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Abstract

Atmospheric aerosols are suspended particulate matter of varying compo-
sition, size, and mixing state. Challenges remain in understanding the im-
pact of aerosols on the climate, atmosphere, and human health. The effect
of aerosols depends on their physicochemical properties, such as their hy-
groscopicity, phase state, and surface tension. These properties are dynamic
with respect to the highly variable relative humidity and temperature of the
atmosphere. Thus, experimental approaches that permit the measurement
of these dynamic properties are required. Such measurements also need to
be performed on individual, submicrometer-, and supermicrometer-sized
aerosol particles, as individual atmospheric particles from the same source
can exhibit great variability in their form and function. In this context, this
review focuses on the recent emergence of atomic force microscopy as an
experimental tool in physical, analytical, and atmospheric chemistry that en-
ables such measurements. Remaining challenges are noted and suggestions
for future studies are offered.

235


mailto:hansol-lee@uiowa.edu
mailto:alexei-tivanski@uiowa.edu
https://doi.org/10.1146/annurev-physchem-090419-110133
https://www.annualreviews.org/doi/full/10.1146/annurev-physchem-090419-110133

Annu. Rev. Phys. Chem. 2021.72:235-252. Downloaded from www.annualreviews.org

Access provided by University of California - San Diego on 05/28/21. For personal use only.

1. INTRODUCTION

Atmospheric aerosol particles are suspended particulate matter of varying composition, size, mix-
ing state, and phase state (1, 2). Primary sources of aerosols include the burning of fossil fuels,
mineral dust, volcanic eruptions, and sea spray. Sea spray aerosols (SSAs) in particular are com-
posed of complex organic, inorganic, and biological mixtures that originate from the ocean surface
and are emitted to the atmosphere via bubble bursting (3, 4). Secondary sources emit aerosols that
undergo heterogeneous chemical reactions with volatile precursors in the atmosphere, with sec-
ondary organic aerosols (SOAs) being one of the most common examples (5, 6). Primary and
secondary aerosols exist in both sub- and supermicrometer sizes and have a significant impact on
the climate, atmosphere, and human health (1). For example, fine particulate matter (e.g., PM, 5)
can travel through the respiratory system and into the alveolar region of the lungs, leading to
cardiovascular and respiratory diseases (7). Atmospheric aerosols can help to regulate the climate
either directly by scattering and reflecting solar radiation (8) or indirectly by nucleating clouds as
cloud condensation nuclei (CCN) or ice nucleating particles INPs) (9-11). However, significant
uncertainties hinder our ability to accurately assess the direct and indirect effects of aerosols on
the climate (12). A significant source of this uncertainty originates from the dynamic nature of the
atmospherically relevant physicochemical properties of aerosols, as they vary greatly with chang-
ing environmental conditions, e.g., relative humidity (RH) and temperature. These properties
must be elucidated using both ensemble-averaging and single-particle techniques, as the effect
of changing environmental conditions varies on individual particles, which then affects certain
physicochemical properties such as hygroscopicity (the propensity of an aerosol to take up water)
(13-17), phase state (5, 13, 15, 18-26), and surface tension (27-31). Therefore, instrumentation
and corresponding methodologies need to be developed to measure these aerosol properties.

Toward this end, atomic force microscopy (AFM) has become an emerging tool for the study of
both submicrometer- and supermicrometer-sized aerosols. AFM experiments can be performed
either under vacuum or in ambient pressure conditions as well as in liquid media (32-35). AFM
uses a sharp probe or tip, as sharp as 1 nm in tip radius of curvature, to obtain a sample image
by raster scanning a surface via direct contact, intermittent contact/tapping/AC, or noncontact
imaging modes (32). Images based on the sample height, vertical piezo position, AFM tip ampli-
tude, phase, deflection, and other factors can be obtained with nanometer-level spatial resolution
(36-41). Once located, particles deposited on a substrate (in this case) can be studied using contact
mode force spectroscopy. The same AFM imaging tip can be used to measure forces acting on the
tip as a function of tip—sample separation during vertical tip movement toward and away from the
sample surface (38). The resultant so-called force plots can be obtained with controlled scan rate,
maximum applied force, and overall distance while varying the RH and temperature. The force
plots pertain directly to several important physicochemical properties of the system studied. This
single-particle methodology has previously been applied to directly measure the phase state and
surface tension of SSA-relevant model systems (42-45) and real SSAs (4, 46,47). The mixing state
and hygroscopicity have also been measured with AFM via the AC imaging mode while varying
the RH (4, 47-50).

