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Abstract

Cells are known to use reversible binding to active biopolymer networks to allow

diffusive transport of particles in an otherwise impenetrable mesh. We here determine



the motion of a particle that experiences random forces during binding and unbinding
events while being constrained by attached polymers. Using Monte-Carlo simulations
and a statistical mechanics model, we find that enhanced diffusion is possible with
active polymers. However, this is possible only under optimum conditions that has to
do with the relative length of the chains to that of the plate. For example, in systems
where the plate is shorter than the chains, diffusion is maximum when many chains
have the potential to bind but few remain bound at any one time. Interestingly, if the
chains are shorter than the plate, we find that diffusion is maximized when more active
chains remain transiently bound. The model provides insight into these findings by
elucidating the mechanisms for binding-mediated diffusion in biology and design rules

for macromolecular transport in transient synthetic polymers.

Introduction

The diffusion of macromolecules in polymeric systems is a key player in self-healing,! biolog-
ical sorting, recognition®?® and growth.* The physics that drives this transport depends on
both the nature of the polymer and the diffusing particles. In covalent networks, transport
is usually controlled by the polymer mesh size such that particles with smaller radius of
gyration easily diffuse while their larger counterparts are limited to sub-diffusive behaviors.®
For physically cross-linked polymers such as alginates, collagen or agarose, the continuous
association and dissociation of network junctions not only creates opportunities for diverse
mechanical responses®® but also for enhanced diffusion.® The situation becomes more inter-
esting when diffusing particles have an affinity for the polymer, enabling them to selectively
bind and unbind with the surrounding chains and further facilitate diffusion. This affinity-
based, rather than size-based mode of diffusion'® has been found in a number of biological

12-and the nuclear pore complex

systems, including the mucus,!! the extracellular matrix
(NPC), a bio-polymer that acts as a gateway mediating the passage of macromolecules be-

tween the cell’s nucleus and its cytoplasm. 13715 Interestingly, affinity-based motion may also



be powered by molecular motors that can convert chemical to mechanical energy in order to
speed-up diffusion.'® Prominent examples of such motion include intracellular transport of
organelles using motor proteins'” and the twitching surface motility of bacterial cells that use
long polymeric appendages called pili that are powered by motors at their base to actively
propel themselves in various environments. '8

The discovery of these puzzling biological phenomena has motivated experimental re-
search in creating synthetic systems that can perform similar functions in applications such
as drug delivery, controlled assembly pathways and tissue engineering. %1 2! Progress in these
directions have however been hindered by the lack of a molecular theory for binding-enabled
diffusion where particles are driven by unbinding and binding of stretched polymers. Such a
theory must help us identify the transition between enhanced diffusion from particle-hopping
among neighboring chains and reduced diffusion from the increased "stickiness" of the chains
on the particles. It should also clearly define the role of chain length, binding/unbinding
kinetics and the size of a particle on this transition. Previous studies on the NP(C?%23
predict that diffusion is enhanced or hindered based on three time scales namely binding
kinetics, elastic relaxation and solvent diffusion.?*2% Other models have further explored the
sub-diffusive transport of a particle constrained in an energy well by its closest neighbors,

modeled as rigid walls.?*?% While these studies have enlightened the physics of binding me-
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Figure 1: One-dimensional diffusion of plate by reversible binding at rates k, and k; to
polymer chains grafted on either side. The projection of the chain configuration r, during
binding follows a Gaussian distribution P,(r,) and the chains act like linear springs.

E




diated motion, there is still no theory predicting the long-time diffusivity of the particle in
terms of molecular parameters.

In this article, we tackle this problem by considering a reduced, one-dimensional model
that describes a plate (the particle) diffusing within a population of fluctuating polymer
chains via intermittent binding and unbinding events (Fig.1). In a "passive" system that is
under thermodynamic equilibrium, these events act to effectively increase the environment
viscosity and consequently decrease the particle’s diffusivity. However, when the chains are
pushed out of equilibrium by an internal energy source making them “active", their fluctu-
ations can be significantly enhanced. This situation can act as a double-edge sword: it can
either speed-up the transport or stop it completely by trapping a particle. Our objective
is thus to elucidate the role of key physical parameters on plate diffusion, namely (a) the
level of activity, (b) the number of binding chains (and corresponding sites), (c¢) the length
of the chains, and (d) the binding/unbinding kinetics. We show here that with optimum
combinations of these key parameters, one can enable high particle diffusivity for particles
of large size, while trapping smaller particles, which is counter-intuitive to typical diffusive

behavior.

