s297 f 1F3 Rydberg atoms. To identify the effect of collisions
on the quantum beats, the number of Rydberg atoms 〈NRyd〉
generated by the laser pulse was varied, either by keeping
the duration of the laser pulse fixed (3 μs) while varying the
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FIG. 9. Measured survival probabilities as a function of the time
delay between application of the pump and probe fields. The results
were recorded using 5s297 f 1F3 Rydberg atoms and a fixed 3-μs-
long laser pulse with the laser powers adjusted to obtain average
numbers of excited Rydberg atoms of (a) 〈NRyd〉 = 1, (b) 5.7, and
(c) 8.3. The (steady-state) pump field is 9.3 mV cm−1 and the probe
pulse delivers an impulse 	p ≈ −0.85/nini. [(d)–(f)] the Stark beats
associated with each data set after frequency filtering. The simula-
tions assume a probe impulse 	p = −0.85/nini and that application
of the pump field leads to a distribution of n with δn = 1.

laser power (Fig. 9) or by keeping the laser power fixed while
varying the duration of the laser pulse (Fig. 10).

Figure 9 shows results obtained using a 3-μs-duration
laser pulse with the laser powers adjusted to create different
numbers of Rydberg atoms. Values of 〈NRyd〉 of 1 [Fig. 9(a)],
5.7 [Fig. 9(b)], and 8.3 [Fig. 9(c)] were selected and re-
sult in collision probabilities of Pcoll ≈ 8%, ≈ 38%, and ≈
51%, respectively. (The pump and probe fields for all these
measurements are identical). At the lowest laser power (i.e.,
〈NRyd〉 ∼ 1), the effects of collisions are negligible. These
data thus serve as the reference for identifying changes in
the quantum beat signal that result from collisions. As the
probability for collisions increases, the strength of Stark beats,
i.e., AS , decreases from AS = 0.3 for 〈NRyd〉 � 1 to AS = 0.22
for 〈NRyd〉 � 5.7, and to AS = 0.17 for 〈NRyd〉 � 8.3. Figure 9
also includes the results of the simulations which include a
broadening of the n distribution with δn = 1 induced by small
overshoots and ringing in the pump and probe pulses. The beat
amplitudes are slightly overestimated by the simulations but
the systematic reduction due to collisions is well reproduced.

As shown in Fig. 10, additional evidence for the role of
collisions in state changing can be obtained using different
laser pulse durations, 1.5 and 6 μs. When using 1.5-μs-long
laser pulses, the laser powers were adjusted to produce ≈ 1
and ≈ 4 Rydberg atoms per pulse. Even at the higher laser
power, the likelihood that, once created, an atom will suffer
a collision is small (the estimated collision probability is
Pcoll ≈ 28%). In consequence, only a small reduction in the
quantum beat amplitudes is expected, which is consistent with
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FIG. 10. Survival probabilities measured using 5s297 f 1F3 Ry-
dberg atoms as a function of the time delay between application
of the pump and probe fields for laser pulse widths of [(a), (b)]
1.5 and (c) 6 μs, with the laser powers adjusted to excite average
numbers of Rydberg atoms 〈NRyd〉 (a) 0.7, (b) 4, and (c) 15. The
(steady-state) pump field is 9.3 mV cm−1 and the probe impulse is
	p ≈ −0.85/nini. [(d)–(f)] The Stark beats associated with each data
set after frequency filtering. The simulations assume δn = 1.

the observed ≈ 10% reduction in AS [see Figs. 10(a), 10(b)
10(d), and 10(e)]. The situation is rather different when using
a 6-μs-long laser pulse. At the highest laser power, ≈ 15
Rydberg atoms can be produced per pulse. Even though the
laser powers used to generate the results in Figs. 10(b) and
10(c) are nearly the same, the probability for undergoing a
collision increases from Pcoll � 28% (for 〈NRyd〉 � 4) to 66%
(for 〈NRyd〉 � 15). In the latter case, AS [Figs. 10(c)–10(f)]
is reduced by ≈ 50%, clearly demonstrating the damping of
beats by collisions. The simulations reproduce the observed
reduction in AS very well, providing direct evidence of strong
collision-induced L changing.

In order to extract direct information on the L-changing
cross section, the measured Stark beat strength AS is plotted
as a function of collision probability Pcoll (Fig. 11). Because
of the n broadening induced by the pump-probe measurement,
the Stark beat strength in the absence of collisions is, in
general, smaller than that seen in Fig. 8(b). Nevertheless,
we observe a similar decrease of AS with increase of Pcoll,
clearly confirming collisional decoherence as the origin of the
attenuation of the Stark beats. Extrapolating now the fitted
function AS (Pcoll ) to Pcoll = 1 yields a near zero beat ampli-
tude AS � 0.05. This result confirms that the threshold value
bS is comparable to the linear dimension of the excitation
region (50 × 70 μm), i.e., the size of of cross section σL for L
changing is, indeed, of the order of σL � 8 × 10−5 cm2.

A limited set of measurements were also performed using
1P1 Rydberg states. Although the photoexcitation rates for P
states are substantially smaller than than those for F states,
by use of longer laser pulses a sufficient number of 1P1 atoms
could be generated to observe effects of their collisions. Direct
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FIG. 11. Stark beat strength AS as a function of the collision
probability Pcoll that a Rydberg atom traverses at least another Ry-
dberg atom during the excitation laser pulse. Pcoll is estimated from
the pulse duration and 〈NRyd〉. AS is evaluated from the pump-probe
signals of Figs. 9(d)–9(f) (triangles), Figs. 10(d) and 10(e) (circles),
and Fig. 10(f) (squares).

comparison between data recorded, under identical experi-
mental conditions, with the laser powers adjusted to create
equal numbers of P and F states revealed that for both species
collisions resulted in similarly strong damping of the Stark
quantum beat amplitudes, indicating that the cross sections
for L changing in collisions between P states are as large as

those for collisions between F states. This is consistent with
the theoretical prediction, noted earlier, that for both species
the L-changing cross section is limited by classical effects,
i.e., by the value of bS,0, and not by their quantum defects,
which are significantly different.

VII. CONCLUSIONS

The present study demonstrates that long-range interac-
tions during thermal-energy collisions between very-high-n,
n ≈ 300 n 1F3, Rydberg atoms can lead to rapid state changing.
Simulations show that thermal collisions at T ≈ 830 K can
lead to strong L mixing, even for impact parameters as large as
≈ 50 μm. The corresponding cross sections, ≈ 8 × 10−5 cm2,
are big and significantly larger than those typically associated
with neutral-neutral collisions, a prediction that is confirmed
by experiment. Extrapolation to lower n and colder collisions
suggest that the cross section for L changing increases by
another factor of ≈ 4. In consequence, the possibility of state-
changing interactions must be considered whenever Rydberg-
Rydberg interactions are utilized to probe the behavior of few-
and many-body systems. The present work also demonstrates
that measurements of quantum beats generated by sudden ap-
plication of a pump field can provide a valuable complement
to selective field ionization when investigating L-changing
reactions.
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