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Abstract

Fragment embedding has been widely used to circumvent the high computational

scaling of using accurate electron correlation methods to describe the electronic ground

states of molecules and materials. However, similar applications that utilize fragment

embedding to treat electronic excited states are comparably less reported in the liter-

ature. The challenge here is two-fold. First, most fragment embedding methods are

most effective when the property of interest is local, but the change of the wave function

upon excitation is non-local in general. Second, even for local excitations, an accurate

estimate of e.g., the excitation energy, can still be challenging owing to the need for a

balanced treatment of both the ground and the excited states. In this work, we show

that Bootstrap Embedding (BE), a fragment embedding method developed recently by

our group, is promising towards describing general electronic excitations. Numerical

simulations show that the excitation energies in full-valence active space (FVAS) can

be well-estimated by BE to an error of ∼ 0.05 eV using relatively small fragments,

for both local excitations and the excitations of some large dye molecules that exhibit

strong charge-transfer characters. We hence anticipate BE to be a promising solution

to accurately describing the excited states of large chemical systems.
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1 Introduction

One challenge faced by using accurate electronic structure methods to solve practical prob-

lems is the high computational scaling of these methods (O(Np) where p ≥ 5 in general) that

limits the size of the systems that can be modelled computationally.1–10 Fragment embed-

ding provides a promising solution to this problem by recognizing that in many cases, the

interesting chemistry or physics occurs in only a local fragment of a large system,11–14 which

can then be singled out and treated more accurately than the rest of the system to reduce

the computational cost. The general idea of local fragment embedding has been realized by

many authors in different contexts, each focusing on embedding a specific physical quantity,

including electron densities,15–20 density matrices,21–27 molecular orbitals,28–32 and Green’s

functions,33–40 to name a few.

A vast number of successful applications using these local embedding methods for both

ground and excited states can be found in the literature (see refs. 17,41–45 and references

therein). Most embedding calculations on excited states have been focused on local excita-

tions, with typical applications being studying the solvatochromic shifts.46–55 This can be

done, for instance, in the framework of wave function (WF)-in-density functional theory

(DFT) embedding via subsystem DFT52,53,56–59 or projector-based approach,50,60,61 where a

high-level WF method such as equation-of-motion coupled cluster62,63 (EOM-CC) is used to
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compute the local excitations in a chosen fragment embedded in the effective potential of the

environment density. The response of the environment to the fragment excitation has been

shown important in many cases.56–58,61 Note that unlike subsystem DFT, projector-based

WF-in-DFT embedding can in principle treat systems with strong fragment-environment

coupling (e.g., chemical bonds)21,45 and hence describe non-local excitations. However, in

the simple case of a delocalized π → π∗ excitation, the results converge much more slowly

than for a localized excitation,64 so that the utility of this approach for delocalized excited

states could be much lower.

In addition to local embedding, recent developments in the field have also suggested the

possibility of global embedding.65–74 In a global embedding calculation, one usually starts

with a low-level (e.g., mean-field) wave function of the full system and then repeatedly

uses the aforementioned local embedding scheme to locally refine the wave function for a

series of fragments that fully partition the system. A global quantity is then evaluated

by assembling the local contributions from each fragment. Recently, we have developed

Bootstrap Embedding (BE), which is a global embedding method that shows high accuracy

and flexibility to compute the electronic ground states of general chemical systems.67,75–79 For

example, we have demonstrated in previous works that BE can recover ≥ 99.5% of the total

correlation energy at second-order Møller-Plesset perturbation theory80 (MP2) or coupled

cluster with singles and doubles81,82 (CCSD) level with relatively small fragments.77,78

Unlike the local embedding methods, a global embedding scheme in principle suffices to

describe any eigenstates of the electronic Hamiltonian, including those that correspond to

general, non-local excited states. As proof of concept, this has been demonstrated within

the framework of Density Matrix Embedding Theory65,66 (DMET) using the lowest singlet

excitation of a simple hydrogen trimer system.73 The idea here best fits into the framework of

the direct approach to excited states,83–93 where a wave function ansatz is optimized directly

for a specific excited state. Perhaps the most well-known example is ∆ Self-Consistent

Field94,95 (∆-SCF), which approximates an excited state by a single determinant and hence
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parallels the ground-state Hartree-Fock96 (HF) as well as Kohn-Sham DFT97,98 (KS-DFT).

As a mean-field approach, ∆-SCF is known to outperform the corresponding mean-field

linear response methods99,100 in many cases where the orbital relaxation is important for

excited states.101–104 More importantly, recent studies have also suggested that a ∆-SCF

excited state can be further improved by using traditional electron correlation methods such

as MP291,105 and CCSD106 in a state-specific way, just like the HF ground state.

