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SUMMARY

Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor pa-

tient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in

response to signaling inputs from the tumor microenvironment. However, models of this process have

been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of

signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvi-

ronment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our

analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification

of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-

ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and

differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise

modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A re-

cord of this paper’s transparent peer review process is included in the Supplemental Information.

INTRODUCTION

Cellular heterogeneity is a prominent feature of many tumors,

including breast, colorectal, and brain (Gao et al., 2016; Stingl

and Caldas, 2007). While some heterogeneity can be attributed

to the genetic mosaicism of tumors, much variation arises non-

genetically and involves the ability of cells to reversibly shift their

gene expression profiles over time (Gupta et al., 2011). This ‘‘dy-

namic heterogeneity’’ provides an adaptive advantage for can-

cer cells, contributing to metastasis and drug resistance

(Sharma et al., 2010). Potential drivers of dynamic heterogeneity

are multifactorial (Meacham and Morrison, 2013) and include

both intrinsic stochastic processes and temporal shifts in

extrinsic signaling or adhesive inputs received from the tumor

microenvironment (TME) (Friedl and Alexander, 2011; Tam and

Weinberg, 2013).

In current models of heterogeneity, each cancer cell receives

unique signaling inputs due to spatial variation in the TME; these

inputs can then drive differential gene expression programs,

which lead to phenotypic heterogeneity (Davies and Albeck,

2018; Cazet et al., 2018; Lu et al., 2014). However, these models

are qualitative, and key quantitative and kinetic aspects of this

process remain uncharacterized. First, the scope of TME hetero-

geneity needed to drive variable gene expression is not known.

TME signals acting on tumor cells emanate from multiple cell

types, extracellular matrices (ECMs), and mechanical forces,

and while a paracrine signal is an obvious candidate to drive dif-

ferences, it is not clear whether it alone can generate widespread

transcriptional variation. Second, it is not clear whether signaling

pathways act as linear transmitters of heterogeneous TME sig-

nals (Nunns and Goentoro, 2018) or instead reshape inputs

through amplification or feedback (Tyson et al., 2003). Finally,

it is not known how frequently gene expression states fluctuate

in response to TME variation, which is essential for understand-

ing the population dynamics of drug-resistant cells and for

designing the most effective time course of drug treatments.

While in vivo studies can verify the physiological importance of

TME-driven heterogeneity, a defined in vitromodel is still needed

to address these questions quantitatively.

Heterogeneity plays a prominent role in basal-like breast can-

cer (BLBC), an aggressive malignancy in which cells interchange

between multiple states that vary in tumor initiating capacity and

Cell Systems 11, 161–175, August 26, 2020 ª 2020 The Authors. Published by Elsevier Inc. 161
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Figure 1. Progression to Malignancy Is Associated with Stochastic RAS-ERK Signaling Dynamics and Heterogeneous Target Gene

Expression

(A) Schematic of the EGFR-RAS-ERK signaling pathway in mammalian cells and ERKTR.

(legend continued on next page)
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drug resistance (Brooks et al., 2015). Several findings suggest a

role for epidermal growth factor receptor (EGFR) signaling via the

proto-oncogene RAS and extracellular signal-regulated kinase

(ERK) in BLBC heterogeneity. First, genes stimulated by this

pathway (ERK target genes, hereafter ETGs) include transcrip-

tion factors such as c-Myc and Fra-1 that have been implicated

as drivers of breast cancer malignancy (Belguise et al., 2005;

Berns et al., 1992; Tam et al., 2013). Second, while BLBC tumors

do not frequently carry mutations in the RAS cascade, they often

overexpress EGFR (Reis-Filho et al., 2006) or show protein phos-

phorylation profiles consistent with receptor tyrosine kinase ac-

tivity (Hochgr€afe et al., 2010). Third, live-cell reporters have re-

vealed that paracrine signaling generates local, highly dynamic

RAS-ERK activation (Albeck et al., 2013; Aoki et al., 2013; Hirat-

suka et al., 2015) and that the dynamics of ERK influence the

expression of ETGs (Bugaj et al., 2018; Wilson et al., 2017).

Together, these findings suggest that paracrine signaling

through EGFR-RAS-ERK may drive dynamic ETG expression,

resulting in heterogeneous populations of BLBC cells, but this

association has not been tested at a mechanistic level.

In this study, we investigated the link between microenviron-

mental heterogeneity, signaling dynamics, and gene expression

heterogeneity in a cell line model of BLBC, HMT-3522 (Rizki

et al., 2008). These cells were originally derived from reduction

mammoplasty tissue and subjected to multiple rounds of

in vitro and in vivo selection for tumorigenic behavior (Madsen

et al., 1992). The non-malignant cells, termed S1, were sponta-

neously immortalized in culture using defined media, give rise

to polarized acinar structures, exhibit growth arrest, and do

not generate tumors in mouse models. Malignant T4-2 cells

were derived from S1 cells through serial passage in the

absence of exogenous growth factor, followed by passage

through a mouse model to isolate tumor-forming invasive cells.

Here, we developed a co-culture model of S1 and T4-2 cells,

expressing color-coded live-cell reporters for ERK. This

enabled us to track dynamic signaling profiles driven by para-

crine signaling and link them to gene expression profiles of in-

dividual cells. We show that paracrine signaling between these

cell types is sufficient to drive heterogeneity in gene expression

similar to that found in BLBC tumors. Furthermore, we find that

the pulsatile nature of ERK signaling, coupled to differentially

responding target genes, expands the repertoire of transcrip-

tional states and drives changes in ETG expression over time.

Our findings validate a model in which EGFR-RAS-ERK

signaling amplifies paracrine variation to generate dynamic

gene expression heterogeneity.

