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ABSTRACT: The composition and lifetime of sea spray aerosols are driven by the
molecular and biological complexity of the air−seawater interface. We explore in situ the
surface properties of marine algal bloom diatom monocultures by utilizing surface
techniques of Brewster angle microscopy (BAM) imaging, vibrational sum-frequency
generation (SFG) spectroscopy, and infrared reflection−absorption spectroscopy (IRRAS).
Over the course of the bloom, the marine algae produce surface-active biogenic molecules
that temporally partition to the topmost interfacial layers and are selectively probed through
surface imaging and spectroscopic measurements. BAM images show morphological
structural changes and heterogeneity in the interfacial films with increasing density of
surface-active biogenic molecules. Film thickness calculations quantified the average surface
thickness of a productive bloom over time. The image results reveal an ∼5 nm thick surface region in the late stages of the bloom,
which correlates with typical sea surface nanolayer thicknesses. Our surface-specific SFG spectroscopy results show significant
diminishing in the intensity of the dangling OH bond of surface water molecules consistent with organic molecules partitioning and
replacing water at the air−seawater interface as the algal bloom progresses. Interestingly, we observe a new broad band appear
between 3500 and 3600 cm−1 in the late stages of the bloom that is attributed to weak hydrogen bonding interactions of water to the
surface-active biogenic matter. IRRAS confirms the presence of organic molecules at the surface as we observe an increasing intensity
of vibrational alkyl modes and the appearance of a proteinaceous amide band over time. Our work shows the often overlooked but
vast potential of tracking changes in the interfacial regime of small-scale laboratory marine algal blooms. By coupling surface imaging
and vibrational spectroscopies to complex, time-evolving, marine-relevant systems, we provide additional insight into unraveling the
temporal complexity of sea spray aerosol compositions.
KEYWORDS: Brewster angle microscopy, algae, film thickness, sum-frequency generation spectroscopy, sea surface nanolayer,
sea spray aerosols, marine algal bloom

■ INTRODUCTION

Biogenic enrichment at the air−seawater interface occurs
throughout the course of a marine algal bloom.1−4 Marine
algae produce proteins, lipids, and carbohydrates, among other
surface-active organic molecules that partition to the air−
seawater interface and contribute to the composition of the
thin layer at the ocean’s surface, known as the sea surface
microlayer.5,6 The sea surface microlayer serves as the
boundary between the ocean and atmosphere and is therefore
crucial to the exchange of gases7,8 and a wide range of chemical
and physical processes in the ocean and atmosphere.9−11 In
addition to this, sea spray aerosols are introduced to the
atmosphere through a wave-breaking mechanism at the ocean’s
surface including bubble entrainment and bursting.12,13 The
changing biogeochemistry of algal systems throughout their
bloom alters both sea surface microlayer composition and the
mechanics of bubble bursting, giving rise to dynamic changes
in sea spray aerosol composition.4,14−16 In this study, we
investigate the marine-relevant diatom Skeletonema marinoi,17

known to produce surface-active organic molecules that

include long-chain fatty acids.2 It is also ice nucleation
active.18 S. marinoi was specifically used in this study as it is
ubiquitous in temperate coastal seas and is robust in nature,
withstanding temperature ranges of 17−22 °C.19 By tracking
molecular and morphological changes at the air−seawater
interface, we define the algal bloom as the “ocean’s elevator”
because it transfers biogenic material from bulk to surface,
providing insight into the evolving surface properties
throughout the bloom’s lifetime.
Diatoms are the most abundant oceanic phytoplankton20

and exude an abundance of biogenic species over time,
including proteins, lipids, and saccharides.2,21 The behavior of
each subset of algal residues in ocean systems have been
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reported in the literature, exploring fundamental (one or two
component) systems such as protein salt interactions,22−24

lipid monolayer surfaces (including fatty acids, fatty alcohols,
phospholipids, among others),25,26 and saccharide-enriched
interfaces.3,27 By studying the individual role of each primary
subset of algal exudates as demonstrated in the studies above,
the fundamental interactions at the ocean’s interface and
consequent aerosol surfaces can be determined and include
interfacial adsorption,22,27 binding interactions,28,29 and
reaction mechanisms.30

