Data driven forecasting of aperiodic motions
of non-autonomous systems

Cite as: Chaos 31, 021105 (2021); https://doi.org/10.1063/5.0045004
Submitted: 21 January 2021. Accepted: 04 February 2021 . Published Online: 22 February 2021

1 Vipin Agarwal, "/ Rui Wang, and " Balakumar Balachandran

an N

) S @

View Online Export Citation CrossMark

ARTICLES YOU MAY BE INTERESTED IN

Two methods to approximate the Koopman operator with a reservoir computer

Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 023116 (2021); https://
doi.org/10.1063/5.0026380

Do reservoir computers work best at the edge of chaos?
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 121109 (2020); https://
doi.org/10.1063/5.0038163

Synchronization of clocks and metronomes: A perturbation analysis based on multiple
timescales

Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 023109 (2021); https://
doi.org/10.1063/5.0026335

AIP Advances

. Mathematical Physics Collection  resonow

Chaos 31, 021105 (2021); https://doi.org/10.1063/5.0045004 31, 021105

© 2021 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1398160&setID=379030&channelID=0&CID=495576&banID=520306874&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c2b4158cdc518133878f7349ab9b6b7de9c25ed7&location=
https://doi.org/10.1063/5.0045004
https://doi.org/10.1063/5.0045004
http://orcid.org/0000-0002-5061-4743
https://aip.scitation.org/author/Agarwal%2C+Vipin
http://orcid.org/0000-0003-0293-0474
https://aip.scitation.org/author/Wang%2C+Rui
http://orcid.org/0000-0002-3132-1937
https://aip.scitation.org/author/Balachandran%2C+Balakumar
https://doi.org/10.1063/5.0045004
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0045004
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0045004&domain=aip.scitation.org&date_stamp=2021-02-22
https://aip.scitation.org/doi/10.1063/5.0026380
https://doi.org/10.1063/5.0026380
https://doi.org/10.1063/5.0026380
https://aip.scitation.org/doi/10.1063/5.0038163
https://doi.org/10.1063/5.0038163
https://doi.org/10.1063/5.0038163
https://aip.scitation.org/doi/10.1063/5.0026335
https://aip.scitation.org/doi/10.1063/5.0026335
https://doi.org/10.1063/5.0026335
https://doi.org/10.1063/5.0026335

Chaos ARTICLE scitation.org/journalicha

Data driven forecasting of aperiodic motions of
non-autonomous systems

Cite as: Chaos 31, 021105 (2021); doi: 10.1063/5.0045004
Submitted: 21 January 2021 - Accepted: 4 February 2021 - @

hh @®

Published Online: 22 February 2021

View Online Export Citation CrossMark

Vipin Agarwal,” '/ Rui Wang,

and Balakumar Balachandran®

AFFILIATIONS

Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA

“)Present address: Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
) Author to whom correspondence should be addressed: balab@umd.edu

ABSTRACT

In the present effort, a data-driven modeling approach is undertaken to forecast aperiodic responses of non-autonomous systems. As a
representative non-autonomous system, a harmonically forced Duffing oscillator is considered. Along with it, an experimental prototype of
a Duffing oscillator is studied. Data corresponding to chaotic motions are obtained through simulations of forced oscillators with hardening
and softening characteristics and experiments with a bistable oscillator. Portions of these datasets are used to train a neural machine and make
response predictions and forecasts for motions on the corresponding attractors. The neural machine is constructed by using a deep recurrent
neural network architecture. The experiments conducted with the different numerical and experimental chaotic time-series data confirm the
effectiveness of the constructed neural network for the forecasting of non-autonomous system responses.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045004

By using a deep recurrent neural network, which consists of
Long Short Term Memory (LSTM) cells, a unique inhibitor
mechanism, an encoder, a decoder, and hidden layers, a neu-
ral machine is constructed to forecast the temporal evolution of
a non-autonomous system, here, a harmonically forced Duffing
oscillator. Simulation data and experimental data are used for
the training of the neural machine, and the trained network is
used for response forecasting on chaotic attractors. Given, the
fundamental nature of this effort, it is believed that this work
will serve as an important basis for forecasting of responses of
non-autonomous systems, which are relevant for many industrial
applications.