RESULTS

A Model of Paracrine Signaling-Induced Heterogeneity

in EGFR-RAS-ERK Signaling

To investigate cell-cell signaling in a simplified microenviron-

ment, we utilized theHMT-3522 cell line series. A defining feature

of progression from S1 (non-malignant) to T4-2 (malignant) is

increased production and secretion of the EGFR ligand amphir-

egulin (AREG), which promotes proliferation in the absence of

exogenous growth factor (Kenny and Bissell, 2007). To monitor

ERK activity stimulated via AREG, we generated S1 or T4-2 cells

with genetically encoded fluorescent ERK translocation re-

porters (ERKTRs) (Figure 1A) (Regot et al., 2014; Sparta et al.,

2015). These reporters contain a tandem nuclear import and

export sequence that is also a substrate for ERK; phosphoryla-

tion of the reporter by ERK suppresses shuttling from nucleus

to cytoplasm. Cytoplasmic shuttling is opposed by phospha-

tase-mediated dephosphorylation of the reporter (Regot et al.,

2014), and ERK kinase activity is, thus, measured as the ratio

of cytosolic (C) to nuclear (N) fluorescence (hereafter ERKTRC/

N). The different versions of the reporter are functionally equiva-

lent, varying only in color of the fluorescent protein, facilitating

identification of individual cell types in our experiments.

We measured ERK activity under: (1) baseline imaging me-

dium lacking growth factor, (2) treatment with MEK inhibitor,

PD0325901 (MEKi), or (3) stimulation with EGF. Under baseline

conditions, S1 cells exhibited few fluctuations in ERKTRC/N

(Figure 1B; Video S1A), with infrequent low amplitude pulses.

Addition of MEKi had no effect on ERKTRC/N, indicating that

ERK activity in S1 cells was below the detectable limit for the re-

porter (Figure 1C). At low EGF concentrations (0.2–2 ng/mL) we

observed ERKTRC/N responses ranging from undetectable to

low amplitude pulses (Figure S1), while addition of 20 ng/mL

EGF resulted in sustained activation of ERK signaling (Figures

1D and S1; Video S1A). These results indicate that S1 cells

depend on growth factor stimulation for ERK activation, similar

to other non-malignant mammary epithelial cells (Gillies

et al., 2017).

In contrast to S1, T4-2-ERKTR cells exhibited elevated and

variable ERKTR signals under baseline conditions (Figure 1E;

Video S1B), which were reduced by MEKi (Figure 1F; Video

(B–G) Measurements of ERK activity by ERKTRC/N in S1 or T4-2 cells following treatment with exogenous growth factors or MEK inhibitor. In each panel, mean

ERKTRC/N is shown at bottom with the 25th–75th interquartile range (IQR) depicted by shading. Unshaded traces represent individual cells and red vertical lines

indicate the addition of growth factor, inhibitor, or vehicle. n > 2,400 cells per condition.

(H) Variability of ERKTRC/N in control versus EGF integrated over time (n = 8,372). Boxes indicate IQR, and whiskers the range. NS, not significant, *p <0.01 by

unpaired t test.

(I–K) Measurements of ERK activity by ERKTRC/N in co-cultured S1 (turquoise lines) and T4-2 cells (yellow lines). Annotations as in (B–G). n > 1,900 cells per

condition.

(L) Distributions of single-cell pulse frequency (per hour), duration (hours), and amplitude (arbitrary units) of ERKTRC/N for S1 (turquoise) and T4-2 (yellow) (3,497

total cells analyzed). Numbers upper right correspond to median value color-coded to each cell type.

(M) Mean ERKTRC/N traces of T4-2m, S1m, or T4-2co/S1co treated with EGFR inhibitor (erlotinib) at the indicated concentrations. Numbers of cells analyzed per

condition (T4-2/S1): monoculture, control 2187/692; co-culture, control 244/122; 0.5 mM erlotinib 199/89; 2 mM erlotinib 239/78, 4 mM erlotinib 281/105.

(N) Mean ERKTRC/N traces of T4-2m, S1m, or T4-2co/S1co treated with TACE inhibitor (TACEi). Numbers of cells analyzed per condition (T4-2/S1): monoculture,

control 2374/2036; co-culture, control 249/122; 12.5 mM TACEi 233/116; T4-2/S1co 25 mM TACEi; 256/110, 50 mM TACEi 238/90.

(O) Mean ERKTRC/N traces of T4-2m, S1m, or T4-2co/S1co treated with AREG function-blocking antibody. Numbers of cells analyzed per condition (T4-2/S1):

monoculture, control 2374/2036; co-culture, control 243/55; 5 mg FBAb 237/56; 10 mg FBAb 222/76; 20 mg FBAb 261/74.
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S1C). EGF provoked a maximal ERK response similar in magni-

tude to stimulated S1 cells; however, the amplitude of this

response relative to baseline was much smaller than in S1 due

to the pre-existing high level of ERK activity (Figures 1G and

1H; Video S1B). These results confirm that progression to malig-

nancy in HMT-3522 is associated with elevated baseline ERK

signaling, which is stochastic, self-sustaining, and influenced

weakly by additional stimuli (Kenny and Bissell, 2007).

To evaluate the effects of paracrine signaling, we co-cultured

S1 cells with T4-2 cells at different ratios and measured

ERKTRC/N signals (Figures 1I–1K; Videos S2A–S2G). For clarity,

we refer to co-cultured cells as S1co and T4-2co, and to mono-

cultured cells as S1m and T4-2m. In S1co, compared with S1m,

we observed increased ERKTRC/N that varied over time within

each cell (Figure 1I; Videos S2A and S2D). A 30:70 ratio of S1

to T4-2 produced the most reliable activation in S1co, inducing

ERKTRC/N signals that were quantitatively similar in pulse fre-

quency, amplitude, and duration to the pulse characteristics of

T4-2m cells (Figure 1L). Consistent with paracrine signaling as

the source of ERK activity, EGFR inhibitor (EGFRi) blocked

ERK signaling in both S1co and T4-2co cells with similar potency

to MEKi (Figure 1J; Video S3A). The response of S1co cells to

exogenous EGF was dampened relative to S1m cells and similar

to that of T4-2m (Figure 1K; Video S3B), in agreement with re-

ceptor occupancy by paracrine ligands.

