
Overparameterized neural networks implement
associative memory
Adityanarayanan Radhakrishnana,b, Mikhail Belkinc,1, and Caroline Uhlera,b,2

aLaboratory for Information & Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139; bInstitute for Data, Systems, and Society,
Massachusetts Institute of Technology, Cambridge, MA 02139; and cDepartment of Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210

Edited by Nathan Kallus, Cornell University, New York, NY, and accepted by Editorial Board Member Donald B. Rubin September 10, 2020 (received for
review March 16, 2020)

Identifying computational mechanisms for memorization and
retrieval of data is a long-standing problem at the intersec-
tion of machine learning and neuroscience. Our main finding is
that standard overparameterized deep neural networks trained
using standard optimization methods implement such a mech-
anism for real-valued data. We provide empirical evidence that
1) overparameterized autoencoders store training samples as
attractors and thus iterating the learned map leads to sample
recovery, and that 2) the same mechanism allows for encoding
sequences of examples and serves as an even more efficient
mechanism for memory than autoencoding. Theoretically, we
prove that when trained on a single example, autoencoders
store the example as an attractor. Lastly, by treating a sequence
encoder as a composition of maps, we prove that sequence
encoding provides a more efficient mechanism for memory than
autoencoding.

associative memory | neural networks | autoencoders | sequence
encoders | overparameterization

Developing computational models of associative memory, a
system that can recover stored patterns from corrupted

inputs, is a long-standing problem at the intersection of machine
learning and neuroscience.

An early example of a computational model for memory dates
back to the introduction of Hopfield networks (1, 2). Hopfield
networks are an example of an attractor network, a system that
allows for the recovery of patterns by storing them as attractors of
a dynamical system. In order to write patterns into memory, Hop-
field networks construct an energy function with local minima
corresponding to the desired patterns. To retrieve these stored
patterns, the constructed energy function is iteratively minimized
starting from a new input pattern until a local minimum is
discovered and returned.

While Hopfield networks can only store binary patterns, the
simplicity of the model allowed for a theoretical analysis of
capacity (3). In order to implement a form of associative mem-
ory for more complex data modalities, such as images, the idea of
storing training examples as the local minima of an energy func-
tion was extended by several recent works (4–8). Unlike Hopfield
networks, these modern methods do not guarantee that a given
pattern can be stored and typically lack the capacity to store
patterns exactly (e.g., ref. 4).

Our main finding is that standard overparameterized neu-
ral networks trained using standard optimization methods can
implement associative memory. In contrast to energy-based
methods, the storage and retrieval mechanisms are automatic
consequences of training and do not require constructing and
minimizing an energy function.

Interpolation Alone Is Not Sufficient for Implementing
Associative Memory
While in recent machine learning literature (e.g., refs. 9 and
10), the term memorization is often used interchangeably with
interpolation, the ability of a model to perfectly fit training

data; note that memorization is stronger and also requires a
model to be able to recover training data. In general, interpo-
lation does not guarantee the ability to recover training data
nor does it guarantee the ability to associate new inputs with
training examples. Fig. 1A shows an example of a function
that interpolates training data but does not implement asso-
ciative memory: there is no apparent method to recover the
training examples from the function alone. On the other hand,
Fig. 1B gives an example of a function that implements mem-
ory: the training examples are retrieved as the range of the
function.

While it has been observed (e.g., ref. 10) that overparame-
terized networks can interpolate the training data, there is no
a priori reason why it should be possible to recover the training
data from the network. In this work, we show that, remarkably,
the retrieval mechanism also follows naturally from training: the
examples can be recovered simply by iterating the learned map.
A depiction of the memorization and retrieval mechanisms is
presented in Fig. 1 C and D. More precisely, given a set of train-
ing examples {x (i)}ni=1⊂Rd and an overparameterized neural
network implementing a family of continuous functions F = {f :
Rd→Rd}, we show that minimizing the following autoencoding
objective with gradient descent (GD) methods leads to training
examples being stored as attractors:

Significance

Development of computational models of memory is a sub-
ject of long-standing interest at the intersection of machine
learning and neuroscience. Our main finding is that overpa-
rameterized neural networks trained using standard optimiza-
tion methods provide a simple mechanism for implementing
associative memory. Remarkably, this mechanism allows for
the storage and retrieval of sequences of examples. This
finding also sheds light on inductive biases in overparame-
terized networks: while there are many functions that can
achieve zero training loss in the overparameterized regime,
our result shows that increasing depth and width in neural
networks leads to maps that are more contractive around
training examples, thereby allowing for storage and retrieval
of more training examples.

Author contributions: A.R., M.B., and C.U. designed research, performed research,
analyzed data, and wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission. N.K. is a guest editor invited by the Editorial
Board.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 Present address: Halcoğlu Data Science Institute, University of California San Diego, La
Jolla, CA 92093.y

2 To whom correspondence should be addressed. Email: cuhler@mit.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2005013117/-/DCSupplemental.y

First published October 16, 2020.

27162–27170 | PNAS | November 3, 2020 | vol. 117 | no. 44 www.pnas.org/cgi/doi/10.1073/pnas.2005013117

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

http://orcid.org/0000-0002-7008-0216
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cuhler@mit.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2005013117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2005013117&domain=pdf

CO
M

PU
TE

R
SC

IE
N

CE
S

A B C D

Fig. 1. The difference between associative memory and interpolation is described in A and B; the mechanism identified in this work by which overparame-
terized autoencoders implement associative memory is described in C and D. Training examples are shown as black points, the identity function is shown as
dotted lines, and functions are represented using solid colored lines. (A) An example of a function that interpolates the training data but does not memorize
training data: training data are not recoverable from just the function alone. (B) An example of a function that interpolates and memorizes training data:
training data are recoverable as the range of the function. (C) An example of an interpolating function for which the training examples are attractors; the
basis of attraction is shown. (D) Iteration of the function from C leads to a function that is piecewise constant almost everywhere, with the training examples
corresponding to the nontrivial constant regions. The fact that the training examples are attractors implies that iteration provides a retrieval mechanism.

argmin
f∈F

n∑
i=1

‖f (x (i))− x (i)‖
2
. [1]

Interestingly, attractors arise without any specific regularization
to the above loss function. We demonstrate this phenomenon
by presenting a wealth of empirical evidence, including a net-
work that stores 500 images from ImageNet-64 (11) as attrac-
tors. In addition, we present a proof of this phenomenon for
overparameterized networks trained on single examples.

