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ABSTRACT

Context. The degree of coupling between the gas and the magnetic field during the collapse of a core and the subsequent formation of
a disk depends on the assumed dust size distribution.
Aims. We study the impact of grain–grain coagulation on the evolution of magnetohydrodynamic (MHD) resistivities during the
collapse of a prestellar core.
Methods. We use a 1D model to follow the evolution of the dust size distribution, out-of-equilibrium ionisation state, and gas chemistry
during the collapse of a prestellar core. To compute the grain–grain collisional rate, we consider models for both random and systematic,
size-dependent, velocities. We include grain growth through grain–grain coagulation and ice accretion, but ignore grain fragmentation.
Results. Starting with a Mathis-Rumpl-Nordsieck (MRN) size distribution (Mathis et al. 1977, ApJ, 217, 425), we find that coagulation
in grain–grain collisions generated by hydrodynamical turbulence is not efficient at removing the smallest grains and, as a consequence,
does not have a large effect on the evolution of the Hall and ambipolar diffusion MHD resistivities, which still drop significantly during
the collapse like in models without coagulation. The inclusion of systematic velocities, possibly induced by the presence of ambipolar
diffusion, increases the coagulation rate between small and large grains, removing small grains earlier in the collapse and therefore
limiting the drop in the Hall and ambipolar diffusion resistivities. At intermediate densities (nH ∼ 108 cm−3), the Hall and ambipolar
diffusion resistivities are found to be higher by 1 to 2 orders of magnitude in models with coagulation than in models where coagulation
is ignored, and also higher than in a toy model without coagulation where all grains smaller than 0.1 µm would have been removed in
the parent cloud before the collapse.
Conclusions. When grain drift velocities induced by ambipolar diffusion are included, dust coagulation happening during the collapse
of a prestellar core starting from an initial MRN dust size distribution appears to be efficient enough to increase the MHD resistivities
to the values necessary to strongly modify the magnetically regulated formation of a planet-forming disk. A consistent treatment of the
competition between fragmentation and coagulation is, however, necessary before reaching firm conclusions.
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1. Introduction

While it is now well established that stars form through the col-
lapse of prestellar cores, understanding the exact outcome of this
process remains a challenge (Li et al. 2014). In particular, many
studies have found that the properties of the centrifugally sup-
ported disks that form around protostars sensitively depend on
the intensity of the magnetic field and even possibly on its ori-
entation (Allen et al. 2003; Mellon & Li 2008; Hennebelle &
Fromang 2008; Joos et al. 2012; Li et al. 2013; Gray et al. 2018).
This is due to the magnetic braking that can efficiently transport
angular momentum from the inner part of the collapsing cloud to
the surrounding envelope. In the most extreme case, it has even
been found that the formation of a centrifugally supported disk
can be entirely suppressed, a process known as catastrophic mag-
netic braking (Allen et al. 2003; Mellon & Li 2008; Hennebelle
& Fromang 2008).

The magnetic field evolution is a direct consequence of its
coupling with the gas. If this coupling is perfect (ideal Mag-
netohydrodynamics; MHD), then magnetic intensity is typically
expected to be ∝ ρκ, where ρ is the gas density and κ ' 1/2−2/3.
On the other hand, in the extreme case where the magnetic field

would be completely decoupled from the gas, the magnetic inten-
sity would stay constant and the magnetic field would have no
(or a much more limited) influence on the gas evolution. It is
therefore fundamental to understand with enough accuracy how
magnetic field and gas are coupled together. Since the gas within
molecular clouds is weakly ionized, with a ionisation fraction
on the order of, or even below 10−7 (e.g. Shu et al. 1987), the
coupling between the gas, mainly the neutrals, and the magnetic
field is imperfect. The neutrals can slip through the field lines
which are attached to the ions, a process known as ambipolar dif-
fusion. This process largely dominates over the other non-ideal
MHD processes in the interstellar medium (ISM) such as the
Hall effect and the Ohmic resistivity, which are due to the imper-
fect coupling between the magnetic field and the ions and the
electrons, respectively.

In the context of dense prestellar cores, it is believed that
dust grains are playing an important role. As the recombina-
tion rate of ions on the surface of grains scales with the density,
the ionisation is several orders of magnitude lower in collapsing
cores than in the rest of the ISM, and the impact of non-ideal
MHD processes is more important. Many detailed calcula-
tions of the ionisation inside dense cores have been performed
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(e.g. Nakano et al. 2002; Kunz & Mouschovias 2009; Zhao et al.
2016; Wurster et al. 2016; Marchand et al. 2016; Dzyurkevich
et al. 2017). The resulting resistivities depend on the exact
assumptions regarding the ionisation rate, the chemistry network
and the grain properties. In particular, it has been concluded that
the abundance of small grains is particularly critical (Nishi et al.
1991; Zhao et al. 2016, 2018; Dzyurkevich et al. 2017; Grassi
et al. 2019). For example Zhao et al. (2016) assuming an MRN
size distribution (Mathis et al. 1977) found that the ambipolar
and Hall resistivities reach a maximum when only grains of size
above 0.1 and 0.04 µm are considered, respectively. Moreover
when varying the size of the smallest grains considered from
0.005 to 1 µm, Zhao et al. (2016) found that the resistivities vary
by one to two orders of magnitude (depending on the consid-
ered gas density). Therefore, a sufficient knowledge of the grain
distribution appears to be a crucial issue. Indeed several studies
have investigated the impact that the resistivities have on circum-
stellar disks confirming that disks form more easily when the
resistivity is high which happens when small grains are removed
(e.g. Krasnopolsky et al. 2011; Zhao et al. 2016). Hennebelle
et al. (2016) proposed an analytical model in which the size of
the disk at the early stage is predicted to be ∝ η2/9

AD, where ηAD
is the ambipolar resistivity. The influence of the Hall resistivity
has also been investigated in a series of papers (Krasnopolsky
et al. 2011; Wurster et al. 2016; Tsukamoto et al. 2015; Koga
et al. 2019). Because of the quadratic dependence on the mag-
netic field of the Hall term, changing the sign of B does not
lead to a physically identical situation and one must distinguish
between the parallel and anti-parallel configurations depending
on the respective orientation of B and the angular momentum.
In the anti-parallel configuration the Hall effect tends to produce
bigger disks while in the parallel one, it tends to produce smaller
ones.

Knowing the grain distribution within dense cores therefore
appears to be a major issue. As recalled above, many authors
have assumed an MRN type distribution, with a maximal grain
size ∼0.25 µm. However, this particular size distribution is only
valid for the diffuse phase of the ISM. In denser gas, the phe-
nomenon of coreshine in the NIR (Pagani et al. 2010) and the
observed increase in FIR and sub-mm emissivity (e.g. Stepnik
et al. 2003; del Burgo & Laureijs 2005; Ysard et al. 2013) all
point towards the coagulation of grains in the envelope of molec-
ular clouds, affecting the grain structure and composition (Jones
et al. 2013; Köhler et al. 2015) and increasing the grain size
significantly (∼1 µm, Steinacker et al. 2015) or only modestly
(<0.5 µm, Ysard et al. 2016), depending on the dust models used.
This indicates that dust coagulation must be an efficient pro-
cess and that, given the grain size-dependence of the resistivities
inferred in previous studies, it may play an major role in the
coalescence of the cloud.

In this article, we make use of the Paris-Durham shock code
(Flower & Pineau des Forêts 2003) amended for the calculation
of dust charging, dynamics and evolution (Guillet et al. 2007,
2011), to study the coagulation of dust grains in a collapsing core,
as well as its feedback on the evolution of the Ohmic, Hall and
ambipolar diffusion MHD resistivities of the medium. The arti-
cle is structured as follows. In Sect. 2, we present our model for
the grain dynamics and coagulation in a protostellar collapse.
Section 3 deals with the calculation of grain charge, ionisation
equilibrium and MHD resistivities. In Sect. 4, we present our
results for a collapse without dust, a collapse with dust but no
coagulation and a collapse with dust and coagulation. We dis-
cuss in Sect. 5 some limitations in our study and recall our main
results in Sect. 6.

2. The dust evolution model

The Paris-Durham shock code is a fortran code initially designed
to solve the structure of stationary shocks and predict the inten-
sity of their emission lines (Flower et al. 1985). From the
beginning, it included more than 100 chemical species and a
large network of chemical reactions (>1000). The impact of
dust grains on the chemical composition and dynamics of the
shock was later included (Flower & Pineau des Forêts 2003),
but only through a single, effective, grain fluid. In Flower et al.
(2005), the code was adapted to study grain–grain coagulation
and its feedback on the ionisation and depletion during the grav-
itational collapse of an elementary cell composed of gas and
dust.

The Dust Dynamics and Processing code (DUSTDaP) was
developed from the Paris-Durham shock code to study the
detailed charge and dynamics of a full size distribution of dust
grains in shocks (Guillet et al. 2007). It includes the physics of
grain charging as well as grain–grain destruction, namely the
shattering and vaporisation of grain cores, encountered in shocks
propagating through dense clouds (Guillet et al. 2009, 2011). We
detail below how this code was amended to follow the evolution
of the dust size distribution by grain–grain coagulation during
the isothermal collapse of 1 cm−3 of gas.

2.1. Initial conditions in the parent cloud

Our gas-phase chemistry derived from Flower et al. (1985) and
Le Gal et al. (2014) includes 134 gas-phase species and ∼700
chemical reactions, with ion-neutral, neutral-neutral, and disso-
ciative recombination reactions involving species containing H,
He, C, N, O and S. The initial distribution of the elemental abun-
dances across the gas phase and the solid phase is given in Table
1 of Flower et al. (2005) with the exception of S and Fe, whose
fractional elemental abundances were 1.47× 10−5 (Hily-Blant
et al. 2020) and 1.50× 10−8, respectively.

In dense clouds, grains are covered by icy mantles (Hagen
et al. 1983). The thickness of this mantle is independent of the
grain size and can be computed knowing the size distribution of
grain cores (see Appendix B from Guillet et al. 2007). For an
MRN size distribution (α=−3.5) with core radii ranging over
[5 : 250] nm, the mantle is 8.8 nm thick using the Table 2
from Flower & Pineau des Forêts (2003) for the abundances
of chemical species in icy mantles, assuming a specific density
of 1 g cm−3 for ices and 3 g cm−3 for cores. The initial dust-to-
gas mass ratio is initially of 0.9%, and will increase up to 1.2%
through accretion during the collapse.

The initial proton density is nH,0 = 104 cm−3 and the cosmic
ray ionisation rate ζ = 5× 10−17 s−1. Under these conditions, we
determine the steady-state abundances of the chemical species in
the gas phase (neglecting any further depletion) which are then
used as initial conditions of the collapsing core.

2.2. Recipe for core collapse

The free-fall timescale of a spherical cloud of uniform mass
density ρ0 is:

τff =

√
3π

32Gρ0
, (1)

where G is the gravitational constant. For our initial proton
density (nH,0 = 104 cm−3) τff ' 430 kyr. We will consider the
collapse of a spherical core in a free-fall time.
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Fig. 1. Evolution of the cloud proton density nH and magnetic field
intensity B with time in our model. The collapse time is the free-
fall time computed at the initial cloud density nH,0 = 104 cm−3: τff '

430× 103 yr.

If we state x = R(t)/RC the ratio of the core radius at time t to
its initial radius (0 ≤ x< 1), the dynamics of the free-fall follows
the equation (Flower et al. 2005):

dx
dt

=−
π

2τff

√
1
x
− 1 . (2)

We must now make an assumption on the dependence of the gas
density with x. In Appendix A, we demonstrate that the assump-
tion of an uniform compression of all fluids as per Flower et al.
(2005), meaning that the mass density ρ(t) = ρ0 (RC/R(t))3 is a
function of time only, is a good approximation of what happens
in the Larson compression scenario (Larson 1969) regarding the
level of coagulation achieved up to a given local density, even
if it is a bad description for the density profile of the collapsing
core expected at a given time. Therefore, we state

1
nH

dnH

dt
=

1
ρ

dρ
dt

=−
3
x

dx
dt
. (3)

Following Marchand et al. (2016), the magnetic field is
assumed to be transverse to the direction of the collapse, and its
intensity (in Gauss) is assumed to increase with the gas density
during the collapse as follows

B(G) = b
√

nH /nH,0 , (4)

with b = 30 µG taken as a reference value at the initial density
nH,0. This corresponds to a mass-to-flux ratio of 2.3 (Li et al.
2011). For clarity, the evolution with time of the cloud density
and magnetic field intensity are plotted in Fig. 1.

2.3. Grain–grain coagulation

In order to study the evolution of the grain size distribution
during cloud core collapse, we updated the DUSTDaP code to
include the coagulation of grains in low velocity grain–grain
collisions. The evolution of the grain size distribution by grain–
grain coagulation is controlled by the Smoluchowski equation
(Smoluchowski 1916; Mizuno et al. 1988):

dρ(m, t)
dt

= −

∫ ∞

0
m K(m,m′) n(m, t) n(m′, t) dm′

+
1
2

∫ m

0
m K(m′ − m,m′) n(m′ − m, t) n(m′, t) dm′, (5)

where m is the grain mass, n(m, t) (respectively ρ(m, t)) the den-
sity (respectively mass density) of grains of mass m at time t, and
K(m,m′) (cm3 s−1) the collision kernel between grains of mass
m and m′.