In this work, we thus combine BE and ∆-SCF to enable accurate embedding calculations

for general electronic excited states. Two technical barriers have been overcome to achieve

this goal. First, using BE to correct a ∆-SCF excited state in a state-specific manner

requires one to locate the same ∆-SCF state in all fragment calculations. We achieve this by

utilizing some of the recently developed algorithms that allow robust location of the desired

∆-SCF state.89,107 Second, previous works have suggested that BE is good at describing

the valence electron correlation,77,78 while being less effective for the dynamic correlation

in a large basis,77 which is virtually always needed to describe an excited state. We tackle

this problem by introducing the so-called full-valence active space (FVAS) that consists of

orbitals of primarily valence characters extracted from a large basis. The FVAS is suitable

for a BE calculation, while still being useful to describe low-lying valence excitations that

are not necessarily local.

This article is organized as follows. In section 2, we review the theory of BE, discuss its

extension to excited states, and present recipes for constructing the FVAS from a large basis.

A local embedding scheme, local complete active space (LCAS), is also introduced to help

benchmark BE’s performance on local excitations. In section 3, we present the computational

details. In section 4, we numerically examine the performance of BE to predict excitation

energies in FVAS. We find that BE converges quickly to the full-FVAS excitation energy with

fragment size, achieving high accuracy (error ∼ 0.05 eV) using relatively small fragments

even for the excitations in large organic dye molecules that exhibit strong charge-transfer

(CT) characters. In section 5, we conclude this work with remarks on potential future
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developments.

2 Theory

A full presentation of the BE formalism can be found in the literature.76–78 Here, we briefly

review the part that is relevant to this work in sections 2.1 and 2.2. Then in section 2.3, we

discuss how to construct the state-specific full-valence active space that is suitable for a BE

calculation. In section 2.4, we introduce a local embedding scheme, LCAS, whose perfor-

mance of predicting excitation energies will be compared with BE in section 4. Throughout

this work, we use “n” to label the electronic state.

2.1 Mean-field Schmidt decomposition

Suppose we have solved for a mean-field state (HF or ∆-SCF), |Φn〉, of the system. Using

the recipes that will be presented in section 2.3, a FVAS consisting of N local orbitals (LOs),

{χµ,n}Nµ=1, can be constructed. These LOs are atom-centered and form an orthonormal set.

A second-quantized Hamiltonian of the system can then be written in this state-specific LO

basis

Ĥn =
N∑
µν

hµν,nc
†
µ,ncν,n +

1

2

N∑
µνλσ

Vµνλσ,nc
†
µ,nc

†
λ,ncσ,ncν,n, (1)

where hn and Vn are the standard one- and two-electron (in the (11|22) order) integrals

transformed to the LO basis, and {c†µ,n} and {cν,n} are the creation and annihilation operators

for these LOs. Since all the occupied molecular orbitals (MOs) of |Φn〉 are in the span of the

FVAS-LOs (section 2.3), |Φn〉 is still a mean-field solution of Ĥn with the same energy.

Define a fragment A in terms of the LOs from a selected set of atoms, {χµ,n}µ∈A, and

let NA
f = |A| be the size of the fragment. The mean-field state |Φn〉 can be written into a
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complete active-space configuration interaction (CASCI) form66

|Φn〉 = |Φenv,A
n 〉 ⊗

∑
I

cfb,AI,n |Φ
fb,n
I,n 〉, (2)

where the CI expansion is for 2NA
b electrons distributed in (NA

f + NA
b ) fragment + bath

orbitals. TheNA
f fragment orbitals {|fAp,n〉} are chosen to be the fragment LOs,78,108 while the

NA
b (≤ NA

f ) entangled bath orbitals {|bAp,n〉} and the disentangled environment determinant

|Φenv,A
n 〉 can be obtained following the algorithm in appendix A. Equation (2) is called a

Schmidt decomposition109–112 (SD) of |Φn〉 on fragment A. Unlike a normal CASCI wave

function, the coefficients {cfb,AI,n } in eq. (2) are not obtained variationally but derived from the

mean-field state |Φn〉 and hence encode no electron correlation. Nonetheless, we can construct

an effective Hamiltonian from eq. (2) by embedding the fragment + bath subsystem in the

pure environment

ĤA
n = Eenv,A

n +

NA
f +NA

b∑
pq

hApq,na
A†
p,na

A
q,n +

1

2

NA
f +NA

b∑
pqrs

V A
pqrs,na

A†
p,na

A†
r,na

A
s,na

A
q,n, (3)

where

Eenv,A
n = Tr (hn + Fenv,A

n )Penv,A
n (4)

hApq,n =
N∑
µν

TAµp,nT
A
νq,nF

env,A
µν,n , (5)

V A
pqrs,n =

N∑
µνλσ

TAµp,nT
A
νq,nT

A
λr,nT

A
σs,nVµνλσ,n, (6)

where TA
n = [Tf,A

n |Tb,A
n ] is the unitary matrix transforming the LOs into the fragment and

the bath orbitals, Penv,A is the environment one-particle density matrix (1PDM), and Fenv,A
n

is the environment Fock matrix. Constructed this way, HA
n has the original mean-field

state |Φn〉 contained in its mean-field eigenspectrum,66 a fact that is sometimes referred to

as the exactness of HF-in-HF embedding.66,68 Once obtained, HA
n is solved by an electron
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correlation method to calculate an accurate local wave function |ΨA
n 〉, which allows for the

computation of local observables.