AFM, similar to other techniques that are covered in this review (except for the particle re-
bound method), is an offline technique. The aerosols first need to be collected on a solid substrate
and then transferred onto the microscope for measurements. The substrate is typically an inert,
clean surface (e.g., silicon, gold, silver, mica, or glass) where the particles of interest are deposited.
Depending on the type of study, hydrophobically coated substrates may be used (43). Deposition
is commonly performed using an impactor that deposits the stream of particles onto multiple im-
paction plates that exclude the aerosols based on aerodynamic size (50). One advantage to studying
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substrate-collected particles is that the sample can be revisited multiple times after the deposition.
However, one disadvantage is that the impaction may modify the original morphology of sus-
pended aerosols (50). Additionally, sample storage conditions must be appropriate to ensure that
sample aging and/or handling does not alter the particles of interest (51). AFM, along with some
other techniques, can analyze the data on an individual particle-to-particle basis, which can reveal
important and unique outliers to the population data set that may otherwise go undetected. For
aerosol types such as SSAs that exhibit unique specificity, where only 1 in 10° become INPs at
—25°C (52, 53), single-particle sensitivity is imperative to further elucidate the role of aerosols in
the climate and atmosphere.

So far, single-particle AFM has seen increasing use to study SSA-relevant model systems and
real SSAs by directly measuring their hygroscopicity, phase state, and surface tension on a single-
particle basis. In the following sections, the role of hygroscopicity in aerosol-climate interactions
and how it affects the phase state, viscosity, and surface tension of aerosols are discussed. Here,
we also demonstrate that hygroscopicity is an example of the importance of using single-particle
techniques. Then, AFM methodology to measure the phase state and surface tension of aerosols is
reviewed in the context of other existing techniques as they apply toward both ensemble-averaging
and bulk and single-particle studies. Finally, this review concludes by noting the challenges that
remain as well as suggestions for future studies.

2. HYGROSCOPICITY OF AEROSOLS AFFECTS THEIR PHASE STATE,
VISCOSITY, AND SURFACE TENSION

Depending on the RH and temperature, aerosols that contain water-soluble chemical components
tend to take up more water (i.e., be more hygroscopic) than do those that contain more insolu-
ble components (14). Additionally, some aerosol types such as SSAs exhibit a complex mixing of
both water-soluble and insoluble components (4, 54). As hygroscopicity strongly depends on the
chemical composition and mixing state of the aerosol, measuring it directly is important. Finally,
because the amount of water absorbed by the aerosol changes the solute concentration (55), it
further modulates the solute concentration—dependent physicochemical properties such as vis-
cosity, phase state, and surface tension (28, 30, 43, 56, 57). Therefore, we begin with a discussion
of aerosol hygroscopicity and its role in the dynamics of the aerosol—climate relationship.

First, hygroscopicity is important because it can modulate the viscosity and phase state of the
aerosol by altering its solute concentration as a function of RH. Depending on the hygroscopicity
of an aerosol, a variable RH environment yields different solute concentrations, which changes
its viscosity and phase state. In the atmosphere, solid-like particles behave differently than do
liquid-like particles; the solids (viscosity >10!? Pa-s) or semisolids (viscosity range 10°~10'? Pa-s)
exhibit significantly lower diffusion coefficients than do the liquids (viscosity <10? Pa-s), which
leads to a relatively low reactivity with atmospheric gases (22, 24), an increased tendency for ice
nucleation through heterogeneous freezing (15, 58, 59), and the suppression of water uptake (26,
60, 61).

