
Systems biology

DCI: learning causal differences between gene

regulatory networks

Anastasiya Belyaeva, Chandler Squires and Caroline Uhler *

Laboratory for Information and Decision Systems and Institute for Data, Systems, and Society, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

*To whom correspondence should be addressed.

Associate Editor: Lenore Cowen

Received on May 14, 2020; revised on January 12, 2021; editorial decision on February 7, 2021; accepted on March 8, 2021

Abstract

Summary: Designing interventions to control gene regulation necessitates modeling a gene regulatory network by a
causal graph. Currently, large-scale gene expression datasets from different conditions, cell types, disease states,
and developmental time points are being collected. However, application of classical causal inference algorithms to
infer gene regulatory networks based on such data is still challenging, requiring high sample sizes and computation-
al resources. Here, we describe an algorithm that efficiently learns the differences in gene regulatory mechanisms
between different conditions. Our difference causal inference (DCI) algorithm infers changes (i.e. edges that
appeared, disappeared, or changed weight) between two causal graphs given gene expression data from the two
conditions. This algorithm is efficient in its use of samples and computation since it infers the differences between
causal graphs directly without estimating each possibly large causal graph separately. We provide a user-friendly
Python implementation of DCI and also enable the user to learn the most robust difference causal graph across dif-
ferent tuning parameters via stability selection. Finally, we show how to apply DCI to single-cell RNA-seq data from
different conditions and cell states, and we also validate our algorithm by predicting the effects of interventions.

Availability and implementation: Python package freely available at http://uhlerlab.github.io/causaldag/dci.

Contact: cuhler@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological processes from differentiation to disease progression are
governed by gene regulatory networks. Various methods have been
developed for inferring such networks from gene expression data
(Wang and Huang, 2014), the majority by learning undirected
graphs using correlations (Langfelder and Horvath, 2008), Gaussian
graphical models to capture partial correlations (Friedman et al.,
2008), or mutual information (Reshef et al., 2011). However, the ul-
timate goal is often to use gene regulatory networks to predict the ef-
fect of an intervention (small molecule, overexpression of a
transcription factor, knock-out of a gene, etc.). This cannot be done
using an undirected graph and necessitates modeling a gene regula-
tory network by a causal (directed) graph.

Causal relationships are commonly represented by a directed
acyclic graph (DAG) and a variety of methods have been developed
for learning causal graphs from observational data (Glymour et al.,
2019). These methods have been successfully applied to learning
(directed) gene regulatory networks on a small number of genes,
starting with the pioneering study by Friedman et al. (2000).
However, applying these methods at the whole genome-level is still

challenging due to high sample size and computational requirements
of the algorithms.

We address this problem by noting that it is often of interest to
learn changes in causal (regulatory) relationships between two
related gene regulatory networks corresponding to different condi-
tions, disease states, cell types or developmental time points, as
opposed to learning the full gene regulatory network for each condi-
tion. This can reduce the high sample and computational require-
ments of current causal inference algorithms, since while the full
regulatory network is often large and dense, the difference between
two related regulatory networks is often small and sparse. As of
now, this problem has only been addressed in the undirected setting,
namely by KLIEP (Liu et al., 2017), DPM (Zhao et al., 2014) and
others (Fukushima, 2013; Lichtblau et al., 2017) that estimate dif-
ferences between undirected graphs; for a recent review see Shojaie
(2020). In this article, we describe the difference causal inference
(DCI) algorithm and present an easy to use Python package for the
direct estimation of the difference between two causal graphs based
on observational data from two conditions (for the theoretical prop-
erties of this algorithm see Wang et al., 2018). In particular, we
show how to apply DCI to gene expression data from different
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conditions and demonstrate the algorithm’s performance on predict-
ing the effects of interventions on single-cell RNA-seq data.
Importantly, our DCI implementation also allows selecting the most
robust difference gene regulatory network based on a collection of
tuning parameters via stability selection. To seamlessly integrate
DCI with other causal inference methods, it is incorporated in the
causaldag package.

2 Difference causal inference (DCI) package

DCI takes as input two matrices X̂
ð1Þ

and X̂
ð2Þ

of size n1 � p and
n2 � p, where n1, n2 are the number of samples in each dataset and
p is the number of genes. These matrices contain the RNA-seq val-
ues corresponding to two different conditions. DCI outputs the dif-
ference causal graph between the two conditions, i.e. the edges in
the gene regulatory networks that appeared, disappeared or changed
weight between the two conditions (Fig. 1).

