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Abstract

Cells are known to use reversible binding to active biopolymer networks to allow

diffusive transport of particles in an otherwise impenetrable mesh. We here determine
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the motion of a particle that experiences random forces during binding and unbinding

events while being constrained by attached polymers. Using Monte-Carlo simulations

and a statistical mechanics model, we find that enhanced diffusion is possible with

active polymers. However, this is possible only under optimum conditions that has to

do with the relative length of the chains to that of the plate. For example, in systems

where the plate is shorter than the chains, diffusion is maximum when many chains

have the potential to bind but few remain bound at any one time. Interestingly, if the

chains are shorter than the plate, we find that diffusion is maximized when more active

chains remain transiently bound. The model provides insight into these findings by

elucidating the mechanisms for binding-mediated diffusion in biology and design rules

for macromolecular transport in transient synthetic polymers.

Introduction

The diffusion of macromolecules in polymeric systems is a key player in self-healing,1 biolog-

ical sorting, recognition2,3 and growth.4 The physics that drives this transport depends on

both the nature of the polymer and the diffusing particles. In covalent networks, transport

is usually controlled by the polymer mesh size such that particles with smaller radius of

gyration easily diffuse while their larger counterparts are limited to sub-diffusive behaviors.5

For physically cross-linked polymers such as alginates, collagen or agarose, the continuous

association and dissociation of network junctions not only creates opportunities for diverse

mechanical responses6–8 but also for enhanced diffusion.9 The situation becomes more inter-

esting when diffusing particles have an affinity for the polymer, enabling them to selectively

bind and unbind with the surrounding chains and further facilitate diffusion. This affinity-

based, rather than size-based mode of diffusion10 has been found in a number of biological

systems, including the mucus,11 the extracellular matrix12 and the nuclear pore complex

(NPC), a bio-polymer that acts as a gateway mediating the passage of macromolecules be-

tween the cell’s nucleus and its cytoplasm.9,13–15 Interestingly, affinity-based motion may also
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be powered by molecular motors that can convert chemical to mechanical energy in order to

speed-up diffusion.16 Prominent examples of such motion include intracellular transport of

organelles using motor proteins17 and the twitching surface motility of bacterial cells that use

long polymeric appendages called pili that are powered by motors at their base to actively

propel themselves in various environments.18

The discovery of these puzzling biological phenomena has motivated experimental re-

search in creating synthetic systems that can perform similar functions in applications such

as drug delivery, controlled assembly pathways and tissue engineering.9,19–21 Progress in these

directions have however been hindered by the lack of a molecular theory for binding-enabled

diffusion where particles are driven by unbinding and binding of stretched polymers. Such a

theory must help us identify the transition between enhanced diffusion from particle-hopping

among neighboring chains and reduced diffusion from the increased "stickiness" of the chains

on the particles. It should also clearly define the role of chain length, binding/unbinding

kinetics and the size of a particle on this transition. Previous studies on the NPC22,23

predict that diffusion is enhanced or hindered based on three time scales namely binding

kinetics, elastic relaxation and solvent diffusion.24,25 Other models have further explored the

sub-diffusive transport of a particle constrained in an energy well by its closest neighbors,

modeled as rigid walls.22,26 While these studies have enlightened the physics of binding me-

Figure 1: One-dimensional diffusion of plate by reversible binding at rates ka and kd to
polymer chains grafted on either side. The projection of the chain configuration ra during
binding follows a Gaussian distribution Pa(ra) and the chains act like linear springs.
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diated motion, there is still no theory predicting the long-time diffusivity of the particle in

terms of molecular parameters.

In this article, we tackle this problem by considering a reduced, one-dimensional model

that describes a plate (the particle) diffusing within a population of fluctuating polymer

chains via intermittent binding and unbinding events (Fig.1). In a "passive" system that is

under thermodynamic equilibrium, these events act to effectively increase the environment

viscosity and consequently decrease the particle’s diffusivity. However, when the chains are

pushed out of equilibrium by an internal energy source making them “active", their fluctu-

ations can be significantly enhanced. This situation can act as a double-edge sword: it can

either speed-up the transport or stop it completely by trapping a particle. Our objective

is thus to elucidate the role of key physical parameters on plate diffusion, namely (a) the

level of activity, (b) the number of binding chains (and corresponding sites), (c) the length

of the chains, and (d) the binding/unbinding kinetics. We show here that with optimum

combinations of these key parameters, one can enable high particle diffusivity for particles

of large size, while trapping smaller particles, which is counter-intuitive to typical diffusive

behavior.