Biogenic surfactants have also been explored in more
complex systems and have been shown to alter surface
features,31 enhance interactions,24,25,32,33 and influence the
overall film properties.34 Ex situ analysis of the interfacial
regime of native marine systems has been reported, with some
studies extending to surface tension measurements,31 Brewster
angle microscopy (BAM),35,36 and sum-frequency generation
(SFG) spectroscopy.6,37,38 Ex situ BAM imaging studies of
highly productive sea surface samples show heterogeneity due
to a difference in packing density and the presence of
gelatinous macroaggregates of natural films.35,39,40 Previous
work by Laβ et al. using SFG spectroscopy to probe natural
marine interfaces showed a significant decrease in the dangling
OH of water molecules spanning the air−seawater interface,
due to the presence of a film comprised of surface-active
biogenic organics such as humic substances, carbohydrate-rich
material, proteinaceous material, lipids, and hydrocar-
bons.41−43 Laβ et al. suggested the presence of a 1−10 nm
natural organic nanolayer, vastly differing from the sea surface
microlayer (∼50 μm),6 comprised of a mixture of organics
from marine samples.43 Consistently, in this work, we show
that there is an ∼5 nm thick film produced over the course of
the marine algal bloom.
We expand upon these studies by coupling imaging with

vibrational spectroscopies in situ. BAM imaging, as well as
surface-specific SFG spectroscopy and surface-sensitive infra-
red reflection−absorption spectroscopy (IRRAS), reveals
interfacial structural changes of relevant biogenic processes
during a marine algal bloom. The work presented here is
conducted in situ to avoid disrupting these often-fragile
systems. We track changes throughout the bloom and then
calculate trends in film thickness. Ultimately, we provide
insights into the dynamic process occurring throughout the
bloom and the role of algae as the ocean’s elevator, which acts
to transfer species between bulk seawater and the air−sea
interface. Furthermore, as the algae serve as the ocean’s
elevator, transporting exudates upward where they will
partition to the air−seawater interface, we expect the release
of algal species into the aerosol environment. Also, through dry
deposition, algal exudates may ultimately be brought back
down to the ocean, like a descending elevator. To our
knowledge, this is the first BAM imaging and IRRAS study of a
small-scale laboratory marine algal bloom in situ.

■ EXPERIMENTAL SECTION
Materials. S. marinoi, Sarno et Zingone (CCMP 2092), a

marine diatom, was purchased as an axenic stock culture from
the National Center for Marine Algae and Microbiota
(NCMA) at Bigelow Laboratory, ME. Filtered seawater
(NCMA at Bigelow Laboratory) from the Gulf of Maine,
ME with 31−34 ppt salinity was triple bag-filtered through a 1
μm pore size and autoclaved prior to use. Next, the seawater
was enriched with nutrients (NaNO3, NaH2PO4·H2O,

Na2SiO3·9H2O, L1 trace element solution, and f/2 vitamin
solution)44−46 in a 1:1000 mL addition in 1 L Fisherbrand
media bottles.

Algae Cultivation for Brewster Angle Microscopy. S.
marinoi was cultivated in a Teflon Langmuir trough (KSV
NIMA, Biolin Scientific, Espoo, Finland, area 148.78 cm2) for
Brewster angle microscopy. Prior to inoculation, the trough
was thoroughly cleaned with reagent alcohol (Histological
Grade, Fisher Scientific, Fair Lawn, NJ) and ultrapure water
with a resistivity of 18.2 MΩ·cm (Milli-Q Advantage A10,
EMD Millipore, Billerica, MA). The cleaned trough was filled
with nutrient-enriched autoclaved and filtered seawater,
inoculated with 1 mL of S. marinoi culture and exposed to a
13:11 h day/night cycle (using BlueMax 70 W, Full Spectrum
Solutions, MI, 2460 lumens). A water circulator (ISOTEMP
4100C, Fisher Scientific, Inc., PA) was used to control the
temperature of the solution in the trough at a constant
temperature of 18 °C. The setup was housed in a black
Plexiglass box to prevent exposure to dust and other particulate
matter. A small top-up of seawater was added to the trough
daily to maintain volume, measured with BAM imaging.