Our numerical model for grain–grain coagulation is rudi-
mentary: grains are assumed to be compact and spherical, and
the product of grain–grain coagulation as well (Hirashita 2012).
The dust size distribution is modelled by Nbins logarithmic bins
(Guillet et al. 2007). For the code to run fast, the number of bins
cannot exceed a few tens because of the numerous integration
variables associated to the grain charge distribution for each bin.
In Appendix B, we detail the implementation and tests of our
coagulation algorithm, and demonstrate that the convergence of
the algorithm is obtained as soon as there is more than ∼7−8
logarithmic bins per decade in grain radius, or equivalently 13
for the MRN size distribution.

2.4. Handling of ice mantles covering grain cores

The presence of icy mantles on the surface of grains is
very important for grain–grain coagulation. Firstly, ice mantles
greatly improve the sticking probability in grain–grain colli-
sions (Chokshi et al. 1993). Secondly, this mantle significantly
enhances the radius of the smaller grains (Guillet et al. 2007),
and therefore their coagulation rate.

Coagulation will modify the uniformity of mantle thickness
by transferring the large volume of ices carried by small grains to
the larger grains. The mass of icy mantles in each bin is therefore
a variable that must be integrated. The transfer of the mass of icy
mantles through coagulation is handled together with the trans-
fer of the mass of grain cores. At each step, knowing the mass
of icy mantles and the properties of grain cores (average radius,
cross-section and mass, number density) in each bin, we are able
to compute the mantle thickness of grains using the equation
detailed in Appendix B from Guillet et al. (2007), and derive
the effective radius, cross-section and mass of the core-mantle
grains in each size bin.

Once the collapse has started, ices continue to accrete onto
the surface of grains, increasing the mantle thickness uniformly.
We note that mantle accretion cannot modify the number of
grains.

2.5. Velocity limit for grain–grain coagulation

Laboratory experiments (Poppe & Blum 1997) and theoretical
studies (Chokshi et al. 1993) led to a first conclusion that grain
coagulate if their relative velocity does not exceed a velocity
limit, and bounce on each other otherwise. This velocity limit for
coagulation is a function of the grain size (Chokshi et al. 1993)

V= V0.1 µm

(
â

0.1 µm

)−5/6

, (6)

where â = (a1 × a2)/(a1 + a2) is the reduced grain radius of the
two colliding grains, and V0.1 µm the velocity limit for two grains
of 0.1 µm, which lies between 0.1 and 0.4 km s−1 (Chokshi
et al. 1993; Poppe & Blum 1997). We will take the upper value
V0.1 µm = 0.4 km s−1 as per Poppe & Blum (1997), to take into
account the increase in the velocity limit due to the presence of
icy mantles on the surface of grain cores.

2.6. Grain dynamics

Grain dynamics is the fundamental ingredient of grain growth
as it controls the collisional rates between grains (e.g.
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Ossenkopf 1993). In the context of core collapse, grain velocity
dispersion can originate from the thermal agitation of the grain,
from the acceleration of grains by HD or MHD turbulence, from
the gravitational force, or from the electromagnetic force.

2.6.1. Grain acceleration by Hydrodynamic turbulence

Since the pioneering work by Voelk et al. (1980), the accelera-
tion of dust grains by HD turbulence has been modelled by the
stochastic acceleration of grains in a Kolmogorov cascade of tur-
bulent eddies. In this framework, grains are accelerated by the
eddies to which they can couple.

We use the model of grain acceleration by HD turbulence,
as revised by Ormel & Cuzzi (2007). The injection scale of the
turbulence is assumed to be equal to the Jeans length, and the
injection velocity to the isothermal sound speed cs =

√
kBT/µ,

with µ the mean mass of gas particles. This defines an upper
timescale for the turbulence cascade

τL =
LJeans

cs
=

1
2

√
π

Gρ
. (7)

The dissipation scale of the turbulence is controlled by the
Reynolds number (Ormel et al. 2009)

Re = 6.2× 107

√
ρ/µ

105 cm−3 , (8)

corresponding to a timescale τη = τL/
√

Re.
We chose not to use the model of grain acceleration by MHD

turbulence of Yan et al. (2004) because the relations established
in this article are mostly adapted to diffuse and moderately dense
medium (nH ≤ 104 cm−3) and not the high densities encountered
in our numerical collapsing core (104 ≤ nH ≤ 1012 cm−3). In
Sect. 5, we discuss the limitations of the HD models of grain
dynamics and how the use of a model of grain acceleration by
MHD turbulence would affect our conclusions.

In the theory of grain acceleration by hydrodynamical turbu-
lence, the grain dynamic is controlled by the stopping time τdrag
of the grain by collisions with gas particles. Large grains tend
to couple to the large eddies, thereby acquiring strong kicks that
accelerate them through a random walk in the velocity space. In
the Epstein regime valid for sub-sonic grain velocities, the grain
stopping time through collisions with the gas is

τ=
3m

4 ρ vth σ̂
∝ a , (9)

where a, σ̂ and m are the grain radius, cross-section and mass,
respectively, ρ is the mass density of the gas and vth =

√
8kBT/πµ

the mean velocity of gas particles1.
We now consider in detail the expressions for the relative

velocity between grains of different sizes. We call target (stop-
ping time τT) the larger grain, and projectile (stopping time τP)
the smaller grain of the two. Three different regimes can be
distinguished for the rms relative velocity ∆VP,T between the
projectile and the target (Ormel & Cuzzi 2007): (1) a regime
of tight coupling where the stopping timescale of the target τT
is smaller than the dissipation timescale of the turbulence τη,
meaning that the target is so small that it cannot escape even
from the smallest eddies; (2) a regime for heavy particles where

1 We note the error in the formula for τdrag in Ormel et al. (2009)
Eq. (A.1).
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Fig. 2. Grain velocities as a function of the grain radius for a homo-
geneous grain of specific density 3 g cm−3. The model of grain accel-
eration by turbulence Ormel & Cuzzi (2007) is presented at different
densities. Thick lines represent the relative rms velocity between the
grain and the gas, while thin lines represent the relative rms velocity
between grains of the same size. The contribution of Brownian motion
to the velocity of grains is almost always negligible. The velocity limit
for coagulation is presented in two versions: the theory from Chokshi
et al. (1993) and the experiments from Poppe & Blum (1997). The sound
velocity (T = 10 K) in this isothermal phase is added for reference.

the target is so large that its stopping timescale τT is much longer
than injection timescale of the turbulence τL, thereby reducing
the efficiency of the kicks by the largest eddies as the grain size
increase; and (3) an intermediate regime where grains are opti-
mally accelerated by an eddy of a particular size. Regarding the
grains sizes involved in our study, small grains are in the tightly
coupled particles regime, while large grains are in the inter-
mediate regime. No grains from our size distributions fall into
the heavy particles regime at any density as the tightly coupled
and intermediate regimes becomes more and more important as
the density increases. The level of turbulence, as well as the
threshold between these two regimes, depends on the gas density
through the stopping time (Eq. (9)). For clarity, we recall here the
expressions for the mean quadratic relative velocity between the
projectile and the target for the two first regimes (Ormel & Cuzzi
2007):

Tightly coupled particles (τT < τη).

∆V2
P,T =

3
2

c2
s

√
Re

(
τT

τL
−
τP

τL

)2

. (10)

Intermediate regime (τη ≤ τT < τL).

∆V2
P,T =

3
2

c2
s f

(
τP

τL

)
τT

τL
, (11)

f (x) = 3.2 − (1 + x) +
2

1 + x

(
1

2.6
+

x3

1.6 + x

)
, (12)

with 0 ≤ τP/τL ≤ 1 and 1.97 ≤ f ≤ 2.97 (Ormel et al. 2009).
Figure 2 shows how the rms relative velocity between grains

depends on the grain radius, for increasing values of the gas
proton density. The grain rms velocity increases with the grain
radius and decreases with the gas density, and is in most cases
strongly sub-sonic. If the projectile and target are of the same
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Fig. 3. Grain velocities (left axis) and Hall factor (right axis) as a function of the grain radius for a gas proton density nH of 104 cm−3 (left),
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velocities ∆V from Fig. 2 are overplotted in dotted blue lines. The grain specific density is 3 g cm−3.

size, they can still present a relative velocity in the intermediate
regime (thick lines), but not in the tightly coupled regime (thin
lines). A target and a projectile hitting each other with a rela-
tive velocity larger than velocity limit for coagulation (dashed
blue lines) would not stick together but rather rebound, the pres-
ence of ice coating increasing this limit velocity (see Sect. 2.5).
The relative velocities generated by the thermal motion of grains
(supposedly at the gas temperature T = 10 K) decrease strongly
with the grain size: vthermal ' 0.1 (a/0.1 µm)−3/2 cm s−1, for a
grain specific density of 3 g cm−3. They are small compared to
the relative velocities generated by the gas turbulence, except at
high densities.

2.6.2. Grain drift velocity through ambipolar diffusion

Turbulence is not the only way to accelerate or decouple the dif-
ferent grain sizes from each other in dense clouds. Ambipolar
diffusion, which appears as soon as the ionisation is too weak
to couple the gas to the magnetic field, can also affect the grain
dynamics, as it was demonstrated in the case of MHD C-shocks
(Guillet et al. 2007).

Grains are charged in the ISM, and as a consequence gyrate
around magnetic fields (Spitzer 1941). In dense clouds, their
charge is usually negative and close to −e (Flower & Pineau des
Forêts 2003), with e the elementary electric charge. Grains are
also coupled to the gas through the impact of gas particles. The
Hall factor Γ =ωτ, defined as the product of the grain stopping
time τ by the grain gyro-frequency ω, characterises the degree
of coupling of the grain with the magnetic field and the gas.
The Hall factor depends strongly on the grain size (Γ ∝ a−2,
Guillet et al. 2007). Small dust grains (those with Γ � 1), are
strongly coupled to the magnetic field and follow on average the
dynamics of ions, spiralling around magnetic field lines and par-
ticipating with ions to the coupling of the gas with the magnetic
field through collisions with gas particles. Large grains (those
with Γ � 1) follow the gas on average, being almost insensitive
to the magnetic field despite their electric charge.

In a model where the magnetic field direction (along b) is
transverse to the direction er of the collapse, and ignoring the
inertia of dust grains, we can express the drift velocity uk of each
grain size k as a function of the ambipolar diffusion velocity
VAD ≡ Vn − Vi (Eq. (21) from Guillet et al. 2007)

uk = Vn −
Γ2

k

1 + Γ2
k

VAD +
Γk

1 + Γ2
k

VAD × b , (13)

where Vi is the velocity of ions and Vn that of neutrals along
the direction er of the collapse. We note that the supplementary

relative velocities generated by the turbulence between dust
grains and gas particles were ignored in this derivation.

The grain drift velocity induced by ambipolar diffusion is
not a stochastic velocity, but a systematic velocity. It has two
components: one, V‖, along the collapse direction er, and the
other, V⊥, along eφ which is perpendicular to the direction
of the collapse and to the magnetic field direction. Figure 3
presents how the component V‖ and V⊥ of the grain drift velocity
depend on the grain radius, for increasing values of the pro-
ton density nH, assuming a constant ambipolar diffusion velocity
VAD = cs/10 = 20 m s−1, as per Basu & Mouschovias (1995). The
parallel and perpendicular components of the relative velocity
between the grain and the gas do not scale the same way with
the Hall factor Γ of the grain (see Eq. (13)): V‖ is maximal and
equal in amplitude to VAD when Γ � 1, while V⊥ is maximal
and equal in amplitude to VAD/2 when Γ = 1. As Γ decreases
with increasing density, the systematic velocities generated by
ambipolar diffusion tend to disappear with the collapse.

2.7. Calculation of the ambipolar diffusion velocity VAD

The amplitude VAD of the ambipolar diffusion velocity depends
on the coupling of charged particles with the gas, and therefore
on the ionisation degree of the gas and on the size distribution
and charge of dust grains. In high-density regions protected from
UV radiations, the ionisation can only result from the energetic
electrons produced by the interaction of cosmic rays with the
gas (Padovani et al. 2018). As the density increases, the ionisa-
tion fraction ni/nH decreases because the recombination rate of
ions with electrons or charged grains scales as n2

H, while the ion-
isation rate scales with ζ nH, with ζ the cosmic ionisation rate.
The low ionisation does not allow a strong coupling between the
gas and the magnetic field, and a velocity difference appears at
small scales between the ion and neutral fluids, a phenomenon
called ambipolar diffusion. Studying the Class 0 protostar B335
with ALMA observations, Yen et al. (2018) inferred an upper
limit of 0.3 km s−1 for the ion-neutral drift in this particular
object.