Furthermore, we show that a slight modification of the objec-
tive Eq. 1 leads to an implementation of associative memory for
sequences. More precisely, given a sequence of training examples
{x (i)}ni=1⊂Rd , minimizing the following sequence encoding
objective with GD methods leads to the training sequence being
stored as a stable limit cycle:

argmin
f∈F

n∑
i=1

∥∥∥f (x ((i mod n)+1))
)
− x (i)

∥∥∥2. [2]

Multiple cycles can be encoded similarly (SI Appendix, SI
Materials and Methods A). In particular, we provide several exam-
ples of networks storing video and audio samples as limit cycles.
Interestingly, these experiments suggest that sequence encod-
ing provides a more efficient mechanism for memorization and
retrieval of training examples than autoencoding. By considering
a sequence encoder as a composition of maps, we indeed prove
that sequence encoders are more contractive to a sequence of
examples than autoencoders are to individual examples.

Related Work
Autoencoders (12) are commonly used for manifold learning,
and the autoencoder architecture and objective (Eq. 1) have
been modified in several ways to improve their ability to repre-
sent data manifolds. Two variations, contractive and denoising
autoencoders, add specific regularizers to the objective function
in order to make the functions implemented by the autoen-
coder contractive toward the training data (13–15). However,
these autoencoders are typically used in the underparameter-
ized regime, where they do not have the capacity to interpolate
(fit exactly) the training examples and hence, cannot store the
training examples as fixed points.

On the other hand, it is well known that overparameterized
neural networks can interpolate the training data when trained
with GD methods (10, 16–18). As a consequence, overparame-
terized autoencoders can store training examples as fixed points.
In particular, recent work empirically studied overparameterized
autoencoders in the setting with one training example (19).

In this paper, we take a dynamical systems perspective to study
overparameterized autoencoders and sequence encoders. In par-
ticular, we show that not only do overparameterized autoen-
coders (sequence encoders) trained using standard methods
store training examples (sequences) as fixed points (limit cycles)
but that these fixed points (limit cycles) are attractors (stable; i.e.,
they can be recovered via iteration). While energy-based meth-
ods have also been shown to be able to recall sequences as stable
limit cycles (20, 21), the mechanism identified here is unrelated:
it does not require setting up an energy function and is a direct
consequence of training an overparameterized network.

Background from Dynamical Systems
We now introduce tools related to dynamical systems that we will
use to analyze autoencoders and sequence encoders.

Attractors in Dynamical Systems. Let f :Rd→Rd denote the func-
tion learned by an autoencoder trained on a dataset X =

{x (i)}ni=1⊂Rd . Consider the sequence {f k (x)}k∈N where f k (x)
denotes k compositions of f applied to x ∈Rd . A point x ∈Rd

is a fixed point of f if f (x)= x ; in this case, the sequence
{f k (x)}k∈N trivially converges to x .

Since overparameterized autoencoders interpolate the train-
ing data, it holds that f (x (i))= x (i) for each training example
x (i) ∈X ; hence, all training examples are fixed points of f .∗ We
now formally define what it means for a fixed point to be an
attractor and provide a sufficient condition for this property.

Definition 1: A fixed point x∗ ∈Rd is an attractor of f :Rd →
Rd if there exists an open neighborhood, O, of x∗, such that for
any x ∈O, the sequence {f k (x)}k∈N converges to x∗ as k→∞.
The set S of all such points is called the basin of attraction of x∗.

Proposition 1. A fixed point x∗ ∈Rd is an attractor of a differen-
tiable map f if all eigenvalues of the Jacobian of f at x∗ are strictly
less than one in absolute value. If any of the eigenvalues are greater
than one, x∗ cannot be an attractor.

Proposition 1 is a well-known condition in the theory of
dynamical systems (chapter 6 of ref. 22). The condition intu-
itively means that the function f is “flatter” around an attractor
x∗. Since training examples are fixed points in overparameter-
ized autoencoders, from Proposition 1, it follows that a training
example is an attractor if the maximum eigenvalue (in absolute
value) of the Jacobian at the example is less than one. Since
attractors are recoverable through iteration, autoencoders that

*To ensure f(x(i))≈ x(i), it is essential to train until the loss is very small; we used≤ 10−8 .

Radhakrishnan et al. PNAS | November 3, 2020 | vol. 117 | no. 44 | 27163

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental

store training examples as attractors guarantee recoverability of
these examples. Energy-based methods also allow for verifica-
tion of whether a training example is an attractor. However, this
requires checking the second-order condition that the Hessian is
positive definite at the training example, which is more compu-
tationally expensive than checking the first-order condition from
Proposition 1.

Discrete Limit Cycles in Dynamical Systems. Discrete limit cycles
can be considered the equivalent of an attractor for sequence
encoding, and a formal definition is provided below.

Definition 2: A finite set X ∗= {x (i)}ni=1⊂Rd is a stable dis-
crete limit cycle of a smooth function f :Rd → Rd if 1) f (x (i))=

x (i mod n)+1 ∀i ∈{1, . . .n}. 2) There exists an open neighbor-
hood, O, of X ∗ such that for any x ∈O, X ∗ is the limit set of
{f k (x)}∞k=1.

The equivalent of Proposition 1 for verifying that a finite
sequence of points forms a limit cycle is provided below.

Proposition 2. Let network f :Rd → Rd be trained on a given
sequence x (1), . . . , x (n) such that f (x (i))= x ((i mod n)+1). Then,
the sequence {x (i)}ni=1 forms a stable discrete limit cycle if the
largest eigenvalue of the Jacobian of f n(x (i)) is (in absolute value)
less than one for any i .