I. INTRODUCTION

Over the course of the last 50 plus years, chaotic behavior has
fascinated and stirred up the genuine interest of researchers across
the globe. This aperiodic behavior can be beneficial as observed
in the context of several systems, be it mechanical systems (e.g.,
thermal pulse combustor’’) or non-mechanical systems (e.g., liv-
ing organisms’ and biological disorder”). There continues to be an
enormous interest in predicting the behavior of complex, chaotic
dynamical systems, wherein an initial misjudgment or error in the

state of the system can grow exponentially in time.””” Even a small-
est disturbance to a chaotic system can initiate a concatenation of
events that results in a dramatically divergent future system state.
Given that an initial condition may not always be accurately known
and system models are not perfect, response forecasting for a chaotic
system remains a challenge.

In recent work of the authors’ group, a neural network has
been used to describe the evolutions of three different chaotic sys-
tems, two of which are governed by ordinary differential equations
(ODEs) and the other is governed by partial differential equation
(PDE).” The group has constructed a neural machine by using a deep
recurrent neural network, which consists of an encoder, a decoder,
hidden layers, and an inhibitor mechanism, which was used to help
prolong the forecast horizon. The authors have illustrated the long-
term prediction capability of this machine for several autonomous
chaotic systems, including the Lorenz’63 system, the Lorenz’96
system,” and the Kuramoto-Sivashinsky system.'” Similarly, recur-
rent neural networks have been applied to high-dimensional chaotic
systems for forecasting of the corresponding system behaviors.'' The
data-driven methods are found to excel than other traditional meth-
ods (e.g., Gaussian process based methods or its variants) in terms of
accuracy and adaptability. Reservoir computing approach is another
approach that can be used to predict the responses of spatiotempo-
rally chaotic systems purely based on the past observations of the
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system states.'” However, these approaches have not been applied for
prediction and forecasting of non-autonomous system responses.
This is explored in the current work.

There are an unfathomable number of systems in nature that
depend explicitly on time. Since the discovery of the expanding
cosmos'’ and Big Bang,' it is known that the universe itself is a
time-dependent system. Probably, the most notable time-dependent
systems are the living creatures. The time effects can be observed
through, for example, circadian rhythms, where the fluctuations of
physical process are synchronized with the diurnal cycle.”” On a
larger time-scale, every living creature undergoes a time-dependent
process, called aging. Apart from living systems, the time depen-
dence of dynamics is observed ubiquitously in nature. Highly tran-
sient events, such as rogue waves,” stock market crash, tornadoes,
and so on often occur causing significant impacts. In network the-
ory for complex systems, one considers each individual element as
being time dependent to study how the local interactions can lead to
large-scale synchronizations. The prior mentioned systems are gov-
erned by differential equation models, in which there are explicit
time dependent terms. Despite the prevalence of time-dependent
dynamics in nature, there has been only limited research done on the
prediction and analysis of temporal responses of non-autonomous
systems. To address this, here, a neural machine is constructed for
forecasting temporal evolution of the chaotic response of a forced,
Dulffing oscillator, which has a linear stiffness term and a nonlin-
ear (cubic) stiffness term. This oscillator, which has been the subject
of experimental and numerical investigations over a wide range of
system parameter values, is known to have different response char-
acteristics, depending on the nature of the physical system being
studied.'** In the present efforts, different numerical and exper-
imental chaotic time-series data are considered to illustrate the
effectiveness of the constructed neural network.

Function
Generator

(a)Experimental arrangement”’
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The rest of this work is organized as follows. In Sec. II, the
experimental arrangement is described. In Sec. I1], the modeling
efforts undertaken are presented. Results obtained toward forecast-
ing of chaotic responses are detailed in Sec. I'V. Finally, concluding
remarks are drawn together and presented in Sec. V.