Model setup and Monte Carlo simulations

We present a general model focused on motion in one dimension (z) of a plate between two
parallel walls grafted with a population of flexible chains that can bind to any location on the
plate surface (Fig.1). Each chain undergoes thermal or active fluctuations, and is character-
ized by r, the projection of the chain’s end-to-end vector in the x direction. We assume that
these fluctuations are Gaussian, and so the quantity r is taken to be normally distributed
with mean 0 and variance 02 = N,b?/3 where N, and b are the number and length of a Kuhn

segments, respectively.?” When the end of a chain meets the plate’s surface, it can attach



in order to provide a physical connection that acts as a Hookean spring with stretch force
f = Kr, where K = kgT'/o? is the equivalent spring stiffness for a given temperature 7. As
a first approximation, we ignore interactions between the chains, excluded volume effects,
competition for binding sites, cross-linking of the chains across the plate, and stiffening of
the chain as the extension approaches its contour length. These assumptions limit the ap-
plicability of our model to situations where the grafting density of chains is sparse enough
for inter-chain interactions to be safely ignored. The parameter N is introduced to describe
the total number of chains in the vicinity of the plate that have the potential to bind. Given
a plate length, L,, and chain grafting density, p, the total number of attachable chains is
N = pL,.

Two types of diffusive behavior are considered: the “passive" case where the chains are in
thermodynamic equilibrium with the surrounding medium, and the “active" case where they
are driven out-of-equilibrium by an internal energy source like motor proteins. We assume
that the fluctuations of active chains remain unbiased about the center and reach a non-
equilibrium steady state with the medium at long times. Under these assumptions, we then
characterize the activity level in the chains by evoking an effective temperature 7,,.2%%° We
note that the original source of the activity in many systems involving motor proteins have
a basis in conformation changes and power strokes that produce a conversion of chemical
to mechanical energy at a constant temperature.® However, to maintain the simplicity of a
freely-jointed polymer model of the chains, we use the effective temperature as a measure to
characterize the chain’s active energy. In the passive case, the effective temperature equals
that of the medium, T, = T', while an active case corresponds to T, > T.

Based on this view, we construct a kinetic Monte Carlo scheme of bond dynamics that
follows a Poisson process with average rate of attachment, k,, and detachment, k;. The life-

time probabilities of the attached state p,(t) and detached state py(t) follow an exponentially



decaying distribution with a single time scale given by
Plt) = kae ™t and  fa(t) = hoe "t 1)

For the passive case, the rates k, and k,; are given by Eyring’s theory in terms of the temper-
ature T and the free energy barrier for the state transition AG. The frequency of attempts
by a chain to attach or detach to the plate is governed by thermal fluctuations as charac-
terized by the Rouse time, 7 = (,N?b?/(3kgTm?), where (, is the local friction coefficient
of a chain. Given an attempt frequency w = 1/7g o kg7, the binding and unbinding rates
are, respectively k, = w exp(—AG,/kpT) and k; = w exp(—AGy/kpT), where in general
AG, # AGy. In the passive case, w is proportional to the medium temperature 7" as the
primary source of energy is from molecular collisions that produces thermal fluctuations of
the chain. However, in the active case the attempt frequency is determined by the level of
active energy from an extrinsic source. For simplicity, we assume that w for the active case
is proportional to the effective temperature of the chain 7,. The potential energy of the
active chain is assumed to be encompassed in the effective temperature 7, which in turn
manifests itself in the effective spring constant as K = kgT,/o?. The hydrodynamic effects
of the active polymer chain on the medium temperature is out of the scope of this paper and
is a subject of interest for future studies.