The data for each condition is assumed to be generated by a lin-
ear structural equation model with Gaussian noise. More precisely,
let Gð1Þ and Gð2Þ denote two DAGs on p nodes with weighted adja-
cency matrices Bð1Þ and Bð2Þ. Each node j 2 f1; . . . ; pg in the two
graphs GðkÞ; k 2 f1;2g, is associated with a random variable X

ðkÞ
j ,

which is given by a weighted sum of its parents and independent
Gaussian noise �ðkÞ, i.e. X

ðkÞ
j ¼

Pp

i¼1

B
ðkÞ
ij Xi þ �

ðkÞ
j . Given data X̂

ð1Þ
and

X̂
ð2Þ

from two unknown causal graphs Gð1Þ and Gð2Þ, DCI determines
their difference, i.e. edges i ! j for which B

ð1Þ
ij 6¼ B

ð2Þ
ij . DCI consists

of three steps described below; for further details see Supplementary
Materials. These steps are implemented in the dci function of the
causaldag package.

Step 1: Initialization with a difference undirected graph. Instead
of starting in the complete graph, computation time can be reduced
by initializing DCI with an undirected graph, which represents
changes of conditional dependencies among genes between the two
conditions. This can be obtained using previous methods such as
KLIEP (Liu et al., 2017) or a constraint-based method as described
in Supplementary Materials.

Step 2: Estimation of the skeleton of the difference causal graph.
Edges are removed from the difference undirected graph by testing
for invariance of regression coefficients using an F-test. Since each
entry Bij corresponds to a regression coefficient bijjS obtained by
regressing Xj on Xi given the parents of node j in G, testing whether
B
ð1Þ
ij ¼ B

ð2Þ
ij , is equivalent to testing whether there exists a set of

nodes S such that bð1Þi;jjS ¼ bð2Þi;jjS.
Step 3: Orienting edges in the difference causal graph. All edge

directions that are identifiable from observational data are obtained
by testing for invariance of residual variances. For any edge i—j in
the undirected graph obtained in Step 2, if there exists a set of nodes
S such that the residual variances satisfy rð1ÞjjS ¼ rð2ÞjjS , then the edge is
directed as i ! j if i 2 S and j ! i otherwise (see Supplementary
Materials).

Stability selection to obtain robust difference gene regulatory
network. DCI requires choosing hyperparameters for each step,
namely the ‘1 regularization parameter for KLIEP or the significance
level for the constraint-based method in step 1 and the significance
levels for the F-tests in steps 2 and 3. To overcome this difficulty, we
implemented DCI with stability selection, which achieves family-

wise error rate control (Meinshausen et al., 2016; Meinshausen and
Bühlmann, 2010). For this, DCI is run across a grid of tuning
parameters and bootstrap samples of the data, the results are aggre-
gated, and only edges with a stability score above a predefined
threshold are output in the difference causal graph (Supplementary
Fig. S1).

3 Applications and conclusions

We applied DCI to two single-cell RNA-seq datasets: CROP-seq
(Datlinger et al., 2017) and Perturb-seq (Dixit et al., 2016). Both
also contain interventional gene expression data from knockouts.
We applied DCI to the observational single-cell data and evaluated
it using an ROC curve based on the interventional data (see
Supplementary Materials). The resulting difference gene regulatory
networks between naive and activated T cells as well as between
pre- and post-stimulation of dendritic cells with LPS are shown in
Supplementary Fig. S2–S7. In both cases, DCI outperforms the naive
approach of estimating two causal graphs separately and can pro-
vide valuable mechanistic insights into the underlying biological
processes. The naive approach of estimating a separate graph for
each condition suffers from the fact that each gene regulatory net-
work may be large with many high degree nodes, which poses a
challenge for many causal inference algorithms. Since the difference
gene regulatory network is likely sparse, DCI can result in signifi-
cantly better performance.

We developed the DCI package for learning differences between
gene regulatory networks based on gene expression data from two
different conditions of interest, such as healthy and diseased, differ-
ent cell types or developmental time points. Our package is imple-
mented in Python for ease-of-use, is scalable (Supplementary Fig.
S8, S9), and also includes functionality to ensure that the output dif-
ference gene regulatory network is stable and robust across different
hyperparameters and data subsampling.
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Fig. 1. Overview of DCI algorithm: DCI takes as input two gene expression matrices X1 and X2, representing two different conditions of interest. The function dci(X1, X2)

outputs the difference gene regulatory network consisting of the causal relationships that appeared, disappeared or changed weight between the two conditions
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