Il. EXPERIMENTAL SETUP

As shown in Fig. 1, the experimental Duffing oscillator proto-
type consists of a cantilever steel structure with an attached tip mass
magnet at its free end.”*** The tip mass magnet is located in the mag-
netic field of another magnet that is fixed in a position close to it.
The inter-magnet separation is varied and the magnet orientations
are reversed to realize a representation of a nonlinear Duffing oscil-
lator with either a hardening or a softening (monostable or bistable)
nonlinearity. The other end of this system is excited through an elec-
tromagnetic shaker that is used to provide a harmonic excitation.
The excitation provided by the shaker is along a direction normal to
the longitudinal axis of the cantilever beam oscillator allowing for
excitation of bending motions of the structure. Given the cantilever
structure’s orientation, for the purpose of the current experimen-
tal arrangement, the influence of gravity is neglected in modeling
the structural dynamics. The effects of the magnets are captured
through system identification, as in prior work.”>”'

Several means were used to gather experimental data. The free-
end displacement of the structure is measured by using a strain
gauge, which is secured close to the base of the cantilever structure,
and the NI ¢cDAQ-9178 with an NI 9235 module. The harmonic
excitation amplitude is measured by using a 3-axis accelerometer
(SparkFun ADXL337) that is attached to the shaker head at the
base of the cantilever structure. A LabVIEW  program was devel-
oped to provide the deterministic harmonic excitation input to the

Shaker

Attracting/Repelling Magnets

|
.

Strain Gauge Varying Space/ Orientation

(b)Realization of forced, Duffing oscillator”’’

FIG. 1. (a) Experimental arrangement. (b) Duffing oscillator schematic. The separation between the magnets and their relative orientations are varied. An electromagnetic
shaker is used to provide a harmonic excitation. (a) Experimental arrangement.” (b) Realization of forced, Duffing oscillator.”*
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Briiel & Kjeer electromagnetic shaker through NI modules. The same
LabVIEW program is also used for real time data acquisition of
the strain gauge and accelerometer signals. The natural frequencies
of the system depend on the inter-magnet separation and relative
orientations of the magnets.

As mentioned earlier, both hardening and softening character-
istic of the nonlinear systems were studied in the experiments. The
experimental arrangement is noted to be quite sensitive to the rel-
ative spacing of the magnets. When both the magnets repel each
other, the system behaves as bistable, softening the nonlinear oscilla-
tor with two stable potential wells, as the zero tip deflection position
is unstable. On the other hand, when the magnets attract each other,
the system behaves as monostable, nonlinear oscillator with hard-
ening or softening characteristic and the zero tip deflection position
is stable. For the purpose of this article, the authors focused on a
bistable Duffing oscillator system with softening characteristics. For
all of the experimental studies, attention was on chaotic responses
and associated data.

lll. NEURAL MACHINE AND METHODOLOGY

In this section, the authors follow their earlier work® to briefly
introduce the data-driven methodology pursued. Here, the focus
is on utilizing response data to predict the future behavior of the
considered system, in contrast to physics-based modeling wherein
one solves the problem from first principles. With a data-driven
approach, one can relax the need to have/develop different models
for different physical systems and can work with a surrogate model
to examine the underlying physics. There are many types of data-
driven approaches, which are based on neural networks, support
vector machines, decision tree, genetic algorithms, and so on. Here,
the authors build a neural machine as the surrogate model to predict
and forecast chaotic dynamics of the non-autonomous systems.

In general, a data-driven approach to forecasting the responses
of dynamical systems can be divided into two stages, namely, the
training stage and the inference stage. For forecasting the type of
problems, recurrent neural networks are commonly used, given
their capacity to deal with temporal correlations. For the training
stage, optimization algorithms, like stochastic gradient descent, are
applied to adjust surrogate model parameters in order to fit the
training dataset. Furthermore, in the inference stage, the trained
surrogate model is used with a new dataset that the model has not
been exposed to previously, in order to test this model’s inference
capacity.