Second, hygroscopicity controls the size of aerosols at a particular RH, which affects their
light-scattering efficiency via the direct aerosol effect (17, 62). Finally, hygroscopicity is one of
the variables required to determine the efficiency of the aerosol to become a cloud droplet, which
grows into a cloud as CCN. For example, hygroscopicity of the aerosol is taken into account in
the x-Kohler theory (10),

RH D3 - D} 4o M,
RH _ .
100 ~ D, —Di(1—x) P \RTp,Dy )
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Figure 1

(@) Graph showing a comparison of growth factor measurements at 77% RH for AFM (green bars) versus HTDMA (red dashed vertical
line) of a 6:1 molar NaCl:nonanoic acid mixture. The solid black line is a Gaussian fit. ()—d) Three-dimensional AFM height images of
individual particles shown in panel # from (middle row) dry to (top row) wet states. (Bottom row) AFM phase images of dry individual
particles. Scale bars represent 500 nm. Abbreviations: AFM, atomic force microscopy; HTDMA, hygroscopic tandem differential
mobility analyzer; RH, relative humidity. Figure adapted with permission from Reference 49; copyright 2016 American Chemical
Society.

where D, is the wet diameter, Dy is the dry diameter, « is a hygroscopicity parameter, o is the
surface tension of the aerosol, M,, is the molecular weight of water, R is a gas constant, and p,,
is the density of water. The hygroscopicity parameter « and the extent of the difference between
the wet and dry diameters refer to how hygroscopic the aerosol is. For example, both a high hy-
groscopicity parameter value and a large difference between the wet and dry diameters indicate a
greater propensity for water uptake by the aerosol, which leads to decreases in the solute concen-
tration as the relative amount of water increases. Soluble species such as inorganic salts typically
have higher hygroscopicity parameter values than do insoluble organic species such as long-chain
fatty acids (10, 63, 64).

Furthermore, the importance of single-particle studies is illustrated by evaluating the hygro-
scopic nature of multicomponent aerosols that exhibit a diverse range of chemical mixing ratios.
As shown in Figure 1, single-particle AFM height imaging and a hygroscopic tandem differential
mobility analyzer (HTDMA) were used to measure the hygroscopic growth factor (GF) of a 6:1
molar ratio of NaCl:nonanoic acid, which was aerosolized from a bulk solution (49). GF is defined
as

and can be used as an indicator of hygroscopicity. The data show that while the average of the
AFM GF data correlates well with that of the HTDMA, the latter is unable to observe the uniquely
different hygroscopic responses of individual aerosols within the population. This illustrates the
importance of single-particle capabilities to complement the existing bulk or ensemble-averaging
techniques.

In the following sections, we discuss how the viscosity, phase state, and surface tension of
aerosols are measured for sub- and supermicrometer particles.
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3. VISCOSITY AND PHASE STATE MEASUREMENTS OF AEROSOLS

Typically, the viscosity of bulk liquids is measured using viscometers (65), which are well estab-
lished, inexpensive, and easy to use. However, they require a minimum volume of liquid, and the
methods are constrained to quantifying viscosities below 108 Pa-s (66). Therefore, other tech-
niques are needed to measure the viscosity and phase state of aerosols. In fact, it is desirable for
these other techniques to be able to measure the viscosities of aerosols up to 1016 Pa-s. By and large,
this topic has been reviewed previously for various techniques that can probe organic aerosols (66).
However, AFM capabilities were not mentioned. We therefore briefly review other existing tech-
niques before discussing the AFM methodology in detail.

Several techniques can quantify the viscosity and phase state of aerosols (Figure 2). The first
is the bead-mobility technique (Figure 24) (21, 67, 68), which works by injecting 1-pm-sized
melamine beads into 30-50-pm-sized particles on a substrate. A gas is flowed over the particle
surface to circulate the beads, and the velocity of the beads is measured using optical microscopy
to infer the viscosity from 10~ to 10° Pa-s. The second technique is optical tweezers (Figure 2b)
(56, 57, 66, 69, 70). This technique works by trapping two supermicrometer aerosols, coalescing
them into a single aerosol, and quantifying the relaxation time. The relaxation time is directly
proportional to the aerosols’ viscosity, which can be quantified from 1073 to 10? Pa-s. The third is
the poke-and-flow technique (Figure 2¢) (21, 71). It works by locating a supermicrometer-sized
particle on a substrate with optical microscopy, indenting the particle surface with a needle, and
observing the time taken to reestablish the equilibrium shape. The resulting data are compared
with the theoretical flow time to infer the aerosol viscosity from 10° to 107 Pa-s.