This follows directly by applying Proposition 1 to the map f n

since x (i) = f n(x (i)) and f (x (i))= x ((i mod n)+1).
Before presenting our results, we provide the following

important remark.

Why the Emergence of Attractors in Autoencoders Is Notable.
Proposition 1 states that for a fixed point to be an attractor, all
eigenvalues of the Jacobian at that point must be less than one
in absolute value. Since the number of eigenvalues of the Jaco-
bian equals the dimension of the space, this means that the angle
of the derivative is less than π/4 in every eigendirection of the
Jacobian. This is a highly restrictive condition since intuitively,
we expect the “probability” of such an event to be 1/2d . Hence,
a fixed point of an arbitrary high-dimensional map is unlikely
to be an attractor. Indeed, as we show below in Corollary, fixed
points of neural networks are not generally attractors. While not
yet fully understood, the emergence and indeed, proliferation of
attractors in autoencoding are not due solely to architectures but
to specific inductive biases of the training procedures.

Empirical Findings
Training Examples Are Stored as Attractors in Overparameterized
Autoencoders. In the following, we present a range of empiri-
cal evidence that attractors arise in autoencoders across com-
mon architectures and optimization methods. Details on the
specific architectures and optimization schemes used for each
experiment are in SI Appendix, Fig. S1.
Storing Images as Attractors. In Fig. 2, we present an example
of an overparameterized autoencoder storing 500 images from
ImageNet-64 (11) as attractors. This was achieved by training an
autoencoder with depth 10, width 1,024, and cosid nonlinearity
(23) on 500 training examples using the Adam (24) optimizer to
loss ≤ 10−8. We verified that all 500 training images were stored
as attractors by checking that the magnitudes of all eigenvalues of
the Jacobian matrix at each example were less than one. Indeed,
Fig. 2A demonstrates that iteration of the trained autoencoder
map starting from corrupted inputs converges to individual train-
ing examples. A common practice for measuring recoverability
of training patterns is to input corrupted versions of the pat-
terns and verify that the system is able to recover the original
patterns. From Proposition 1, provided that a corrupted exam-
ple is in the basin of attraction of the original example, iteration
is guaranteed to converge to the original example. In examples

5 and 6 in Fig. 2A, the corrupted images are not in the basin of
attraction for the original examples, and so, iteration converges
to a different (but contextually similar) training example. Fig. 2B
provides further examples of correct recovery from corrupted
images. Fig. 2C presents a quantitative analysis of the recov-
ery rate of training examples under various forms of corruption.
Overall, the recovery rate is remarkably high: even when 50%
of the image is corrupted, the recovery rate of the network is
significantly higher than expected by chance.

Examples of autoencoders storing training examples as attrac-
tors when trained on 2,000 images from Modified National
Institute of Standards and Technology (MNIST) (25) and 1,000
black-and-white images from Canadian Institute For Advanced
Research (CIFAR10) (26) are presented in SI Appendix, Figs. S2
and S3, respectively. The MNIST autoencoder presented in SI
Appendix, Fig. S2 stores 2,000 training examples as attractors.
Note that one iteration of the learned map on test examples can
look similar to the identity function, but in fact, iterating until
convergence yields a training example (SI Appendix, Fig. S2).
Spurious Attractors. While in these examples, we verified that
the training examples were stored as attractors by checking the
eigenvalue condition, there could be spurious attractors (i.e.,
attractors other than the training examples). In fact, spurious
attractors are known to exist for Hopfield networks (27). To
investigate whether there are additional attractors outside of
the training examples, we iterated the map from sampled test
images and randomly generated images until convergence. More
precisely, we declared convergence of the map at iteration k
for some image x when ‖f k+1(x)− f k (x)‖2< 10−8 and con-
cluded that f k (x) had converged to the training example x (i) if
‖f k (x)− x (i)‖2< 10−7.

In general, spurious attractors can exist for overparameterized
autoencoders, and we provide examples in SI Appendix, Fig. S4.
However, remarkably, for the network presented in Fig. 2, we
could not identify any spurious attractors even after iterating
the trained autoencoder map from 40, 000 test examples from
ImageNet-64, 10, 000 examples of uniform random noise, and
10, 000 examples of Gaussian noise with variance 4.
Attractors Arise across Architectures, Training Methods, and Ini-
tialization Schemes. We performed a thorough analysis of the
attractor phenomenon identified above across a number of
common architectures, optimization methods, and initialization
schemes. Starting with fully connected autoencoders, we ana-
lyzed the number of training examples stored as attractors
when trained on 100 black-and-white images from CIFAR10
(26) under the following nonlinearities, initializations, and
optimization methods.

• Nonlinearities: rectified linear unit (ReLU), Leaky ReLU,
scaled exponential linear units, cosid (cos x − x), Swish (23,
28–30), and sinusoidal (x +(sin 10x)/5).
• Optimization methods: GD, GD with momentum, GD with

momentum and weight decay, rms propagation, and Adam
(chapter 8 of ref. 31).
• Initialization schemes: random uniform initialization, namely
U [−a, a], per weight for a ∈ {0.01, 0.02, 0.05, 0.1, 0.15}.
These initialization schemes subsume the PyTorch (version
0.4) default, Xavier initialization, and Kaiming initialization
(32–34).

In SI Appendix, Tables S1 and S2, we provide the number
of training examples stored as attractors for all possible com-
binations of 1) nonlinearity and optimization method listed
above and 2) nonlinearity and initialization scheme listed above.
These tables demonstrate that attractors arise in all settings
for which training converged to a sufficiently low loss within
1, 000, 000 epochs. In SI Appendix, Figs. S5 and S6 and SI Materi-
als and Methods F, we also present examples of convolutional and

27164 | www.pnas.org/cgi/doi/10.1073/pnas.2005013117 Radhakrishnan et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2005013117

CO
M

PU
TE

R
SC

IE
N

CE
S

A

B C

Fig. 2. Example of an overparameterized autoencoder storing 500 images from ImageNet-64 as attractors after training to a reconstruction error of less
than 10−8. Architecture and optimizer details are provided in SI Appendix, Fig. S1. (A) By iterating the trained autoencoder on corrupted versions of
training samples, individual training samples are recovered. (B) Samples that are corrupted by uniform random noise or squares of varying color and size
are recovered via iteration. (C) Fraction of samples recovered correctly from different noise applied to the training images. A sample is considered recovered
when the error between the original sample and the recovered sample is less than 10−7.

recurrent networks that store training examples as attractors,
thereby demonstrating that this phenomenon is not limited
to fully connected networks and occurs in all commonly used
network architectures.