A typical architecture of deep neural networks can be stacked
with three components: an encoder, a decoder, and hidden layers
in between them, as shown in Fig. 2. In the group’s prior work, in
addition, an additional component called the inhibitor was intro-
duced as shown in this figure. The encoder is used to take the past
observations of the system as an input and generate the context vec-
tor e. The decoder is used to decode the highly conceptualized e and
unroll the information on system response across future time hori-
zons. The unique inhibitor component is used to inhibit unbounded
error growth that may arise due to minuscule misrepresentation in
the initial condition at time step n. In computational experiments
conducted with the Lorenz and other chaotic systems, the group

ARTICLE scitation.org/journal/cha
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e

decoder

encoder

FIG. 2. Encoder-decoder-hidden space architecture with an inhibitor.” Long
short term memory (LSTM) cells are used in the encoder and decoder.

has used this inhibitor mechanism to realize superior forecasting
capabilities.”

It is helpful to understand the forecasting problem from
a probabilistic perspective. Consider the following probabil-
ity for the occurrence of Y after X, that is, P(Y|X), where
X ={x5,....x%}x € R" precedes Y = 2y yi € R™ If
both X and Y are generated from a dynamical system with certain
initial conditions, then, the probability P(Y|X) = 1.

As mentioned earlier, the authors use a deep recurrent neural
network, parametrized by @ as the surrogate model to determine
the conditional probability P, (Y|X;#), which is an approximation
to the true but unknown distribution P;(Y|X). It is noted that
consists of the neural weight matrices and bias vectors. The estima-
tion of @ can be accomplished through the following optimization
problem:*

0=— argmin IEYlXdilog P,(Y|X;0). (1)
0

Similar to the group’s earlier work,” the authors use an
encoder-decoder-hidden layers-inhibitor type of the multi-layer
stacked neural network to forecast the dynamics of a forced Duffing
oscillator. Given a non-autonomous system’s explicit dependence
on time, the authors increase the input signal dimension m and
reduce p and g, the lengths of X and Y, respectively. To further
illustrate this point, the authors have assumed that before the modi-
fication, the signal is of dimension m; and the lengths of X and Y are,
respectively, p; and g;. After considering the explicit effect of time
on the dynamics of non-autonomous system, the new dimension m,
and lengths p, and g, are as follows:

m < my,

P > P2

g1 > @2 2
mpy = myps,

myq, = mpqs.
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According to the Takens’ embedding Theorem, the recon-
structed dynamical system with an enlarged dimension # has the
same dynamical characteristics as the original system, provided
some conditions are met. For the forced Duffing oscillator con-
sidered here, the authors do observe a performance boost of the
neural machine in terms of forecasting the future behavior with
the inhibitor. During the implementation, the authors choose the
Laplace type of loss function, as specified in Ref. 8. This is given by

L(x,y,0) =) =y, 3)
k=1

resulting in the estimator for 0 as

~ TGk 0) — ¥
0 =argmax ) ————2—, (4)
% kZ p
= argminz ['fk — 5. (5)
b k=1

The Laplace loss function is used for the training of the neural
network and the goal is to drive the error to 0. The different neu-
ral network parameters used for the different response forecasting
studies are provided in Sec. I'V along with the respective results. As
presented in Sec. I'V, the dimensions of the neural networks used
with the experimental data and simulation data are different. In each
case, the authors have carried out extensive hyperparameter tuning,
including the dimension of the associated neural network, to push
the neural machine’s performance and realize a long forecasting
horizon in terms of the Lyapunov time.

IV. CHAOTIC RESPONSES AND RESPONSE
FORECASTING

As mentioned earlier, numerical and experimental datasets
from the forced Duffing oscillator system are used to demonstrate
the forecasting ability of the proposed neural machine for non-
autonomous systems. It is noted that for the parameter values used
in the experiments and simulations, all of the chosen initial condi-
tions led to a chaotic attractor for which relevant data were collected.
The results and discussions are presented next.