The amplitude VAD of the ion-neutral drift velocity can be
calculated by equalising the Lorentz Force acting on charged par-
ticles (namely ions and dust grains) and the drag force exerted by
the gas particles onto these charged particles. This yields:

|B× (∇× B) |
4π

= ρn

VAD ni σ̂in +

√
8kBT
πµn

∑
k

nk σ̂k |Vn − uk |

 ,
(14)
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where ρn is the mass density of the gas, T is the gas temperature,
nk and σ̂k are the number grain density and mean grain cross-
section in bin k, respectively,

σ̂in = 2.41 π e
√

µi µn

µi + µn
αn (15)

is the ion-electron collisional cross-section, e the electric charge
of ions, µi and µn the mean mass of ions and neutral parti-
cles, respectively, and αn the polarizability of neutrals (Flower
& Pineau des Forêts 2003),

Based on Fig. 3, we neglect the second term in the RHS of
Eq. (13) to remain linear2 in VAD and obtain

|Vn − uk | '
Γ2

k

1 + Γ2
k

VAD . (16)

As a consequence, VAD can be approximated by:

VAD '
|B× (∇× B) |

4π ρn

(
ni σ̂in +

√
8kBT
πµn

∑
k nk σ̂k

Γ2
k

1+Γ2
k

) . (17)

The value of VAD scales as the square b2 of the intensity of
the magnetic field in the parent cloud (Eq. (4)). It also depends,
through the gradient, on the geometry of the magnetic field, as
well as on its evolution with the compression of the gas dur-
ing the infall. For simplicity, we will start the collapse with
VAD = V ref

AD = cs/10 = 20 m s−1 at nH = nH,0 (Basu & Mouschovias
1995), and assume B× (∇× B) ∝ B2/LJeans ∝ n3/2

H . This scaling
results in two asymptotic regimes: If the ion term dominates over
the dust term at the denominator of Eq. (17), then ni ∝

√
nH and

VAD will be approximately constant; on the contrary, if the dust
term dominates, then VAD ∝ 1/

√
nH as long as the dust size dis-

tribution does not change and remains strongly coupled to the
magnetic field (Γk � 1) .

2.8. The coagulation kernel

It is the coagulation kernel K, and therefore in our case the mean
relative velocity 〈∆v〉 between the projectile and the target grains,
that control the coagulation rate (see Sect. 2.3 and Eq. (5)). Only
those collisions at a relative velocity lower than the velocity limit
V will lead to coagulation, as grains are expected to bounce, and
not to stick, at higher velocities (see Sect. 2.5).

2.8.1. Turbulence alone

To express the coagulation kernel in the case where only turbu-
lence accelerates dust grains, we follow the approach by Flower
et al. (2005). We assume that the grains relative velocities along
x, and y and z are Gaussian variables of variance ∆V2

P,T/3 where
∆VP,T is the rms relative velocity between the target and the pro-
jectile (see Sect. 2.6.1), and only account for collisions with a
relative velocity smaller than the velocity limitV. In this frame,
the demonstration by Flower et al. (2005) can be extended to the

2 |Vn − uk | ' |Γk |/
√

1 + Γ2
k VAD if we do not neglect this second term

of the velocity, perpendicular to the direction of the collapse. Calcula-
tions show that our results are little affected by this approximation that
decreases the value of VAD when Γ< 1, once small grains have already
been removed by coagulation.

general case of grains of different sizes (and therefore velocities),
with the same result:

〈∆v〉

∆VP,T
=

1
∆VP,T

∫ V

0
v f (v) dv=

√
8

3π

(
1 −

(
1 + χ2

)
e−χ

2)
, (18)

with χ ≡
√

3/2V/∆VP,T.

2.8.2. Turbulence and systematic velocity added in
quadrature

If we assume for simplicity that the presence of ambipolar diffu-
sion does not change the nature (hydrodynamic) of the turbulent
cascade, Eq. (18) can be generalized to the case of turbulence
velocities in the presence of a systematic differential veloc-
ity µ added in quadrature to the turbulent velocity of standard
deviation ∆VP,T (see the demonstration in Appendix C)

〈∆v〉

∆VP,T
=

1
√

3π/2

e−ξ2
−

e−(χ−ξ)2 [
1 +

χ
ξ

]
+ e−(χ+ξ)2 [

1 − χ
ξ

]
2


+

1
√

3/2

(
ξ +

1
2ξ

)
h(χ, ξ) , (19)

with ξ ≡
√

3/2 µ/∆VP,T, h(χ, ξ) ≡ erf (ξ) − erf (χ+ξ)−erf (χ−ξ)
2 and

erf the error function.

3. Grain charge, ionisation balance and plasma
MHD resistivities

The charging of grains is, in dense clouds, a prerequisite to solve
the ionisation of the plasma.

3.1. Charging processes

As per Guillet et al. (2007), the grain charge is computed
accounting for: (1) the collection of thermal electrons, with
sticking coefficient se = 0.5 (a value which is not taken to be
1 owing to the non-planar nature of dust grains, see Draine &
Sutin 1987); (2) the collection (and subsequent recombination)
of thermal ions, with sticking coefficient si = 1; 3) the photoelec-
tric detachment of electrons by Cosmic Rays-induced secondary
photons (see Sect. 3.2). If we momentarily ignore the photoelec-
tric detachment of electrons, the mean grain charge is primarily
controlled by the ratio of electrons and ions fluxes, by the ratio
me ne/(mi ni), where me is the electron mass and mi the mean ion
mass.

The DUSTDaP code can integrate the charge distribution f (Z)
as well as the mean charge 〈Z〉 of a grain (Guillet et al. 2007).
The charge distribution of large grains (a > 0.25 µm) is almost
Gaussian and can therefore be approximated by its mean charge
〈Z〉. Small grains (a< 0.25 µm), however, have a non-Gaussian
charge distribution, centred around Z =−1, and intrinsically
discrete in nature. Being the dominant charge carriers among
grains, their full charge distribution must be integrated (Guillet
et al. 2007).

Figure 4 presents the charge distribution of grains before
the collapse starts (nH = 104 cm−3). Grains are on average neg-
atively charged, with a mean charge number 〈Z〉 ' −1. The
charge distribution is not Gaussian, being skewed towards posi-
tive values due to the photoemission of electrons by impinging
secondary UV photons (see the next section). The larger the
grain, the more positive its charge number Z. This is due to the
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Fig. 4. Grain charge distribution f (Z) for four representative grains sizes
a in the cloud envelope (nH = 104 cm−3, T = 10 K, ζ = 5 × 10−17 s−1).
The non-Gaussian tails at positive charges is the result of photoemission
by CR-induced secondary UV photons (see Sect. 3.2).

fact that the coulombian enhancement of the grain cross-section
σ̃= 1 + Ze2/akBT (Spitzer 1941; Draine & Sutin 1987) for the
capture of an electron at temperature T by a grain of radius a and
charge Z decreases with a when the grain is positively charged,
while the photoemission yield is almost independent of a and Z
(Weingartner & Draine 2001).

The density of ions is calculated as the sum of the den-
sity of positively charged (molecular and atomic) gas species.
Knowing the charge of each grain size, the density of free elec-
trons can then be derived from the electroneutrality equation:
ni − ne +

∑
k nkZk = 0, where nk and Zk are the grain density and

the mean grain charge in bin k, respectively.

3.2. Update of the ionisation rates by cosmic rays

The supra-thermal electrons generated by cosmic rays excite H2
molecules, which relaxe by producing UV photons, which are
called secondary to differentiate them from primary starlight UV
photons. Since Flower & Pineau des Forêts (2003), we updated
the ionisation rates by cosmic rays using the new tables pro-
vided by Heays et al. (2017). The cross-section per unit volume
to secondary photons for gas and dust particles are:

〈nσ̂〉secpho
gas =

Nspecies∑
j = 1

γ j

0.15

( T
300

)α j

× 2× 10−21 , (20)

〈nσ̂〉secpho
dust =

Nbins∑
k = 1

nk σ̂k Qabs(ak, 10 eV) . (21)

The total cross-section to secondary photons, 〈nσ̂〉secpho
gas +

〈nσ̂〉secpho
dust , depends on the size distribution of dust grains, as

well as on the gas content. It is, however, dominated by dust,
as usually assumed (Gredel et al. 1989). Since the ionisation
rates were provided by these authors under the assumption of
an MRN size distribution, each ionisation rate γ j for the gas
specie j (Eq. (20)) must be multiplied by the correcting factor
2× 10−21 nH/

(
〈nσ̂〉secpho

gas + 〈nσ̂〉secpho
dust

)
, to adapt to the evolving

size distribution in the collapsing core. Similarly, for the grain
charging, Eq. (4) of Guillet et al. (2007) must be adapted by
replacing 〈nσ̂Qabs〉 at the denominator by 〈nσ̂〉secpho

gas + 〈nσ̂〉secpho
dust .
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Fig. 5. Characteristical timescales as a function of the proton density,
for the larger and smaller dust grain of the initial size distribution (of
radius 0.22 and 0.015 µm respectively): gyration timescale (τgyr), stop-
ping timescale τdrag, and charge fluctuation timescale (τZ), compared to
the free-fall timescale τff .

3.3. Charge fluctuations

Grain charge fluctuates due to the stochastic nature of the grain
charging processes. The timescale of charge fluctuations is larger
for small grains than for large grains, owing to the reduced geo-
metric cross-section of the latter. According to Yan et al. (2004),
it is

τZ =
Var(Z)∑

Z f (Z)×
(
Je(Z) + Ji(Z) + Jpe(Z)

) , (22)

where Z is the grain charge number, Var(Z) is the variance
of the charge distribution, and Je(Z), Ji(Z), and Jpe(Z) are the
rates for electron collection, ion recombination on the surface
of grains, and photoelectric detachment by secondary photons,
respectively (see Sect. 3.1).

In Fig. 5, we show that the charge fluctuation timescale is
smaller than the dynamical time of the collapse τff , and also
smaller than the grain Larmor timescale τgyr = 1/ω for all grain
radius considered here and at all gas densities. The charge fluctu-
ation timescale is also smaller than the stopping timescale τdrag
for large grains, but not for small grains (a = 10 nm) at densi-
ties higher than 108 cm−3. As we shall see, those grains have
already been removed by coagulation when this condition is not
met anymore. We will therefore ignore charge fluctuations in our
study.

3.4. Hall factor for electrons, ions and grains

Let j be a particular species (ion, electron, or grain), τ j its stop-
ping time, ω j its Larmor pulsation, and Γ j =ω j τ j its Hall factor.
Following Marchand et al. (2016), we have:

τ j =
1

a j He

m j + mH2

mH2

1
nH 〈σ̂v〉 j

, (23)

ω j =
q j B/c

m j
, (24)

Γ j =ω j τ j . (25)

The factor a j,He accounts for collisions with helium atoms and
is equal to 1.14 for ions, 1.16 for electrons and 1.28 for grains
(Desch & Mouschovias 2001).
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The Hall factor Γ j expresses the degree of coupling of the
particle to the magnetic field. Its value is very high for elec-
trons and ions (Γe � Γi � 1). For grains in our core collapse,
Γ j ∝ B/

(
a2 nH

)
where a is the grain size. Grains therefore tend

to decouple from the magnetic field as nH increases during the
collapse. Grain coagulation increases this trend by increasing
the grain size a, and so does ice accretion by increasing a and
decreasing the grain specific density µdust.

3.5. Plasma conductivities and resistivities

We note3 σ the conductivity of a charged fluid. The conductivity
σ j of the species j is by definition

σ j = n j

q2
j

m j
τ j . (26)

We note the useful relation
σ j

Γ j
=

n j q j

B/c
. (27)

The parallel, perpendicular and Hall conductivites of the
plasma have the following expressions (e.g. Marchand et al.
2016)

σ‖ =
∑

j

σ j , (28)

σ⊥ =
∑

j

σ j
1

1 + Γ2
j

, (29)

σH = −
∑

j

σ j
Γ j

1 + Γ2
j

, (30)

where the sum is done over all charged species, namely electrons,
ions and grains of all sizes.

The Ohmic (parallel) conductivity is dominated by electrons,
the most mobile particles. The perpendicular conductivity is
dominated by the particles with low values of Γ, that is to say
by the particles the least coupled to the magnetic field, which are
here dust grains.

We now derive approximate expressions for the Hall con-
ductivity σH building on the fact that electrons and ions are
strongly coupled to the magnetic field with Γe � Γi � 1. In
the absence of dust grains, using the electroneutrality equation
Eq. (30) becomes

(σH)nodust '
ni e
B/c

1
Γ2

i

∝ ni
n2

H

B3 . (31)

In the presence of charged grains,

σH '

∑
k nk Zk/

(
1 + Γ2

k

)
B/c

. (32)

The Hall conductivity is therefore controlled by the abundance
and sizes of dust grains.

The Ohmic, Hall and ambipolar diffusion resistivities write
(Marchand et al. 2016)

ηΩ =
1
σ‖

, (33)

3 Not to be confused with the collisional cross-sections of gas and dust
particles, which are denoted σ̂, σ̂k etc.

ηH =
σH

σ2
H + σ2

⊥

, (34)

ηAD =
σ⊥

σ2
H + σ2

⊥

−
1
σ‖

. (35)

4. Results

We now present our results for the evolution of the grain size
distribution, plasma ionisation, and MHD conductivities and
resistivities during the collapse of a spherical core for different
scenarios of dust dynamics and evolution. In our standard model,
the initial density is nH,0 = 104 cm−3, the initial size distribution
is the MRN covered by a 8.8 nm ice mantle, representing a total
of 0.9% of the gas mass (see Sect. 2.1). The collapse timescale
is the free-fall timescale τff computed at a density nH,0, and the
cosmic ray ionisation rate is ζ = 5× 10−17 s−1, taken to be con-
stant through the collapse. Before entering into the details of
the feedback of dust coagulation on the MHD properties of the
collapsing core, we recall what would happen without dust.