Model setup and Monte Carlo simulations

We present a general model focused on motion in one dimension (x) of a plate between two

parallel walls grafted with a population of flexible chains that can bind to any location on the

plate surface (Fig.1). Each chain undergoes thermal or active fluctuations, and is character-

ized by r, the projection of the chain’s end-to-end vector in the x direction. We assume that

these fluctuations are Gaussian, and so the quantity r is taken to be normally distributed

with mean 0 and variance σ2 = Nkb
2/3 where Nk and b are the number and length of a Kuhn

segments, respectively.27 When the end of a chain meets the plate’s surface, it can attach
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in order to provide a physical connection that acts as a Hookean spring with stretch force

f = Kr, where K = kBT/σ
2 is the equivalent spring stiffness for a given temperature T . As

a first approximation, we ignore interactions between the chains, excluded volume effects,

competition for binding sites, cross-linking of the chains across the plate, and stiffening of

the chain as the extension approaches its contour length. These assumptions limit the ap-

plicability of our model to situations where the grafting density of chains is sparse enough

for inter-chain interactions to be safely ignored. The parameter N is introduced to describe

the total number of chains in the vicinity of the plate that have the potential to bind. Given

a plate length, Lp, and chain grafting density, ρ, the total number of attachable chains is

N = ρLp.

Two types of diffusive behavior are considered: the “passive" case where the chains are in

thermodynamic equilibrium with the surrounding medium, and the “active" case where they

are driven out-of-equilibrium by an internal energy source like motor proteins. We assume

that the fluctuations of active chains remain unbiased about the center and reach a non-

equilibrium steady state with the medium at long times. Under these assumptions, we then

characterize the activity level in the chains by evoking an effective temperature Ta.28,29 We

note that the original source of the activity in many systems involving motor proteins have

a basis in conformation changes and power strokes that produce a conversion of chemical

to mechanical energy at a constant temperature.30 However, to maintain the simplicity of a

freely-jointed polymer model of the chains, we use the effective temperature as a measure to

characterize the chain’s active energy. In the passive case, the effective temperature equals

that of the medium, Ta = T , while an active case corresponds to Ta > T .

Based on this view, we construct a kinetic Monte Carlo scheme of bond dynamics that

follows a Poisson process with average rate of attachment, ka, and detachment, kd. The life-

time probabilities of the attached state p̃a(t) and detached state p̃d(t) follow an exponentially
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decaying distribution with a single time scale given by

p̃a(t) = kde
−kdt and p̃d(t) = kae

−kat. (1)

For the passive case, the rates ka and kd are given by Eyring’s theory in terms of the temper-

ature T and the free energy barrier for the state transition ∆G. The frequency of attempts

by a chain to attach or detach to the plate is governed by thermal fluctuations as charac-

terized by the Rouse time, τR = ζbN
2
k b

2/(3kBTπ
2), where ζb is the local friction coefficient

of a chain. Given an attempt frequency ω = 1/τR ∝ kBT , the binding and unbinding rates

are, respectively ka = ω exp(−∆Ga/kBT ) and kd = ω exp(−∆Gd/kBT ), where in general

∆Ga 6= ∆Gd. In the passive case, ω is proportional to the medium temperature T as the

primary source of energy is from molecular collisions that produces thermal fluctuations of

the chain. However, in the active case the attempt frequency is determined by the level of

active energy from an extrinsic source. For simplicity, we assume that ω for the active case

is proportional to the effective temperature of the chain Ta. The potential energy of the

active chain is assumed to be encompassed in the effective temperature Ta, which in turn

manifests itself in the effective spring constant as K = kBTa/σ
2. The hydrodynamic effects

of the active polymer chain on the medium temperature is out of the scope of this paper and

is a subject of interest for future studies.