Visualizing Attractors in Two Dimensions. In order to better
understand the attractor phenomenon, we present an example
of an overparameterized autoencoder storing training exam-
ples as attractors in the two-dimensional (2D) setting, where

Fig. 3. Example of an overparameterized autoencoder in the 2D setting storing training examples (represented as stars) as attractors. Basins of attraction
for each sample are colored by sampling 10, 000 points in a grid around the training examples, taking the limit of the iteration for each point, and assigning
a color to the point based on the training example indicated by the limit. The vector field indicates the direction of motion given by iteration, and Insets
indicate that iteration leads to training examples for all points in an open set around each example.

Radhakrishnan et al. PNAS | November 3, 2020 | vol. 117 | no. 44 | 27165

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental

the basins of attraction can easily be visualized (Fig. 3). We
trained an autoencoder to store six training examples as attrac-
tors. Their basins of attraction were visualized by iterating
the trained autoencoder map starting from 10, 000 points on
a grid until convergence. The vector field indicates the direc-
tion of motion given by iteration. Also in this experiment,
we found no spurious attractors. Each training example and
corresponding basin of attraction is colored differently. Inter-
estingly, the example in Fig. 3 shows that the metric learned
by the autoencoder to separate the basins of attraction is not
Euclidean distance, which would be indicated by a Voronoi
diagram.

Overparameterized Sequence Encoders Store Training Examples as
Stable Limit Cycles and Are More Efficient at Memorizing and Retriev-
ing Examples than Autoencoders. We have thus far analyzed the
occurrence of attractors in overparameterized autoencoders. In
this section, we demonstrate via various examples that by modify-
ing the autoencoder objective to encode sequences (e.g., Eq. 2),
we can implement a form of associative memory for sequences.
Details on the specific architectures and optimization schemes
used for each experiment are in SI Appendix, Fig. S1.
Storing Sequences as Limit Cycles. We trained a network to
encode 389 frames of size 128× 128 from the Disney film
“Steamboat Willie” by mapping frame i to frame i +1
mod 389. Fig. 4A and Movies S1 and S2 show that iterating the
trained network starting from random noise yields the original
video.

As a second example, we encoded two 10-digit sequences from
MNIST: one counting upward from digit 0 to 9 and the other
counting down from digit 9 to 0. The maximal eigenvalues of the
Jacobian of the trained encoder composed 10 times are 0.0034
and 0.0033 for the images from the first and second sequences,
respectively. Hence, by Proposition 2, both sequences form limit
cycles. Indeed, as shown in Fig. 4B and Movies S3 and S4, iter-
ation from Gaussian noise leads to the recovery of both training
sequences.

Finally, in Fig. 4C, we visualized the vector field and basins of
attraction for four cycles in the 2D setting. Unlike autoencod-
ing where points near a training example are pushed toward it
via iteration, the points now move following the cycles. An ani-
mation of this process is shown in Movie S5. In SI Appendix, SI

Materials and Methods G, we also trained a sequence encoder
that stores 10 s of speech as a limit cycle. Movies S6 and S7
demonstrate that iterating the trained network from random
noise recovers the original audio.
Efficiency of Sequence Encoding. In Fig. 5, we analyze the net-
work sizes (width and depth) needed to store and retrieve 100
training images from MNIST using fully connected autoencoders
and sequence encoders. Interestingly, our experiments indicate
that memorization and retrieval of training examples can be
performed more efficiently through sequence encoding than
autoencoding. In particular, Fig. 5A shows the number of train-
ing examples (of 100) that are attractors for different width and
depth of the network. Note that a depth of 31 and a width of
512 are needed to store almost all (99) training examples. If we
instead encode the same data using 20 sequences of length 5,
all 20 sequences (and thus, all 100 examples) can be recovered
using a much smaller network with a depth of six and 512 hidden
units per layer (Fig. 5B). Extending this idea further (Fig. 5 C–
E), if we chain all 100 examples as a single sequence, the entire
sequence is stored using a network with only one hidden layer
and 512 hidden units.
Increasing Depth and Width Leads to More Attractors/Limit Cycles.
The experiments in Fig. 5 indicate that increasing network depth
and width leads to an increase in the number of training exam-
ples/sequences stored as attractors/limit cycles. For overparame-
terized autoencoders, this implies that the maximum eigenvalue
of the Jacobian is less than one for a greater number of training
examples upon increasing network depth and width (Proposi-
tion 1) (i.e., the network becomes more contractive around the
training examples). Indeed, by analyzing the histogram of the
maximum eigenvalue of the Jacobian at each of the training
examples, we observed that as network depth and width increase,
the mode of these histograms shifts closer to zero (SI Appendix,
Fig. S7). Additionally, when considering the distribution of the
top 1% of Jacobian eigenvalues, we find that as network width
increases, the variance of the distribution of Jacobian eigen-
values decreases, and when depth increases, the mode of the
distribution shifts closer to zero (SI Appendix, Fig. S8). In the
following, we prove this phenomenon for a single training exam-
ple (i.e., we prove that autoencoders trained on a single example
become more contractive at the training example with increasing
depth and width).

B C

A

Fig. 4. Examples of overparameterized sequence encoders storing training sequences as limit cycles. Architecture and optimizer details are provided in SI
Appendix, Fig. S1. (A) When trained on 389 frames of size 128× 128 from the Disney film “Steamboat Willie,” the entire movie was stored as a limit cycle.
Hence, iteration from random noise leads to recovery of the entire sequence. (B) When trained on two sequences of length 10 from MNIST, each sequence
was stored as a limit cycle. Hence, iteration from random noise leads to the recovery of each individual sequence. (C) Visualization of the basins of attraction
for a sequence encoder storing four sequences as limit cycles in the 2D setting. The vector field indicates the direction of motion given by iteration.