The aforementioned techniques can measure the viscosity and infer the phase state of aerosols.
But techniques also exist that can identify the phase state without measuring the viscosity. Particle
rebound is one such technique (Figure 3) (72-74). It relies on using an impaction device to sep-
arate the aerosol particles by size and deposit both sub- and supermicrometer particles onto sub-
strates. Upon impaction, solid-like particles tend to bounce off more from the substrate, whereas
liquid-like particles tend to adhere to the surface. The rebound factor, which is defined as the
fraction of particles that bounced, is measured on model systems, and data from nascent aerosols
are compared against the model systems to infer the phase state. While some suggest that this
methodology is applicable only from 10° to 10? Pa-s, other studies show that it can be extended
to as high as 10¢ Pa-s (74). Microfluidics is another technique that can identify the aerosol phase
state (75-77). Individual supermicrometer droplets can be generated and trapped within microflu-
idic channels that are filled with a lubricating liquid (e.g., silicone oil). Trapped droplets begin to
dehydrate, as the surrounding environment is less humid, and the resultant phase transitions are
captured by an inverted optical microscope (76). In addition to observing phase transitions from
liquid to solid phases, more complex mixing states such as liquid-liquid phase separation can also
be observed by this technique (75, 78).

AFM can be used to directly identify the phase state of individual substrate-deposited particles
as a function of RH. Specifically, by utilizing AFM force spectroscopy, force plots that contain
measured force versus tip—sample separation data are collected for individual particles at a selected
position and a specific RH (Figure 4). Here, a decrease in the tip-sample separation corresponds
to the AFM tip vertically approaching the particle surface. Prior to contact with the particle, at
around zero tip—sample separation, long-range attractive interactions between the tip and the
particle surface contribute to a further lowering of the tip position. Upon contact, the tip continues
its downward trajectory and indents into the particle (negative tip-sample separation) until the
measured force increases to a predefined force value. Afterward, the probe retracts until the tip and
particle are no longer in contact. The force plots over the same particle are repeatedly collected at
varying RHs, in either hydration or dehydration mode (42,44, 46). For the phase state assessment,
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Figure 2

(@) Micrographs of toluene-derived secondary organic material particles with beads. The blue, yellow, and red numbers refer to the x
and y coordinates of the beads. (b) Images showing NaCl and sodium dodecyl sulfate coalescence in optical tweezers. a,/a,
measurements refer to the droplet aspect ratios. Panel 4 adapted with permission from Reference 69; copyright 2016 Royal Society of
Chemistry. (¢) Micrographs of toluene-derived secondary organic material before and after poking. Panels # and ¢ adapted with
permission from Reference 68 (CC BY 3.0).

the single-particle force plot data at each RH are analyzed for two parameters: relative indentation
depth (RID) and viscoelastic response distance (VRD). The VRD is a measure of the hysteresis
in the distance from approach and retract curves at zero force due to the extent of the viscoelastic
response. The RID is a ratio of maximum indentation (I) determined from the force plot data ata
specified force divided by the height of the particle (H) obtained from the AFM height imaging:

1
RID = —. .
7 3
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Figure 3

Graph showing the measured particle rebound fraction of submicrometer sucrose particles with varying
relative humidities and viscosities. Figure adapted with permission from Reference 72; copyright 2015
American Chemical Society.

If the RID value is close to zero, then the indentation is insignificant compared to the height of
the particle (Figure 44), which is indicative of a solid-like particle. If the RID value is approaching
one, then the AFM probe pushed completely through the particle, indicative of a liquid-like par-
ticle (Figure 4c). Previously, the methodology was established to determine solid, semisolid, and
liquid phases by testing submicrometer-sized individual sucrose and raffinose particles at varying
RHs (42,44). Here, an RID value equal to or greater than 0.95 was indicative of a liquid, and a value
less than 0.95 was indicative of either a solid or a semisolid phase. To distinguish the solid from
the semisolid phase (Figure 4b), the VRD measurement is assessed. Here, a VRD value greater
than 0.5 nm was indicative of a semisolid and less than 0.5 nm was indicative of a solid phase.
From these results, a step-by-step framework was developed for identifying the phase state of

a Solid (NaCl) b Semisolid (glucose) € Liquid (malonic acid)
10 VRD=02nm | VRD=12nm | [ VRD = NA
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= 5f: 4 L 4
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Figure 4