The probability for a chain to be in the attached state is then given by the equilib-

rium rate constant p = ka/(ka + kd). The Monte Carlo step is used to stochastically break

current bonds or form new ones based on bond probabilities. Depending on the value of p,

the steady-state number Na of chains attached to the plate fluctuates, resulting in a fluc-

tuating force Fc =
∑Na

i Kri (Fig. 2a). Additionally, the plate is subjected to a fluctuating

random force Fm(t) due to molecular collisions from the surrounding fluid medium. The

time correlation of this force can be obtained from the fluctuation-dissipation theorem as

〈Fm(t
′
)Fm(t)〉 = 2ζmkBTδ(t

′ − t), where ζm is the plate’s friction coefficient that depends
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Figure 2: (a) A typical example of binding and unbinding shown as a plot in time of the
number of attached bonds Na, the force on the plate Fc and the position x of the center
of the plate (N = 10, ka/kd = 1, σ = 0.17). (b) Plot of diffusion coefficient normalized to
the free diffusivity Df from simulations (circles) and the analytical model (curves) w.r.t the
total number of chains N .

on the medium viscosity η and the plate length Lp as ζm = 4πηLp/3.27 Assuming the corre-

lations between Fc and Fm to be minimal and neglecting inertial contributions, we balance

the forces of drag and thermal fluctuations to calculate the effective plate velocity vp and

the corresponding position x(t) by integrating in time. We note that this is not true in

general, particularly when the hydrodynamic effects on the plate due to the active chains

are significant.

For each simulation, we calculate the mean squared displacement using a temporal moving

average 〈(∆x)2(t)〉 = 1/(tD − t)
∫ tD−t
0

[x(t
′ − t)− x(t

′
)]2dt

′ , where tD >> t is the total dura-

tion of the experiment.31 The effective long time Fickian diffusion constant D = 〈(∆x)2〉/2t

is then obtained by averaging several simulations each conducted for various combinations
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of N , ka, kd and σ2. The effective diffusion constant is normalized as D∗ = D/Df , where

Df = kBT/ζm is the free diffusivity due to molecular collisions from the surrounding fluid.

Fig. 2b depicts the results of dimensionless diffusivity D∗ for the passive (Ta = T ) and

active cases (Ta = 5T and Ta = 20T ) as a function of the equilibrium constant p and the

number of available chains N . The values of Ta considered here represent the magnitude of

free energy (≈ 10− 30 kBT ) arising due hydrolysis of ATP, a process common in biological

systems like bacteria or eukaryotic cells.32–34 The contour length of the chain lc = Nkb and

the plate length Lp also play a role in diffusivity of the plate by mediating the friction from

chains and the medium, respectively. It can be shown that lc/Lp ∝ τR/τb, the ratio of Rouse

time to bound time τb = ζm/K of a Brownian particle in a harmonic well (see supplementary

information). We choose for illustration a value of τR/τb = 0.8 in Fig. 2 which corresponds

to roughly lc ≈ 2Lp, that has a relevant order of magnitude in biological systems like the

nuclear pore complex, cytoskeleton, or bacterial motility.17,18,35 The role of this parameter

is discussed in more detail later.

In the passive case, the effective diffusion coefficient monotonically decreases with both

the number of attachable chains or binding sites N and the equilibrium constant p. We

find that the maximum diffusivity in this case is the intrinsic free diffusivity Df that occurs

when hardly any chains are bound – i.e., when either p → 0 or N → 0. In the active case,

however, there is a maximum in D for intermediate values of p or N . At Ta = 5T , a transi-

tion is observed where the magnitude of diffusivity remains unaffected even when chains are

bound. Above this transition temperature, diffusivity is enhanced significantly more than

free diffusivity Df showing a clear peak for Ta = 20T at non-zero values of p. When p→ 1,

the chains become too sticky and remain permanently attached to the plate, resulting in a

zero long term diffusivity for all cases.
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Statistical mechanics model of diffusion

To better explain and predict these trends, we now build a one-dimensional molecular the-

ory (Fig. 3). The plate experiences two types of fluctuating forces arising from (a) the

surrounding medium, and (b) the chain attachments and detachments. Because these forces

are independent, we begin with the isolated response of the plate solely due to chain fluctu-

ations. We represent the location x of the plate at time t by the probability density P (x, t),

for a given number Na of attached chains. If w(δ,Na) is the stochastic rate of moving this

plate by a displacement δ due to intermittent binding/unbinding events, the evolution of P

follows the master equation:

∂P (x, t)

∂t
=

∞∫
−∞

w(δ,Na) [P (x− δ, t)− P (x, t)] dδ. (2)

In other words, the function P (x, t) decreases when an event causes the plate to leave

position x, and increases when an event moves the plate from x− δ to x. The stochastic rate

function w(δ,Na) represents the cumulative effect of chain attachments and detachments

taking the form

w(δ,Na) = ka(N −Na)Pa(δ,Na) + kdNaPd(δ,Na) (3)