27166 | www.pnas.org/cgi/doi/10.1073/pnas.2005013117 Radhakrishnan et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-2
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-3
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-4
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-5
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-6
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-7
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2005013117

CO
M

PU
TE

R
SC

IE
N

CE
S

A B C D E

Fig. 5. Sequence encoders are more efficient at implementing associative memory than autoencoders. Numbers of training examples recovered are out of
100; architecture and optimizer details are provided in SI Appendix, Fig. S1. (A) Number of recovered images when autoencoding 100 examples from MNIST
individually; a network of depth 31 and width 512 recovers 99 images of 100. (B–E) Sequence encoding the same 100 MNIST examples as sequences of
different lengths improves the recovery rates; in particular, a network of depth 1 and width 512 recovers the full 10 images when encoded as five sequences
of length 20 (D) or one sequence of length 100 (E).

Theoretical Analysis of Special Cases
We now provide theoretical support for our empirical findings.
Complete proofs are given in SI Appendix, SI Materials and
Methods B–E.

Proof That When Trained on a Single Example, Overparameterized
Autoencoders Store the Example as an Attractor. We outline the
proof for the one-hidden layer setting. The complete proof for
the multilayer setting is given in SI Appendix, SI Materials and
Methods C.

Let f (z)=W1φ(W2z) represent a one-hidden layer autoen-
coder with elementwise nonlinearity φ and weights W1 ∈Rk0×k

and W2 ∈Rk×k0 , applied to z ∈Rk0 . We analyze the function
learned by GD with learning rate γ by minimizing the following
autoencoding loss on one training example x :

L(x , f)= 1

2
‖x − f (x)‖22. [3]

Let W
(t)
1 ,W

(t)
2 denote the values of the weights after t steps

of GD. To prove that x is an attractor of f after training, we
solve for W

(∞)
1 ,W

(∞)
2 and compute the top eigenvalue of the

Jacobian of f at x [denoted λ1 (J(f (x)))].
In order to solve for W1,W2, we first identify two invariants of

GD (proved in SI Appendix, SI Materials and Methods B):
Invariant 1: If W1 and W2 are initialized to be rank 1 matri-

ces of the forms xu(0)T and v (0)xT , respectively, then W
(t)
1 =

xu(t)T and W
(t)
2 = v (t)xT for all time steps t > 0.

Invariant 2: If, in addition, all weights in each row of W1 and
W2 are initialized to be equal, they remain equal throughout
training.

Invariant 1 implies that autoencoders trained on one exam-
ple produce outputs that are multiples of the training exam-
ple. Generalizing this result, in SI Appendix, SI Materials and
Methods D, we prove that autoencoders trained on multiple
examples produce outputs in the span of the training data.
Invariant 2 reduces GD dynamics to the one-dimensional set-
ting. Using Invariants 1 and 2 combined with gradient flow (i.e.,
taking the limit as the learning rate γ→ 0), we can solve for
W

(∞)
1 and W

(∞)
2 .

Theorem 1. Let f (z)=W1φ(W2z) denote a one-hidden layer
network with elementwise nonlinearity φ and weights W1 ∈Rk0×k

and W2 ∈Rk×k0 , applied to z ∈Rk0 . Let x ∈Rk0 be a training
example with ‖x‖2 =1. Assuming φ(z)

φ′(z) <∞ ∀z ∈R, then under
Invariants 1 and 2, GD with learning rate γ → 0 applied to min-

imize the autoencoding loss in Eq. 3 leads to a rank 1 solution
W

(∞)
1 = xuT and W

(∞)
2 = vxT with u, v ∈Rk satisfying

u2
i − u

(0)
i

2

2
=

∫ vi

v
(0)
i

φ(z)

φ′(z)
dz and uiφ(vi)=

1

k
,

and ui = uj , vi = vj for all i , j ∈ [k], where u(0) and v (0) are such
that W (0)

1 = xu(0)T and W
(0)
2 = v (0)xT .

Theorem 1 allows us to compute the top eigenvalue of the
Jacobian at x , denoted by λ1(J(f (x))).

Theorem 2. Under the setting of Theorem 1, it holds that

λ1(J(f (x)))=
φ′(vi)vi
φ(vi)

.

Using Theorem 2, we can explicitly determine whether a train-
ing example x is an attractor, when given a nonlinearity φ, initial
values for u(0) and v (0), and the width of the network k . We
note that for all nonpiecewise nonlinearities used thus far, we
can make any training example an attractor by selecting values
for u(0), v (0), and k appropriately.

Example: Let x be a training example in Rk0 . Suppose φ(z)=
1

1+e−z for z ∈R, k =2, and u
(0)
i = v

(0)
i =1 for all i . Then, by

Theorems 1 and 2, it holds after training that

u2
i − 1

2
=

∫ vi

1

(
1

1−φ(z)

)
dz and

ui

1+ e−vi
=

1

2

with ui ≈ .697, vi ≈ .929, and λ1(J(f (x)))≈ .263. Since
λ1(J(f (x)))< 1, x is an attractor. We also confirmed this result
(up to the third decimal place) experimentally by training a
network using GD with learning rate 10−4.

Importantly, the analysis of Theorem 2 implies that attractors
arise as a result of training and are not simply a consequence of
interpolation by a neural network with a certain architecture; see
the following corollary.

Corollary. Let x ∈Rk0 with ‖x‖2 =1 and f (z)= xuTφ(vxT z),
where u, v ∈Rk and φ is a smooth elementwise nonlinearity with
φ′(z)
φ(z)

<∞ for all z ∈R,
∣∣∣φ′(z)zφ(z)

∣∣∣> 1 for z in an open interval

O⊂R. Then, there exist infinitely many v ∈Rk , such that f (x)= x
and x is not an attractor for f .