To confirm that ERK activity in S1co and T4-2m cells is medi-

ated by paracrine ligands, we treated cells with TAPI-0, an in-

hibitor of the AREG and TGF-a shedding enzyme (TACE),

compared to EGFRi (Figure 1M) or MEKi (Figures S1B–S1D).

TACEi produced an initial suppression of ERK activity in both

S1co and T4-2m, followed by a gradual return to dynamic

signaling (Figures 1N and S1C). We found that TACEi exerts a

prolonged effect if culture medium is changed immediately

prior to TACEi addition (Figure S1E), suggesting that residual

AREG in the microenvironment accounts for the gradual return

to dynamic signaling in the absence of media washout. An

AREG function-blocking antibody (FBAb) also strongly sup-

pressed ERKTRC/N for �1 h, followed by a gradual return of

ERK activity (Figures 1O and S1C), which is consistent with

saturation of the FBAb over time by continuous AREG secretion

from T4-2 cells. High concentrations of TGF-a FBAb had no

detectable effect on ERKTRC/N (Figure S1F). These results indi-

cate that paracrine release of AREG by T4-2 cells is the primary

driver of stochastic ERK signaling and are also consistent with

the role of AREG as a low-affinity EGFR ligand that can diffuse

freely to adjacent cells (DeWitt et al., 2001, 2002). Finally, we

compared these observations with a co-culture lacking para-

crine signaling. MCF10A-CA1D cells, which carry an activating

RAS mutation but are not known to secrete AREG, showed

similar ERKTRC/N levels to T4-2m cells but did not efficiently

drive ERK signaling in S1co cells (Figure S1G). These results

establish a defined system in which S1co cells serve as a

receiver for paracrine EGFR-mediated signals produced by

T4-2co cells.

Paracrine Signaling Drives Heterogeneous Expression

of EGFR-RAS-ERK-Regulated Genes

We investigated gene expression heterogeneity using single-cell

mRNA sequencing (scRNA-seq), comparing S1m cells with or

without growth factor, S1co/T4-2co mixtures, and T4-2m cells

(Figures 2A and S2A–S2D).We assessed global gene expression

profiles as a function of cell type and/or conditions (Figure 2B).

Clustering analysis of S1m, S1m treated with 100 ng/mL AREG

(S1m+AREG), and T4-2m cells found that cells broadly sort ac-

cording to type and conditions (Figure 2B). Similarly, S1co and

T4-2co cells segregated into distinct clusters, even without

filtering by mRNA expression of mCherry or mVenus. We found

eleven clusters of cells with unique but partially overlapping sig-

natures (Figures 2C and S2E; Data S1). T4-2m and T4-2co cells

were each comprised 3 clusters enriched for genes involved in

replication and cell division, as well as growth factors, reactive

oxygen enzyme SOD2, and TNF-related apoptosis-inducing

ligand (TNFSF10) (Figures 2C and S2E). S1m cells treated with

growth factor segregated into two clusters: the bulk population

of cells (cluster 2) showed broad expression changes, with a

notable increase inMAPK-regulated genes comparedwith unsti-

mulated controls (Figures 2C and S2E), while the second cluster

(cluster 8) showed increased expression of cell-cycle-associ-

ated genes. S1co cells formed a separate cluster (cluster 9)

with an expression profile that partially overlapped with S1m

and T4-2m cells but also included a diverse set of genes distinct

from other conditions, including inflammation-associated genes

(Figure S2E; Data S1).

Since distances in tSNE plots can distort the similarity of clus-

ters, we performed additional analysis to determine the relative

gene expression similarity between S1m, S1m+AREG, S1co,

and T4-2 cells. Using pairwise correlation (Figure 2D) and prin-

cipal component analysis (Figure 2E) we found that S1m and

T4-2m cells exhibit divergent gene expression profiles, whereas

S1m+AREG and S1co cells exhibit strong correlation in gene

expression profiles. These findings imply that AREG is the pre-

dominant factor driving gene expression changes under co-cul-

ture conditions and that co-culture alone is not sufficient to fully

convert global S1 gene expression to a malignant-like expres-

sion profile.

We next compared transcriptional states by quantifying cell-

to-cell variance in gene expression. Gene expression variance

typically increases with the mean; we removed this bias by

calculating, per gene, the ‘‘excess dispersion,’’ i.e., the variance

exceeding the fitted relationship between mean and variance. In

both S1 and T4-2 cells, co-culture conditions promoted an in-

crease in excess dispersion for the majority of genes (69% and

90%, respectively, Figures 2F and 2G, p = 1.73 10�61).However,

excess dispersion was more widespread in S1m than in T4-2m

cells (Figure 2H), while treatment of S1m cells with AREG

reduced excess dispersion in nearly all genes, relative to un-

treated S1m (Figure 2I). The ordering of variability in S1 cells

(S1co > S1m > S1+AREG) is consistent with a model in which

exogenous growth factor addition suppresses expression vari-

ability, because cells receive uniformly high levels of stimulation,

whereas co-culture enhances variability, as cells receive variable

levels of stimulation. The observation that excess dispersion is

increased between S1m and S1co cells but decreased between

S1m and T4-2m cells suggests that paracrine signaling can have

a stronger influence on transcriptional variability than progres-

sion to a malignant phenotype, which may select for a

narrowed gene expression space. The increase in excess

dispersion in T4-2co relative to T4-2m cells could reflect the
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effects of local regions of high S1 density, which have a suppres-

sive effect on T4-2 signaling (Video S2), potentially by acting as a

sink for secreted AREG.

To ask whether the variable ERK dynamics observed in T4-2

cells are associated with greater gene expression variance, we

refined our analysis to known ETGs (c-Fos, c-Myc, Fra-1, and

Egr1). We found that �60% of ETGs showed increased excess

dispersion in T4-2m relative to S1m cells, with a number of

genes, including Egr1, falling well outside the bulk distribution

(Figure 3A; Data S1). The known classes of ETGs that are sensi-

tive to different patterns of ERK activity (Uhlitz et al., 2017)

showed similar increases in excess dispersion (Figure 3B).