The probability for a chain to be in the attached state is then given by the equilib-
rium rate constant p = ko/ (ks + kq). The Monte Carlo step is used to stochastically break
current bonds or form new ones based on bond probabilities. Depending on the value of p,
the steady-state number N, of chains attached to the plate fluctuates, resulting in a fluc-
tuating force F, = ZZV“ Kr; (Fig. 2a). Additionally, the plate is subjected to a fluctuating
random force F,(t) due to molecular collisions from the surrounding fluid medium. The
time correlation of this force can be obtained from the fluctuation-dissipation theorem as

(Fp(t)Fn(t)) = 2CnkpTd(t — t), where (,, is the plate’s friction coefficient that depends
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Figure 2: (a) A typical example of binding and unbinding shown as a plot in time of the
number of attached bonds N,, the force on the plate F,. and the position x of the center
of the plate (N = 10,k,/kq = 1,0 = 0.17). (b) Plot of diffusion coefficient normalized to
the free diffusivity D from simulations (circles) and the analytical model (curves) w.r.t the
total number of chains N.

on the medium viscosity 1 and the plate length L, as ¢, = 4mnL,/3.?” Assuming the corre-
lations between F,. and F}, to be minimal and neglecting inertial contributions, we balance
the forces of drag and thermal fluctuations to calculate the effective plate velocity v, and
the corresponding position x(t) by integrating in time. We note that this is not true in
general, particularly when the hydrodynamic effects on the plate due to the active chains
are significant.

For each simulation, we calculate the mean squared displacement using a temporal moving
average ((Ax)(t)) = 1/(tp —t) [3°'[a(t' —t) — x(t')]?dt, where tp >> t is the total dura-

tion of the experiment.3! The effective long time Fickian diffusion constant D = ((Az)?)/2t

is then obtained by averaging several simulations each conducted for various combinations



of N, k4, kg and o?. The effective diffusion constant is normalized as D* = D/Dy;, where
Dy = kpT/(y, is the free diffusivity due to molecular collisions from the surrounding fluid.
Fig. 2b depicts the results of dimensionless diffusivity D* for the passive (1, = T') and
active cases (T, = 5T and T, = 207) as a function of the equilibrium constant p and the
number of available chains N. The values of T, considered here represent the magnitude of
free energy (= 10 — 30 kgT’) arising due hydrolysis of ATP, a process common in biological
systems like bacteria or eukaryotic cells.3?3* The contour length of the chain I, = N.b and
the plate length L, also play a role in diffusivity of the plate by mediating the friction from
chains and the medium, respectively. It can be shown that l./L, o 7g/7;, the ratio of Rouse
time to bound time 7, = (,,/K of a Brownian particle in a harmonic well (see supplementary
information). We choose for illustration a value of 7x/7, = 0.8 in Fig. 2 which corresponds
to roughly I, ~ 2L, that has a relevant order of magnitude in biological systems like the
nuclear pore complex, cytoskeleton, or bacterial motility.!”®3° The role of this parameter
is discussed in more detail later.

In the passive case, the effective diffusion coefficient monotonically decreases with both
the number of attachable chains or binding sites N and the equilibrium constant p. We
find that the maximum diffusivity in this case is the intrinsic free diffusivity D; that occurs
when hardly any chains are bound — i.e., when either p — 0 or N — 0. In the active case,
however, there is a maximum in D for intermediate values of p or N. At T, = 5T, a transi-
tion is observed where the magnitude of diffusivity remains unaffected even when chains are
bound. Above this transition temperature, diffusivity is enhanced significantly more than
free diffusivity D showing a clear peak for T;, = 207" at non-zero values of p. When p — 1,
the chains become too sticky and remain permanently attached to the plate, resulting in a

zero long term diffusivity for all cases.



Statistical mechanics model of diffusion

To better explain and predict these trends, we now build a one-dimensional molecular the-
ory (Fig. 3). The plate experiences two types of fluctuating forces arising from (a) the
surrounding medium, and (b) the chain attachments and detachments. Because these forces
are independent, we begin with the isolated response of the plate solely due to chain fluctu-
ations. We represent the location z of the plate at time ¢ by the probability density P(z,t),
for a given number N, of attached chains. If w(4, V,) is the stochastic rate of moving this
plate by a displacement § due to intermittent binding/unbinding events, the evolution of P

follows the master equation:

o0

_ / w(s, N,) [Pl — 6,1) — Pla, )] db. (2)

—00

OP(x,t)
ot

In other words, the function P(z,t) decreases when an event causes the plate to leave
position z, and increases when an event moves the plate from x —d to x. The stochastic rate
function w(d, N,) represents the cumulative effect of chain attachments and detachments

taking the form

w(0,Ny) = ko(IN — No)Pyo(6, No) + kaNoPy(d, Ny) (3)
Equilibrium ~ New equilibrium
Binding 7, g