4.1. Collapse without dust

Figure 6 presents the variation of the ionisation fraction, MHD
conductivities and resistivities with the gas density during the
collapse, for a plasma without dust. The ionisation fraction (left
panel) results from an equilibrium between the recombination of
ions in the gas phase (at a rate ∝ n2

i ) and the ionisation by CRs
(at a rate ∝ ζ nH), leading to(

ni

nH

)nodust

∝

√
ζ

nH
. (36)

Without grains, gas species cannot deplete, and heavy ions like
S+ and Fe+ remain the main ions through the collapse.

The centre panel of Fig. 6 shows the monotonic evolution
of the perpendicular and Hall plasma conductivities. As Γe �

Γions � 1, the plasma perpendicular conductivity is that of ions,
and is therefore proportional to the ion density ni. Combining
Eqs. (4) and (31), the Hall conductivity σH is found to be propor-
tional to the gas density nH. These scaling are well reproduced
in the centre panel of Fig. 6. The Hall conductivity is posi-
tive because the particles the less coupled to the magnetic field
(here ions) are positively charged. We note that the perpendicular
conductivity is higher than the Hall conductivity at all densities.

Regarding the plasma resistivities (Fig. 6, right panel), the
ambipolar diffusion resistivity is dominating the Hall and Ohmic
at all densities below 1010 cm−3. Our model reproduces the
expected relations inferred from Eqs. (28)–(35) in the absence
of dust grains: ηΩ ∝ nH/ne, ηH ∝ n2

H/(B
3 ni) (constant in our

collapse model because B ∝
√

nH and ni ∝
√

nH), and ηAD ∝

1/ni.

4.2. Collapse without coagulation

We now compare the predictions for two kind of models with
dust but without coagulation: (1) an MRN size distribution
(5−250 nm), and (2) a truncated-MRN (100−250 nm) which has
∼103 times fewer grains than the MRN. All grains in the parent
cloud are covered by icy mantles, 8.8 nm thick for the former,
and 50 nm thick for the latter. The truncated-MRN, which was
proposed by Zhao et al. (2016), can be considered as a dust model
where the removal of small grains would have already happened
in the parent cloud before the collapse.
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Fig. 6. Results for a model without dust. Left: fractional abundances of ions ni/nH and electrons ne/nH together with the fractional abundance of
the dominant ions Fe+ and S+. Centre: perpendicular (σ⊥) and Hall (σH) conductivities. Right: Ohmic (ηO), Hall (ηH) and ambipolar diffusion
(ηAD) resistivities. Asymptotic trends are over-plotted in dotted lines (see text for a derivation of those expressions). Horizontal lines are added to
help the reader estimate the plasma resistivities for a given proton density.
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Fig. 7. Results for our models without dust evolution, with truncated-MRN (100−250 nm) (top) and MRN (5−250 nm) (bottom) size distribu-
tions, both covered by icy mantles. Left: evolution of the fractional abundances of charged species: ions, electrons, negative charges (g-) and
positive charges (g+) on grains. Centre: evolution of the dust parallel conductivity (σg‖), dust perpendicular conductivity (σg⊥), ion perpendic-
ular conductivity (σi⊥) and Hall conductivity (σH). Scalings in powers of nH are over-plotted in dotted lines for an easier comparison of our
numerical results with the asymptotic trends described in Sect. 4.1). Right: evolution of the Ohmic (ηΩ), Hall (ηH), and ambipolar diffusion (ηAD)
resistivities.

Figure 7 presents our results for the MRN (bottom row) and
truncated-MRN (top row) case. In the presence of dust grains,
the ionisation fraction (left column) is not only determined by the
CR ionisation rate and the density, but also by the total surface
carried by dust grains which serve as a catalyst for ion recombi-
nation. This explains why the ionisation fraction is one order of
magnitude smaller in the MRN case than in the truncated-MRN
case, which is itself much smaller than the no-dust case. The
fractional abundance of negative grains remains almost constant
with the density, while the ionisation fraction decreases with the
density. As a consequence, there appears a shortage of free elec-
trons leading to a situation where dust grains become the main
charge carrier and dominate the ionisation, a situation known
as a dust-dust plasma where ne = ni/

√
mi/me remains constant

(Ivlev et al. 2016). The higher the number of grains, the ear-
lier this shortage appears: from nH = 106 cm−3 for the MRN case

and from nH = 1011 cm−3 for the truncated-MRN case. In such
a situation, the mean grain charge is not constant anymore and
progressively converges towards zero.

The total perpendicular conductivity of the plasma, sum of
that of ions and dust grains (Fig. 7, centre column), is a key
ingredient to understand the evolution of non-ideal MHD effects
during the collapse (see Eqs. (34) and (35)). Before the collapse
starts, the total perpendicular conductivity of the plasma is lower
in the MRN case than in the truncated-MRN case, which is itself
lower than in the no-dust case. This is consequence of the fact
that the total conductivity is dominated by ions, the density of
which is anti-correlated with the abundance of small grains. To
analyse the evolution of the plasma conductivities as the density
increases during the collapse, we must distinguish two asymp-
totic regimes in the coupling of dust grains to the magnetic field
determined by their Hall factor Γ ∝ B/(nH a2):
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Strong coupling (Γ � 1, small grains or low density).(
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Weak coupling (Γ � 1, large grains or high density).
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nk Z2
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σ̂k
(39)

(σH)Γ�1 ∝
1
B

∑
k

nk Zk ∝
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B
. (40)

The transition from the strong to the weak coupling regime
happens when the mean, density-weighted, grain Hall factor is
close to 1. When dust grains are strongly coupled to the mag-
netic field (Γk � 1), the total perpendicular conductivity of dust
grains σg⊥ approximately scales as nH while the ion perpendic-
ular still scales as ni, more slowly with the density. When dust
grains are weakly coupled to the magnetic field (Γk � 1), the
dust perpendicular conductivity σg⊥ is equal to the dust parallel
conductivity σg‖, and therefore only depends on the grain mean
charge if the size distribution is kept fixed.

These two different regimes can explain the differences in
the evolution of the plasma conductivities observed between
the MRN (where initially Γ � 1) and truncated-MRN (where
Γ � 1) cases. Overall, the conductivities of the plasma increase
faster with the density in the MRN case than in the truncated-
MRN case, becoming higher for nH ≥ 106 cm−3 despite a lower
initial value in the parent cloud. The large (a ≥ 0.1 µm) grains of
the truncated-MRN case are already weakly coupled to the mag-
netic field at the beginning of the collapse. Furthermore, their
charge remains almost constant during the collapse because the
ratio ne/ni is itself constant (see left panel and Sect. 3.1). As a
consequence, the dust perpendicular conductivity remains con-
stant in the truncated-MRN case and is totally negligible at all
densities compared to the ions perpendicular conductivity. The
conductivities and resistivities are therefore very similar to the
no-dust case regarding their evolution trends with the gas den-
sity, only differing in their amplitude which is a function of the
ionisation degree of the plasma. On the contrary in the MRN
case that entails a high abundance of small, strongly coupled,
grains, the perpendicular conductivity initially dominated by
dust grains first increases proportionally to the density. Then, as
soon as the depletion of electrons appears, the mean grain charge
converges towards zero which severely decreases the perpendic-
ular conductivity of dust grains (Fig. 7 for densities between 108

and 1010 cm−3). The dust perpendicular conductivity eventually
becomes lower than the ions perpendicular conductivity, reach-
ing a plateau when the charge distribution is stabilized (Fig. 7,
left panel, nH ≥ 1011 cm−3 ).

The Hall conductivity, like the perpendicular conductivity,
is affected by the degree of coupling of dust grains with the
magnetic field. When dust grains are strongly coupled to the
magnetic field, the Hall conductivity strongly increases with
the density, scaling approximately as n3/2

H (Eq. (38) ignoring
variations in the grain charge Zk). This is what is observed at
low density in the MRN case. When grains decouple from the
magnetic field at higher density, the Hall conductivity does not
increase so fast, or even decrease. In the truncated-MRN case we

get σH ∝ n1/2
H (Eq. (40) with nk Zk ∝ nH), while in the MRN case

the dusty plasma regime yields σH ∝ n−1/2
H (Eq. (40) with ne − ni

remaining constant, see Fig. 7 centre bottom panel).
The right panels of Fig. 6 shows the evolution of the plasma

MHD resistivities for the MRN and truncated-MRN cases.
Before the collapse starts, the Hall and ambipolar diffusion
resistivities are higher in the MRN case than in the truncated-
MRN case (and are higher in the truncated-MRN case than in
the no-dust case) because, as explained above, the presence of
small grains tends to decrease the ion density and therefore the
ion conductivity. As the collapse proceeds the situation, how-
ever, reverses. Regarding the scaling of the resistivities with
the density, the truncated-MRN case is similar to the no-dust
case (Fig. 6 and Sect. 4.1) because the perpendicular conduc-
tivity is dominated by ions all through the collapse (σ⊥ ∝ ni).
In the MRN-case at densities lower than 109 cm−3 (σ⊥ ∝ nH),
the perpendicular conductivity is dominated by dust grains. As
a consequence, the Hall and ambipolar diffusion resistivities
decrease more steeply with the density: ηAD ' 1/σ⊥ ∝ 1/nH and
ηH ' σH/σ

2
⊥ ∝ 1/

√
nH. These distinct scalings result in values

of the MHD resistivities at intermediate densities (108 cm−3) that
can be a factor of 10 to 100 lower in the MRN case than in the
truncated-MRN case despite a higher value in the parent cloud,
with the value for the Hall resistivity eventually exceeding that
of ambipolar diffusion for densities higher than ∼108 cm−3 in the
MRN case.

Overall, these results are in good agreement with those of
Marchand et al. (2016), an other model based on an MRN size
distribution without dust evolution (see their Figs. 3 and 5), and
also those of Zhao et al. (2016) who found a reduced magnetic
braking for a truncated-MRN distribution compared to an MRN
distribution.

4.3. Collapse with accretion and coagulation

We now turn to the effect of grain evolution, namely ice accretion
and grain–grain coagulation, onto the grain size distribution and
onto the MHD properties of the plasma. Figure 8 presents our
results for three different scenarios of the dust velocity field: (1)
turbulence only, (2) ambipolar diffusion only, and (3) turbulence
and ambipolar diffusion (see Sect. 2.6 for a description of grain
dynamics by turbulence and ambipolar diffusion).

The first row of Fig. 8 presents the evolution of the size dis-
tribution of grain cores (i.e. of the refractory part of the grain,
covered by icy mantles) during core collapse when dust coagu-
lation and ice accretion are activated. In the early stage of the
infall (Fig. 8, nH < 106 cm−3), coagulation removes small grains
by sticking them onto large grains. This does not, however, sig-
nificantly change the upper limit of the grain size distribution.
The removal of small grains is faster when the effect of ambipo-
lar diffusion on grain velocities is included (centre and right)
because in that case, unlike with turbulence, small grains decou-
ple from the gas, and therefore also from the large grains which
follow the gas. Depending on the density, this decoupling is
more intense along B or perpendicular to B (see Fig. 3). We
note that, to compare our results with the truncated-MRN, the
disappearing of grains smaller than 0.1 µm only happens late in
the collapse (nH ≥ 1010 cm−3). When the acceleration of dust
grains by turbulent eddies is included (left and right), grain
growth proceeds rapidly, the grain size distribution becoming
more and more dominated by a single size approaching ∼10 µm
at nH = 1012 cm−3. To summarise, turbulence makes grain grow
in size at later times but only slowly removes small grains, while
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Fig. 8. Results for our standard model with grain accelerated by turbulence only (left) ambipolar diffusion only (centre), and both mechanisms
(right). From top to bottom: dust size distribution at increasing densities, total dust cross-section per H (with our results for the truncated-MRN
model over-plotted), ionisation, conductivities and resistivities. See Fig. 7 for a description of the last three rows.
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ambipolar diffusion efficiently removes smaller grains at early
times but does not allow the grain size to increase significantly.
In Sect. 5.4, we compare our results for the grain growth rate
with the others studies.

The second row of Fig. 8 presents how the total geometrical
cross-section of grains evolves during the collapse. The total dust
cross-section is a key ingredient of the plasma physics because
it controls the recombination rate of ions and the perpendicular
conductivity of dust grains (see Eq. (37)), which usually domi-
nates the total perpendicular conductivity. Starting with values
characteristic for the MRN size distribution already covered by
a 8.8 nm ice mantle (see Sect. 2.1), the total dust cross-section
first slightly increases through the growth of icy mantles on the
surface of grains (nH ≤ 2 × 104 cm−3), a process that is fast
enough to complete before any significant coagulation through
grain–grain collisions has occurred. Once started, grain–grain
coagulation systematically decreases the total dust cross-section.
When drift velocities by ambipolar diffusion are included, the
faster removal of small grains accelerates this process at low den-
sities (nH ≤ 106 cm−3). Still, it is only when the acceleration of
grains by turbulence is included that the total dust cross-section
keeps on decreasing all through the collapse (nH ≥ 106 cm−3).
The dust size distribution reaches total cross-sections per H that
are comparable to that for our truncated-MRN only late in the
collapse (nH ∼ 109−1010 cm−3).