Illustrative atomic force microscopy plots collected on (#) individual solid NaCl, (5) semisolid glucose, and
(¢) liquid malonic acid particles. VRD and RID measurements are provided and illustrated; I indicates
indentation depth. Abbreviations: NA, not applicable; RID, relative indentation depth; VRD, viscoelastic
response distance. Figure adapted with permission from Reference 42; copyright 2019 American Chemical
Society.
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5-nN value is less than 2%, then the difference is treated as statistically insignificant. Abbreviations: RID,
relative indentation depth; VRD, viscoelastic response distance. Figure adapted with permission from
Reference 42; copyright 2019 American Chemical Society.

Figure 5

individual particles (Figure 5). While this approach requires direct contact between the AFM tip
and particle, it is an accurate way of identifying the phase state from 10~* to 10'® Pa-s in viscosity.

Another AFM method that can assess the phase state for a large number of substrate-deposited
particles is based on AFM height imaging (42). Previously, scanning electron microscopy—based
shape analysis was used to identify the phase state of substrate-deposited particles (79, 80). Simi-
larly, the aspect ratio of substrate-deposited SSA-relevant particles, which is defined as the particle
height divided by the corresponding area equivalent diameter, has been shown to correlate with
the phase state of particles from 0.5 to 1.0 wm in size (Figure 6). The single-particle aspect ratio
can be directly measured from the AFM height image data. From a study of a variety of different
SSA-relevant systems, the higher aspect ratio was correlated with a solid-like phase state, whereas
the lower aspect ratio was correlated with a liquid-like phase state (42). Specifically, particles with
aspect ratios of less than 0.165 were liquid, those between 0.165 and 0.365 were semisolid, and
those greater than 0.365 were solid. Additional factors such as the impaction method, the substrate
used for impaction, and significantly smaller particles need to be explored to further validate the
correlation between the phase state and aspect ratio. However, this methodology proves to be
a quick (albeit less accurate than force spectroscopy) technique that is applicable for other mi-
croscopy techniques that can quantify the aspect ratio of substrate-deposited particles.

4. SURFACE TENSION MEASUREMENTS OF AEROSOLS

The surface tension of bulk liquids is typically measured using tensiometers. Force tensiometers
probe the liquid using a macro-sized needle, typically millimeters in size, forming a meniscus be-
tween the needle and liquid (43, 81-83). The force measured to break the meniscus is correlated
to the surface tension (84, 85). In contrast, optical tensiometers use a high-resolution charge-
coupled device camera to image the shape of the liquid as it is expelled at the end of a needle. The
droplet shape factor, along with the known density of the liquid, is required to infer the surface
tension by fitting to the Young-Laplace equation (86). Both methodologies are well established,
inexpensive, and fast. However, neither can study submicrometer-sized aerosols. The force ten-
siometer also requires milliliters of sample volume. These inherent size and volume limitations
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Measured VRD and RID from AFM versus AR measured from AFM height imaging of single and binary chemical systems.
Abbreviations: AA, azelaic acid; AFM, atomic force microscopy; AR, aspect ratio; GA, glutaric acid; Glu, glucose; LPS,
lipopolysaccharide; MA, malonic acid; PA, palmitic acid; Raf, raffinose; RID, relative indentation depth; Suc, sucrose; VRD, viscoelastic
response distance. Figure adapted with permission from Reference 42; copyright 2019 American Chemical Society.

mean that these methods cannot be directly used to measure the surface tension of individual sub-
or supermicrometer aerosols.