The condition, |φ′(z)z/φ(z)|> 1 for z in an open interval,
holds for all smooth nonlinearities considered in this paper. The
proof is presented in SI Appendix, SI Materials and Methods B.

Radhakrishnan et al. PNAS | November 3, 2020 | vol. 117 | no. 44 | 27167

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental

We note that while the linear setting with φ(z)= z has been
studied extensively using gradient flow (35–37), our results
extend to the nonlinear setting.

Remarks on the Multiple Sample Setting. While we extend Invari-
ant 1 to the multiple example setting in SI Appendix, SI Materials
and Methods D, a similar extension of Invariant 2 is required
in order to generalize Theorem 1 to multiple examples. We
believe such an extension may be possible for orthonormal train-
ing examples. Under random initialization, it may be possible to
prove the attractor phenomenon by analyzing autoencoders in
the Neural Tangent Kernel (NTK) regime (38). However, the
disadvantage of such an analysis is that it relies on computing a
closed form for the NTK in the limiting case of network width
approaching infinity. On the other hand, Theorem 1 holds for a
general class of nonlinearities and for finite width and depth.

Remarks on Similarity to Power Iteration. The attractor phe-
nomenon identified in this work appears similar to that of Fast
Independent Component Analysis (39) or more general nonlin-
ear power iteration (40), where every “eigenvector” (correspond-
ing to a training example in our setting) of a certain iterative
map has its own basin of attraction. In particular, increasing net-
work depth may play a similar role to increasing the number of
iterations in those methods. While the mechanism may be differ-
ent, understanding this connection is an important direction for
future work.

Proof That Sequence Encoding Provides a More Efficient Mechanism
for Memory than Autoencoding by Analyzing Sequence Encoders as
a Composition of Maps. We start by generalizing Invariants 1 and
2 and Theorem 1 to the case of training a network to map an
example x (i) ∈Rk0 to an example x (i+1) ∈Rk0 as follows.

Theorem 3. Let f (z)=W1φ(W2z) denote a one-hidden layer
network with elementwise nonlinearity φ and weights W1 ∈
Rk0×k and W2 ∈Rk×k0 , applied to z ∈Rk0 . Let x (i), x (i+1) ∈
Rk0 be training examples with ‖x (i)‖2 = ‖x

(i+1)‖2 =1. Assum-
ing that φ(z)

φ′(z) <∞ ∀z ∈R and there exist u(0), v (0) ∈Rk such

that W
(0)
1 = x (i+1)u(0)T and W

(0)
2 = v (0)x (i)T with u

(0)
i =

u
(0)
j , v

(0)
i = v

(0)
j ∀i , j ∈ [k]. Then, GD with learning rate γ→ 0

applied to minimize

L(x , f)= 1

2

∥∥∥x (i+1)− f (x (i))
∥∥∥2
2

[4]

leads to a rank 1 solution W
(∞)
1 = x (i+1)uT and W

(∞)
2 = vx (i)T

with u, v ∈Rk satisfying

u2
i − u

(0)
i

2

2
=

∫ vi

v
(0)
i

φ(z)

φ′(z)
dz , and uiφ(vi)=

1

k
,

and ui = uj , vi = vj for all i , j ∈ [k].
The proof is analogous to that of Theorem 1. Sequence encod-

ing can be viewed as a composition of individual networks fi that
are trained to map example x (i) to example x ((i mod n)+1). The
following theorem provides a sufficient condition for when the
composition of these individual networks stores the sequence of
training examples {x (i)}ni=1 as a stable limit cycle.

Theorem 4. Let {x (i)}ni=1 be n training examples with
‖x (i)‖2 =1 for all i ∈ [n], and let {fi}ni=1 denote n one-hidden
layer networks satisfying the assumptions in Theorem 3 and trained
on the loss in Eq. 4. Then, the composition f = fn ◦ fn−1 ◦ . . . ◦ f1
satisfies

λ1 (J(f (x (1)))=

n∏
i=1

(
φ′(v

(i)
j)v

(i)
j

φ(v
(i)
j)

)
. [5]

The proof is presented in SI Appendix, SI Materials and Meth-
ods E. Theorem 4 shows that sequence encoding provides a more
efficient mechanism for memory than autoencoding. If each of
the networks fi autoencoded example xi for i ∈ [n], then Theo-
rem 2 implies that each of the n training examples is an attractor
(and thus, recoverable) if each term in the product in Eq. 5 is
less than one. This in turn implies that the product itself is less
than one, and hence, all training examples are stored by the
corresponding sequence encoder, f , as a stable limit cycle.

Discussion
We have shown that standard overparameterized neural net-
works trained using standard optimization methods imple-
ment associative memory. In particular, we empirically showed
that autoencoders store training examples as attractors and
that sequence encoders store training sequences as stable
limit cycles. We then demonstrated that sequence encoders
provide a more efficient mechanism for memorization and
retrieval of data than autoencoders. In addition, we math-
ematically proved that when trained on a single example,
nonlinear fully connected autoencoders store the example as
an attractor. By modeling sequence encoders as a composi-
tion of maps, we showed that such encoders provide a more
efficient mechanism for implementing memory than autoen-
coders, a finding that fits with our empirical evidence. We end
by discussing implications and possible future extensions of
our results.

Inductive Biases. In the overparameterized regime, neural net-
works can fit the training data exactly for different values of
parameters. In general, such interpolating autoencoders do not
store data as attractors (Corollary). Yet, as we showed in this
paper, this is typically the case for parameter values chosen by
gradient-based optimization methods. Thus, our work identi-
fies an inductive bias of the specific solutions selected by the
training procedure. Furthermore, increasing depth and width
leads to networks becoming more contractive around the training
examples, as demonstrated in Fig. 5.

While our paper concentrates on the question of implement-
ing associative memory, we employ the same training procedures
and similar network architectures to those used in standard
supervised learning tasks. We believe that our finding on the exis-
tence and ubiquity of attractors in these maps may shed light on
the important question of inductive biases in interpolating neural
networks for classification (41).