The third row of Fig. 8 shows how the total number of
negative charges carried by grains is affected by grain–grain
coagulation. Unlike in the case without coagulation (Fig. 7),
grains never become the dominant charge carrier characteristic
of a dusty plasma (see Sect. 4.2). The ionisation is always dom-
inated by ions, though we can observe at high densities (from
nH ≥ 107 cm−3) a small depletion of free electrons, character-
istic for a dust-ion plasma (Ivlev et al. 2016), when ambipolar
diffusion drift velocities are ignored.

The fourth row presents the evolution of the parallel, per-
pendicular and Hall conductivities of the plasma. The total
parallel conductivity (not shown) is high and always controlled
by the electron density. As explained in the previous section,
the perpendicular conductivity is dominated by dust grains at
low densities, and ions at high densities. The density threshold
between these two regimes depends on the abundance of the
smaller grains, which are the last grains to decouple from the
magnetic field as the density increases. For an initial MRN distri-
bution, this transition happens at low density when the removal
of small grains is efficient, as it is the case when grain drift
velocities are included (nH ' 106−107 cm−3), and at high densi-
ties (nH ' 109−1010 cm−3) when only turbulence is considered
or, similarly, when coagulation is ignored (Fig. 7). From this
analysis, we conclude that an efficient removal of small grains
stops the increase in the Hall and ambipolar diffusion conduc-
tivities with the density, while the growth of large grains does
not in itself affect these conductivities. When the density is high
enough, or the mean grain size high enough, the Hall conductiv-
ity can change from being negative to being positive, implying
that the plasma Hall conductivity is then dominated by ions.

The bottom row presents the evolution of the Ohmic, Hall
and ambipolar diffusion resistivities with the density. The
removal of small grains limits the drop of the Hall and ambipolar
diffusion resistivities with the density, increasing their values by
a factor of 10–100 compared with models where the coagulation
is only triggered by turbulent velocities (left panel), or with mod-
els with an MRN distribution and no coagulation at all (Fig. 7,
bottom row). Comparing the amplitude of MHD resistivities in
the MRN-case with coagulation and ambipolar diffusion drift
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Fig. 9. Impact of the initial value of the ambipolar diffusion velocity on
the evolution of the MHD resistivities with the density. Both turbulent
and drift velocities are included.

velocities (Fig. 8) and in the truncated-MRN case without coag-
ulation (Fig. 7), the ambipolar diffusion resistivities have similar
values at intermediate densities (nH ∼ 108 cm−3) while the Hall
resistivity remains at least one order of magnitude higher in the
former than in the latter case at densities lower than ∼109 cm−3.
At a density of 108 cm−3, the MHD properties of the model with
coagulation and of the truncated-MRN model still differ sig-
nificantly, being dominated by dust for the former, and by ions
for the latter. To obtain high values for the Hall and ambipo-
lar diffusion resistivities necessary to the formation of a larger
disk, it may therefore not be necessary to assume, as per the
truncated-MRN model, that all grains smaller than 0.1 µm have
been removed by coagulation in the parent cloud before the col-
lapse: removing only parts of those grains through grain–grain
coagulation should also achieve it if this happens early in the
collapse, as is the case when grain drift velocities generated by
ambipolar diffusion are included.

Figure 9 summarises our results concerning the influence
of the efficiency in the removal of small grains on the profiles
of the plasma resistivities. We present our results for 5 models
starting with the same MRN distribution covered by ices, dif-
fering only by the initial (i.e. in the parent cloud) value V ref

AD
of the ambipolar diffusion velocity, from 0 to 20 m s−1. The
value V ref

AD of the ambipolar diffusion velocity is used here as
a way to control the efficiency in the removal of small grains. It
can also be considered as a way to quantify the balance in the
competition between coagulation and fragmentation of grains in
higher velocity impacts, that we remind is not included in this
work. From Fig. 9, we see that the more efficient the removal
of small grains, the higher the Hall and ambipolar diffusion
resistivities at intermediate densities (106 < nH < 109 cm−3), here
again confirming the results obtained by Zhao et al. (2016).
This trend, opposite to what was observed in the parent cloud
(see Sect. 4.2), is observed whenever the plasma perpendicular
conductivity is dominated by dust grains, and not ions. Our con-
clusions regarding the evolution of the magnitude of the MHD
resistivities during the collapse with dust coagulation therefore
drastically depend on the detailed dynamics of small grains,
and on the competition between coagulation and fragmentation
(see Sect. 5.1 for a discussion of the modelling of grain–grain
fragmentation in core collapse).
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Fig. 10. Impact of the CR ionisation rate ζ on the evolution of the MHD
resistivities with the density for a model with relative velocities gener-
ated by turbulence (top), and turbulence and ambipolar diffusion with
V ref

AD = 20 m s−1 (bottom).

4.4. Influence of the cosmic ray ionisation rate

The ionisation level, and therefore the MHD conductivities and
resistivities, are not only controlled by the grain size distribution,
but also by the cosmic ray ionisation rate ζ. In Fig. 10, we present
the evolution of the ionisation level and MHD resistivities for
four values4 of the cosmic ray ionisation rate ranging from 5 ×
10−19 to 5 × 10−16 s−1, and two coagulation scenarios (turbulent
velocities versus turbulent and ambipolar diffusion velocities)
corresponding to an inefficient versus efficient removal of small
grains, respectively. We recall that, for simplicity, the parame-
ter ζ is kept constant through the collapse, a limit in our model
that we discuss in Sect. 5.2. Figure 10 shows that, as expected,
low values of the cosmic ray ionisation rate tend to produce
high Hall and ambipolar diffusion MHD resistivities when the
dust perpendicular conductivity is negligible compared to that
of ions, but have almost no impact when the dust perpendicular
conductivity dominates over that of ions.

By modifying the ionisation level, the variation of ζ in turn
affects the coupling of the magnetic field with the gas, and there-
fore the ambipolar diffusion velocity. Figure 11 presents the

4 This interval of values ignores the possible contribution of local
sources of cosmic rays like supernova remnants (Vaupré et al. 2014) or
young stars (Ceccarelli et al. 2014). In these environments ζ can increase
up to ∼10−14/−15 s−1.
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Fig. 11. Ambipolar diffusion velocity VAD as a function of the density,
for different values of the CR ionisation rate ζ and, for clarity, the same
initial value in the parent cloud V ref

AD = 20 m s−1. Calculations were done
for our scenario with turbulent and ambipolar diffusion drift velocities.
The scenario without dust evolution is added for reference.

evolution of VAD with the density for different values of the cos-
mic ray ionisation rate and, for clarity, for the same initial value
V ref

AD = 20 m s−1 of the ambipolar diffusion velocity in the par-
ent cloud, meaning that we are interested by the relative, not
absolute, evolution of VAD for different values of ζ. We now
build on our analysis of the dependence of VAD presented in
Sect. 2.6.2. For ζ = 5× 10−16 s−1, the ionisation fraction is so
high that the dust term at the denominator of Eq. (17) is neg-
ligible compared to the ion term and VAD is therefore almost
constant. For lower values of ζ, the dust term tends to dominate
over the ion term, leading to VAD ∝ 1/

√
nH at low density. Once

the total dust cross-sections has significantly dropped through
grain–grain coagulation and dust grains have started to decouple
from the magnetic field lines (Γk ' 1, Eq. (17)), VAD starts to
increase. At high density, the dust term has become negligible
and VAD ∝ 1/

√
ζ. The scenario without dust evolution follows

the same trends at low density. At high density, the ion density
remains constant and grains become neutral on average (Fig. 7),
leading to the asymptotic behavior VAD ∝

√
nH.

5. Discussion

In this section, we discuss some limitations in our modelling that
may affect our conclusions, and some perspectives of our work.

5.1. Impact of fragmentation in grain–grain collisions

For reason of simplicity, our modelling of the evolution of the
dust size distribution ignores the possibility that the colliding
grains would fragment each other, partially or totally, in the col-
lision. This is a strong hypothesis that is probably not justified.
While the fragmentation of solid particles necessitates relative
velocities on the order of a few km s−1 (Tielens et al. 1994) which
most probably do not exist in dense clouds (Ormel & Cuzzi
2007; Yan et al. 2004), the fragmentation of porous aggregates
can happen at much lower velocities (a few m s−1) which are rel-
evant for study of grain growth in dense clouds (Weidenschilling
& Ruzmaikina 1993; Ormel et al. 2009). We note that, unlike for
solids, the outcome of the collision of two aggregates is not a
function of the relative velocity but of the energy involved in the
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collision and on the sizes of the aggregates (Dominik & Tielens
1997).

If the fragmentation process is efficient under the conditions
that govern the dynamics of dust grains in collapsing clouds, it
will strongly enhance the abundance of the smaller grains of the
size distribution, and therefore drastically affect the ionisation
balance and the MHD resistivities of the plasma (see Sect. 4).
The effect of fragmentation of small aggregates made of very
small monomers is expected to be so important for the resis-
tivities of the collapsing cloud that it deserves a study in itself.
Asymptotically, we expect the competition of fragmentation and
coagulation to lead to evolutionary paths somewhere in between
the “no evolution” and coagulation scenarios presented in this
article.

There is currently no model available describing the out-
come of a collision between two aggregates composed of small
(between 5 and 250 nm) monomers, in particular for the propor-
tion of the grain mass that would be converted into very small
fragments. The DUSTDaP code can handle the fragmentation of
grains, but the physics encoded is not relevant to the fragmenta-
tion of aggregates but to the fragmentation of solids (threshold
velocity for fragmentation on the order of a km s−1, Tielens et al.
1994), as it must happen in interstellar shocks (Guillet et al.
2009, 2011). This possibility is not used in this article. A first
approach would be to keep this framework but use a low value
for the threshold velocity for fragmentation (on the order of a few
m s−1), or use a threshold in the impact energy as recommended
by Dominik & Tielens (1997).

5.2. Decrease in the cosmic ray ionisation rate ζ with the
density

For reason of simplicity again, we kept the cosmic ray ionisation
rate, ζ, constant throughout the collapse, though it is known from
observations that is tends to decrease with increasing column
density (Padovani et al. 2013). The overall effect of an hypo-
thetic decreasing value of ζ with the local density is to decrease
the ionisation fraction and to increase the MHD resistivities
(Fig. 10), though this is only an approximation as ζ depends on
the total column density encountered by cosmic rays during their
propagation, and not on the local density. The increase in the
resistivities that we infer from the follow-up of dust coagulation
in cloud collapse should therefore be reinforced by a decrease
in ζ during the collapse. We note, however, that the DUSTDaP
code computes all variables out-of-equilibrium, making it diffi-
cult to estimate from Fig. 10 the out-of-equilibrium response of
the plasma to a drop of ζ over a timescale much smaller than the
free-fall timescale. This aspect will be investigated in a future
work.

5.3. Grain dynamics

The impact of grain–grain coagulation on the dust size dis-
tribution is very much dependent on the model assumed for
the dynamics of dust grains. We have shown for example that
the grain velocities induced by hydrodynamical turbulence and
those generated by ambipolar diffusion result in very different
size distribution, grain growth rate, and feedback on the plasma
properties (Fig. 8). Using numerical simulations Pan & Padoan
(2015) have reevaluated the models of grain turbulent dynamics
for protostellar clouds and protoplanetary disks elaborated since
the pioneering work of Voelk et al. (1980). They demonstrate
that these models generally over-predict the rms velocity of dust
grains by a factor of two. They also show that such dynamics

ignore the enhancement of the coagulation rate induced by the
increase in the dust-to-gas ratio (an effect caused by the clus-
tering of dust grains, confirmed by other numerical studies, see
Hopkins & Lee 2016; Lee et al. 2017; Lebreuilly et al. 2019).
Luckily, these two sources of errors cancel out for certain grain
sizes, revealing a overall good agreement between the Pan &
Padoan (2015) simulation and the Ormel & Cuzzi (2007) model.

Another source of uncertainty in the grain dynamics is the
nature of the turbulence assumed for the model (or for the
simulation): hydrodynamical (HD) or magnetohydrodynamical
(MHD). The model of grain dynamics used here (Ormel & Cuzzi
2007) is based on HD turbulence. Yan et al. (2004) developed a
model of grain dynamics under MHD turbulence. In this model,
grains are still accelerated by gas vortices, but these vortices are
not isotropic anymore because of the presence of the magnetic
field, affecting the dependence of the rms grain velocity with the
grain radius and gas density. Magnetic acceleration processes
such as gyro-resonance (a coupling between magnetic waves
and grain gyration, Yan et al. 2004) also bring their contribu-
tion to the total rms velocity of dust grains. The main difference
between these MHD (Yan et al. 2004) and HD (Ormel & Cuzzi
2007) models of grain dynamics is the magnitude of the rms
velocity, not so much its dependence on the grain radius and gas
density. Indeed, the injection velocity of the MHD turbulence is
assumed to be the Alfven velocity in Yan et al. (2004), which
is almost one order of magnitude higher than the sound velocity
used in the case of HD turbulence (see Sect. 2.6.1). This fac-
tor difference has a straightforward, proportional, effect on the
coagulation rate. The physics developed in Yan et al. (2004) is
mainly focused on the warm and diffuse phase of the ISM, with
an extension to the grain dynamics in dense clouds at the den-
sity of nH = 104 cm−3. This density is our initial density before
the collapse proceeds. For this reason, and also to facilitate com-
parisons of our results with other works of dust coagulation in
cores, we chose to study the impact of the dynamics produced
HD turbulence, not MHD turbulence. Still, our introduction of
ambipolar diffusion is already a first step towards the entire
inclusion of MHD aspects of grain dynamics, which we leave
for a future work.