Algae Cultivation for Sum-Frequency Generation. S.
marinoi was cultivated in 9 Erlenmeyer wide-mouth flasks
(Pyrex, 250 mL) filled with 100 mL of nutrient-enriched
autoclaved and filtered seawater, inoculated with 1 mL of S.
marinoi algal culture, and capped with autoclaved cheesecloth
plugs. The algae flasks were exposed to the same artificial light
cycle as described above in a black plexiglass box. A flask was
gently swirled, allowed to settle for 2−3 min, and then sampled
for sum-frequency generation by pipetting a 10 mL aliquot into
a thoroughly cleaned borosilicate glass Petri dish. When
pipetting the aliquot, an autoclaved pipet tip was inserted into
the mouth of the Erlenmeyer wide-mouth flask into the bulk
region, not the bottom, to avoid drawing up algae into the
sample, which might induce scattering while taking measure-
ments. For comparison, spectra were obtained immediately
after the 5 min acquisition and after a 15 min wait followed by
5 min acquisition to allow for re-establishment of the sea
surface layer.47,48 Once the flask was sampled, it was disposed
of to avoid possible contamination in future sampling
procedures. The flasks were housed in a black plexiglass box
to prevent exposure to dust and other particulate matter.

Algae Cultivation for Infrared Reflection−Absorption
Spectroscopy. S. marinoi was cultivated in a Teflon Langmuir
trough (KSV NIMA, Biolin Scientific, Espoo, Finland, area
144.5 cm2) with Delrin barriers (KSV NIMA) for infrared
reflection−absorption spectroscopy measurements. Prior to
inoculation, the trough was thoroughly cleaned with reagent
alcohol (Histological Grade, Fisher Scientific, Fair Lawn, NJ)
and ultrapure water with a resistivity of 18.2 MΩ·cm (Milli-Q
Advantage A10, EMD Millipore, Billerica, MA). The cleaned
trough was filled with nutrient-enriched autoclaved and filtered
seawater, inoculated with 1 mL of S. marinoi culture, and
exposed to a 13:11 h day/night cycle (using BlueMax 70 W,
Full Spectrum Solutions, MI, 2460 lumens). A water circulator
(ISOTEMP 4100C, Fisher Scientific, Inc., PA) was used to
control the temperature of the solution in the trough at a
constant temperature of 18 °C. The setup was housed in a
black plexiglass box to prevent exposure to dust and other
particulate matter. A small top-up of seawater was added to the
trough daily to maintain volume, measured with infrared
reflection−absorption spectroscopy.
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■ METHODS

Brewster Angle Microscopy. BAM imaging was
performed using a custom-built BAM microscope.49,50 The
BAM microscope is mounted on a goniometer to adjust the
angle of incidence to the Brewster angle of an aqueous solution
(∼53° from the surface normal for pure water). The 1.5 mW
He−Ne continuous wave laser source (Research Electro-
Optics, Boulder, CO) emits polarized light at 543 nm, which
goes through a Glan polarizer, leaving purified p-polarized light
to hit and reflect off the aqueous surface.49 The reflected beam
goes through a 10× infinity-corrected superlong working
distance objective lens (CFI60 TU Plan EPI, Nikon Instru-
ments, Melville, NY) and a tube lens (MXA22018, Nikon
Instruments; focal length 200 mm) to collect and collimate the
beam before going into a back-illuminated EM-CCD camera
(iXon DV887-BV, Andor Technology, Concord, MA; 512 ×
512 active pixels with 16 μm × 16 μm pixel size). The BAM
images were processed using ImageJ software and cropped
from their original size to show the region of the highest
resolution. An artificial blue color scale, with gray-level values
ranging from 1−100, was chosen to enhance image contrast.
The light and dark blue of the images corresponds to regions
with high and low coverage of surface-active species,
respectively.
Sum-Frequency Generation Spectroscopy. SFG spec-