Figure 3: Illustration of the mechanism of plate displacement δ and mechanical equilibrium
during a new binding or unbinding event.
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where Pa(δ,Na) and Pd(δ,Na) denote the probability density functions (pdf) of the chain

configuration during an attachment and detachment event respectively that produces a plate

displacement δ. As the chains are assumed to follow Gaussian behavior, we assume pdfs for

delta of the form,

Pa(δ,Na) =
1√

2πσ2
a

exp
(
− δ2

2σ2
a

)
and Pd(δ,Na) =

1√
2πσ2

d

exp
(
− δ2

2σ2
d

)
(4)

where σa and σd are the corresponding standard deviations for attachment and detachment

events that we now show depend on the number of attached chains Na. To complete our

model, we assume that the pdfs are determined by enforcing force equilibrium on the plate

before and after each event. As the plate is in equilibrium with Na bound chains, an at-

tachment event introduces a new force F = Kra, where ra is the lateral projection of the

end-to-end vector of the newly attached chain. This immediately triggers a plate displace-

ment δ = ra/(Na + 1) to re-establish equilibrium as shown in Fig. 3. Using a similar

argument, we find that the plate displacement resulting from the detachment of a chain at

configuration rd is given by δ = rd/(Na − 1). The probability distributions of ra and rd are

Gaussian with a zero-mean and variance σ2
a = σ2 (given simply by the chain statistics) and

σ2
d ≈ σ2(Na − 1)2/N2

a respectively. The latter is obtained by correcting for change in the

configurations of attached chains due to the displacement δ upon attachment.

Combining 2 and 3, we can characterize the diffusive nature of the plate for an ini-

tial state of Na attached chains. As shown in supplementary information, the plate’s

mean displacement 〈x〉 =
∫∞
−∞ P (x, t)xdx vanishes. Using the mean square displacement,

〈x2〉 =
∫∞
−∞ P (x, t)x2dx, one can derive its corresponding evolution equation from (2). This

allows us to determine the plate diffusivity solely due to chain fluctuations (for a given

number of attached chains Na) as Dc(Na) = 1
2
∂〈x2〉/∂t, leading to the closed-form solution:

Dc(Na) =
σ2

2
(ka + kd)

[
p(N −Na)

(Na + 1)2
+

1− p
Na

]
. (5)
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This result shows that the mean-squared displacement is a linear function of time with a

constant long-term diffusion coefficient for a given set of input parameters, which implies

that the fluctuation-dissipation theorem (FDT) should be satisfied.22 Therefore, when con-

sidering long timescales, the time correlation of the fluctuating plate force for a given Na

can be approximated as 〈Fc(t)Fc(t
′
)〉 = 2ζckBTaδ(t − t

′
), where ζc = kBTa/Dc(Na) is the

effective friction coefficient due to chain binding events. Though the chains are out of equi-

librium with their surroundings, the use of FDT with an effective temperature Ta can be

justified under the conditions that the system is at steady state at times much longer than

1/(ka + kd).16,28,29

The Langevin equation for the plate consists of two types of drag forces and their

corresponding force fluctuations which can be written as (ζm + ζc)vp(t) = Fc(t) + Fm(t).

The effective diffusivity can then be obtained from the velocity correlation of the plate as

D =
∫∞
0
dt〈vp(t)vp(0)〉. Using the Langevin equation and the FDT with corresponding tem-

peratures, T and Ta, we obtain the effective diffusivity as (see supplementary information)

D(Na) = kB
ζmT + ζcTa
(ζm + ζc)2

(6)

where the effect of correlations between the random forces Fm and Fc on the plate diffusivity

are assumed to be negligible. For large values of N , 〈Na〉 = pN is a close approximation for

the average number of chains and the formula of diffusivity in Eq. 6 is a good estimate. For

small values of N , however, large fluctuations in the value of Na become important and is

characterized by the binomial distribution CNa
N pNa(1−p)N−Na where CNa

N = N !/Na!(N−Na)!.