Unbinding

Plate stationary Plate displacement

Figure 3: Illustration of the mechanism of plate displacement § and mechanical equilibrium
during a new binding or unbinding event.



where P,(d, N,) and P,(d, N,) denote the probability density functions (pdf) of the chain
configuration during an attachment and detachment event respectively that produces a plate
displacement §. As the chains are assumed to follow Gaussian behavior, we assume pdfs for

delta of the form,

&> 1 52
P,(8,N,) = exp | —55 and  Py(6,N,) = exp | —— (4)

1
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where o, and o4 are the corresponding standard deviations for attachment and detachment
events that we now show depend on the number of attached chains N,. To complete our
model, we assume that the pdfs are determined by enforcing force equilibrium on the plate
before and after each event. As the plate is in equilibrium with N, bound chains, an at-
tachment event introduces a new force F' = Kr,, where r, is the lateral projection of the
end-to-end vector of the newly attached chain. This immediately triggers a plate displace-
ment § = r,/(N, + 1) to re-establish equilibrium as shown in Fig. 3. Using a similar
argument, we find that the plate displacement resulting from the detachment of a chain at
configuration ry is given by 6 = r4/(N, — 1). The probability distributions of r, and ry are
Gaussian with a zero-mean and variance 02 = o2 (given simply by the chain statistics) and
02 ~ 0%(N, — 1)?/N? respectively. The latter is obtained by correcting for change in the
configurations of attached chains due to the displacement § upon attachment.

Combining 2 and 3, we can characterize the diffusive nature of the plate for an ini-
tial state of N, attached chains. As shown in supplementary information, the plate’s
mean displacement (z) = ffooo P(z,t)xdzr vanishes. Using the mean square displacement,
(2?) = [72_ P(x,t)2z*dx, one can derive its corresponding evolution equation from (2). This
allows us to determine the plate diffusivity solely due to chain fluctuations (for a given

number of attached chains N,) as D.(N,) = 59(z?)/0t, leading to the closed-form solution:

= Ttk ha B 5)

De(Na)
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This result shows that the mean-squared displacement is a linear function of time with a
constant long-term diffusion coefficient for a given set of input parameters, which implies
that the fluctuation-dissipation theorem (FDT) should be satisfied.?? Therefore, when con-
sidering long timescales, the time correlation of the fluctuating plate force for a given N,
can be approximated as (F,(t)F.(t)) = 2CkpT,6(t —t'), where (., = kgT,/D.(N,) is the
effective friction coefficient due to chain binding events. Though the chains are out of equi-
librium with their surroundings, the use of FDT with an effective temperature T, can be
justified under the conditions that the system is at steady state at times much longer than
1/ (ko + k). 162829

The Langevin equation for the plate consists of two types of drag forces and their
corresponding force fluctuations which can be written as (G, + ()vp(t) = Feo(t) + EFn(t).
The effective diffusivity can then be obtained from the velocity correlation of the plate as
D = [ dt(v,(t)v,(0)). Using the Langevin equation and the FDT with corresponding tem-

peratures, T and T,, we obtain the effective diffusivity as (see supplementary information)

GnT + (T

DN = ko ey

(6)

where the effect of correlations between the random forces F;,, and F,. on the plate diffusivity
are assumed to be negligible. For large values of N, (N,) = pN is a close approximation for
the average number of chains and the formula of diffusivity in Eq. 6 is a good estimate. For
small values of N, however, large fluctuations in the value of N, become important and is
characterized by the binomial distribution C*p™e (1—p)¥~Ne where O§* = N!/N,!(N—N,)!.
In the general case, the average plate diffusivity can then be calculated as the weighted sum

of D(N,) with N, € (0, N), i.e.:

(D) = > CNep™(1—p)V "V D(N,). (7)
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Results and Discussion

The predictions of Eq. 7 are compared with the simulation results in (Fig. 2b), showing

excellent agreement. To gain a general understanding of the model predictions, we turn

to the analytical form of Eq. 6. Let us define the following non-dimensional parameters:

diffusion constant D* = D(N,)/Dy, friction ¢* = (./(y, and temperature 7 = T,,/T. The
effective diffusion constant from Eq. 6 can now be reorganized into