troscopic measurements were obtained using a previously
reported setup with minor modifications.28,51,52 In brief, the
output beam from a regenerative Ti:sapphire amplifier (Spitfire
Ace, Spectra-Physics) with a sub-50 fs 800 nm pulse is split,
where one-half is directed to an optical parametric amplifier
(TOPAS-C, Light Conversion) coupled to a noncollinear
difference frequency generator (NDFG, Light Conversion) to
produce a tunable IR beam, and the other half of the visible

beam is spectrally narrowed by an etalon (SLS Optics, United
Kingdom). The IR and visible beams are incident onto the
sample surface in a copropagating geometry at angles 60 and
50°, respectively, from the surface normal. The SF signal is
collected in the reflected direction by a spectrometer (IsoPlane
SCT 320, Princeton Instruments) and a liquid nitrogen-cooled
CCD (PyLoN, 1340 × 400 pixels, Princeton Instruments).
The typical exposure time for one spectrum was 5 min. The
spectra were collected in the polarization combination ssp,
which describes the polarization of the SF, visible, and IR
beams, respectively.

Infrared Reflection−Absorption Spectroscopy. IRRAS
spectra were recorded on a Fourier transform infrared (FT-IR)
spectrometer (Frontier, Perkin Elmer) equipped with a liquid
nitrogen-cooled HgCdTe (MCT) detector previously de-
scribed.53,54 Sampling was measured with two aligned gold-
plated mirrors (50.8 mm) at an incident angle of 48° from the
surface normal. Spectra were recorded as an average of 400
scans in single-beam mode. Spectra were collected under s-
polarized light using a polarizer (Thorlabs, ZnSe Holographic
Wire Grid Polarizer). Spectra were collected under compressed
conditions (from 144.5 to 77.3 cm2) to concentrate the surface
area. Data analysis was processed using Origin software. A
third-order polynomial background subtraction was used to fit
the data. With the current geometry at an incidence angle of
48°, the peaks are observed as negative bands.

■ RESULTS AND DISCUSSION

Bloom Progression and Film Thickness by Temporal
Surface Imaging. To temporally assess algal bloom
progression and the surface partitioning of organic molecules
being produced by the bloom, we employed Brewster angle
microscopy imaging. Three separate blooms were studied with

Figure 1. (a) Brewster angle microscope schematic showing the optics diagram, (b) imaging setup, (c) representation of Brewster’s law showing no
reflection off ocean water at the Brewster angle and light reflecting off the organic-coated surface after the algae have grown, (d) surface images of
the marine algal bloom at days 1−20 (day at the top left and 50 μm scale bar at the bottom left, viewable data brightness = 500), and (e) average
gray-level value over time.
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the most productive bloom reported in Figure 1, and the other
algal bloom images included in the Supporting Information
(SI), Figure S2a,b. Figure 1a−c shows a schematic of the
instrument optics, a picture of the settled bloom growing in the
imaging setup (Teflon trough), and a diagram explaining
Brewster’s law, respectively. The defined shapes in Figure 1c in
no way represent the proportions of biogenic species, but
rather depict the expected exudates likely present in the late
stages of the bloom. Reflectivity arises from changes in
refractive index from the Brewster angle of the initial solution
(i.e., the ocean water) to that of the biogenic film dominating
the surface in the late stages of the bloom. The images in
Figures 1d and S2a,b show independently grown algal blooms
(time in days stated in the top left corner of each image). The
dark areas (black and dark blue) of the images correspond to
water-rich regions where there is a paucity of surface-active
molecular species. There is an observable small round hole in
the upper left quadrant, visible starting day 8, which is a
physical artifact of our lens and has been normalized for gray
scaling. Surface-active algal exudates partition to the air−
seawater interface and correspond to the brighter areas (light
blue and white) in the image. Our images show that the
surface-active biogenic species begin to densely pack at the
air−seawater interface, with the onset around day 7. By day 15
of the algal bloom, the images show an intensely bright spot
that indicates a possible multilayer of surface-active species,
similar to collapse structures of fatty acid films.26,55,56 Work
from Kozarac et al. suggests that natural microlayer samples
taken during times of low primary production show
homogeneous and continuous images using BAM, whereas
periods of high primary production yield granular structures of
possible condensed surfactant domains.40 We observe
interesting features in Figure 1d during productive periods
on days 15, 16, and 19 specifically, which do not necessarily
correlate with a homogeneous film, but we do not believe to be
observing surfactant domains, either. Additionally, in Figure
S2b, during the late stages (day 11 and onward) of the
reported bloom, the BAM reveals seemingly homogeneous and
continuous images, similar to the images of original microlayer
samples in other work by Kozarac et al.35 These discrepancies
in low and high primary production periods may possibly be
due to the in situ measurements employed in our investigation.
Figure 1e shows the average gray level of the bloom images
over time, demonstrating the utility of using an increasing gray
level as a way to track the progress of the bloom. As our small-
scale laboratory algal bloom is an axenic system and lacks other
planktonic species such as bacteria, the compounds released
are limited to the number of productive alga cells, resulting in a
noticeable plateauing of gray-level values toward the end of the
bloom.
To further understand the algal bloom, we calculated the