An algorithm adapted from ref. 78 for efficiently evaluating the integral transform in

eq. (6) is given in appendices B and C.

2.2 Bootstrap Embedding

In BE, we partition the system into a set of Nfrag atom-based fragments. Hereafter, we use

“atom” to denote an atomic group that consists of a heavy atom and all the hydrogen atoms

bonded to it (e.g., a methyl group). In a BEm calculation (m = 1, 2, · · · ), each atom carries a

fragment consisting of that atom and all neighboring atoms up to the (m−1)-th coordination

shell. Thus, BE1 is the smallest calculation and has every atom as a fragment, BE2 adds all

the nearest neighboring atoms to each fragment in BE1, and BE3 further includes the second

nearest neighbors, etc. We call the atoms that are added to a fragment at BE2 and higher

levels the edge atoms of that fragment, while the remaining one the center atom. Note that

the union of the center atom of all fragments gives the full system.

The most important feature of these atom-centered fragments is that they overlap with

each other (except for BE1). As a result, one atom could be an edge atom in some fragments,

while being the center atom in another. In general, an atom is described at higher accuracy

in the fragments where it is the center atom rather than an edge atom. This is because an

edge atom lies closer to the environment, which is described at a low level of theory (i.e.,

mean-field).

This differential behavior of the same atom in different fragments is exploited in BE to

improve the embedding. Specifically, let EA be the set of edge atoms of fragment A, and CB

be the center atom of fragment B. EA∩CB then represents the atom that is better described

in B than in A. To improve the quality of this edge atom of fragment A, we require the local

wave function of fragment A to match the local wave function of fragment B on that atom.

In this work, we choose to match the 1PDM, Ppq = 〈a†qap〉, between fragments. This can be
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achieved by a constrained optimization

min
ΨA
〈ĤA

n 〉A,n, s.t. 〈aA†q,naAp,n〉A,n = PB
pq,n,

∀p, q ∈ EA ∩ CB,∀B 6= A.

(7)

where 〈 · · · 〉A,n = 〈ΨA
n | · · · |ΨA

n 〉, and we loop over all B 6= A to enumerate all possible match-

ing conditions for fragment A. The same analysis can be repeated for all other fragments

and leads to similar density matching conditions. In addition to these fragment-specific con-

straints, we also impose a global constraint that fixes the sum of the electron number in the

center atom of each fragment to be the total electron number of the system,

Nfrag∑
A

∑
p∈CA

〈aA†p,naAp,n〉A,n = Ne. (8)

As shown in previous works,67,75 these constrained optimizations can be turned into Nfrag

coupled eigenvalue equations, one for each fragment, where the embedding Hamiltonian ĤA
n

(eq. (3)) is dressed by (i) a fragment-specific effective potential λAn that accounts for the

density matching constraints (eq. (7)) and (ii) a global chemical potential µn that accounts

for the electron number constraint (eq. (8)), i.e.,

(
ĤA
n +

∑
pq∈EA

λApq,na
A†
p,na

A
q,n + µn

∑
p∈CA

aA†p,na
A
p,n

)
|ΨA

n 〉 = EAn |ΨA
n 〉. (9)

Equation (9) is then solved repeatedly for all fragments using some high-level method until

the appropriate {λAn} and µn are found to satisfy the constraints in eqs. (7) and (8). A

efficient quasi-Newton algorithm for solving this problem can be found in a previous work.78

Once the constrained optimizations are done for all fragments, we evaluate the total
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energy by summing the local contribution from each fragment center78

EBE
n =

Nfrag∑
A

∑
p∈CA

[ 2NA
f∑
q

(
hApq,n −

1

2
Genv,A
pq,n

)
PA
pq,n +

1

2

2NA
f∑

qrs

V A
pqrs,nΓApqrs,n

]
, (10)

where Genv,A
n is the Coulomb and exchange part of the environment Fock matrix; PA

n and

ΓA
n are fragment 1PDM and 2PDM, respectively.

The formalism presented above should apply equally well to both ground (n = 0) and

excited (n > 0) states, but a few comments specific to an excited state calculation using a

∆-SCF bath are needed. First, ∆-SCF often breaks the spin symmetry84 and hence gives

spin-unrestricted HF (UHF) states, because of the open-shell nature of most excited states.

As shown in our previous work,79 for BE with a UHF bath, one only needs to make two

slight modifications to the protocol discussed above:

1. the density matching in eq. (7) is performed in terms of the spin-summed density

matrix (i.e., Pα + Pβ), and

2. the electron number constraint in eq. (8) is made spin-dependent (i.e., two chemical

potentials, µαn and µβn, are determined respectively to fix Nα
e and Nβ

e ).