In the general case, the average plate diffusivity can then be calculated as the weighted sum

of D(Na) with Na ∈ (0, N), i.e.:

〈D〉 =
N∑

Na=0

CNa
N pNa(1− p)N−NaD(Na). (7)
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Results and Discussion

The predictions of Eq. 7 are compared with the simulation results in (Fig. 2b), showing

excellent agreement. To gain a general understanding of the model predictions, we turn

to the analytical form of Eq. 6. Let us define the following non-dimensional parameters:

diffusion constant D∗ = D(Na)/Df , friction ζ∗ = ζc/ζm, and temperature T ∗ = Ta/T . The

effective diffusion constant from Eq. 6 can now be reorganized into

D∗ =
1 + T ∗ζ∗

(1 + ζ∗)2
= 1 +

ζ∗

(1 + ζ∗)2
(T ∗ − 2− ζ∗) (8)

where ζ∗ can be obtained using the relations τR = 1/(ka+kd), K = kBTa/σ
2, and τb = ζm/K

as

ζ∗(Na) = 2
τR
τb

[
p(N −Na)

(Na + 1)2
+

1− p
Na

]−1
. (9)

We first recognize that τR/τb = ζR/ζm measures the relative Rouse friction of the chain due

to the medium w.r.t medium friction on the plate. This ratio is shown to be proportional

to lc/Lp, where lc = Nkb and Lp are the lengths of the chain and plate respectively (see

supplementary information). The second term in the product of Eq. 8 is interpreted as a

correction factor to account for resistance to plate movement by bound chains. When all

chains are attached (p → 1), the correction factor approaches infinity that results in the

effective diffusivity approaching 0. When no chains are bound, (p→ 0), we find ζ∗ → 0 and

the effective diffusivity D → Df .

Threshold temperature for enhanced diffusion. We observe from Eq. 8 that to boost

diffusivity (D∗ > 1), the necessary condition is T ∗ > 2 + ζ∗. In other words, enhanced
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diffusion is possible only if the active temperature Ta is at least twice that of the medium

temperature. While the mere presence of activity in the chains (Ta > T ) will increase the

effective diffusivity of the plate compared to a passive system (Ta = T ), it cannot surpass

the free diffusivity Df unless it satisfies the necessary condition described above. Secondly,

because of the fluctuation-dissipation theorem, the energy from kicks to the plate due to the

medium (T ) and active chains (Ta) are weighted by their corresponding friction constants

ζm and ζc, respectively (Eq. 6). This implies that diffusivity can be maximized when the

friction ζc is optimum. An extremely low ζ∗ can reduce the overall dissipation but it also

reduces the weight on the active kicks. If ζ∗ is too high, the weight on active kicks may be

large but the overall resistance can prove too high.

To illustrate the above aspects of diffusion, we identify four dimensionless parameters,

Ta/T , τR/τb, N , and p, that determine the effective diffusivity of the plate. Each of these pa-

rameters represent one physical property of the system: active energy, relative chain to plate

lengths (lc/Lp), number of attachable chains or binding sites, and relative binding/unbinding

rates. We explore the roles of each parameter by presenting two sets of model predictions of

diffusivity as a function of N and p with fixed (i) τR/τb, and (ii) Ta/T .

Non-monotonicity due to active temperature. In the first example, the ratio τR/τb

is fixed at a value of 0.8 which is so chosen to represent the relevant range of length scales

lc = 1 − 2 Lp in biological systems like the nuclear pore complex.35,36 Fig. 4 depicts the

plot of effective diffusivity in terms of N and p for three different chain temperatures with

(a) Ta = T , (b) Ta = 5T , and (c) Ta = 20T . In the passive case with Ta = T , the maxi-

mum diffusivity is the free diffusivity of the plate Df and occurs when there are no bound

chains. However, in the active cases of Ta = 5T and Ta = 20T , we find a transition into

non-monotonicity seen before from simulations in Fig. 2b. While in the case of Ta = 5T ,

the increase in diffusivity over Df is only marginal, it is more than three times in the case

of Ta = 20T , showing the critical role of Ta in enhancing diffusivity. This indicates that

Ta = 5T is just over the critical temperature T ∗c = 2 + ζ∗ needed for surpassing free diffusiv-
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Figure 4: Plots of the normalized diffusion coefficient D/Df plotted against the total number
of chains N and rate constant p = ka/(ka + kd). Four different combinations of p and N are
schematically illustrated and categorized A, B, C and D. (a) Passive case with Ta = T , and
(b) Active case with a higher effective chain temperature Ta = 5T , and (c) Active case with
chain temperature Ta = 20T . The ratio of the timescales τR/τb = 0.8.