relative film thickness using the BAM image data in a temporal
window during the late stages of the algal bloom (days 7−20).
Assuming a constant refractive index, the relative film thickness
(d) can be determined from the following relationship,57 which
can model ultrathin films (<20 nm)58

d
R n n n

n n n n n nsin(2 90)
( )

( )( )

p

B

l
2

a
2

s
2
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2

s
2

a
2

l
2

s
2

l
2

λ

π θ
=

−
−

+ − −
(1)

where λ is the laser wavelength, Rp is the p-polarized
reflectance, nl is the refractive index of the marine lipids, and

θB is the Brewster angle. The refractive indices of air and
seawater were parameterized by na = 1.00 and ns = 1.35,
respectively.59 Lower and upper refractive index limits of
representative relevant marine algal exudates such as saturated
long-chain fatty acids (nl = 1.430)60,61 and phospholipids (nl =
1.478)62 were used to model film thickness, respectively. With
diatoms being the most abundant oceanic phytoplankton,20

and known for their abundance of lipids and phospholipids,
our representative refractive indices are highly relevant.21,63,64

Moreover, studies show that in strains of Skeletonema, in
particular, the primary fatty acid is palmitic acid (C16:0).2

Thus, we selected a saturated long-chain fatty acid’s refractive
index to model film thickness. Figure 2 shows the temporal

evolution of the film thickness throughout the late stages of the
bloom (viewable data brightness = 100). The increase in film
thickness suggests the release of surface-active organic
molecules by productive algae. As the air−seawater interface
becomes enriched with biogenic species and begins forming a
film, the refractive index at the surface no longer resembles that
of the solution but rather the biogenic constituents of the
surface film multilayer.
The late stages of the algal bloom in Figure 1d reveal an

average film thickness of ∼5 nm. While monolayer thickness
studies of relevant saturated long-chain fatty acids and
phospholipids report average thicknesses ranging from ∼1.6
to 3 nm, depending on the chemical composition of the
subphase, our calculated thickness exceeds the monolayer
regime suggesting the presence of a multilayer film.51,62,65

Studies have demonstrated that the sea surface microlayer
thickness varies depending on oceanic productivity and
sampling technique but averages ∼50 μm.1,6 There are also
studies that suggest the sea surface microlayer is comprised of a
separate nanolayer with thicknesses ranging from 2 to 30 nm,
which is consistent with our findings.41,66 Specifically, the
“microlayer” is an operative term of the uppermost 0−1000
μm of the sea surface and is often characterized by an
enrichment of organics with respect to the underlying
water.38,67 However, the “nanolayer” resembles the typically

Figure 2. Film thickness (nm) of the late-stage algal bloom versus
time (days). The lower and upper bounds are defined by thickness
calculations with representative refractive indices (nl), where the
lower limit is nl = 1.430 (saturated long-chain fatty acid).60,61 and the
upper limit is nl =1.478 (phospholipid).62
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surfactant-rich uppermost molecular layers directly at the
interface,42 as we believe we are observing here. We deduce
that as the algal bloom progresses, a multilayer film forms
yielding increased thickness concurrent with productivity. The
morphological variety of these algal blooms is extraordinarily
rich, and surface-sensitive methods are necessary for
corroborating the presence of surface biogenics in the
nanolayer environment.
Interfacial Water Structure Changes during a Marine