Second, since we compute the BE energy by summing all fragment contributions, it is

crucial that in all fragment calculations, we find the local eigenstate that best represents

|Φn〉; otherwise, the BE energy ceases to be state-specific. To that end, we propose the

following protocol to find the local mean-field state that is most similar to |Φn〉. Let Pn be

the 1PDM of |Φn〉 in the LO basis. For each fragment A, we use the projected 1PDM,

PA
n = TA†

n PnT
A
n , (11)

to initiate the SCF calculation, and then use either the maximal overlap method107 (MOM)

or the squared gradient minimization89 (SGM) to help the SCF iteration stay close to the

initial state. This protocol works well for all numerical examples shown below, which include
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challenging cases such as the CT states in large organic dye molecules. We hence anticipate

that this scheme will also work in a more general scenario.

2.3 Full-valence active space

The formalism presented in sections 2.1 and 2.2 in principle works for any choices of the

local basis. Here, we choose our local basis to consist of only orbitals of valence characters,

i.e., a full-valence active space (FVAS). This choice is motivated by the recently established

fast convergence of BE for computing the valence correlation energy of molecules in their

electronic ground states.77,78 An extension to treat the dynamic correlation energy with BE

will be the topic of a future work.

While a FVAS can be constructed in different approaches, here, we adopt a projection-

based scheme similar to the construction of the intrinsic atomic orbitals113 (IAOs). Consider

a large atomic orbital (AO) basis set, K = {φvµ}Nµ=1 ∪ {φnv}Mρ=1, which contains N valence

and M non-valence (e.g., polarization) AOs. We single out the valence part and perform the

following projection113

|χµ,n〉 = [OnÕn + (1−On)(1− Õn)]|φvµ〉, (12)

where On =
∑

i∈occ |ψi,n〉〈ψi,n| is the projection operator onto the occupied MOs of |Φn〉,

and Õn is the projection operator onto the “depolarized” occupied MOs of |Φn〉, defined

according to ref. 113 as |ψ̃i,n〉 = Pv|ψi,n〉, with Pv the projection operator onto the valence

AOs. Constructed this way, {χµ,n}Nµ=1 are valence-like orbitals that fully span the occupied

MOs of |Φn〉 and the N − No virtual MOs of mainly valence character (No the electron

occupation number), which naturally define a FVAS for the original large AO basis. For the

purpose of embedding calculations, we further localize these orbitals using e.g., the Foster-

Boys approach,114 which leads to the local basis in which we write down the Hamiltonian

eq. (1).
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Note that although the recipes above apply to any mean-field states, the quality of the

FVAS constructed from a high-lying ∆-SCF state is expected to be low, in the sense that

solving the FVAS Hamiltonian (eq. (1)) using an electron correlation method gives only

a poor approximation to the full-system correlated wave function. Nonetheless, the FVAS

should provide a qualitative or even semi-quantitative description to low-lying valence excited

states (need not to be local), which are the type of excitations that are studied below.

2.4 Local complete active space

BE as introduced above is a global embedding method in the sense that all parts of a system

are treated accurately in at least one fragment. While such a divide-and-conquer scheme

is necessary for a general, non-local excited state, one may argue that a local treatment is

sufficient for local excitations. Here, we introduce a local embedding scheme called local

complete active space (LCAS), whose performance on local excitations will be contrasted

with BE in section 4.1.

In a LCASm calculation, one again starts with a mean-field state |Φn〉 and chooses a local

fragment A from BEm that contains as many as possible the atoms that are responsible for

the local excitation of interest. Let {χµ,n}N
A

µ=1 be the set of LOs in A. Assuming NA < No

(which is always true for small fragments), a singular value decomposition of the overlap

matrix between the fragment LOs and the occupied MOs of |Φn〉

Sµi,n = 〈χµ,n|ψi,n〉 =
NA∑
p

λp,nUµp,nVip,n (13)

gives the NA occupied MOs that are maximally localized in A,

|ψ̄p,n〉 =
∑
i∈occ

Vip,n|ψi,n〉. (14)

Repeating the procedure for the virtual space similarly defines the NA virtual MOs that
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are maximally overlap with A. These 2NA occupied + virtual MOs naturally define a local

active space for fragment A, with all other N − 2NA MOs being frozen.

One can show that these 2NA active orbitals are related to the fragment + bath orbitals

coming from a SD of |Φn〉 on fragment A by a unitary rotation.78,108 Thus, an effective

Hamiltonian, ĤAn , that formally resembles the embedding Hamiltonian (eqs. (3) to (6)) can

be constructed for the local active space and solved accurately using some electron correlation

method, leading to the LCAS estimation of the total energy

ELCAS
n = EAECM,n + Ecore,A

HF,n , (15)

where EAECM,n and Ecore,A
HF,n are the active space energy and the energy of the frozen core

determinant (cf. eq. (4)), respectively. Note that both components of the LCAS energy are

state-specific, given that one finds the correct eigenstate of ĤAn that corresponds to |Φn〉 (cf.

the discussion at the end of section 2.2). We also note that the LCAS scheme introduced

here is the similar to DMET with only one fragment being treated at high level70,115,116 (also

known as active-space DMET70,115 or regional embedding116,117).