As with measurements of hygroscopicity and phase state, AFM has been used to quantify the
surface tension of individual submicrometer aerosols in a liquid phase state (43, 45, 46). The
methodology uses a constant radius nanoneedle, typically 50-200 nm in diameter, as the AFM
probe to both image the particle and measure its surface tension at a variable RH. The latter is
illustrated in Figure 7. The maximum absolute force required to break the meniscus between the
particle and nanoneedle is called the retention force (45) and corresponds to the contact angle
approaching zero. By quantifying the retention force measured from indenting into the particle
with the nanoneedle at a specific RH, the surface tension can be quantified with the expression

(87)
Fo. =2mro, 4.

where F is retention force, 7 is the radius of the nanoneedle, and o is the surface tension of the
liquid particle. Note that this method is similar to force tensiometers except for the needle size.
This methodology was previously developed in 2015 on SSA-relevant systems (45) and further
validated in 2017 on a variety of model systems (43) that included surface-inactive and surface-
active chemical systems such as inorganic salts, carboxylic acids, and saccharides (Figure 8). In
this case, the single-particle AFM surface tension data on particles approximately 500 nm in size
correlated well with bulk studies (43). In 2020, this methodology was also successfully applied to
quantify the surface tension of real SSAs (Figure 9). SSAs produced by the breaking of waves of
isolated seawater from California were collected for AFM studies (46). The data revealed a signifi-
cant particle-to-particle variability that was beyond the analytical uncertainty of the methodology.
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Figure 7

An illustrative force plot for a liquid particle using the atomic force microscopy (AFM) surface tension
measurement methodology; retention force (Fre) is illustrated. The gray line refers to the approach trace
and the black line refers to the retract trace. After imaging the particle, the nanoneedle is positioned above
the approximate center of the particle in position A. Then the nanoneedle is lowered at constant speed until
it contacts the particle surface in position B and pushes through the particle until it reaches position C.
Afterward, the nanoneedle starts to push on the solid substrate below the particle, and it is further pressed
until a predefined maximum force is reached at position D. Upon reaching this force, the nanoneedle is
retracted until the meniscus between it and the liquid particle breaks in position E. The nanoneedle then is
returned to its original position in position F. Figure adapted with permission from Reference 45; copyright
2015 Royal Society of Chemistry.

Furthermore, a statistically significant depression of the average SSA surface tension was observed
that corresponded to the highest amount of biological activity in the seawater.

One advantage of AFM is that the surface tension measurement methodology can be used
to quantify the surface tension of submicrometer-sized particles at viscosity values of less than
107 Pa-s, or when the RID is close to or equal to one. In addition, it is considered to be a direct mea-
surement that does not require additional assumptions to measure the surface tension as a function
of RH. However, such direct measurement can also be disadvantageous. As the nanoneedle must
come into direct contact with the particle, the nanoneedle may become coated with various organic
or inorganic species over multiple uses or may change shape due to repeated force measurements.
Thus, the methodology requires careful nanoneedle calibration before and after each experiment
using a liquid with known surface tension (e.g., vacuum oil or ultrapure water) (43).

Techniques such as microfluidics or optical tweezers do not require such direct contact. Mi-
crofluidics can be used to measure the interfacial tension of droplets under biphasic flow. The
droplet deformation as a result of induced flow within the system corresponds to the interfacial
tension, which can be measured on supermicrometer-sized droplets (75, 88). Optical tweezers
manipulate two suspended aerosols and coalesce them to form oscillating droplets. The surface
tension can then be quantified by measuring the backscattering intensity with respect to time
when the viscosity is equal to or less than 10~* Pa-s and then performing a fast Fourier trans-
formation (69). When the viscosity is greater than 10~* Pa-s, viscous damping phenomena must
be considered. This methodology has been validated on multiple model systems, including salts
and surface-active organic acids (Figure 10). The data showed good agreement with bulk mea-
surements and predictions from the extended aerosol inorganics model (E-AIM). One advan-
tage of this technique is that the trapped aerosols can be maintained for a long time, enabling
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(a,¢) Three-dimensional atomic force microscopy (AFM) height images of individual glucose and glutaric acid particles. (b,d) Graphs
showing AFM-measured single-particle surface tension versus relative humidity and solute mole percentage for glucose and glutaric
acid. Comparisons are made against bulk force tensiometer measurements that have been extrapolated beyond the saturation point.
Figure adapted with permission from Reference 43; copyright 2017 American Chemical Society.
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(@) Three-dimensional atomic force microscopy (AFM) height images of (top) individual nascent sea spray aerosol particles at 10%
relative humidity (RH) and (bottom) corresponding deliquesced liquid droplets at 80% RH. (b)) Graph showing AFM-measured surface
tension at 80% RH of individual nascent sea spray aerosols (red open triangles). The averages per day are shown by black horizontal solid
lines, which are connected by black dashed lines for illustrative purposes. The surface tension measurement of the seawater with a bulk
force tensiometer is shown (purple open circles) as well as the surface tension of water at room temperature (blue solid line). For
comparison, the surface tension of glutaric acid measured with AFM at 86% RH, along with the standard deviation, is shown (gray solid
line with green diagonal dashes). Figure adapted with permission from Reference 46; copyright 2020 American Chemical Society.
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Graphs of measured surface tension versus concentration and water activity for (#) NaCl and () glutaric acid with optical tweezers.
Figure adapted with permission from Reference 69; copyright 2016 Royal Society of Chemistry.