Algal Bloom. Additional temporal insights into the air−
seawater interface and the changing molecular environment of
the interface resulting from the progression of an algal bloom
can be determined with surface-specific sum-frequency
generation (SFG) spectroscopy. SFG spectroscopy is a
nonlinear vibrational technique that selectively probes the
noncentrosymmetric environment of an interface, such as that
studied herethe air−seawater interface. It allows us to track
changes in the interfacial hydration environment of a marine
algal bloom progressing over time (i.e., at the minute and day
timescales). As there is a break in symmetry at the air−
seawater interface, we selectively probe the water molecules
residing in this interfacial region and find that the water
molecules are highly sensitive to the reorganization of the
biogenically produced molecules within the interface, thus
providing a window into the algal bloom surface properties.
The topmost layers of the ocean contribute to the dynamic

composition of sea spray aerosols (SSAs).68,69 To study the
surface layer, we investigate two separate blooms using SFG,
reporting on one in both Figures 3 and 4, and the other in
Figure S4 to show consistency across blooms. Clearly, by day 4
in the marine algal bloom (Figure 3b), there are enough
changes in the water region to impact the composition of SSAs.
Interestingly, there is an adsorption time necessary to begin
seeing these deviations, as shown schematically in Figure 3a.
Figure 3b shows the sum-frequency generation spectroscopy
spectra immediately upon transferring the day 4 algae and
waiting 5 min for the spectral acquisition. The SFG spectrum
immediately after transferring the algae appears to be
consistent with the ocean water spectrum. Upon allowing the
algae to settle for 20 min (including a 5 min acquisition), we
begin to see significant changes. Oceanic waves produce a
mixing process of the ocean water. According to Laβ et al.,
surface sampling yields ∼12.5 times enrichment of surfactants

compared to bulk water samples41,42 and the surface has a
renewal process time of several tens of minutes47 to 1 h.48

Figure 4a,b shows our surface-specific spectroscopic results
in the vibrational region of water between 3100 and 3750 cm−1

in the ssp polarization combination (s: SFG, s: visible, p:
infrared). Samples were collected after waiting 20 min (for
more detail, see the Experimental Section, Algae cultivation for
sum-frequency generation). The spectrum for day 1 algae was

Figure 3. Sum-frequency generation spectroscopy spectra of time-sensitive studies are demonstrated in (a) a schematic representation of the
adsorption process of the algae at day 4 growth at 5 and 20 min and (b) spectra after settling in the Petri dish for 5 min (lime green dots), after
settling in the Petri dish for 20 min (dark green; time has elapsed such that air−seawater adsorption has occurred, note the enhancement from 3500
to 3600 cm−1), and ocean water (blue) as a control.

Figure 4. Sum-frequency generation spectra in the water region from
3100 to 3750 cm−1 of offset: (a) pure water (black), ocean water
(blue), and algae at day 1 growth (light green), (b) algae at day 1
(light green), early bloom (green), late bloom (dark green), and pure
water (black), and (c) a schematic representation of interfacial
biogenic algal exudates throughout the bloom.
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taken multiple times for different bloom cycles to account for
bloom onset variation (SI, Figure S4). As seen in Figure 4a, a
peak at 3700 cm−1 is observed and is attributed to the dangling
OH of water molecules pointing up into the air.29,70 Prior work
has established that at the clean water surface, approximately
one out of four water molecules contributes to the dangling
OH population.71 The broad band contribution to the region
between 3100 and 3600 cm−1 corresponds to the hydrogen
bonding network of interfacial water, specifically the OH
stretching motions of surface water. The band centered at
∼3200 cm−1 is attributed to collective symmetric OH stretch
motion in a strongly hydrogen-bonded network; the band
centered at ∼3450 cm−1 is attributed to the OH stretch of
water in a more weakly hydrogen-bonded environment.72−76