3 Computational details

In what follows, we assess the performance of BE to predict accurate excitation energies in

FVAS using the lowest singlet excited state (S1) of a series of organic molecules shown in

fig. 1. The ground state geometries optimized at the B3LYP118/6-31G*119–123 level using the

Q-Chem software package124 are used for all molecules and can be found in the Supporting

Information. All the excitations considered here are valence excitations and hence well-

described by the FVAS.

These molecules can be divided into three groups. Group A consists of three singly

substituted C16-alkane molecules whose excitations are mainly localized to the substituents.

This group is chosen to allow a direct comparison of BE, which is a global embedding
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2PXZ-OXD
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A X = NH, O, C=O

C

Figure 1: Lewis structure of the molecules studied in this work. Group A consists of three
singly substituted C16-alkanes whose excitations are mainly localized at the substituents.
Group B consists of four small dye molecules that are widely used in organic photoredox
catalysis. Group C consists of three larger dye molecules used in functional devices (e.g.,
TADF) or bioimaging.

scheme, to the local treatment, LCAS, introduced in section 2.4. Group B and C consist of

small and large dye molecules, respectively, whose S1 states are not local anymore due to

the conjugated π systems and hence beyond the capability of LCAS and most other local

embedding methods mentioned in section 1. Some of the excitations in group C display

significant CT characters, making them an excellent testbed for a global embedding method

like BE.

For each molecule, we first locate the ground (HF) and the excited (∆-SCF) state mean-

field solutions using MOM or SGM (section 2.2), from which two sets of LOs that define the

respective FVAS of each state are constructed according to the recipes given in section 2.3.

We then perform two independent BEm (and also LCASm for group A molecules) calcula-

tions, one for each state, and use the energy difference of the two calculations as the BEm

(LCASm) excitation energy. The full FVAS excitation energy is used as the benchmark,

which is obtained by directly solving the FVAS Hamiltonian (eq. (1)) of both the ground
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and the excited states using the same high-level method used by BE (LCAS) and then taking

the energy difference.

In this work, we use the MP2 as the high-level method to solve the embedding Hamil-

tonians. The non-iterative nature of MP2 ensures that the correlated calculations do not

swap states (unlike e.g., coupled cluster or configuration interaction), which renders it an

intrinsically state-specific correction to a ∆-SCF excited state. This has been recently con-

firmed by our group105 and others.91 The unrelaxed MP2 density matrices that ignore the

SCF orbital relaxation as implemented in the PySCF software package125 are used for the

BE density matching (eqs. (7) and (8)) as well as the energy evaluation (eq. (10)). This

choice has been shown in previous works to give better BE energies compared to the relaxed

densities.77,78

In all BE calculations, the constraint on the electron number (eq. (8)) is fully imposed,

while the constraints on the 1PDM of overlapping fragments (eq. (7)) are imposed both

fully and partially to investigate their effects on accuracy. Specifically, we distinguish two

types of density matching constraints: one applied to an intra-atomic block of the 1PDM,

the other applied to an inter -atomic block of the 1PDM. We use the notations BEm(0) for

a one-shot calculation that does not impose any density matching constraints, BEm(1) for

a calculation that imposes only the intra-atomic constraints, and BEm(2) for a calculation

that further imposes the inter-atomic constraints. Note that the distinction between BEm(1)

and BEm(2) only affects BE3 and higher level calculations where fragments can overlap at

two or more atoms.

We implemented BE and LCAS as described above in a home-made code using PySCF125

and Libint2126 as backends for basic electronic structure modules. Core MOs are frozen

for both ground and excited state calculations of all molecules, which has been checked for

selected molecules to introduce negligible errors (< 0.01 eV) to the calculated excitation

energy. Density fitting127–130 and integral screening131–134 are used to accelerate the integral

transformation in eq. (6) using the algorithm presented in appendix B. The bath disen-
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tanglement problem and its solution are discussed in appendix C; we use a cutoff of 10−6

for selecting the entangled bath orbitals (see appendix C for details). The cc-pVDZ135,136

(cc-pVDZ-RI137) basis set is used as the working (auxiliary) basis for the BE calculations

of group A molecules, while def2-SVP138 (def2-SVP-C139) is used for all other molecules.

A BE calculation is deemed converged when both the root mean squared error of all the

constraints and the energy change from previous iteration drop below 10−6 (both in atomic

unit).

4 Results and discussion

4.1 Local excitations
6

–1.22 –1.22–0.35 –0.35

Figure 2: Upper panel: errors of the S1 excitation energies of three singly substituted alkanes
(fig. 1, group A) calculated by BE (left) and LCAS (right) with increasing fragment size.
For errors exceeding the limit of the y-axis, the values are listed aside. The grey shaded
area indicates an absolute error below 0.05 eV. Lower panel: density difference plots (hole is
colored in red) at the mean-field level (from left to right: amine, ether, and ketone), which
indicate that all three excitations are local to the substituents.