5.4. Grain growth: comparison with other works

In this section, we compare our results regarding the grain
growth rate with other studies of dust coagulation in static and
collapsing cores. Figure 8 has shown that hydrodynamical turbu-
lence can, according to our calculations, make grain grow up to
∼1−10 µm in a free-fall time. Flower et al. (2005) obtained sim-
ilar results using another modified version of the Paris-Durham
shock code and an approach based on a equivalent, single size,
grain that grows in time. Other authors concentrating on grain
growth in grain–grain processes towards the building-up of very
large (mm) grains, found higher growth rates in their calcu-
lations (e.g. Weidenschilling & Ruzmaikina 1993; Ossenkopf
1993; Ormel et al. 2009). Coming after numerous detailed stud-
ies on the subject, we did not attempt in this paper to propose
a realistic study of grain growth in cores. Our intent was to
study the coupling between dust evolution and the ionisation
and resistivities of the plasma, concentrating on the evolution
of the smallest grains (a � 0.1 µm) of the size distribution that
a study of grain growth can reasonably ignore. Still, we can
make the following comments and comparison with these works.
Ossenkopf (1993) included in its modelling the follow-up of the
grain porosity, also adding the effect of gravitation on the grain
dynamics and coulombian effects on the grain–grain collision
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rate, but worked at constant density, and ignored fragmenta-
tion. Weidenschilling & Ruzmaikina (1993) considered fractal
grains, included other dynamical processes such as the dust set-
tling along the disk and a modelling of collisional fragmentation
of aggregates, and considered both static and collapsing cloud,
but like Ormel et al. (2009) ignored the evolution of grains
smaller than 0.1 µm. Ormel et al. (2009), with a more physical
description of the growth of aggregates through fragmentation,
coagulation and compaction, started with a single size distri-
bution of bare or ice-coated monomers of 0.1 µm. At constant
density, they obtain little grain growth on a free-fall timescale.
Over a longer timescale, higher growth rates are obtained as soon
as grain enter into a regime of self-enhanced coagulation gen-
erated by the increasing grain porosity. Overall, these studies,
which include a detailed description of the physics of evolution
of dust aggregates, generally find higher growth rates than in our
study, as expected (Ormel et al. 2009). Whether this regime of
high porosity exists or not in the presence of ambipolar diffu-
sion with a size distribution of monomers like here is an open
question. In any case, this higher growth rate, which is due to the
effect of aggregate porosity that we ignored here, is most prob-
ably not as essential to the calculation of the MHD resistivities
of the plasma as the effect of fragmentation that we also ignored
because fragmentation more than grain growth controls the num-
ber density of the smaller grains (see Sect. 5.1 for a discussion
on the importance of dust fragmentation in the evaluation of the
MHD resistivities of the collapsing cloud).

5.5. Can the magnetic flux be regulated by the abundance of
small grains ?

The feedback of dust coagulation onto the evolution of the
ambipolar diffusion velocity through the collapse (Eq. (17) and
Fig. 11) raises the possibility of the self-regulation of the mag-
netic flux in the parent cloud. The ambipolar diffusion velocity
scales with the square of the magnetic field intensity. A higher
value for the magnetic field intensity in the parent cloud therefore
tends to increase the value of VAD, which increases the coagula-
tion rate between small grains (coupled to the magnetic field) and
large grains (coupled to the gas). The removal of small grains
in turn decreases the coupling of the magnetic field with the
gas, leading to a loss of magnetic flux. The ambipolar diffu-
sion velocity then decreases, which stops the removal of small
grains. In particular, the process described here could limit the
magnetic intensity inside dense cores. This possibility, which
is described here only qualitatively, could be investigated using
MHD simulations by following the MHD dynamics and coag-
ulation of a simplified grain size distribution composed of two
fluids of grains (of 10 and 100 nm, for example) and building on
the recipes for the grain charges and ionisation equilibrium in a
dusty plasma from Ivlev et al. (2016).

6. Summary

In this article, extending the work by Marchand et al. (2016),
we studied how the evolution of the dust size distribution may
affect the MHD properties of a collapsing cloud. For this pur-
pose, we have used the DUSTDaP code, a numerical tool that
was designed to follow the evolution of the dust size distribu-
tion and its feedback on the evolution of the ionisation, chemical
content and dynamics of interstellar shocks (Guillet et al. 2011).
The code was amended to follow grain–grain coagulation in
an element of volume undergoing isothermal compression in a

free-fall collapse. For the simplicity of the analysis, we have for
the moment ignored the possible production of small grains by
fragmentation and craterisation in grain–grain collisions (Ormel
et al. 2009). The variation of the cosmic ray ionisation rate with
the column density (Padovani et al. 2013), an important factor
influencing the ionisation and resistivities of the plasma, was
also ignored.

We have considered two physical models for the grain
size-dependent relative velocities responsible for grain–grain
collisions and coagulation in the collapsing cloud: stochastic
velocities triggered by hydrodynamical turbulence (following
the recipe by Ormel & Cuzzi 2007), and systematic velocities
induced by ambipolar diffusion (following our approach of grain
dynamics in C-type shocks, Guillet et al. 2007). In the former
model small grains are coupled to the gas, while they are cou-
pled to the magnetic field and therefore decoupled from the gas
and from larger grains in the latter.

Here is what we find: In a first phase of the isothermal
collapse (nH = 104−108 cm−3), grain–grain coagulation primar-
ily removes small grains from the size distribution by sticking
them onto larger grains. This depletion process, which happens
faster and therefore sooner when ambipolar diffusion-induced
velocities are self-consistently taken into account, does not sig-
nificantly modifies the upper limit of the grain size distribution.
In a second phase (nH = 108−1012 cm−3), the mean grain size
increases from ∼0.1m to ∼10 µm owing to the large, turbulent-
induced, relative velocities between grains of comparable sizes
while ambipolar diffusion has no more impact on the grain
dynamics.

We have further studied the impact of grain–grain coagu-
lation onto the evolution of the ionisation, conductivities and
resistivities of the plasma, and therefore on the coupling of
the magnetic field with the collapsing gas. The presence of
small dust grains modifies the conductivities and resistivities of
the plasma both directly and indirectly; directly through their
own contribution to the conductivity, and indirectly through
their control over the ionisation fraction and therefore over the
conductivity of ions. If the total perpendicular conductivity is
dominated by ions (as is typically the case in the parent cloud),
removing small grains will decrease the Hall and ambipolar
diffusion resistivities. If the total perpendicular conductivity is
dominated by dust grains (as is the case during the collapse at
densities lower than ∼107 cm−3 when starting with an MRN size
distribution), removing small grains will on the contrary increase
the MHD resistivities.

Starting with an MRN size distribution in the parent cloud,
the amplitude increase in the Hall and ambipolar diffusion
resistivities induced by grain–grain coagulation depends on the
model of dust dynamics. It is stronger when the drift velocities
induced by ambipolar diffusion are taken into account than when
only turbulent velocities are considered. The ambipolar diffu-
sion (respectively Hall) resistivity is comparable (respectively
higher by one order of magnitude) in our model where dust
grains coagulate during the cloud collapse than in a toy model
without coagulation during the collapse where the removal of
grains smaller than 0.1 µm would have already happened in the
parent cloud (truncated-MRN size distribution, Zhao et al. 2016).
It is therefore likely that the disappearance of small grains due
to the differential velocity induced by ambipolar diffusion will
have a significant impact on the formation of planet-forming
disks. In particular it likely leads to the formation of somewhat
larger disks, even when starting with an MRN size distribution
in the parent cloud. Varying the uniform value assumed for the
CR ionisation rate ζ in the 5 × 10−19−5 × 10−16 s−1 range under
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the simplifying assumption that the ambipolar diffusion velocity
is constant in the parent cloud, we find that the Ohm resistiv-
ity (which is controlled by free electrons) is, as expected, very
sensitive to ζ, but that the Hall and ambipolar diffusion resis-
tivity are almost independent of it as long as the plasma total
perpendicular conductivity is dominated by dust grains.

Our study confirms that the MHD resistivities of the col-
lapsing core are very sensitive to the abundance of small grains,
and therefore to the mechanisms and grain dynamics that drive
their production and removal. The possible fragmentation of
aggregates in mutual collision being ignored in our analysis, the
modelling of the competition between the coagulation and frag-
mentation of dust grains appears to be the next important step
towards a consistent modelling of the feedback of dust evolution
on the MHD dynamics of a collapsing core.

Acknowledgements. We thank the referee for her/his comments that helped
improved the clarity of the manuscript. V.G thanks A. Ivlev and P. Lesaffre for
stimulating discussions. This work was supported by the Programme National
PCMI of CNRS/INSU.

References
Allen, A., Li, Z.-Y., & Shu, F. H. 2003, ApJ, 599, 363
Basu, S., & Mouschovias, T. C. 1995, ApJ, 453, 271
Ceccarelli, C., Dominik, C., López-Sepulcre, A., et al. 2014, ApJ, 790, L1
Chokshi, A., Tielens, A. G. G. M., & Hollenbach, D. J. 1993, ApJ, 407, 806
del Burgo, C., & Laureijs, R. J. 2005, MNRAS, 360, 901
Desch, S. J., & Mouschovias, T. C. 2001, ApJ, 550, 314
Dominik, C., & Tielens, A. G. G. M. 1997, ApJ, 480, 647
Draine, B. T., & Sutin, B. 1987, ApJ, 320, 803
Dzyurkevich, N., Commerçon, B., Lesaffre, P., & Semenov, D. 2017, A&A, 603,

A105
Flower, D. R., & Pineau des Forêts, G. 2003, MNRAS, 343, 390
Flower, D. R., Pineau des Forêts, G., & Hartquist, T. W. 1985, MNRAS, 216,

775
Flower, D. R., Pineau des Forêts, G., & Walmsley, C. M. 2005, A&A, 436,

933
Grassi, T., Padovani, M., Ramsey, J. P., et al. 2019, MNRAS, 484, 161
Gray, W. J., McKee, C. F., & Klein, R. I. 2018, MNRAS, 473, 2124
Gredel, R., Lepp, S., Dalgarno, A., & Herbst, E. 1989, ApJ, 347, 289
Guillet, V., Pineau des Forêts, G., & Jones, A. P. 2007, A&A, 476, 263
Guillet, V., Jones, A. P., & Pineau des Forêts, G. 2009, A&A, 497, 145
Guillet, V., Pineau des Forêts, G., & Jones, A. P. 2011, A&A, 527, A123
Hagen, W., Tielens, A. G. G. M., & Greenberg, J. M. 1983, A&A, 117, 132
Heays, A. N., Bosman, A. D., & van Dishoeck, E. F. 2017, A&A, 602, A105
Hennebelle, P., & Fromang, S. 2008, A&A, 477, 9
Hennebelle, P., Commerçon, B., Chabrier, G., & Marchand, P. 2016, ApJ, 830,

L8
Hily-Blant, P., Pineau des Forêts, G., Faure, A., & Flower, D. R. 2020, A&A, in

press, https://doi.org/10.1051/0004-6361/202038780
Hirashita, H. 2012, MNRAS, 422, 1263
Hopkins, P. F., & Lee, H. 2016, MNRAS, 456, 4174
Ivlev, A. V., Akimkin, V. V., & Caselli, P. 2016, ApJ, 833, 92
Jones, A. P., Fanciullo, L., Köhler, M., et al. 2013, A&A, 558, A62
Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128
Koga, S., Tsukamoto, Y., Okuzumi, S., & Machida, M. N. 2019, MNRAS, 484,

2119
Köhler, M., Ysard, N., & Jones, A. P. 2015, A&A, 579, A15
Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2011, ApJ, 733, 54
Kunz, M. W., & Mouschovias, T. C. 2009, ApJ, 693, 1895
Larson, R. B. 1969, MNRAS, 145, 271
Lebreuilly, U., Commerçon, B., & Laibe, G. 2019, A&A, 626, A96

Lee, H., Hopkins, P. F., & Squire, J. 2017, MNRAS, 469, 3532
Le Gal, R., Hily-Blant, P., Faure, A., et al. 2014, A&A, 562, A83
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2011, ApJ, 738, 180
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2013, ApJ, 774, 82
Li, Z.-Y., Banerjee, R., Pudritz, R. E., et al. 2014, Protostars and Planets VI