There are no significant spectral intensity or frequency
differences when comparing the spectra for pure water,
ocean water, and algae at day 1 spectra (Figure 4a). There
is, however, a small diminishing of the dangling OH peak of
water for algae on day 1 as compared to the other spectra.
Overall, we observe relatively small deviations for the ocean
water and the day 1 algae spectra, indicating that the algae are
not producing sufficient surface-active biogenic molecules at
this stage to alter the surface water organization, and the chains
of algal cells are not surface active.
The spectra and schematic depiction of the algae at the early

and late stages of the bloom in Figure 4b,c show a significant
deviation relative to the day 1 spectrum in Figure 4a. We find a
new and exciting band grow in around ∼3500−3600 cm−1 (as
seen by Laß et al. at a lower frequency43) and a significant
diminishing of the free dangling OH of surface water molecules
(Figure 4b). We attribute this new band ranging from ∼3500

to 3600 cm−1 to weak hydrogen bonding of water molecules to
surface-active biological organics as it is consistent with prior
work on antifreeze proteins at the surface of water23 and
carboxylic acid headgroups of fatty acids.29,77 Previous work on
natural microlayer samples and their corresponding nanolayers
by Laß and Friedrichs also observed a broad OH feature
∼3500 cm−1, which they attribute to the presence of
carbohydrate-rich material such as lipopolysaccharides and
note the band’s increase in intensity during certain times of the
year varies with productivity.42,43 The reduction in the
dangling OH is consistent with organic molecules dominating
the surface.78−80 These results are observed across blooms (SI,
Figure S4) and correlate with the BAM images (Figure 1d),
which show partitioning of algal exudates dominating the air−
seawater surface, causing the reduction in the dangling OH.

Organic Partitioning to the Aqueous Surface Using
Infrared Reflection−Absorption Spectroscopy. We fur-
ther explore the interfacial organization at the molecular level
during the course of the bloom using surface-sensitive infrared
reflection−absorption spectroscopy. IRRAS is a vibrational
technique that provides complementary information to the
SFG spectra of surface water.81,82 The benefit of the IRRAS
technique is that a large spectral range is collected in a single
acquisition from 450 to 4000 cm−1, and the mathematical
ratioing in the IRRAS equation (eq 2) provides surface-
sensitive information. IRRAS spectra were plotted as
reflectance−absorbance (RA)53,54 which is given as

R RRA log( / )alg 0= − (2)

where Ralg is defined as the reflectivity of the algae and R0 is the
reflectivity of the seawater without algae.

Figure 5. s-Polarized IRRAS spectra, with peaks appearing as negative bands, of (a) day 1 in the alkyl region show a lack of C−H modes (black),
(b) day 17 in the alkyl region with the presence of C−H modes (lime green), (c) day 1 in the low-frequency region (black) reveal only noise from
incomplete subtraction of water vapor in the beam path, and (d) day 17 in the low-frequency region show the presence of the amide II broad band
and the C−H scissoring mode (lime green).
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Figure 5a,b shows the spectra for the early and late stages of
the bloom, respectively, in the alkyl stretch region. The peaks,
which are present at the late stages in the bloom and absent in
early stages, at ∼2963, 2928, and ∼2865 cm−1, correspond to
the CH3-antisymmetric (νas CH3), CH2-antisymmetric (νas
CH2), and CH2-symmetric (νs CH2) stretching modes,
respectively. The presence of these alkyl modes in the late
stages of the bloom confirms surface-active organic enrich-
ment.53,83 Compared to a well-studied saturated long-chain
fatty acid such as palmitic acid, we observe a factor of 10
reduction in the peak intensity of the algal spectrum compared
to the condensed phase palmitic acid spectrum in the alkyl
region and an ∼14 cm−1 blue shift for the CH2-antisymmetric
stretching mode.30,84,85 The reference sample, palmitic acid, is
at a surface concentration of 20 Å2/molecule. The peak shift
indicates there are more gauche conformers (more conforma-
tional disorder) of the alkyl chains in the algae spectrum
compared to the organized fatty acid spectrum (SI, Figure
S5).86−88 Moreover, we collect the IRRAS spectra with s-
polarized light (further addressed in the SI, Figure S6), which
probes vibrational components lateral to the surface.89 Our
BAM imaging results, shown in Figure 1d, also agree and show
the presence of a multilayer film. The multilayer film resembles
more of a fatty acid, multilayered, collapse structure, and not a
single molecular layer, which would have more trans
conformers.
The lower frequency region for both the early and late