The equation of motion of a forced Duffing oscillator with a
mass m, a viscous damping ¢, a linear stiffness k;, a nonlinear stiff-
ness k3, a forcing amplitude F, and a forcing frequency @ can be
nondimensionalized as described in authors’ prior work.”=** The
nondimensional form of the equation of the motion may be written
as

X+ 8x + Bx 4+ ax® = y cos(wt), 6)

where the different nondimensional parameters are as follows: § is
the viscous damping, B is the linear stiffness parameter, « is the
scaled nonlinear (cubical) stiffness, y is the scaled forcing amplitude,
w is the forcing frequency , and t represents the nondimensional
time. The harmonic excitation is given by y cos(wt). Different signs
of stiffness parameters B and « correspond to different Duffing
oscillator characteristics, as presented in Table I.

ARTICLE scitation.org/journal/cha

TABLE I. Stiffness parameters and different Duffing oscillator realizations.

Linear stiff. Cubic stiff. Oscillator characteristic
B>0 a>0 Monostable, hardening
B>0 a<0 Monostable, softening
B <0 a>0 Bistable, softening

In the current study, the authors have considered both a
monostable, Duffing oscillator with hardening characteristics and
a bistable, Duffing oscillator with softening characteristics. The
equation given by Eq. (6) can be rewritten into the state-space form
as

X = x,

7)

X, = —8x; — Bx; — otx? + y cos(wt),

where x; = xand x, = x.

The numerical time series data are obtained by solving the
state-space form given by Eq. (7) and considering different initial
conditions. The obtained time series response is used as input for the
neural machine and the output is the response prediction for future
times. For the numerical simulations, the parameters «, 8,5, y, and
o have been chosen such that the system exhibits a chaotic response.

A. Bistable, Duffing oscillator with softening
characteristics

For parameter values o >0 and B < 0, as mentioned in
Table I, the system behaves as a bistable, Duffing oscillator with
softening characteristics. For the first numerical experiment, the
parameter values of « = 0.2, 8 = —0.5,8 = 0.085, and w = 0.42 are
fixed in the numerical studies. After substituting these parame-
ter values into Eq. (6), the resulting nondimensional form of the
Duffing equation reads as follows:

%+ 0.085% — 0.5x 4+ 0.2x> = y cos(0.42¢). 8)

Here, the parameter y is chosen as a control parameter and
varied over a sufficient range to observe the chaotic response. The
numerically obtained bifurcation diagram is shown in Fig. 3(a). The
presence of a positive maximal Lyapunov exponent value A, is used
to confirm that the system response is chaotic. In the current study,
the authors have studied two cases with different y values, and the
corresponding results are shown in Fig. 3(b) and 3(c) to generate
which the forcing frequency is used as the strobe frequency.

1. Response forecasting with numerical data: Forcing
amplitude y = 0.5

For y = 0.5, the maximal Lyapunov exponent value is found
to be Ay = 0.0479 > 0, which confirms chaotic response. The asso-
ciated stroboscopic map obtained by using the forcing frequency is
shown in Fig. 3(b).

A non-dimensional Lyapunov time Ayt is used to study the
prediction horizon of the neural machine. In the present study,
three different initial conditions are chosen and each initial condi-
tion results in a different time response. The results are shown in
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Displacement (z)

0 0.5 1 15 2 2
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Foree Amplitude(y) 2 g

(a)Bifurcation Diagram on a Poincaré Section
Constructed using the Forcing Frequency

(b)Stroboscopic Map (y = 0.5)

2 3 4 05 1 15 2 25 3 35 4
Displacement (x)

(c)Stroboscopic Map (v = 1.7)

FIG. 3. Plots of numerically obtained results for a softening Duffing oscillator given by Eq. (8). In plot (a), the authors show a bifurcation diagram with respect to the forcing
amplitude y. Plots (b) and (c) have the corresponding stroboscopic maps obtained for y = 0.5 and y» = 1.7, respectively. (a) Bifurcation diagram on a Poincaré section
constructed using the Forcing frequency. (b) Stroboscopic map (y = 0.5). (c) Stroboscopic map (y = 1.7).

Fig. 4(a)-4(c). The input time series fed into the neural machine is
shown in black color, and the ground truth data are shown in red.
The blue dots are the generated by the neural machine. The neural
machine is used to predict the future time response regardless of the
initial condition on the chaotic attractor. Even, with a short window
time histories an input, the constructed neural machine can be used
to predict/forecast responses over long time windows.