D'=—=1+———(T"-2-( 8

Grcy tarer! <) ©

where (* can be obtained using the relations 7p = 1/(k,+kq), K = kgT,/0?, and 7, = (,,, /K

as

C*(N):2T—R p(N_Na> 1_p -

o | (Ng +1)2 N, (9)

We first recognize that 7r/7, = (g/(,» measures the relative Rouse friction of the chain due
to the medium w.r.t medium friction on the plate. This ratio is shown to be proportional
to l./L,, where [. = Nib and L, are the lengths of the chain and plate respectively (see
supplementary information). The second term in the product of Eq. 8 is interpreted as a
correction factor to account for resistance to plate movement by bound chains. When all
chains are attached (p — 1), the correction factor approaches infinity that results in the
effective diffusivity approaching 0. When no chains are bound, (p — 0), we find (* — 0 and
the effective diffusivity D — Dy.

Threshold temperature for enhanced diffusion. We observe from Eq. 8 that to boost

diffusivity (D* > 1), the necessary condition is 7% > 2 + (*. In other words, enhanced

12



diffusion is possible only if the active temperature T, is at least twice that of the medium
temperature. While the mere presence of activity in the chains (7, > T) will increase the
effective diffusivity of the plate compared to a passive system (7, = T'), it cannot surpass
the free diffusivity D unless it satisfies the necessary condition described above. Secondly,
because of the fluctuation-dissipation theorem, the energy from kicks to the plate due to the
medium (7') and active chains (7,) are weighted by their corresponding friction constants
(m and (., respectively (Eq. 6). This implies that diffusivity can be maximized when the
friction (. is optimum. An extremely low (* can reduce the overall dissipation but it also
reduces the weight on the active kicks. If (* is too high, the weight on active kicks may be
large but the overall resistance can prove too high.

To illustrate the above aspects of diffusion, we identify four dimensionless parameters,
T./)T, Tr/T, N, and p, that determine the effective diffusivity of the plate. Each of these pa-
rameters represent one physical property of the system: active energy, relative chain to plate
lengths (I./L,), number of attachable chains or binding sites, and relative binding/unbinding
rates. We explore the roles of each parameter by presenting two sets of model predictions of
diffusivity as a function of N and p with fixed (i) 7r/m, and (ii) 7, /7.

Non-monotonicity due to active temperature. In the first example, the ratio 7z/7,
is fixed at a value of 0.8 which is so chosen to represent the relevant range of length scales
lc = 1—2 L, in biological systems like the nuclear pore complex.?>3® Fig. 4 depicts the
plot of effective diffusivity in terms of N and p for three different chain temperatures with
(a) T, =T, (b) T, = 5T, and (c) T, = 207T". In the passive case with T, = T', the maxi-
mum diffusivity is the free diffusivity of the plate D and occurs when there are no bound
chains. However, in the active cases of T, = 5T and T, = 207, we find a transition into
non-monotonicity seen before from simulations in Fig. 2b. While in the case of T, = 5T,
the increase in diffusivity over Dy is only marginal, it is more than three times in the case
of T, = 20T, showing the critical role of T, in enhancing diffusivity. This indicates that

T, = 5T is just over the critical temperature 7" = 2 4 (* needed for surpassing free diffusiv-

13



(a) (b) Active (T = 5T)

Figure 4: Plots of the normalized diffusion coefficient D/Dy plotted against the total number
of chains N and rate constant p = k,/(k, + kq). Four different combinations of p and N are
schematically illustrated and categorized A, B, C and D. (a) Passive case with T, = T', and
(b) Active case with a higher effective chain temperature 7, = 57, and (c) Active case with
chain temperature 7, = 207". The ratio of the timescales 7r/7, = 0.8.