bloom stages is shown in Figure 5c,d. In the late stage of the
bloom, the negative peak at ∼1451 cm−1 is assigned to the
CH2 scissoring (δ CH2) and the negative band at ∼1534 cm−1

is assigned to the amide II region. The strong presence of the
amide II band indicates the presence of protein.90−92 The
amide II region is commonly present with the amide I peak
(∼1651 cm−1) but is overlapping with our OH bend mode
(∼1660 cm−1) and not resolvable. Current work is underway
to utilize the low-frequency IRRAS spectra for specific
chemical identification.
Aerosol Composition and Atmospheric Implications.

Serving as an important medium for particle release via bubble
bursting,14 oceanic films have a critical role in impacting local
marine environments, as well as global change.5 Several climate
models demonstrate the influence of phytoplankton dynamics
on oceanic changes.93−95 Our study provides insights into how

the native, undisturbed, in situ algal bloom behavior may
temporally impact aerosol composition and biogeochemical
cycles.
As shown in Figure 6, we demonstrate the applicability of

studying the ocean’s elevator, marine algal blooms, by
elucidating molecular changes in surface morphology, film
thickness, and interfacial chemical composition. Temporal
enhancement of surface-active algal exudates observed by BAM
imaging, surface-specific SFG, and surface-sensitive IRRAS
vibrational spectroscopies correlate with the evolving chemical
composition of the ocean surface and that of sea spray aerosols
(SSAs). We demonstrate the applicability of surface imaging
and spectroscopic techniques as it provides an important role
in the instrumental toolbox for interpreting oceanic and
atmospheric changes. As depicted in Figure 6, breaking waves
produce entrained air bubbles that surface to the air−seawater
interface; the bubbles scavenge biogenic algal exudates,
releasing enriched SSA upon bursting.12−14,96 Thus, following
interfacial evolution at the air−seawater interface aids in
understanding the sea surface nanolayer, the production and
release of SSA, and their role in atmospheric cycles such as
cloud and ice formation.97−99 Recently, work by Ickes et al.
reports on the first measurements of ice-nucleating ability of S.
marinoi, the same species studied in our investigation; aerosol
containing S. marinoi in a sea spray simulation chamber was ice
active.18 Current work in our lab is underway to identify the
chemical composition of the air−seawater interface using
additional surface techniques to monitor small-scale laboratory
marine algal bloom exudates.

■ CONCLUSIONS

We temporally tracked changes in the air−seawater interface of
small-scale laboratory marine algal blooms using a suite of
surface imaging and spectroscopic techniques. As the marine
algal bloom progresses, Brewster angle microscopy imaging
shows that the enhancement of surface-active species
dominating the interface and film thickness calculations reveal
an increasing thickness for late bloom stages, averaging ∼5 nm
thick. Sum-frequency generation spectroscopy reveals signifi-
cant diminishing in the intensity of the dangling OH of surface
waters, which supports the partitioning of algal exudates to the
air−seawater interface. Over time, a broad band manifests
between 3500 and 3600 cm−1, consistent with weak hydrogen

Figure 6. Schematic representation of how our surface techniques (BAM imaging, surface-specific SFG, and surface-sensitive IRRAS) advance
understanding of oceanic interfacial evolution, sea spray aerosols, atmospheric nucleation, among other processes.
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bonding networks interacting with organic and biological
species. Infrared reflection−absorption spectroscopy spectra
also exhibit a temporal increase in the intensity of the alkyl
stretch region and the proteinaceous amide band, in accord
with natural marine algal bloom growth cycles. Moreover, we
begin to unravel the complex role of algae as the ocean’s
elevator, which acts to transfer biogenics between bulk
seawater and the air−seawater interface. To the author’s
knowledge, this is the first temporal Brewster angle microscopy
and infrared reflection−absorption spectroscopy study in situ
of small-scale laboratory marine algal blooms.
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