Thus, the variable ERK activity observed in both T4-2m and

S1co correlates with increased variability in expression of

ETGs, many of which are transcription factors linked to malig-

nancy. To confirm these results, we measured Fra-1, Egr1, c-

Fos, and c-Myc, protein expression by immunofluorescence

(Figure 3C). Expression was minimal in S1m, but elevated in

T4-2m, with coefficients of variance (CVs) ranging from 50%–

100% (Figures 3C and 3D). Similarly, under co-culture condi-

tions, ETG protein levels and heterogeneity increased in S1co

cells (Figures 3E and 3F).

We compared ETG heterogeneity driven by paracrine signals

in T4-2m cells to models of BLBC driven by RAS mutations,

MCF10A-CA1D and MB-MDA-231. ERKTRC/N displayed similar

temporal variability in all cell types that was reduced by MEKi

(Figure S3A and S3B). Accordingly, Fra-1 expression varied

from cell to cell with CVs >45% for all cell types (Figure S3C).

As expected, TACEi treatment greatly reduced Fra-1 expression

in T4-2 cells but not in the RAS-driven cell types. A combination

of TACEi and AREG restored Fra-1 expression in T4-2 cells, but

with lower variance (CV = 29%), while the same treatment did not

significantly alter Fra-1 variance in the other cell lines (Fig-

ure S3A). Thus, RAS- and paracrine-driven ERK signaling can

both promote variance in ETG expression but are distinct in their

dependence on extracellular ligands.

Surprisingly, despite their co-regulation by ERK, ETG mRNAs

showed discordant expression in single cells, particularly be-

tween FOSL1 (Fra-1) and EGR1 (R = 0.043) and between

FOSL1 and FOS (R = 0.026) (Figure 3G). Co-staining of Fra-1
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Figure 2. Induction of Global Gene Expression Variance by Cellular Crosstalk

(A) Schematic depicting cell culture conditions and analyses for S1, T4-2, and S1/T4-2 co-cultures for single-cell RNA sequencing. Red: S1 cells expressing

ERKTR-mCherry; yellow: T4-2 cells expressing ERKTR-mVenus.

(B and C) tSNE plots of single-cell transcript profiles, colored by identified cell type and condition (B) or by clustering of transcriptional profiles (C). n > 1,900 cells

per condition.

(D) Pairwise correlation of the indicated cells and conditions using raw count data.

(E) Scatterplot of first principal component weights per the indicated cells and conditions.

(F–I) Top row: tSNE plots highlighting the groups of cells compared by excess dispersion. Bottom row: differences in excess dispersion between treatment

conditions (>1,800 genes sampled); each dot represents the relative excess dispersion for one gene. Genes are color-coded according to which condition shows

greater excess dispersion. Percentages indicate the proportion of genes falling on either side of the horizontal line.
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Figure 3. Induction of ETG Expression Variance by Cellular Crosstalk

(A) Comparison of variance in ETG transcript levels between S1 and T4-2 cells. Red dots indicate genes that display excess dispersion in T4-2 cells compared

to S1.

(B) The same graph in (A) is color coded by known ETG expression classes: immediate-early genes (IEG, light blue), immediate-late genes (ILG, purple), and

delayed-early genes (DEG, orange). Insets depict each of the classes alone. Annotated as in Figures 2F–2I.

(C) Immunofluorescence of ETGs Fra-1, Egr1, c-Fos, and c-Myc (red) and nuclei (blue) in S1 and T4-2 cells in the absence of exogenous growth factors. Scale

bar, 20 mm.

(D) Histograms depicting the fluorescence intensity distribution of ETG proteins under baseline conditions in T4-2 cells. n> 4,000 cells per ETG measured.

(E) S1m (turquoise) and S1co and T4-2co (turquoise and yellow, respectively) cells stained for ETG expression (red) under control or MEK inhibitor conditions

with Fra-1 and Egr1 protein expression distributions plotted as histograms. Control treated (black), MEKi-treated (pale red), and overlapping data (dark red)

(n = 25,169). Scale bar, 20 mm.

(F) Box and whisker plots comparing mean Fra-1 and Egr1 protein levels between S1m cells co-cultured cells (n = 30,370). *p < 0.01.

(G) Pairwise single-cell gene expression correlation for the indicated ETGs. Red numbers indicate the correlation coefficient (Pearson correction).

(H) Co-staining of Fra-1 and Egr1 or Fra-1 and c-Fos in mono-cultured T4-2 cells under baseline conditions. Scale bar, 20 mm.

(I) Mono-cultured T4-2 cells stained for Fra-1 or Egr1 under baseline conditions or treatment with MEKi. Scale bar, 20 mm.

(J) Formalin-fixed resected human invasive ductal carcinoma samples stained for Fra-1 or Egr1.
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Figure 4. Paracrine AREG and Gene-Specific Expression Kinetics Coordinately Induce Heterogeneous ETG Expression

(A and B) Time-dependent expression of Fra-1 (red) and Egr1 (green) in S1m or T4-2m cells following exposure to 100 ng/mL AREG or 4 mM erlotinib for the

indicated times. Scale bar, 20 mm.

(C) S1m and T4-2m scatter plots of single-cell Fra-1 or Egr1 signal intensities and correlations (red lines). n > 5,900 cells per condition.

(D) T4-2 single-cell gene expression analysis of preprocessed (normalized and scaled) single-cell RNA sequencing data partitioned as a function of single-cell

FOSL1 and EGR1 expression.

(legend continued on next page)
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and Egr1, or Fra-1 and c-Fos proteins in T4-2m cells further

corroborated their lack of correlation (Figure 3H). While this

divergence could be explained by decoupling of these genes

from ERK signaling in malignant cells, this possibility was ruled

out by treatment of T4-2m cells with MEKi, which suppressed

both Fra-1 and Egr1 expression (2.3-fold and 2.5-fold) (Figure 3I).

We confirmed the relevance of these findings by staining human

breast cancer tissues, finding that both Fra-1 and Egr1 show

similar degrees of heterogeneity in patient samples (Figure 3J).