2. Response forecasting with numerical data: Forcing
amplitude y = 1.7

In this case, the maximal Lyapunov exponent is Ay = 0.076
> 0. The corresponding stroboscopic map is illustrated in Fig. 3(c).
Here, similar to the previous case, three different initial conditions
are chosen and the corresponding prediction results are shown in
Fig. 4(d)-4(f). Again, as observed with Fig. 4(a)-4(c), regardless of
the initial condition on the chaotic attractor, the neural machine can
be used to predict the response over a longer time horizon than the
initial input time window.

B. Monostable, Duffing oscillator with hardening
characterstics

As noted in Table I, for « > 0 and 8 > 0, the system behaves
as a monostable, Duffing oscillator with hardening characteristics.
Here, the parameter values of @ = 5,8 = 1,8 = 0.02, and w = 0.5
are fixed for the numerical studies. After substituting these param-
eter values into Eq. (6), the resulting nondimensional form of the
Duffing equation reads as follows:

X 4 0.02% 4+ x 4+ 5x° = y cos(0.5¢). 9)

Similar to the previous case of the bistable, Duffing oscillator,
the parameter y is chosen as a control parameter and varied over a
sufficient range to observe the chaotic response.’” The numerically
obtained bifurcation diagram is shown in Fig. 5(a). Again, a positive

maximal Lyapunov exponent value Ay confirms the chaotic nature
of the response.

Here, the authors have considered a chaotic response observed
with the forcing amplitude of y = 7. The corresponding strobo-
scopic map of the response is shown in Fig. 5(b). Similar to the
numerical studies with the bistable, Duffing oscillator, different ini-
tial conditions are chosen on the chaotic attractor. The prediction
results obtained for one initial condition are shown in Fig. 5(c) as
a representative result. Again, with a short window of input, one is
able to make predictions over windows longer than the initial input
window. However, the neural machine parameters are different in
this case.

C. Response forecasting with experimental data

Experimental studies were conducted with a forced bistable,
Duffing oscillator prototype with softening characteristic. Similar
to the numerical studies, the forcing amplitude y and forcing fre-
quency o were chosen so that the response of the system is on a
chaotic attractor. After parametric identification through curve fit-
ting the experimentally obtained frequency response curve to analyt-
ically obtained response curve, the numerically obtained bifurcation
diagram for the experimental system is used to identify the forcing
amplitude y and forcing frequency w that can be used to generate
chaotic responses.” The experimental studies for these parameter
values confirm the presence of chaotic dynamics. The experimental
time series data are obtained by repeating the experiments for dif-
ferent values of the forcing amplitude y in the chaotic region. Data
are collected after the motions settle down on a chaotic attractor.

As with the numerical data, a portion of the collected experi-
mental data is used as an input to neural machine and the output
is compared with ground truth data obtained from the experi-
ments. The prediction results obtained with the neural machine are
presented in Fig. 6. The neural machine predictions are found to
follow the experimental data well, and the forecasting windows are
longer than the input windows, which are different in the three

Chaos 31, 021105 (2021); doi: 10.1063/5.0045004
Published under license by AIP Publishing.

31, 021105-5


https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journalicha

— input —— groundtruth e prediction — input  —— groundtruth e prediction — input —— groundtruth  ® prediction

Displacement
o
Displacement
N o [
Displacement
s L o 4N w

|
@
|

©

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Lyapunov Time Lyapunov Time Lyapunov Time
(a)Prediction Case 1 (v = 0.5). (b)Prediction Case 2 (v = 0.5). (c)Prediction Case 3 (y = 0.5).
— input —— groundtruth e prediction — input —— groundtruth e prediction — input —— groundtruth e  prediction
4 4 4
3 3 3
2 2 2
54 5 54
£ £ £
5 g §
g0 g 0 g o
5., d 5. 5.,
a 8 a
-2 -2 -2
-3 -3 -3
-4 -4 -4
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Lyapunov Time Lyapunov Time Lyapunov Time
(d)Prediction Case 1 (v = 1.7). (e)Prediction Case 2 (y = 1.7). (f)Prediction Case 3 (v = 1.7).