ity. The plots in Fig. 4c further show that as N increases, the maximum diffusivity occurs
at increasingly lower values of p, consistent with our simulation results. Moreover, we find
that the peaks approach a global maximum D), asymptotically when N — oo. Thus, the
highest diffusivity in this regime occurs when there are infinitely many available chains for
binding (N — 00), but have a weak affinity, i.e., unbinding is much faster than binding, such
that a few chains are attached to the plate at any given time. This particular combination
yields the highest frequency of kicks to the plate (see Eq. 3) which when combined with
few chains resisting plate motion gives us the maximum limit in diffusivity. Although the
assumption of negligible correlations among different chains in this model are susceptible to
breakdown in these limits, this finding provides a valuable insight and a qualitative trend of

the maximum diffusivity regime.
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At N =0 and p — 0, the transport process reverts back to that of an unbound particle
with an intrinsic diffusivity Dy, while for p — 1 or N — oo for a finite p, the particle is
trapped and its diffusivity vanishes. This type of non-monotonic dependence of diffusiv-
ity has been observed with previous models of transport in the nuclear pore complex and
mucous membranes, although the model construction and underlying assumptions are differ-
ent. 222535 Interestingly, the non-monotonicity in diffusion is also seen in synthetic systems of
multi-valent ligand molecules that consists of polyethylene glycol chains ("legs") that walk
or hop by binding to receptor surfaces. 37
Effect of chain/plate length on maximum diffusivity. For the second example, we

now explore the role of the ratio of chain to plate length, I./L, < 7g/7. With the active

temperature fixed at T, = 207", two new scenarios are considered as shown in Fig. 5a with

(a) Tr/Tp = 0.01
(c) T, = 20T N =20
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Figure 5: Analysis of the diffusion coefficient for fixed T, = 207 as a function of the ratio
of timescales T /7, which represent the Rouse time of the chains and the bound time of the
plate in the fluid medium. Plots of D/Dy for (a) Low (7g/m = 0.01) with peak at point /.
(b) High (7r/m, = 10), presented as functions of total available chains N and the fraction of
bound chains p = k,/(k, + ka). (c) Cross-sectional slice of 3D plots for N = 20 in Figs. ba,
5b and 4c to show diffusivity as a function of p.
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Tr/T, = 0.01 and 5b with 7z/7, = 10. We find an interesting trend where the maximum
diffusivity in Fig. ba, which surpasses that of Fig. 4c with 75/7, = 0.8, is now located at
a higher p, i.e., a larger fraction of bound chains. In other words, when the plate is much
longer than the chains (low 7z/7,), the diffusivity is maximum when more chains are bound
as illustrated by case 8 in Fig. 5. By contrast, when the chains are much longer than the
plate (case ), as in Fig. 5b, we see that there is no enhancement of diffusivity in spite of the
presence of active chains and the plot resembles that of passive diffusion (T, = T'). These
results are further corroborated by Monte Carlo simulations presented in the supplementary
information (Fig. S1). Projecting the curves in Figs. 4c, 5a, and 5b with T, = 20T to
a fixed number of available chains N = 20, we find that 7g/7, dictates the the optimum
combination of binding rates (p = k,/(kq, + kq)) for maximum diffusivity. As shown in Fig.
5, the peaks of the effective diffusivity transitions from p = 0 for 75/7, = 10 to progressively
higher values of p for smaller values of 75/7, = 0.8 and 0.01.

To better understand the role of 75 /7, we plot the approximate value of maximum diffusiv-
ity Dnae as a function of /7, (Fig. 6a). Two key features are notable. First, D,,,, remains
steadily above the free diffusivity Dy for very low values of 75/7, < 1 before starting its
decline as it approaches the limit 75/7, — 1. The magnitude of enhanced diffusivity is larger
with higher active temperatures T,, as expected. Second, we find that depending on the ac-
tive temperature T,, there is a critical value of 7r/7, above which there is no enhancement,
i.e., Dyas/Dy = 1. Interestingly, we find that the optimum conditions for D,,,, in terms of
the fraction, p, of bound chains is predicted to increase from p — 0 at large values of g /7,
to p — 1 at smaller values (Fig. 6b). For extremely low values of 7x/7, due to short chains
(I. < L), the model assumptions like Gaussian chain or one-dimensional behavior may no
longer hold.