Thus, co-culture of S1 and T4-2 cells recapitulates the heteroge-

neity in gene expression previously observed in BLBC (Nguyen

et al., 2016) and identifies new features of this heterogeneity.

Dynamic Properties of ERK-ETG Signaling Enhance

Heterogeneity in Target Gene Expression

Paracrine signaling reduces cell-to-cell variability in many sys-

tems (Rand et al., 2012; Shalek et al., 2014; Handly et al.,

2015) making it unclear why paracrine AREG signaling enhances

ETG variability in S1co and T4m cells. Onemodel consistent with

discordant ETG expression is that, as ERK activity changes over

time (Figures 1G and 1K), distinct induction and turnover param-

eters (Amit et al., 2007; Uhlitz et al., 2017) favor expression of

each ETG at different times within individual cells. We, therefore,

examined the temporal response of these genes in the absence

of paracrine signaling using S1m cells, which displayed low or

undetectable Fra-1 and Egr1 in baseline conditions (Figure 4A)

compared with T4-2m (Figure 4B). Fra-1 and Egr1 increased in

a correlated manner at 1.5 h after AREG stimulation (R2 = 0.69,

Figures 4A–4C). However, with extended stimulation, Fra-1

continued to increase while Egr1 levels peaked and then

decreased. This loss of correlation at the cellular level (R2 =

0.44, Figures 4A–4C) was similar to expression patterns

observed in T4-2m cells under control and stimulated conditions

(R2 = 0.46 and 0.44, respectively; Figures 4B and 4C). Similar

patterns of variance were also observed for c-Fos and c-Myc

(Figure S4A), indicating that this behavior is shared among other

ETGs. Thus, decoupled expression due to distinct induction and

turnover kinetics can account for the low correlation of ETGs in

T4-2m cells (Figures 3G and 3H), which experience asynchro-

nous paracrine-mediated ERK activation.

To explore the functional significance of different single-cell

ETG expression states, we correlated single-cell ETG expres-

sion with cell states using the MSigDB (Liberzon et al., 2015)

Hallmark sets and the NCI pathway interaction database (PID)

(Figures 4D–4F and S5; Data S2). T4-2 cells expressing high

FOSL1 and EGR1 contained EMT and MYC target signatures

and increased expression of ERBB, MAPK, and AP1 pathways,

consistent with high ERK activity (Figure 4E) compared with

FOSL1-low/EGR1-low cells. Additionally, FOSL1-high/EGR1-

high cells display increased TGF-b signaling pathway expression

relative to FOSL1-high/EGR1-low cells and higher expression of

cell division-associated pathways relative to FOSL1-low/EGR1-

high cells (Figure 4F). These findings suggest that heterogeneity

in Fra-1 and Egr1 gene and protein expression within single cells

is correlated with functional differences in cell behaviors.

To evaluate the significance of ETG expression heterogeneity

in the context of chemotherapeutic response, we examined

the DNA damage response to carboplatin, a cytotoxic agent

commonly used in BLBC. Under baseline conditions we found

carboplatin induced minimal levels of the DNA damage marker

p-ɣH2AX in non-malignant MCF10A cells, which have low

levels of Fra-1 and Egr1 (Figure 4G), whereas T4-2 cells re-

sponded with a larger increase (Figure 4H). Both MCF10A

and T4-2 cells showed a greatly increased p-ɣH2AX response

in the presence of EGF, which was attenuated after treatment

with EGFRi. At the single-cell level, p-ɣH2AX was heteroge-

neous, leading us to ask whether the ETG expression status

of each cell correlated with its DNA damage response. We

used partial least squares regression analysis (PLSR) to model

each cell’s p-ɣH2AX response as a function of its ETG protein

abundance (Figure 4I–4J). At the single-cell level, ETG abun-

dance was highly predictive of p-ɣH2AX, more so than treat-

ment with growth factor (GF) and carboplatin, as indicated by

the relative model weights. In particular, Fra-1 staining was

highly correlated with p-ɣH2AX, whereas Egr1 staining was

only weakly correlated (Figure S4). FOSL1 expression is corre-

lated with upregulation of the Hallmark DNA repair pathway set

(Data S2), further strengthening its correlation with DNA dam-

age response characteristics. Although a direct causal relation-

ship between Fra-1 and DNA damage response cannot be

strictly assigned based on the aggregate data, there is a strong

correlation, indicating a potential link between cell-to-cell vari-

ation in ETG expression and heterogeneous responses to DNA-

damaging chemotherapy.

Ligand-Specific ERK Dynamics Modulate ETG

Expression Heterogeneity

Because different EGFR ligands induce distinct ERK activation

dynamics (Nakakuki et al., 2010; Sparta et al., 2015), we exam-

ined how these ligands impact the heterogeneous expression

of ETGs, comparing ERK activity kinetics induced by AREG or

EGF in S1 cells. At saturating EGF (20 ng/mL), >80% of cells re-

sponded with sustained ERK activation (Figures 5A and 5C). At

lower levels of EGF (2 ng/mL), only a fraction of S1 cells

(E) Differential gene expression analysis based on FOSL1 and EGR1 expression partitioning. A complete list of upregulated molecular signature database

(MSigDB) hallmark and NCI pathway database (PID) pathways in FOSL1 or EGR1 high- versus low-expressing cells.

(F) As in (E), differential gene expression analysis based on ETG expression was analyzed with MSigDB and PID. The list represents uniquely upregulated

pathways for the indicated comparisons.

(G) Analysis of p-gH2AX, Fra-1, and Egr1 staining levels in MCF10A cells under the indicated conditions: control, +GF (growth factor, 100 ng/mL AREG), or 5 mM

erlotinib, and 50 mM carboplatin. n > 1,000 cells per condition. NS, not significant; *p < 0.01 unpaired t test. Scale bar, 20 mm.

(H) Analysis of pH2AX, Fra-1, and Egr1 staining levels in T4-2 cells under the indicated conditions: control, +GF (growth factor, 20 ng/mL EGF), or 5 mM erlotinib

and 50 mM carboplatin. n > 5,000 cells per condition. NS, not significant; *p < 0.01 by unpaired t test. Scale bar, 20 mm.