We first consider the three singly substituted alkanes in fig. 1A. As mentioned above,
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these excitations are expected to be localized to the substituents. This is confirmed by the

density difference plots between the HF and the ∆-SCF states shown in the lower panel of

fig. 2 (see fig. S1 for a zoomed-in view). The errors of the excitation energies computed by

BE and LCAS using different-sized fragments are plotted in the upper panel of fig. 2.

Overall, the excitation energy predicted by BE shows fast convergence with fragment

size to the full-FVAS number: an error of < 0.05 eV (grey shaded area in fig. 2) is already

achieved at the BE2 level for the amine and the ether, and at the BE3 level for the ketone.

Further increasing the fragment size either continues to improve the results (for the ketone) or

maintains the (already high) accuracy from the small-fragment calculations (for the amine

and the ether). The effect of imposing the density matching constraints (eq. (7)), which

can be seen from comparing BEm(0) to BEm(1) and BEm(2), is significant only for small

fragments for these simple systems.

The good performance of BE contrasts sharply with the scattered results of LCAS. For

the ketone, LCAS shows similarly good convergence compared to BE. For the other two

molecules, however, a large, negative error of LCAS1 is gradually turned into a large, pos-

itive error by increasing the fragment size to LCAS4, indicating a slow and non-monotonic

convergence with fragment size. These results are perhaps unexpected given that all three

excitations considered here are simple, local excitations.

Generally speaking, an accurate energy difference from a local treatment must rely to

some extent on the error cancellation between the two independent calculations. The results

in fig. 2 hence suggest that BE gives a more balanced description between the ground and

the excited states of a molecule compared to LCAS. This can be seen more clearly from the

total correlation energies listed in tables S1 and S2 in the Supporting Information. The BE

correlation energy quickly converges to an error of 0.03 ∼ 0.05 eV at the BE3 level for both

the ground and the excited states of all three molecules, while for LCAS, an error of ∼ 5 eV

remains even at the LCAS4 level.

We note that similar systems have been studied recently by Wen and co-workers61 using
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projection-based WF-in-DFT embedding. They reported a similar error of 0.1 ∼ 0.2 eV

when using fragments of size comparable to LCAS1 ∼ 4. However, a relatively monotonic

convergence with fragment size was seen in their work. We thus conclude that even for

simple, local excitations, one needs to be careful to achieve a balanced treatment of both

states and BE, as a global embedding scheme, provides a promising solution.

4.2 Non-local excitations

In this section, we move on to study some non-local excitations that go beyond the capability

of a local embedding treatment such as LCAS. We first consider the four small dye molecules

shown in fig. 1, group B. These molecules share a similar structure with a central heteroatom

surrounded by a few small aromatic rings, making the S1 state a weak CT state from the

center to the periphery (fig. 3, right panel). The errors of the BE estimated excitation

energies are plotted in the left panel of fig. 3.

8

–2.06 –1.26 –1.07

0.77 0.64 0.520.36

NPh3 PhCz

POA PTH

Figure 3: Left panel: errors of the S1 excitation energies of four small dye molecules (fig. 1,
group B) predicted by BE with increasing fragment size. For errors exceeding the limit of the
y-axis, the values are listed aside. The grey shaded area indicates an absolute error below
0.05 eV. Right panel: density difference plots (hole is colored in red) at the mean-field level,
which indicate that all four excitations are non-local and display a weak CT character from
the central heteroatom to the surrounding aromatic rings.

The overall performance of BE is slightly worse here than in the previous examples of local
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excitations. BE2 reduces the large error of BE1 to 0.1 ∼ 0.2 eV, and BE3 further reduces

this number to ∼ 0.05 eV. The effect of density matching is more significant here compared

to the previous examples. Specifically, BE2(1) tends to slightly increase the error of BE2(0),

while BE3(1) gives better performance than both BE3(0) and BE3(2). An examination of

the BE total correlation energies corresponding to these excitations (table S3) suggests that

the scattered effect of density matching is not due to it being ineffective. On the contrary,

imposing more constraints monotonically decreases the errors of the BE correlation energy for

both the ground and the excited states in virtually all cases. Thus, it is the (small) differential

improvements brought by the density matching to the two states that are responsible for the

anti-corrections observed above. This is at least partially due to the bath disentanglement

issue that occurs to a different extent for the two states (fig. S2).

9

2PXZ-OXD

2CzPN NR
–2.20 –4.06 –1.04

0.71 2.06 0.35

Figure 4: Same plots as those in fig. 3 for three large dye molecules (fig. 1, group C). The
density difference plots (hole is colored in red) shown on the right indicate that the excitations
are strongly delocalized across the large conjugated π systems and exhibit significant CT
characters.