controlled time-dependent studies. Furthermore, indirect measurement may be less susceptible
to contamination. However, the methodology cannot be applied to submicrometer-sized aerosols.
In addition, the surface tension measurements are constrained to viscosities equal to or less than

102 Pa-s (69).

5. CONCLUSION AND FUTURE OUTLOOK

With the emerging role of AFM in studying the physicochemical properties of atmospheric
aerosol particles, this review has sought to evaluate how the tool enables, as a function of RH, mea-
surements of the hygroscopicity, phase state, and surface tension of individual substrate-deposited
aerosols without prior knowledge of their chemical identity. While the single-particle method does
require a substrate and detailed quantification can be time-consuming if a significant number of
particles or samples need to be studied, it is applicable for both sub- and supermicrometer-sized
aerosols over the range of 1073~10!¢ Pa-s in viscosity.

Future studies could build upon the existing work in several ways. First is the extension of
the development and validation of hygroscopicity, phase state, and surface tension methodology
by applying it toward increasingly more complex model systems (e.g., with a larger number of
components and with various mixing states and morphologies) and to varying particle sizes (e.g.,
below 100 nm). As most of the SSA-relevant systems studied thus far were single-component or
binary mixtures approximately 0.5-1.0 wm in size, these are neither complex nor small enough
to fully replicate the entire population of real SSAs or other atmospherically relevant particulate
matter such as secondary marine aerosols (89-91). To enable surface tension measurements of
smaller particles, the development of smaller constant diameter AFM nanoneedles (i.e., less than
50 nm) is required.

Second is the extension of the applicability of the AFM instrumentation used to perform these
experiments by changing temperature and/or introducing heterogeneous gases in situ to better
simulate the atmospheric conditions. While AFM allows the RH to be readily controlled, cur-
rent technological limitations prevent successful force spectroscopy experiments that can lower
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the temperature to and maintain it below —38°C for AFM experiments under ambient pressure.
The capability to reach and maintain such low temperatures will be important in replicating the
atmospheric conditions relevant for ice nucleation studies (11, 52). Introducing the gases com-
monly found in the atmosphere (92) to the substrate-deposited particles in situ during AFM force
spectroscopy and imaging experiments may yield insights into the heterogeneous chemistry and
atmospheric aging dynamics of aerosols.

Third is the development of the methodology to quantify the viscosity of an individual particle
atvarying RHs. While the AFM phase state methodology is broadly applicable at low to high RHs,
each system exhibits a wide range of viscosities within a specific phase state. In the future, AFM
must be able to quantify the viscosity in addition to probing the phase state of submicrometer-sized
aerosols.

Lastly is the incorporation of new innovations into AFM technology. New developments such
as the amplitude and frequency modulation technique hold promise to both image and map certain
physicochemical properties of individual aerosols, such as the Young’s modulus and the viscosity
coefficient (93-95). This has the potential to allow facile imaging and quantification of the viscos-
ity and phase state on a single-particle basis with the desired spatial resolution (e.g., nanometer
level) as a function of RH. Such development could allow for a significant increase in the num-
ber of individual aerosols characterized, thus enabling much larger populations of particles to be
studied. Also, the relatively recent development of AFM-infrared photothermal spectroscopy al-
lows for both AFM imaging and the spectroscopic characterization of aerosols (6, 96). Using AFM
methodology concurrently with chemical imaging may enable direct correspondence between the
chemical composition and property of the aerosol. Such measurements on real aerosols may lead
to new insights and improved understanding of the roles of aerosols on the climate, atmosphere,
and human health.
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