(I) PLSR analysis onMCF10A cells indicatingmodel fit to p-gH2AX signals (predicted versusmeasured) and parameter weighting by Egr1, Fra-1, erlotinib (EGFRi),

carboplatin, time of fixation (Fix), replicates (Rep), or intraexperiment replicates (Well). n = 56,300.

(J) PLSR analysis on T4-2 cells indicating model fit to p-gH2AX (predicted versus measured) and parameter weighting by Egr1, Fra-1, erlotinib (EGFRi), car-

boplatin, time of fixation (Fix), replicates (Rep), or intraexperiment replicates (Well). n = 209,940.

ll
OPEN ACCESS Article

168 Cell Systems 11, 161–175, August 26, 2020



responded (�20%, Figures 5A and 5C), showing intermittent

pulses of ERK activity. By comparison, 10 ng/mL AREG (func-

tionally equivalent to 2 ng/mL EGF; Harris et al., 2003; Macdon-

ald-Obermann and Pike, 2014) resulted in activation of �80% of

S1 cells (Figures 5B and 5C). However, ERK activity decreased

within 2 h of AREG addition and occurred subsequently as sto-

chastic pulses of activity (Figures 5B and 5D). Treatment with

100 ng/mL AREG resulted in a similar fraction of responding cells

(Figure 5C), but produced a maximal initial response with

continual pulsatile activity (Figure 5B), unlike the sustained activ-

ity produced by 20 ng/mL EGF (Figure 5A). At an even higher

level of AREG (1,000 ng/mL), essentially all cells responded

with a high level of ERKTRC/N that was sustained for hours

without pulsing (Figures 5B and 5C). We measured the AREG

secreted into the media by T4-2 cells to be�18.7 ng/mL at equi-

librium, falling within the range of tested conditions, and we

found that AREG protein levels varied between individual T4-2

cells in a population (Figure 5E). Together, these observations

explain the high degree of cell-to-cell ERK signaling variability

in T4-2m and S1co cells, as secreted AREG is both spatially var-

iable and prone to drive pulsatile ERK responses.

We next tested whether the different patterns of ERK activity

induced by EGF and AREG impact the expression of ETGs. At

an early time point (1.5 h) following addition of growth factor,
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Figure 5. AREG Drives Stochastic ERK Signaling to Induce Heterogeneous ETG Expression

(A and B) Single cell andmean traces of ERKTRC/N in S1m cells exposed to the indicated EGFR ligand and concentrations for a duration of >18 h. Vertical red lines

indicate the time of ligand or vehicle addition, the bottom plot shows themean ERKTRC/N in bold, with IQR shaded. Above themean trace, 5 representative single-

cell measurements of ERKTRC/N are shown. >500 cells were for each condition.

(C) Bar graphs depict the percent of cells responding to the indicated dose of EGFR ligand within 30 min of treatment. n > 500 cells per condition

(D) Mean ERKTRC/N traces for S1 cells receiving the indicated EGF or AREG treatments. Percentages represent the temporal variability score for each condition.

n > 200 cells per condition.

(E) Immunofluorescence imaging of AREG expression in T4-2 cells, AREG (red) and nuclei (blue).

(F and G) Co-staining of Fra-1 and Egr1 in S1m cells at the indicated timepoints and conditions. Percentages indicate the coefficient of variation for Fra-1 or Egr1

respectively. Numbers inset on ‘‘merge’’ images indicate the R2 value for Fra-1 and Egr1. n > 1,000 cells per condition. Scale bar, 20 mm.
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Egr1 and Fra-1 levels increased uniformly as a function of ligand

concentration (Figure 5F), regardless of the stimulating ligand.

By contrast, at a later time point (24 h), ETG expression hetero-

geneity increased (Figure 5G), and the relationships of Fra-1 and

Egr1 to ligand concentration diverged. Fra-1 expression

increased monotonically with the concentration of either ligand,

while Egr1 expression peaked at intermediate ligand concentra-

tions and decreased for ligand concentrations capable of stimu-

lating a sustained ERK response. These results indicate that

pulsed versus sustained ERK activity induce differential re-

sponses in Fra-1, which integrates ERK intensity over time,

and Egr1, which responds transiently and is insensitive to sus-

tained activity.

Paracrine EGFR Signaling Drives Changes in

Transcriptional State on the Scale of Hours

Our results imply temporal variation in ERK-driven expression in

each cell. To explore how gene expression may vary over time,

0

100

200

300

400

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5

1

ER
K 

(a
u)

Egr1

Fr
a-

1

0

100

200

300

400

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5

1

ER
K 

(a
u)

Egr1

Fr
a-

1

0

100

200

300

400

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5

1

ER
K 

(a
u)

Egr1

Fr
a-

1

A

G

H

D

E

F

mRNA

ERK

TF TFP

P PP

Ø Ø Ø

kpTF

kdTF

kb

km kØm
kØP kØPP

kdP

kpP

kP

KD

τm τP

0
100
200
300
400
500
600

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5
1

ER
K 

(a
u)

Egr1

Fr
a-

1

B C

Time (hrs)

0

100

200

300

400

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
0

0.5
1

ER
K 

(a
u)

Egr1

Fr
a-

1

0

100

200

300

400

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5

1

ER
K 

(a
u)

Egr1

Fr
a-

1

0

100

200

300

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5

1

ER
K 

(a
u)

Egr1

Fr
a-

1400

I

0
100
200
300
400
500
600

Pr
ot

ei
n 

co
nc

. (
au

) Egr1
Fra-1

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22
Time (hrs)

0
0.5
1

ER
K 

(a
u)

Egr1

Fr
a-

1

JS1m T4-2m

S1m

S1m

T4-2m

T4-2m

ER
K 

Ac
tv

ity

1) TAPI + 
AREG FBAb

2) EGF 3) MEKi

Measure Egr1/ 
Fra-1 expression

-2 -1.5 -0.5 0 2

Time (hrs)

0 0.5 1 1.5 2

ER
KT

R
Fr

a-
1

M
ER

G
E

D
AP

I
Eg

r1

Control

ETG Protein Expression
1.3x

Fra-1 Egr1
1.7x0.8x1.2x

Con
tro

l 0 0.5 1 1.5 2
0

2000
4000
6000
8000

10000
12000
14000
16000
18000

In
te

ns
ity

 (A
.U

.)