(Tucson, AZ: University of Arizona Press), 173
Marchand, P., Masson, J., Chabrier, G., et al. 2016, A&A, 592, A18
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Mellon, R. R., & Li, Z.-Y. 2008, ApJ, 681, 1356
Menon, G., & Pego, R. L. 2003, ArXiv eprints [arXiv:nlin/0306048]
Mizuno, H., Markiewicz, W. J., & Voelk, H. J. 1988, A&A, 195, 183
Nakano, T., Nishi, R., & Umebayashi, T. 2002, ApJ, 573, 199
Nishi, R., Nakano, T., & Umebayashi, T. 1991, ApJ, 368, 181
Ormel, C. W., & Cuzzi, J. N. 2007, A&A, 466, 413
Ormel, C. W., Paszun, D., Dominik, C., & Tielens, A. G. G. M. 2009, A&A, 502,

845
Ossenkopf, V. 1993, A&A, 280, 617
Padovani, M., Hennebelle, P., & Galli, D. 2013, A&A, 560, A114
Padovani, M., Ivlev, A. V., Galli, D., & Caselli, P. 2018, A&A, 614,

A111
Pagani, L., Steinacker, J., Bacmann, A., Stutz, A., & Henning, T. 2010, Science,

329, 1622
Pan, L., & Padoan, P. 2015, ApJ, 812, 10
Poppe, T., & Blum, J. 1997, Adv. Space Res., 20, 1595
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Smoluchowski, M. V. 1916, Z. Phys., 17, 557
Spitzer, Lyman, J. 1941, ApJ, 93, 369
Steinacker, J., Andersen, M., Thi, W. F., et al. 2015, A&A, 582, A70
Stepnik, B., Abergel, A., Bernard, J. P., et al. 2003, A&A, 398, 551
Tielens, A. G. G. M., McKee, C. F., Seab, C. G., & Hollenbach, D. J. 1994, ApJ,

431, 321
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S. 2015,

ApJ, 810, L26
Vaupré, S., Hily-Blant, P., Ceccarelli, C., et al. 2014, A&A, 568, A50
Voelk, H. J., Jones, F. C., Morfill, G. E., & Roeser, S. 1980, A&A, 85,

316
Weidenschilling, S. J., & Ruzmaikina, T. V. 1993, Lunar Planet. Sci. Conf., 1499
Weingartner, J. C., & Draine, B. T. 2001, ApJS, 134, 263
Wurster, J., Price, D. J., & Bate, M. R. 2016, MNRAS, 457, 1037
Yan, H., Lazarian, A., & Draine, B. T. 2004, ApJ, 616, 895
Yen, H.-W., Zhao, B., Koch, P. M., et al. 2018, A&A, 615, A58
Ysard, N., Abergel, A., Ristorcelli, I., et al. 2013, A&A, 559, A133
Ysard, N., Köhler, M., Jones, A., et al. 2016, A&A, 588, A44
Zhao, B., Caselli, P., Li, Z.-Y., et al. 2016, MNRAS, 460, 2050
Zhao, B., Caselli, P., & Li, Z.-Y. 2018, MNRAS, 478, 2723

1 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale,
91405 Orsay, France
e-mail: Vincent.Guillet@ias.u-psud.fr

2 Laboratoire Univers et Particules de Montpellier, Université de
Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, 34095
Montpellier Cedex 5, France

3 Université Paris-Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS,
91191 Gif-sur-Yvette, France

4 Laboratoire de Physique de l’Ecole normale supérieure, ENS,
Université PSL, CNRS, Sorbonne Université, Université de Paris,
75005 Paris, France

5 Observatoire de Paris, PSL University, Sorbonne Université,
LERMA, 75014 Paris, France

6 Université Lyon I, 46 Allée d’Italie, Ecole Normale Supérieure de
Lyon, Lyon, Cedex 07 69364, France

7 American Museum of Natural History, CPW at 79th, 10024 NY,
USA

A17, page 16 of 20

http://linker.aanda.org/10.1051/0004-6361/201937387/1
http://linker.aanda.org/10.1051/0004-6361/201937387/2
http://linker.aanda.org/10.1051/0004-6361/201937387/3
http://linker.aanda.org/10.1051/0004-6361/201937387/4
http://linker.aanda.org/10.1051/0004-6361/201937387/5
http://linker.aanda.org/10.1051/0004-6361/201937387/6
http://linker.aanda.org/10.1051/0004-6361/201937387/7
http://linker.aanda.org/10.1051/0004-6361/201937387/8
http://linker.aanda.org/10.1051/0004-6361/201937387/9
http://linker.aanda.org/10.1051/0004-6361/201937387/9
http://linker.aanda.org/10.1051/0004-6361/201937387/10
http://linker.aanda.org/10.1051/0004-6361/201937387/11
http://linker.aanda.org/10.1051/0004-6361/201937387/11
http://linker.aanda.org/10.1051/0004-6361/201937387/12
http://linker.aanda.org/10.1051/0004-6361/201937387/12
http://linker.aanda.org/10.1051/0004-6361/201937387/13
http://linker.aanda.org/10.1051/0004-6361/201937387/14
http://linker.aanda.org/10.1051/0004-6361/201937387/15
http://linker.aanda.org/10.1051/0004-6361/201937387/16
http://linker.aanda.org/10.1051/0004-6361/201937387/17
http://linker.aanda.org/10.1051/0004-6361/201937387/18
http://linker.aanda.org/10.1051/0004-6361/201937387/19
http://linker.aanda.org/10.1051/0004-6361/201937387/20
http://linker.aanda.org/10.1051/0004-6361/201937387/21
http://linker.aanda.org/10.1051/0004-6361/201937387/22
http://linker.aanda.org/10.1051/0004-6361/201937387/22
https://doi.org/10.1051/0004-6361/202038780
http://linker.aanda.org/10.1051/0004-6361/201937387/24
http://linker.aanda.org/10.1051/0004-6361/201937387/25
http://linker.aanda.org/10.1051/0004-6361/201937387/26
http://linker.aanda.org/10.1051/0004-6361/201937387/27
http://linker.aanda.org/10.1051/0004-6361/201937387/28
http://linker.aanda.org/10.1051/0004-6361/201937387/29
http://linker.aanda.org/10.1051/0004-6361/201937387/29
http://linker.aanda.org/10.1051/0004-6361/201937387/30
http://linker.aanda.org/10.1051/0004-6361/201937387/31
http://linker.aanda.org/10.1051/0004-6361/201937387/32
http://linker.aanda.org/10.1051/0004-6361/201937387/33
http://linker.aanda.org/10.1051/0004-6361/201937387/34
http://linker.aanda.org/10.1051/0004-6361/201937387/35
http://linker.aanda.org/10.1051/0004-6361/201937387/36
http://linker.aanda.org/10.1051/0004-6361/201937387/37
http://linker.aanda.org/10.1051/0004-6361/201937387/38
http://linker.aanda.org/10.1051/0004-6361/201937387/39
http://linker.aanda.org/10.1051/0004-6361/201937387/40
http://linker.aanda.org/10.1051/0004-6361/201937387/41
http://linker.aanda.org/10.1051/0004-6361/201937387/42
https://arxiv.org/abs/nlin/0306048
http://linker.aanda.org/10.1051/0004-6361/201937387/44
http://linker.aanda.org/10.1051/0004-6361/201937387/45
http://linker.aanda.org/10.1051/0004-6361/201937387/46
http://linker.aanda.org/10.1051/0004-6361/201937387/47
http://linker.aanda.org/10.1051/0004-6361/201937387/48
http://linker.aanda.org/10.1051/0004-6361/201937387/48
http://linker.aanda.org/10.1051/0004-6361/201937387/49
http://linker.aanda.org/10.1051/0004-6361/201937387/50
http://linker.aanda.org/10.1051/0004-6361/201937387/51
http://linker.aanda.org/10.1051/0004-6361/201937387/51
http://linker.aanda.org/10.1051/0004-6361/201937387/52
http://linker.aanda.org/10.1051/0004-6361/201937387/52
http://linker.aanda.org/10.1051/0004-6361/201937387/53
http://linker.aanda.org/10.1051/0004-6361/201937387/54
http://linker.aanda.org/10.1051/0004-6361/201937387/55
http://linker.aanda.org/10.1051/0004-6361/201937387/56
http://linker.aanda.org/10.1051/0004-6361/201937387/57
http://linker.aanda.org/10.1051/0004-6361/201937387/58
http://linker.aanda.org/10.1051/0004-6361/201937387/59
http://linker.aanda.org/10.1051/0004-6361/201937387/60
http://linker.aanda.org/10.1051/0004-6361/201937387/60
http://linker.aanda.org/10.1051/0004-6361/201937387/61
http://linker.aanda.org/10.1051/0004-6361/201937387/62
http://linker.aanda.org/10.1051/0004-6361/201937387/63
http://linker.aanda.org/10.1051/0004-6361/201937387/63
http://linker.aanda.org/10.1051/0004-6361/201937387/64
http://linker.aanda.org/10.1051/0004-6361/201937387/65
http://linker.aanda.org/10.1051/0004-6361/201937387/66
http://linker.aanda.org/10.1051/0004-6361/201937387/67
http://linker.aanda.org/10.1051/0004-6361/201937387/68
http://linker.aanda.org/10.1051/0004-6361/201937387/69
http://linker.aanda.org/10.1051/0004-6361/201937387/70
http://linker.aanda.org/10.1051/0004-6361/201937387/71
http://linker.aanda.org/10.1051/0004-6361/201937387/72
mailto:Vincent.Guillet@ias.u-psud.fr


V. Guillet et al.: Dust coagulation feedback on magnetohydrodynamic resistivities in protostellar collapse

Appendix A: Coagulation rate in Larson’s collapse
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Fig. A.1. Top: density profile of the collapsing cloud at four stages of
its evolution for the Larson (Larson 1969) scenario (thick lines), and for
our simple collapse model of Sect. 2.2. Bottom:

∫
nH dt for the Larson

collapse for gas cells distributed at different radius before the cloud col-
lapse. Results for models of uniform compression assuming nH ∝ R−3

(black thick line) and nH ∝ R−2 (black thin line) are over-plotted.

In this section, we demonstrate that our model of a uniform com-
pression of the cloud (Sect 2.2) is a good model to follow the dust
size distribution induced by grain–grain coagulation through the
cloud collapse up to a given density, even if it is a bad model to
describe the density structure of the cloud at a given time.

To test our simple uniform compression model against a bet-
ter representation of a cloud collapse, we compare the results we
obtain with our model with those obtained for the isothermal col-
lapse of a core sensitive to gravitational force and gas pressure
(Larson 1969). We integrate Larson’s equation in a Lagrangian
approach. The cloud density profile is presented in the top panel
of Fig. A.1 at four epochs of the collapse. In the Larson sce-
nario, we observe a uniform distribution of the gas density near
the cloud centre, surrounded by an envelope where the density
scales as R−2 that extends to a distance close to the initial radius
RC of the cloud. On the contrary, in our simple free-fall model
that ignores the effect of the pressure of the gas the density is
uniform and the cloud dimension rapidly contracts.

Our purpose in this article is to estimate the dust size dis-
tribution at any density during the collapse, not to describe the
density distribution of the cloud. To check the reliability of
our model for this purpose, we compare the total number of

collisions experienced by a given grain particle in the Larson
scenario with that obtained for our simple model.

The number of collisions experienced up to a time τ in the
collapse by a given dust grain with other dust grains is primar-
ily controlled by the evolution of the local gas density, which
increases by orders of magnitude during the collapse. The scal-
ing of the collisional rate with the relative velocity between
impinging particles is of secondary importance for our pur-
pose because these velocities depend on the model used for the
grain dynamics and only mildly evolves through the collapse
(∆V ∝ n−1/4

H in the model by Ormel et al. 2009, see Fig. 2). To
obtain a first order result, the total number of collisions experi-
enced by a given particle during the collapse up to a time τ can
be estimated through the proxy:

N(τ) ≡
∫ τ

0
nH(t) dt . (A.1)

The bottom panel of Fig. A.1 compares the evolution of N(τ)
in the Larson scenario and for our model of a uniform collapse.
For the Larson scenario, the evolution of N(τ) with the local
density is presented for six initial positions of the grain at 0.9,
0.8, 0.6, 0.4, 0.2 and 0.1 times the initial radius RC of the cloud.
We also present the evolution of N(τ) for our model of a uni-
form collapse, which by hypothesis does not depend on the initial
position of the grain. The uniform compression scenario nicely
reproduces the results obtained in the Larson scenario for all ini-
tial positions of the grain. This is clear for particles close to the
centre (R/RC < 0.6), but also approximately for particles initially
close to the boundary, within a factor of 1.2. These results are
surprising but easily explained. For the Larson scenario, a gas
cell almost stops its compression once reached by the rarefaction
wave (top panel of Fig. A.1); time goes on, but the gas density
and the dust size distribution do not evolve much anymore. The
dust size distribution in a Larson collapse is therefore close to
the one obtained for a uniform collapse, as long as one compares
the results at the same gas density, and not at the same time.

Appendix B: The coagulation algorithm

The evolution of the grain size distribution by grain–grain coag-
ulation is driven by the Smoluchowski equation (Smoluchowski
1916; Mizuno et al. 1988):

dρ(m, t)
dt

= −

∫ ∞

0
m K(m,m′) n(m, t) n(m′, t) dm′

+
1
2

∫ m

0
m K(m′ − m,m′) n(m′ − m, t) n(m′, t) dm′ ,

(B.1)

where m is the grain mass, n the density of grains, ρ= m× n
the mass density of grains, and K(m,m′) the collision kernel
(cm−3 s−1) between grains of mass m and m′.