ity. The plots in Fig. 4c further show that as N increases, the maximum diffusivity occurs

at increasingly lower values of p, consistent with our simulation results. Moreover, we find

that the peaks approach a global maximum DM asymptotically when N → ∞. Thus, the

highest diffusivity in this regime occurs when there are infinitely many available chains for

binding (N →∞), but have a weak affinity, i.e., unbinding is much faster than binding, such

that a few chains are attached to the plate at any given time. This particular combination

yields the highest frequency of kicks to the plate (see Eq. 3) which when combined with

few chains resisting plate motion gives us the maximum limit in diffusivity. Although the

assumption of negligible correlations among different chains in this model are susceptible to

breakdown in these limits, this finding provides a valuable insight and a qualitative trend of

the maximum diffusivity regime.
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At N = 0 and p→ 0, the transport process reverts back to that of an unbound particle

with an intrinsic diffusivity Df , while for p → 1 or N → ∞ for a finite p, the particle is

trapped and its diffusivity vanishes. This type of non-monotonic dependence of diffusiv-

ity has been observed with previous models of transport in the nuclear pore complex and

mucous membranes, although the model construction and underlying assumptions are differ-

ent.22,25,35 Interestingly, the non-monotonicity in diffusion is also seen in synthetic systems of

multi-valent ligand molecules that consists of polyethylene glycol chains ("legs") that walk

or hop by binding to receptor surfaces.37

Effect of chain/plate length on maximum diffusivity. For the second example, we

now explore the role of the ratio of chain to plate length, lc/Lp ∝ τR/τb. With the active

temperature fixed at Ta = 20T , two new scenarios are considered as shown in Fig. 5a with

Figure 5: Analysis of the diffusion coefficient for fixed Ta = 20T as a function of the ratio
of timescales τR/τb, which represent the Rouse time of the chains and the bound time of the
plate in the fluid medium. Plots of D/Df for (a) Low (τR/τb = 0.01) with peak at point β.
(b) High (τR/τb = 10), presented as functions of total available chains N and the fraction of
bound chains p = ka/(ka + kd). (c) Cross-sectional slice of 3D plots for N = 20 in Figs. 5a,
5b and 4c to show diffusivity as a function of p.
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τR/τb = 0.01 and 5b with τR/τb = 10. We find an interesting trend where the maximum

diffusivity in Fig. 5a, which surpasses that of Fig. 4c with τR/τb = 0.8, is now located at

a higher p, i.e., a larger fraction of bound chains. In other words, when the plate is much

longer than the chains (low τR/τb), the diffusivity is maximum when more chains are bound

as illustrated by case β in Fig. 5. By contrast, when the chains are much longer than the

plate (case α), as in Fig. 5b, we see that there is no enhancement of diffusivity in spite of the

presence of active chains and the plot resembles that of passive diffusion (Ta = T ). These

results are further corroborated by Monte Carlo simulations presented in the supplementary

information (Fig. S1). Projecting the curves in Figs. 4c, 5a, and 5b with Ta = 20T to

a fixed number of available chains N = 20, we find that τR/τb dictates the the optimum

combination of binding rates (p = ka/(ka + kd)) for maximum diffusivity. As shown in Fig.

5c, the peaks of the effective diffusivity transitions from p = 0 for τR/τb = 10 to progressively

higher values of p for smaller values of τR/τb = 0.8 and 0.01.

To better understand the role of τR/τb, we plot the approximate value of maximum diffusiv-

ity Dmax as a function of τR/τb (Fig. 6a). Two key features are notable. First, Dmax remains

steadily above the free diffusivity Df for very low values of τR/τb � 1 before starting its

decline as it approaches the limit τR/τb → 1. The magnitude of enhanced diffusivity is larger

with higher active temperatures Ta, as expected. Second, we find that depending on the ac-

tive temperature Ta, there is a critical value of τR/τb above which there is no enhancement,

i.e., Dmax/Df = 1. Interestingly, we find that the optimum conditions for Dmax in terms of

the fraction, p, of bound chains is predicted to increase from p→ 0 at large values of τR/τb

to p→ 1 at smaller values (Fig. 6b). For extremely low values of τR/τb due to short chains

(lc � Lp), the model assumptions like Gaussian chain or one-dimensional behavior may no

longer hold.