Con
tro

l 0 0.5 1 1.5 2
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Time (hrs) Time (hrs)

Figure 6. Mathematical Simulation of ETG Expression Heterogeneity

(A) Model diagram describing ERK-dependent modification of a transcription factor (TF), expression of mRNA, and a protein (P) product. Superscript P indicates

phosphorylation, clock icons indicate a time delay t, all lowercase k’s indicate rate parameters (see Table S1 for definitions and values used), and uppercase K

indicates a dissociation constant for feedback effects.

(B and C) Simulated responses to hypothetical square wave ERK signals and corresponding ETG expression levels (presented in arbitrary units ).

(B–I) Insets show the trajectory over time in expression space, starting at the circle and ending at the X.

(D–I) Simulated responses tomeasured single-cell ERK activity traces from S1m (D and F) or T4-2m (G–I) cells in control conditions (D, E, G, and H) or treated with

1,000 ng/mL AREG (F and I). Insets show the modeled trajectory over time in expression space, starting at the circle and ending at the X.

(J) Temporal ETG responses to a single pulse of ERK activity in T4-2 cells. Fixed images were taken at the indicated time points, in hours, and compared relative to

control. Images presentedwere equally scaled to time point 0 to prevent over-scaling of peak intensity. Graphs correspond withmean ETG intensity and numbers

represent the fold change in ETG intensity relative to control. Scale bar, 20 mM.
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Figure 7. Live-Cell Imaging of Paracrine-Induced Fra-1 Temporal Expression Variability in Co-culture

(A) Box plots depicting themean FRET ratio signal in MCF10A cells carrying the ERK reporter, EKAR, in mono-culture (n = 2,428) and in co-culture with T4-2 at the

indicated ratios (70:30 n = 2,526, 50:50 n = 2,014, 30:70 n = 998). Boxes indicate IQR and whiskers the range. *p < 0.01 by unpaired t test.

(B) Still frames of MCF10A EKAR Fra1::mCherry cells in mono- and co-culture. Upper panels depict EKAR expression (turquoise) and tagged endogenous Fra-1

(red); T4-2 cells are not shown in co-culture images. Middle panels show Fra-1::mCherry expression only (red). Lower panels show EKAR expressing 10A cells

(turquoise) and ERKTR expressing T4-2 cells (yellow). Scale bar, 20 mm.

(C) Top plot, mean Fra-1 intensity over time for each ratio of T4-2 co-culture (MCF10A [mono-cultured], 70:30, 50:50, and 30:70MCF10A to T4-2 ratios) as labeled

on the graph. Below, plots depict the same mean traces with variance (shaded, IQR) and CV (numbers upper right).

(D) Box plots depicting the mean Fra-1 expression levels under the indicated conditions. Boxes indicate the IQR and whiskers the range. MCF-10A (n = 157),

70:30 (n = 182), 50:50 (n = 160), 30:70 (n = 66). *p < 0.01 by unpaired t test.

(E) Mean Fra-1::mCherry expression in mono-cultured, AREG stimulated MCF10A cells. Plot depicts the mean traces with variance (shaded, IQR) and CV.

(F) Fra-1::mCherry expression in mono-cultured, unstimulated MCF10A cells (purple, re-plotted from C), with exogenous AREG at 20 ng/mL (dark gray), and

100 nM MEKi (light gray).

(G) Fra-1::mCherry expression inMCF10A cells co-cultured at a 30:70 ratio of MCF10A to T4-2 cells (orange, re-plotted fromC), in comparisonwithMCF10A cells

at the same co-culture ratio treated with 100 ng/mL AREG (dark gray), or 100 nM MEKi (light gray). See Video S4 for live-cell examples. For panels (A–G), mono-

cultured MCF10A n > 500 cells per condition. Co-cultured MCF10A 70:30 N > 622 cells per condition.

(legend continued on next page)
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we constructed a mathematical model extending our previous

work (Gillies et al., 2017). For any given ERK activity time series,

the model estimates target protein expression over time, based

on mRNA and protein decay rates, as well as parameters for

ERK-induced production, stabilization, and negative feedback

(Figure 6A). Based on their observed kinetics, Fra-1 and Egr1

represent biological examples near the extreme behaviors ex-

pected from this model. The slow kinetics and relatively low het-

erogeneity of Fra-1 place it conceptually as a low-pass filter with

a large time constant, which reflects average recent ERK activity.

In contrast, the rapid response of Egr1 and its apparent negative

feedback inhibition under long-term stimulation place it as a

high-pass filter. We constructed a model to represent these

ETG archetypes, selecting example parameters based on previ-

ously published kinetic data for mRNA and protein expression of

Fra-1 and Egr1 (Gillies et al., 2017; Schwanh€ausser et al., 2011;

Uhlitz et al., 2017). We simulated responses to artificial square

wave inputs (Figures 6B and 6C) and to single-cell ERK traces

measured from S1 and T4-2 cells (Figures 6D–6I). Consistent

with our findings in fixed S1m and T4-2m cells, modeled expres-

sion levels of Fra-1 change slowly, reflecting average recent ERK

activity regardless of rapid fluctuations. Conversely, simulated

Egr1 preferentially rises when ERK activity pulses (Figures 6E,

6F, 6H, and 6I) but remains suppressed in both inactive (Fig-

ure 6D) and highly active (Figure 6G) conditions.