FIG. 4. Bistable, softening forced Duffing oscillator with y = 0.5 and » = 1.7. For each y value, three different response data are presented. In plots (a)—(c), the authors
show the prediction results from the neural machine for y = 0.5. Plots (d)—(f) have the prediction results from the neural machine for y = 1.7. The black curves represent
the input data to the neural machine, and the blue dots are the prediction results generated from the neural machine. The red curves represent the ground truth data obtained
by numerically integrating the governing system. The ground truth data are plotted with the predicted/forecasted results in blue for the sake of comparison. Neural network
parameters: batch size:128, learning rate: 0.001, LSTM dimension: 128, number of stacked layers for both the encoder and decoder: 2, keep rate: 0.95, number of inhibitors:

2. (a) Prediction case 1 (y = 0.5). (b) Prediction case 2 (y = 0.5). (c) Prediction case 3 (y = 0.5). (d) Prediction case 1 (y = 1.7). (e) Prediction case 2 (y = 1.7). (f)
Prediction case 3 (y = 1.7).
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FIG. 5. Plots of numerically obtained results for a hardening Duffing oscillator given by Eq. (??). In plot (a), the authors show a bifurcation diagram on a Poincaré section
with respect to the forcing amplitude y . Plot (b) has the corresponding stroboscopic map at > = 7. In plot (c), the prediction result for one particular case is presented.
The black curves correspond to neural machine input, and the blue dots are the prediction results generated from the neural machine. The red curves are the ground truth
data which are plotted along with the forecasted results for the sake of comparison. Neural network parameters: batch size: 64, learning rate: 0.001, LSTM dimension: 128,
number of stacked layers for both the encoder and decoder: 2, keep rate: 0.95, number of inhibitors: 2. (a) Bifurcation diagram on a Poincaré section constructed using the
forcing frequency. (b) Stroboscopic map. (c) Prediction case.
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FIG. 6. Experimental case study. In plots (a)-(c), three different response time histories are considered. The black curves are input data segments, and the blue dots are
the prediction results generated from the neural machine. The red curves represent experimentally obtained ground truth data, which are plotted with the forecasted results
for the sake of comparison. With the help of hyperparameter tuning, the deep neural network is found to provide forecasting over a long Lyapunov time with high numbers of
hidden layers and inhibitors. Neural network parameters: batch size: 64, learning rate: 0.001, LSTM dimension: 512, number of stacked layers for both encoder and decoder:

4, keep rate: 0.95, number of inhibitors: 3. (a) Prediction Number 1. (b) Prediction Number 2. (c) Prediction Number 3.

cases considered. However, with the constructed neural machine,
the authors are able to forecast the response reasonably well for ten
Lyapunov times. It should be noted that with the help of hyper-
parameter tuning, larger numbers of hidden layers and inhibitors,
the deep neural network can be use for forecasting over longer time
horizons. The neural machine parameters are different from those
used for forecasting with numerical datasets.

V. CONCLUDING REMARKS

In this paper, the authors have used a neural machine in
the form of a deep recurrent neural network with the LSTM cell
based encoder and decoder, along with an inhibitor mechanism
and illustrated the response forecasting ability of this system for
non-autonomous, chaotic systems. In particular, as a representative
example, forced Duffing oscillators with hardening and softening
characteristics are considered in numerical and experimental stud-
ies. The data obtained from these studies are used to train the neural
machine and make response predictions over longer time horizons
compared to the initial input data window. As discussed, with differ-
ent choices of the neural machine parameters, one can influence the
response horizon. The results presented here represent the first of its
type for response forecasting for a non-autonomous chaotic system
based on experimental data by using a neural machine. Given the
prevalence of non-autonomous systems in different fields of engi-
neering and beyond, the promising results obtained here can serve
as a catalyst for future neural machine based response forecasting
efforts.
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