Generalization. While generalization in autoencoding often
refers to the ability of a trained autoencoder to reconstruct
test data with low error (19), this notion of generalization may
be problematic for the following reason. The identity function
achieves zero test error and thus, “generalizes,” although no
training is required for implementing this function. In general,
it is unclear how to formalize generalization for autoencoding,
and alternate notions of generalization may better capture the
desired properties. An alternative definition of generalization
is the ability of an autoencoder to map corrupted versions of
training examples back to their originals (as in Fig. 2 A and
B). Under this definition, overparameterized autoencoders stor-
ing training examples as attractors generalize (Fig. 2C), while
the identity function does not generalize. Given this issue with
the current notion of generalization for autoencoding, it is an
important line of future work to provide a definition of gen-
eralization that appropriately captures desired properties of
trained autoencoders. Lastly, another important direction of
future work is to build on the properties of autoencoders and
sequence encoders identified in this work to understand gen-
eralization properties of networks used for classification and
regression.

27168 | www.pnas.org/cgi/doi/10.1073/pnas.2005013117 Radhakrishnan et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2005013117

CO
M

PU
TE

R
SC

IE
N

CE
S

Metrics Used by Nonlinear Networks. In Fig. 3, we provided a visu-
alization of how the basins of attraction for individual training
examples subdivide the space of inputs. The picture appears
very different from the Voronoi tessellation corresponding to
the one-nearest neighbor (1-NN) predictor, where each input is
associated with its closest training point in Euclidean distance.
Yet, this may be different in high dimension. In SI Appendix,
Fig. S9, we compare the recovery rate of our network from
Fig. 2 with that of a 1-NN classifier and observe remarkable sim-
ilarity, leading us to conjecture that the basins of attraction of
high-dimensional fully connected neural networks may be closely
related to the tessellations produced by 1-NN predictors. Thus,
understanding the geometry of attractors in high-dimensional
neural networks is an important direction of future research.

Connection to Biological Systems. Finally, another avenue for
future exploration [and a key motivation for the original work
on Hopfield networks (1)] is the connection of autoencoding
and sequence encoding in neural nets to memory mechanisms
in biological systems. Since overparameterized autoencoders and
sequence encoders recover stored patterns via iteration, the
retrieval mechanism presented here is biologically plausible.
However, back propagation is not believed to be a biologi-
cally plausible mechanism for storing patterns (42). An inter-
esting avenue for future research is to identify storage mecha-
nisms that are biologically plausible and to see whether similar

attractor phenomena arise in other, more biologically plausible,
optimization methods.

Materials and Methods
An overview of all experimental details, including datasets, network archi-
tectures, initialization schemes, random seeds, and training hyperparame-
ters, considered in this work is provided in SI Appendix, Fig. S1 and Tables S1
and S2. Briefly, we used the PyTorch library (32) and two NVIDIA Titan Xp
graphics processing units for training all neural networks. In our autoen-
coding experiments on the image datasets ImageNet-64 (11), CIFAR10 (26),
and MNIST (25), we trained both fully connected networks and U-Net con-
volutional networks (43). For Figs. 3, 4 B and C, and 5 as well as for training
sequence encoder models on audio and video samples (attached as Movies
S1 and S6), we used fully connected networks. For all these experiments,
we used the Adam optimizer with a learning rate of 10−4 until the mean
squared error dropped below 10−8. For SI Appendix, Tables S1 and S2,
we fixed the architecture width and depth while varying the initialization
scheme, optimization method, and activation function.

Data Availability. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. We thank the Simons Institute at University of Cali-
fornia, Berkeley for hosting us during the summer 2019 program on “Foun-
dations of Deep Learning,” which facilitated this work. A.R. and C.U. were
partially supported by NSF Grant DMS-1651995, Office of Naval Research
Grants N00014-17-1-2147 and N00014-18-1-2765, IBM, and a Simons Inves-
tigator Award (to C.U.). M.B. acknowledges support from NSF Grants
IIS-1815697 and IIS-1631460, and a Google Faculty Research Award. The
Titan Xp used for this research was donated by the NVIDIA Corporation.

1. J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982).

2. W. A. Little, The existence of persistent states in the brain. Math. Biosci. 19, 101–120
(1974).

3. R. McEliece, E. Posner, E. R. Rodemich, S. S. Venkatesh, The capacity of the Hopfield
associative memory. IEEE Trans. Inf. Theor. 33, 461–482 (1987).

4. S. Bartunov, J. Rae, S. Osindero, T. Lillicrap, “Meta-learning deep energy-based
memory models” in International Conference on Learning Representation (ICLR,
2020).

5. G. E. Hinton, O. Simon, Y.-W. Teh, A fast learning algorithm for deep beliefnets.
Neural Comput. 18, 1527–1554 (2006).

6. G. E. Hinton, “A practical guide to training restricted Boltzmann machines” in
Neural Networks: Tricks of the Trade, G. Montavon, G. B. Orr, K. R. Müller, Eds.
(Lecture Notes in Computer Science, vol. 7700, Springer, Berlin, Germany, 2012),
pp. 599–619.

7. Y. Du, I. Mordatch, Implicit generation and generalization in energy-based models.
arXiv:1903.08689 (230 June 2020).

8. R. Salakhutdinov, H. Larochelle, “Efficient learning of deep Boltzmann machines”
in International Conference on Artificial Intelligence and Statistics, Y. W. Teh,
M. Titterington, Eds. (JMLR, 2010), pp. 233–242.

9. D. Arpit et al., “A closer look at memorization in deep networks” in International
Conference on Machine Learning, D. Precup, Y. W. Teh, Eds. (Proceedings of Machine
Learning Research, 2017), pp. 233–242.

10. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, “Understanding deep learn-
ing requires rethinking generalization” in International Conference on Learning
Representations (ICLR, 2017).

11. A. van den Oord, N. Kalchbrenner, K. Kavukcuglu, “Pixel recurrent neural
networks” in International Conference on Machine Learning, M. F. Balcan,
K. Q. Weinberger, Eds. (Proceedings of Machine Learning Research, 2016),
pp. 1747–1756.