As a final test, we examine the performance of BE using three large dye molecules

(fig. 1, group C). Two of them, namely 2CzPN and 2PXZ-OXD, have been used as candidate

molecules for thermally activated delayed fluorescence140–142 (TADF) due to the strong CT

characters of the S1 state, while the third one, nile red (NR), is a commercial dye that has

been used in bioimaging.143 The characters of these excitations can be seen from the density
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difference plots shown in the right panel of fig. 4. The errors of the BE excitation energies

are plotted in the left panel of fig. 4.

The overall trend of convergence with fragment size is similar to what has been observed

in fig. 3. The large error of BE1 is reduced to slightly above the 0.05 eV threshold at

the BE2 level, and BE3 either maintains the (already high) accuracy (for 2PXZ-OXD and

NR) or brings further improvement (for 2CzPN). The effect of density matching is more

significant here at the BE3 level compared to the previous examples, especially for the

two TADF molecules where significant charge redistribution is induced by the strong CT

excitations. However, compared to the small dye molecules, the larger ones have more

fragments exhibiting different extent of bath disentanglement in the ground and the excited

states (fig S2). Thus, a small but non-negligible error cancellation contributes to the good

performance observed in fig. 4.

The convergence of the excitation energies with both the fragment size and the level of

density matching observed here is consistent with the convergence of the total correlation

energy, as can be seen from table S4. However, we note that in these cases the BE total

correlation energy is not as accurate as in previous examples, with BE3 having a typical

error of ∼ 2% or ∼ 1 eV (table S4). Interestingly, the number of disentangled bath orbitals

does not show a significant difference between the two groups of dye molecules (table S5),

which suggests that a better metric for measuring the bath disentanglement is needed to

resolve the observed different performance of BE, which we plan to explore in future work.

Nonetheless, the fact that BE can deliver accurate excitation energies of ∼ 0.05 eV error

even for these strongly non-local excitations is encouraging for future developments.

5 Conclusion

In conclusion, we have extended Bootstrap Embedding, a previously developed ground state

quantum embedding method, to calculating the excitation energies in full-valence active
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space for molecules. As a global embedding method, BE achieves high accuracy in the

calculated excitation energies by treating both the ground and the excited states to equally

high accuracy. This contrasts with the traditional local embedding schemes that rely on

the large error cancellation of two inaccurate simulations. Numerical results confirmed BE’s

superiority over a local embedding scheme, LCAS, even for simple, local excitations. More

importantly, for general, delocalized excitations beyond the capability of a local treatment,

BE continues to deliver highly accurate excitation energies using relatively small fragments

that span up to two chemical bonds (i.e., BE3).

In the future, the computational protocol introduced here could be extended in the fol-

lowing directions. First, since the goal of BE is to precisely reproduce whatever the full

calculation is, the accuracy of the full calculation determines how useful it is in practice. In

this regard, the spin-unrestricted MP2 (UMP2) method used here is suboptimal for known

issues such as spin-contamination.144–146 Fortunately, it has been shown that most of the

problems of the bare UMP2 can be largely mitigated by adopting another reference state

(e.g., the spin-restricted open-shell MP2105), using KS-DFT orbitals and scaled energy,147

or incorporating scaled MP3 corrections.148–152 In addition, recent works have also sug-

gested the possibility of combining coupled cluster with ∆-SCF for excited states.106 Thus,

a straightforward next-step is to adapt BE for these local solvers to enable more accurate

BE calculations for excited states.

Second, while FVAS may be a good approximation to many low-lying valence excitations,

it could fail quantitatively and even qualitatively in other cases. Thus, it is desirable to have

BE be able to compute excited states in a large basis with polarization and even diffuse

functions. As mentioned above and detailed in a previous work,77 disentanglement of the

mean-field bath is the main challenge here. However, recent developments from our research

group have suggested that this issue may be alleviated to a large extent by an appropriate

choice of the local basis. Such a development will benefit BE in both the ground and the

excited state calculations, which will be investigated in a future work.
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With these potential future developments, we anticipate BE to be a promising embedding

method that can describe general electronic excitations in a large chemical system.

Supporting Information

(i) A zoomed-in view of the density difference plots in fig. 2. (ii) Visualization of BE3-level

fragments that exhibit different bath disentanglement in the ground and the excited states.

(iii) Total MP2 correlation energy and energy error obtained from BE (for all three groups)

and LCAS (for group A only). (iv) Number of entangled bath orbitals averaged over all

BE3-level fragments for the dye molecules from group B and group C.
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A Schmidt decomposition of a mean-field state

Hereafter, we drop the state label “n” for simplicity, but the discussion below applies to any

mean-field states.