B.1. Modelling of the size distribution

The grain size distribution is modelled by Nbins size bins, spread
over the radius range [a− : a+], or equivalently over the mass
range [m− : m+], assuming a specific density µ common to all
grain cores. The lower and upper grain mass in bin k, mk−
and mk+, respectively, follow a geometrical distribution in k of
common ratio η (see Appendix A from Guillet et al. 2007):

η= e−3 log (a+/a−)/Nbins < 1 , (B.2)
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mk+ = m+ η
k−1 , (B.3)

mk− = m+ η
k . (B.4)

Bin 1 contains the largest grains and bin N contains the
smallest grains, of the size distribution. We fix a− = aN− = 5 nm,
and a+ = a1+ = 100 µm. Each bin k contains a mass density ρk
of grain cores. At t = 0 bins where grain radius is larger than the
MRN are empty. Silicate and carbon grains are mixed in a unique
composite distribution of cores.

Following Mizuno et al. (1988), the mass density of grains in
bins k − 1 and k + 1 is used to derive the spectral index βk of the
mass distribution within bin k:

dn(m)
dm

∝ mβk , (B.5)

from which we can derive the average radius (ak), cross-section
(σ̂k) and mass (mk) of grains in bin k. See Appendix A of Guillet
et al. (2007) for more details on these calculations. The number
of grains in bin k is simply nk = ρk/mk.

B.2. Numerical implementation of the coagulation equation

To discretise the coagulation equation, we use the following pro-
cedure. We will consider collisions between grains of bin P
(projectiles) and bin T (targets), P ≥ T implying that projectiles
cannot be larger than targets. The coagulation rate between these
two bins is(

dn
dt

)
P,T

= nT nP KP,T = nT nP π (aT + aP)2 ∆VP,T , (B.6)

where ∆VP,T is the rms relative velocity between the projectile
and target grains.

Grain–grain coagulation leads to a transfer of mass from the
projectile and target bins to other bins at the rate r. Taking into
account that each bin k contains a size distribution of grains in
the size range [mk− : mk+], the smallest coagulated grain, of mass
mP− + mT−, must be transferred to the collector bin of index

C = 1 + int

 log
(

mP−+mT−
m+

)
log η

 , (B.7)

while the largest coagulated grains, of mass mP+ + mT+, must be
transferred to collector bins C − 1 according to the same equa-
tion. There will be no transfer of mass from bins P and T to any
other bins.

The fraction f of grain mass transferred to collector bin C −
1, and therefore 1− f to collector C, is calculated as follows. We
assume that all grains from the projectile bin are identical to the
average grain of mass mP. With respect to the size of the larger
grains from the target bin, this is most of the time a reasonable
assumption. If mP + mT− ≥ mC+, all coagulated grains will be
transferred to collector bin C − 1 (and therefore none to collector
bin C): f = 1. If mP + mT+ ≤ mC+, all coagulated grains will be
transferred to collector bin C (and none to collector bin C − 1):
f = 0. In the general case, the fraction f of coagulated grains
transferred to collector bin C − 1 is

f =

∫ mP+

mP−

∫ mT+

mC+−mP
(m + m′) K(m,m′) mβP m′βT dm dm′∫ mP+

mP−

∫ mT+

mT−
(m + m′) K(m,m′) mβP m′βT dm dm′

. (B.8)

There exists analytical expressions for f whenever K is a func-
tion of powers of m and m′, which is usually the case.

The mass transfer rates from the projectile and target bins to
the collector bins are therefore:

dρP

dt
= −mP

(
dn
dt

)
P,T

, (B.9)

dρT

dt
= −mT

(
dn
dt

)
P,T

, (B.10)

dρC

dt
= ( f − 1) (mP + mT)

(
dn
dt

)
P,T

, (B.11)

dρP

dt
= f (mP + mT)

(
dn
dt

)
P,T

. (B.12)

The total grain mass is conserved. This procedure is reproduced
for any pair of projectile bin/target bin where P ≥ T , that is when
the projectile is smaller than the target, or of the same size as.

B.3. Tests of the coagulation algorithm

The Smoluchowski equation possesses self-similar solutions for
the constant (K(m,m′) = 2), additive (K(m,m′) = m + m′), and
multiplicative (K(m,m′) = m×m′) kernels (e.g. Menon & Pego
2003).

In log–log plots of the mass density, this self similarity
appears clearly

d log ρC(m, t)
d log m

=

(m
t

)2
e−m/t , (B.13)

d log ρA(m, t)
d log m

=

√
m e−2t

2π
e−m e−2t/2 . (B.14)

At t = 0, the self-similar solutions express

d logC ρ(m, t = 0)
dm

= m e−m , (B.15)

d logA ρ(m, t = 0)
dm

=
e−m/2

√
2πm

, (B.16)

which can be integrated analytically to yield the mass density in
each bin k:

ρC
k =

∫ mk+

mk−

m e−m dm = (1 + mk−) e−mk− − (1 + mk+) e−mk+ ,

(B.17)

and

ρA
k =

∫ mk+

mk−

√
e−m/2

2πm
dm = erf

(√
mk+

2

)
− erf

(√
mk−

2

)
, (B.18)

where erf is the error function.
We test our coagulation algorithm by comparing our numer-

ical results with analytical solutions for the constant and additive
kernels (Fig. B.1). We use 35 bins, equally spaced in logarithmic
scale on the range of adimensioned masses [4× 10−6 : 4× 108]
(η= 0.4)5. In both cases, our algorithm is able to reproduce ana-
lytical results over a 106-fold increase in the average grain mass
(a factor of 100 in radius). The power-law of the smallest grains
is well followed-up, which is particularly important in our study.

5 With a smaller number of bins (η > 0.4), the results from the code
start to deviate from the analytical solution even at low radius.
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Fig. B.1. Comparison between the analytical (solid) and numerical (dashed) solutions to the Smoluchowski equation, at various adimensioned time
steps, in the case of a constant (left) and additive (right) kernels, with 35 size bins equally spaced in logarithmic scale over a range [4× 10−6 :
4× 108] in mass (η= 0.4). Diamonds indicate the mean mass and mass density in each bin. Grain growth is linear with time for the constant kernel,
and exponential with time for the additive kernel.
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Fig. B.2. Check for the convergence of our coagulation/accretion algo-
rithm at nH = 1012 cm−3, varying the number of logarithmic bins in the
5 nm–100 µm range.

Because of numerical errors, the exponential decay at large grain
radius is overestimated in our simulation. This is however a small
effect, which furthermore will have no impact on the ionisation
and MHD properties of the gas which are dominated by the small
grain population.

B.4. Convergence tests

We test for the convergence of our coagulation algorithm using
our standard model, but ignoring grain charge (which does
not affect grain coagulation rates in our model). Figure B.2
shows that convergence is obtained as soon as η< 0.4, as for
the self-similar solutions to the Smoluchowski equation (see
Appendix. B.3). We will therefore use a total of 33 bins:13 bins
for the MRN (0.005 µm < a< 0.25 µm) and 20 empty bins for
0.25< a< 100 µm.

Appendix C: Coagulation rates with a skewed
Maxwellian velocity distribution

Following the approach by Flower et al. (2005), we consider
the dynamics of particles having velocities vx, vy and vz along
x̂, ŷ and ẑ in the lab frame, respectively, each characterised by
a normal distribution of zero expectation and same variance

∆V2/3. We observe the motion of those particles from a refer-
ence frame moving at a velocity µ > 0 along the ẑ axis.

Defining

α ≡

√
3
2

1
∆V

, (C.1)

the probability distribution functions along for vx, vy, and vz

are f (vx) = α
√
π

e−α
2v2

x , f (vy) = α
√
π

e−α
2v2
y , and f (vz) = α

√
π

e−α
2(vz−µ)2

,
respectively.

The probability distribution of u, the velocity vector mea-
sured in the frame of the observer, is:

f (u) = f (vx, vy, vz) =

(
α
√
π

)3

e−α
2(v2+µ2)e−2α2vz µ . (C.2)

If v is the velocity amplitude measured in the frame of the
observer, and (θ, φ) the spherical coordinates of the velocity
vector, then by definition vz = v cos θ. To obtain the probability
distribution of the velocity amplitude, f (v), we integrate f (u)
over the spherical coordinates (θ, φ):

f (v) =

∫ π

0

∫ 2π

0
v2 f (u) sin θ dθ dφ , (C.3)

= 2π
(
α
√
π

)3

e−α
2(v2+µ2)

∫ π

0
v2 e−2α2vµ cos θ sin θ dθ , (C.4)

= 2π
(
α
√
π

)3

e−α
2(v2+µ2)

[
v

2α2µ
e−2α2vµ cos θ

]π
0
, (C.5)

=
1
√
π

α

µ
v e−α

2(v2+µ2) (
e2α2vµ − e−2α2vµ

)
, (C.6)

=
1
√
π

α

µ
v
(
e−α

2(v−µ)2
− e−α

2(v+µ)2)
. (C.7)

The mean collisional velocity among those collisions leading
to grain–grain coagulation is∫ V

0
v f (v) dv=

1
√
π

α

µ

∫ V

0
v2

(
e−α

2(v−µ)2
− e−α

2(v+µ)2)
. (C.8)
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We first calculate:∫ V

0
v2 e−α

2(v+µ)2
dv =

∫ V+µ

µ

(
v2 + µ2 − 2vµ

)
e−α

2v2
dv . (C.9)

We have:∫
e−α

2 x2
dx =

√
π

2
erf (αx)

α
, (C.10)∫

x e−α
2 x2

dx =−
1

2α2 e−α
2 x2
, (C.11)∫

x2 e−α
2 x2

dx =
1

2α2

( √
π

2
erf (αx)

α
− x e−α

2 x2
)
. (C.12)

Then∫ V

0
v2 e−α

2(v+µ)2
dv =

1
2α2

[
(2µ − v) e−α

2v2
+

(
2α2µ2 + 1

) √π
2

erf (αv)
α

]V+µ

µ

=
1

2α2

(
(µ −V) e−α

2(V+µ)2
− µe−α

2µ2
+

(
2α2µ2 + 1

) √π
2α

[
erf (αV + αµ) − erf (αµ)

])
. (C.13)

Similarly,∫ V

0
v2 e−α

2(v−µ)2
dv =

1
2α2

(
(−µ −V) e−α

2(V−µ)2
+ µe−α

2µ2
+

(
2α2µ2 + 1

) √π
2α2

[
erf (αV − αµ) + erf (αµ)

])
. (C.14)

As a consequence,∫ V

0
v f (v) dv=

1
√
π

α

µ

1
2α2

×

[
− (µ +V) e−α

2(V−µ)2
− (µ −V) e−α

2(V+µ)2
+ 2µe−α

2µ2
+

(
2α2µ2 + 1

) √π
2α

(erf (αV − αµ) − erf (αV + αµ) + 2erf (αµ))
]

=
1

α
√
π

[
e−α

2µ2
−

1
2

(
e−α

2(V−µ)2
[
1 +
V

µ

]
+ e−α

2(V+µ)2
[
1 −
V

µ

]))
+

(
µ +

1
2α2µ

) (
erf (αµ) −

erf (αV + αµ) − erf (αV − αµ)
2

]
=

1
α

[
1
√
π

(
e−ξ

2
−

1
2

(
e−(χ−ξ)2

[
1 +

χ

ξ

]
+ e−(χ+ξ)2

[
1 −

χ

ξ

]))
+

(
ξ +

1
2ξ

)
h(χ, ξ)

]
, (C.15)

where ξ =αµ, χ=αV, and h(χ, ξ) = erf (ξ) − (erf (χ +ξ) − erf (χ − ξ)) /2.

Here are the two asymptotic cases:

No drift. When µ (and ξ) tend towards zero, h(χ, ξ)/ξ tends
towards erf ′(0) − erf ′(χ) (where erf ′ is the first derivative of
erf ), that is towards 2

√
π

(
1 − e−χ

2
)
. We get:

∫ V

0
v f (v) dv =

1
α

[
1
√
π

(
1 −

(
1 + 2χ2

)
e−χ

2)
+

1
√
π

(
1 − e−χ

2)]
=

2
α
√
π

(
1 −

(
1 + χ2

)
e−χ

2)
=

√
8

3π
∆V

(
1 −

(
1 + χ2

)
e−χ

2)
, (C.16)

which translates into Eq. (A.11) of Flower et al. (2005) once
their convention is taken into account: δv from their Eq. (A.11)

is in their convention the FWHM of the Gaussian absolute
velocity components along x, y and z for each target and pro-
jectile, while ∆V/

√
3 is under our convention the rms of the

Gaussian for the relative target-projectile velocity components:
∆V = ∆v /

√
(4 ln 2)/3.

Pure drift of velocity µ (no turbulence). For the special
case when ∆V = 0 (meaning that α, ξ, and χ tend towards +∞),
we get:∫ V

0
v f (v) dv=

1
α
ξ h(χ, ξ) =

1
α
αµ= µ , (C.17)

as expected.
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