12. P. Baldi, “Autoencoders, unsupervised learning, and deep architectures” in Inter-
national Conference on Machine Learning, I. Guyon, G. Dror, V. Lemaire,
G. Taylor, D. Silver, Eds. (Proceedings of Machine Learning Research, 2012),
pp. 37–49.

13. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, “Extracting and compos-
ing robust features with denoising autoencoders” in International Conference on
Machine Learning (Association for Computing Machinery, New York, NY, 2008),
pp. 1096–1103.

14. S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, “Contractive auto-encoders:
Explicit invariance during feature extraction” in International Conference on
Machine Learning, L. Getoor, T. Scheffer, Eds. (Omnipress, Madison, WI, 2011),
pp. 833–840.

15. G. Alain, Y. Bengio, What regularized auto-encoders learn from the data-generating
distribution. J. Mach. Learn. Res. 15, 3743–3773 (2014).

16. S. S. Du, X. Zhai, B. Poczos, A. Singh, “Gradient descent provably optimizes
over-parameterized neural networks” in International Conference on Learning
Representations (ICLR, 2019).

17. S. S. Du, J. D. Lee, H. Li, L. Wang, X. Zhai, “Gradient descent finds global min-
ima of deep neural networks” in International Conference on Machine Learning,

K. Chaudhuri, R. Salakhutdinov, Eds. (Proceedings of Machine Learning Research,
2019), pp. 1675–1685.

18. X. Wu, S. S. Du, R. Ward, Global convergence of adaptive gradient methods for an
over-parameterized neural network? arXiv:1902.07111 (19 October 2019).

19. C. Zhang, S. Bengio, M. Hardt, Y. Singer, Identity crisis: Memorization and
generalization under extreme overparameterization. arXiv:1902.04698 (9 January
2020).

20. B. Kosko, Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18, 49–60
(1988).

21. J. Buhmann, K. Schulten, “Storing sequences of biased patterns in neural net-
works with stochastic dynamics” in Neural Computers, R. Eckmiller, C. v. d. Mals-
burg, Eds. (Springer Study Edition, vol. 41, Springer, Berlin, Germany, 1989),
231–242.

22. S. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, 2015), vol. 2.
23. S. Eger, P. Youssef, I. Gurevych, “Is it time to swish? Comparing deep learning activa-

tion functions across NLP tasks” in Empirical Methods in Natural Language Processing
(Association for Computational Linguistics, 2018), pp. 4415–4424.

24. D. P. Kingma, J. Ba, “Adam: A method for stochastic optimization” in International
Conference on Learning Representations (ICLR, 2015).

25. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998).

26. A. Krizhevsky, “Learning multiple layers of features from tiny images,” Master’s
thesis, University of Toronto, Toronto, Canada (2009).

27. J. J. Hopfield, D. I. Feinstein, R. G. Palmer, ‘Unlearning’ has a stabilizing effect in
collective memories. Nature 304, 158–159 (1983).

28. P. Ramachandran, B. Zoph, Q. V. Le, “Searching for activation functions” in
International Conference on Learning Representations (ICLR, 2017).

29. B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in
convolution network. arXiv:1505.00853 (27 November 2015).

30. G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural
networks. arXiv:1706.02515v5 (7 September 2017).

31. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016), vol. 1.
32. A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning

library” in Advances in Neural Information Processing Systems 32, H. Wallach et al.,
Eds. (Curran Associates, Inc., Red Hook, NY, 2019), pp. 8024–8035.

33. K. He, X. Zhang, S. Ren, J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification” in International Conference on Computer
Vision (IEEE Computer Society, Washington, DC, 2015), pp. 1026–1034.

34. X. Glorot, Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks” in International Conference on Artificial Intelligence and Statistics,
Y. W. Teh, M. Titterington, Eds. (JMLR, 2010), pp. 249–256.

35. S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, N. Srebro, “Implicit
regularization in matrix factorization” in Advances in Neural Information Processing
Systems 30, I. Guyon et al., Eds. (Curran Associates, Inc., Red Hook, NY, 2017), pp.
6151–6159.

36. S. Arora, N. Cohen, E. Hazan, “On the optimization of deep networks: Implicit
acceleration by overparameterization” in International Conference on Machine
Learning, J. Dy, A. Krause, Eds. (Proceedings of Machine Learning Research, 2018),
pp. 244–253.

Radhakrishnan et al. PNAS | November 3, 2020 | vol. 117 | no. 44 | 27169

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005013117/video-6
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005013117/-/DCSupplemental

37. S. Arora, N. Cohen, N. Golowich, W. Hu, “A convergence analysis of gradient
descent for deep linear neural networks” in International Conference on Learning
Representations (ICLR, 2019).

38. A. Jacot, F. Gabriel, C. Hongler, “Neural tangent kernel: Convergence and generaliza-
tion in neural networks” in Neural Information Processing Systems (Curran Associates,
Inc., Red Hook, NY, 2018), pp. 8571–8580.

39. A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component
analysis. Neural Comput. 9, 1483–1492 (1997).

40. M. Belkin, L. Rademacher, J. Voss, Eigenvectors of orthogonally decomposable
functions. SIAM J. Comput. 47, 547–615 (2018).

41. M. Belkin, D. Hsu, S. Ma, S. Mandal, Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proc. Natl. Acad. Sci. U.S.A. 116, 15849–15854
(2019).

42. S. Grossberg, Competitive learning: From interactive activation to adaptive reso-
nance. Cognit. Sci. 11, 23–63 (1987).

43. O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional networks for biomedi-
cal image segmentation” in International Conference on Medical Image Comput-
ing and Computer Assisted Intervention, N. Navab, J. Hornegger, W. M. Wells,
A. F. Frangi, Eds. (Springer International Publishing, New York, NY, 2015), pp.
234–241.

27170 | www.pnas.org/cgi/doi/10.1073/pnas.2005013117 Radhakrishnan et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ay

 2
8,

 2
02

1

https://www.pnas.org/cgi/doi/10.1073/pnas.2005013117