Let |Φ〉 be a mean-field state and P its 1PDM in the LO basis. Let the first NA LOs

comprise fragment A. P has the following block structure

P =

PAA PAĀ

PĀA PĀĀ,

 (16)

where we use Ā to denote the LOs outside fragment A. Diagonalizing PĀĀ gives the following
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eigenvectors and eigenvalues

UĀ =

[
UA
b UA

eo UA
ev

]
, ΛĀ =


ΛA

1No−NA

0Nv−NA

 (17)

where ΛA = diag{λA1 , · · · , λANA
} collects eigenvalues that lie between 0 and 1, UA

b defines the

entangled bath orbitals (BOs) {|bAp 〉}
NA
p=1, and UA

eo and UA
ev respectively define the occupied

and virtual orbitals of the environment determinant |Φenv,A〉. With our choice of fragment

LOs as the fragment orbitals (FOs) (section 2.1), the Schmidt orbital (SO) coefficient matrix

TA is simply

TA =

1NA
0

0 UA
b

 . (18)

Note that unlike the algorithm presented in previous works,66,108,153 the algorithm above

does not involve normalizing the BOs using λ, which could cause numerical issues when

λ ∼ 0. Instead, one can obtain the BOs directly from the eigenvectors {up} of PĀĀ by

sorting them by their eigenvalues in ascending order and choosing uNv−NA+1, · · · ,uNv .

B Algorithm for BE ERI transform

For fragments that overlap with each other, calculating the fragment ERIs by directly ap-

plying eq. (6) to each fragment is inefficient since the ERIs of the overlapping regions of

different fragments are related and need to be evaluated only once. Here, we review an

efficient algorithm developed in a previous work78 that avoids any redundant computation.

In appendix C, we discuss an issue of this algorithm arising from the bath disentanglement

problem and a potential solution.

Let A = {a1, · · · , aL} be an L-atom fragment (lowercase a’s label atoms hereafter), and

22



TA and {Tai} be the corresponding SOs. Define

WA = (T̃A†T̃A)−1T̃A†TA, (19)

which relates the atom-SOs T̃A = [Ta1| · · · |TaL ] to the fragment-SOs,

TA = T̃AWA. (20)

Now let QA = {(ai, aj, ak, al)|ai, aj, ak, al ∈ A} be the set of atom-quartets that are connected

in A. With eq. (20), we can compute the fragment ERIs VA by first calculating the atom-

quartet ERIs

Vaiajakal = Tai†Taj†VTakTal (21)

for all (ai, aj, ak, al) ∈ QA, and then transforming them using WA

VA = WA†WA†ṼAWAWA, (22)

where ṼA has Vaiajakal as its (ai, aj, ak, al)-block for all (ai, aj, ak, al) ∈ QA. Note that

eq. (21) scales as O(NaN
4) and eq. (22) scales as O(N5

A), with Na the typical number of LOs

of an atom. Since NA � N , the computation of the atom-quartet ERIs is the slow step.

Now for a set of overlapping fragments {A}, we first compute the atom-quartet ERIs

Vai,aj ,ak,al for all (ai, aj, ak, al) ∈
⋃
AQA using eq. (21) and then apply eq. (22) to obtain

the corresponding fragment ERIs {VA}. This two-step algorithm is efficient for overlapping

fragments since it performs the slow transform eq. (21) only for the unique atom-quartets

given by
⋃
AQA.
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C Handling bath disentanglement

In eq. (19), we assume that T̃A is full column rank so that T̃A†T̃A is invertible. However,

when some BOs are disentangled from the fragment, with the corresponding λ in eq. (17)

being close to 0 or 1, linear dependency is found in the column space of T̃A. When this

occurs, we first turn T̃A into a similar block structure as TA,

T̃ARA
1 RA

2 =

1NA
0

0 ŨA
b

 , (23)

where RA
1 permutes all the fragment orbitals to the left and RA

2 eliminates the upper-right

block of the T̃ARA
1 . Equation (23) condenses all the linear dependency of T̃A in the NA

atom-BOs, ŨA
b . Canonical orthonormalization gives the nA (< NA) linearly independent

atom-BOs,

ÛA
b = ŨA

b X̂A
b (Σ̂A

b )−1/2, (24)

where X̂A
b collects the non-singular eigenvectors of ŨA†

b ŨA
b (identified by eigenvalues Σ̂A

b

greater than some threshold τ). A subsequent singular value decomposition of the overlap

matrix between the atom- and the fragment-BOs,

ÛA†
b UA

b = YA
b

[
∆A

b 0

] [
ZA
b,1 ZA

b,2

]†
, (25)

splits the fragment-BOs UA
b into an entangled and a disentangled part,

UA
b

[
ZA
b,1 ZA

b,2

]
=

[
UA
b,ent UA

b,disent

]
, (26)

where only the nA entangled fragment-BOs can be computed from the atom-BOs,

UA
b,ent = ÛA

b YA
b (∆A

b )−1. (27)
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Now let

WA = RA
1 RA

2

1NA
0

0 X̂A
b (Σ̂A

b )−1/2YA
b (∆A

b )−1

 , (28)

and use it in the BE ERI transform algorithm (appendix B). The thus computed VA is

non-zero only when all four indices correspond to either the FOs or the entangled BOs. In

other words, the disentangled BOs become non-interacting at the two-body level (they still

interact at the one-body level) and hence formulate a non-interacting bath.115 We find that

this double-bath (an interacting bath via Ub,ent and a non-interacting bath via Ub,disent)

scheme works well for all examples studied in this work.
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