Physical interpretation of model predictions. The modeling framework presented
in this work provides new insights and a better understanding of the mechanisms behind

binding-mediated active transport. When 7z/7, is low due to either small chains or a long
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Figure 6: (a) The approximate asymptote of the maximum diffusivity D,,., is plotted as a
function of 7r/7, for active temperatures T, = T, T, = 5T, T, = 20T, and T, = 50T. (b)
The fraction of bound chains p at D,,,, for all 4 active temperatures. The three vertical
lines on the plot correspond to the parameters (T, and 7g/7, ) used in Figs. 4c, 5a and 5b.

plate (. < L,), the relative friction (* is considerably reduced. However, this also lowers
the intensity of active kicks on the plate. For instance, if the plate is extremely long, the
friction from the medium becomes so high that the displacement due to a kick from the
medium is too small compared to that of moving towards a new equilibrium state following
binding events. Particularly, having a slower unbinding rate provides more time for the plate
to move to its new equilibrium position following a binding event before the newly attached
chain unbinds. The model, therefore, predicts that diffusion is highest when most chains are

bound, e.g., high p. This explains the shift to higher values of p for maximum diffusivity in
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Fig. 6b as 7g/7, is reduced. This is likely to be the case for transport of large cell organelles
through the cytoplasm of cells, like the centering of ooctye nucleus in the cytoplasm powered
by motor proteins.3®

As Tp/T, increases, i.e., when each chain becomes more comparable or longer than the
plate (I. > L,), the effective friction on the plate can be reduced by having very few chains
bound at any given time (low p). For a given T}, going beyond a threshold value of 75 /7, will
make the chain friction so large that the highest diffusivity occurs only when no chains are
bound, which is simply D;. This suggests that if the plate length L, is too small compared
to the chain length [., the free diffusivity Dy is already high enough that the active energy
of the chains needs to be above a critical value to produce enhanced diffusion. Alternately,
of the chains are much longer than the plate, the time between binding events is too long
for the plate to reach a new equilibrium position before the next event. In other words,
the fluctuations from the chains are too spread apart, and subside between binding events,
to produce enhanced diffusion. We note that this model predicts that the minimum active
temperature T, needed to transition to enhanced diffusivity increases linearly with 75/7,
(see supplementary information, Fig. S2). Therefore, to produce enhanced diffusion, it is
not only important to have active chains but the right level of activity for given geometric

(I./L,) constraints.

Summary and Conclusions

In summary, our analysis suggests that in contrast to passive diffusion there are different
regimes in affinity-based active diffusion that can be finely tuned with a few physical pa-
rameters. For example, if binding affinity is strong (k, > k4), highly multivalent or large
molecules (high N) are significantly slowed down (case B in Fig. 4) and trapped compared

to molecules with lower valencies (case A). By contrast, for weak affinities (k, < kq), diffu-
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sion of highly multivalent or large molecules (case D) can be much higher than those with
lower valencies or size (case C). In fact, our findings indicate that high multivalency but low
affinity of each binding site is the best case scenario for rapid transport, a situation found
in the nuclear pore complex.3® The above findings hold true as long as the plate and chain
lengths and their corresponding friction constants are comparable (I, ~ 1 —2L,). Extending
the model analysis to other combinations of the ratio [./L, «x Tr/7,, we find that plates
that are considerably larger than the chains can move faster when bound to many active
chains. This regime produces non-classical diffusion behavior where larger molecules can
diffuse faster than smaller ones when the chains are highly active. We also find that the
model and simulations predict the non-intuitive phenomenon that the level of activity in the
chains need to be more than twice the thermal energy in the medium (7, > (2 + ¢*)T') to
surpass free diffusivity. Since the friction from chains is much higher in the case of large
values [./L,, we find the existence of a critical active temperature 7, below which enhanced
diffusivity is not possible.

These findings can provide useful insights into the motility of bacteria that use motorized
polymers (pili) and the active mechanisms underlying intracellular organelle transport using
motor proteins. ¥ It could also prove meaningful for better understanding and tuning of
highly selective transport of macromolecules through dynamic polymer networks such as the
NPC, mucous membranes and extracellular matrix that depend on both size and chemical
affinity. The extension of this approach to two and three-dimensional networks will require
the inclusion of network topology, the effect of mesh size (relative to particle size) as well
as particle geometry. More work in the future will be required to incorporate complex rela-
tionships between bond kinetics and chain forces due to structural changes in the polymer
(e.g., protein unfolding), bond type (e.g., slip, catch bonds) or motor response, can produce

anomalous behavior like subdiffusion or superdiffusion seen in biological systems. 4042
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