Physical interpretation of model predictions. The modeling framework presented

in this work provides new insights and a better understanding of the mechanisms behind

binding-mediated active transport. When τR/τb is low due to either small chains or a long
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Figure 6: (a) The approximate asymptote of the maximum diffusivity Dmax is plotted as a
function of τR/τb for active temperatures Ta = T , Ta = 5T , Ta = 20T , and Ta = 50T . (b)
The fraction of bound chains p at Dmax for all 4 active temperatures. The three vertical
lines on the plot correspond to the parameters (Ta and τR/τb ) used in Figs. 4c, 5a and 5b.

plate (lc < Lp), the relative friction ζ∗ is considerably reduced. However, this also lowers

the intensity of active kicks on the plate. For instance, if the plate is extremely long, the

friction from the medium becomes so high that the displacement due to a kick from the

medium is too small compared to that of moving towards a new equilibrium state following

binding events. Particularly, having a slower unbinding rate provides more time for the plate

to move to its new equilibrium position following a binding event before the newly attached

chain unbinds. The model, therefore, predicts that diffusion is highest when most chains are

bound, e.g., high p. This explains the shift to higher values of p for maximum diffusivity in
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Fig. 6b as τR/τb is reduced. This is likely to be the case for transport of large cell organelles

through the cytoplasm of cells, like the centering of ooctye nucleus in the cytoplasm powered

by motor proteins.38

As τR/τb increases, i.e., when each chain becomes more comparable or longer than the

plate (lc ≥ Lp), the effective friction on the plate can be reduced by having very few chains

bound at any given time (low p). For a given Ta, going beyond a threshold value of τR/τb will

make the chain friction so large that the highest diffusivity occurs only when no chains are

bound, which is simply Df . This suggests that if the plate length Lp is too small compared

to the chain length lc, the free diffusivity Df is already high enough that the active energy

of the chains needs to be above a critical value to produce enhanced diffusion. Alternately,

of the chains are much longer than the plate, the time between binding events is too long

for the plate to reach a new equilibrium position before the next event. In other words,

the fluctuations from the chains are too spread apart, and subside between binding events,

to produce enhanced diffusion. We note that this model predicts that the minimum active

temperature Tc needed to transition to enhanced diffusivity increases linearly with τR/τb

(see supplementary information, Fig. S2). Therefore, to produce enhanced diffusion, it is

not only important to have active chains but the right level of activity for given geometric

(lc/Lp) constraints.

Summary and Conclusions

In summary, our analysis suggests that in contrast to passive diffusion there are different

regimes in affinity-based active diffusion that can be finely tuned with a few physical pa-

rameters. For example, if binding affinity is strong (ka > kd), highly multivalent or large

molecules (high N) are significantly slowed down (case B in Fig. 4) and trapped compared

to molecules with lower valencies (case A). By contrast, for weak affinities (ka < kd), diffu-
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sion of highly multivalent or large molecules (case D) can be much higher than those with

lower valencies or size (case C). In fact, our findings indicate that high multivalency but low

affinity of each binding site is the best case scenario for rapid transport, a situation found

in the nuclear pore complex.39 The above findings hold true as long as the plate and chain

lengths and their corresponding friction constants are comparable (lc ≈ 1−2Lp). Extending

the model analysis to other combinations of the ratio lc/Lp ∝ τR/τb, we find that plates

that are considerably larger than the chains can move faster when bound to many active

chains. This regime produces non-classical diffusion behavior where larger molecules can

diffuse faster than smaller ones when the chains are highly active. We also find that the

model and simulations predict the non-intuitive phenomenon that the level of activity in the

chains need to be more than twice the thermal energy in the medium (Ta > (2 + ζ∗)T ) to

surpass free diffusivity. Since the friction from chains is much higher in the case of large

values lc/Lp, we find the existence of a critical active temperature Tc below which enhanced

diffusivity is not possible.

These findings can provide useful insights into the motility of bacteria that use motorized

polymers (pili) and the active mechanisms underlying intracellular organelle transport using

motor proteins.17,18 It could also prove meaningful for better understanding and tuning of

highly selective transport of macromolecules through dynamic polymer networks such as the

NPC, mucous membranes and extracellular matrix that depend on both size and chemical

affinity. The extension of this approach to two and three-dimensional networks will require

the inclusion of network topology, the effect of mesh size (relative to particle size) as well

as particle geometry. More work in the future will be required to incorporate complex rela-

tionships between bond kinetics and chain forces due to structural changes in the polymer

(e.g., protein unfolding), bond type (e.g., slip, catch bonds) or motor response, can produce

anomalous behavior like subdiffusion or superdiffusion seen in biological systems.40–42
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