Using these simulations, we plotted the ETG expression space

that a single cell occupies, driven by the stochastic ERK condi-

tions observed in our experiments (Figures 6B–6I, insets). In

both T4-2 and S1 cells, our model demonstrates that stochastic

fluctuations in ERK induce larger excursions in ETG expression

state over time (Figures 6E and 6H), compared with sustained

ERK activity (Figures 6F and 6I). This model demonstration is

consistent with our experimental findings that pulses in ERK ac-

tivity lead to rapid changes in ETG expression (<30min) followed

by decay in protein levels (Figure 6J). Thus indicating that para-

crine-induced expression is not persistent and instead highly

sensitive to temporal changes in signaling. These findings illus-

trate how pulses in a single microenvironmental signal can

enable cells to take on a range of expression states, as repre-

sented by two differently responding genes.

To directly observe the ETG fluctuations predicted by the

model, we used MCF10A cells carrying an mCherry fusion at

the endogenous FOSL1 locus (Fra-1::mCherry) and the ERK

sensor EKAR3 (Gillies et al., 2017) (Harvey et al., 2008). Thus,

ERK activity and the expression of Fra-1 protein can be visual-

ized in a cell line that acts as a ‘‘receiver,’’ similar to S1 cells,

for paracrine signals from T4-2 cells (Figure 7A; Videos S4A

and S4B). The mean and variance of Fra-1::mCherry expression

under each condition were consistent with the level of EKAR

activity (Figures 7A–7D). While 20 ng/mL AREG treatment

increased the mean Fra-1 intensity in MCF10Am cells by 24%

(Figure 7E), relative variation remained essentially constant

(CV = 27% untreated, 28% AREG-treated, Figures 7E and 7C),

which is consistent with the sustained ERK response to AREG

in MCF10A (Gillies et al., 2017). However, in co-cultured cells,

mean Fra-1::mCherry intensity was similar to the maximum

induced by AREG (Figures 7F and 7G) but displayed a higher de-

gree of variation (Figures 7C and 7D, CV = 35% at 30:70 ratio). At

the single-cell level, temporal fluctuations in Fra-1::mCherry

expressionwere evident under co-culture conditions, in compar-

ison to mono-cultured cells (Figure 7H). To exclude high fre-

quency noise, we filtered our data to focus on changes consis-

tent with expression regulation (>30 min). We then calculated

the mean derivative, normalized by the mean Fra-1::mCherry

intensity on a single-cell basis, to measure variance of

Fra-1::mCherry expression over time (Fra-1 temporal variability

index) in mono- versus co-culture. By this measure, time-depen-

dent variability in Fra-1::mCherry increased by 20% in co-culture

relative tomono-culture (Figure 7I, p = 1.065e�21). Thus, consis-

tent withmodel, Fra-1 expression varies dynamically in individual

cells over the scale of hours, resulting in the observed heteroge-

neity in Fra-1 expression.

DISCUSSION

By exploring diverse cellular phenotypes, tumor cells gain a se-

lective survival advantage in adverse physiological environments

(Michor and Polyak, 2010). Genetic mutations are important

drivers of tumor cell diversification but are constrained to oper-

ate on timescales of weeks or longer. Immediate cell survival in

response to the time-varying stress conditions within a tumor

may require a more rapid and flexible means of diversification.

Our analysis demonstrates how such variation can be generated

by the EGFR-RAS-ERK signaling pathway at levels equivalent to

those observed in human breast cancer tissues. This expression

variance results from a specific mode of operation in which het-

erogeneity in the TME is amplified by intracellular signal process-

ing in the EGFR-RAS-ERK pathway to drive fluctuation of cancer

related genes on the timescale of hours (Figure 7J). While this

system is simplified relative to actual tumors, these data estab-

lish a potentially important source of variation in the expression

of key tumor genes, driven by spatial variation within the TME.

The mixture of malignant (T4-2) and non-malignant (S1 or

MCF10A) cells within our co-culture model represents an

approximation of the cellular and genetic diversity within a tu-

mor, where clones containing different mutational burdens

would interact. Although the arrangement of the cells in vitro

does not specifically replicate the cellular organization of a tu-

mor, we expect AREG gradients to occur on similar length scales

in vivo because tumor cells are likely to express AREG heteroge-

neously, as we observe for T4-2 cells. The proficiency of T4-2

cells to self-stimulate through AREG secretion is consistent

with previous work (Fischer et al., 2003; Madsen et al., 1992),

and we find that this mode of RAS-ERK signaling induces

both a high magnitude of ERK activity as well as time-dependent

variation that propagates to the level of gene expression.

(H) Fra-1::mCherry fluorescence over time (12 h) in individual MCF10A-m (purple) or MCF10A-co cells (orange). The bottom trace represents mean Fra-1 signal

with IQR shaded; the traces above depict representative single-cell traces of Fra-1 expression over time. N > 700 cells per condition.

(I) Distribution of temporal variability in individual cells, defined as the absolute value of the derivative Fra-1 signal divided by the mean Fra-1 signal for each cell.

(J) A model of heterogeneity generation by paracrine-driven EGFR-RAS-ERK signaling. Molecular processes are shown at left, and the information processing

function performed by each biochemical step is shown at right (numbered 1–5).
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Co-cultured non-malignant cells respond with similar character-

istics of RAS-ERK activity and ETG expression, even in the

absence of activatingmutations in the RAS-ERK pathway.Within

our experimental system, the low level of constitutive ERK

signaling and high capacity for stimulation of these cells makes

them ideal receivers to quantify the paracrine stimuli from the

nearby malignant cells. An intriguing but unresolved question is

whether, within the context of a real tumor, such receiver cells

represent a population that is important for tumor progression.

In principle, such cells, supported by paracrine signals from

more highly mutated cells nearby, could represent a reservoir

of uncommitted possibilities with higher adaptive potential than

heavily mutated cells that cannot tolerate further genetic alter-

ations. Such flexibility could play a role in tumor cell survival

when new stresses, such as cytotoxic chemotherapeutics, are

encountered.

The general process we demonstrate, by which spatial fluctu-

ations in paracrine ligands are amplified and converted to tem-

poral variability in gene expression, may also apply in other

signaling pathways, such as IL-6 (Hartman et al., 2013; He

et al., 2013) or TGF-b (Oft et al., 1996; Wang et al., 2014). How-

ever, the kinetic parameters of the AREG-EGFR-RAS-ERK

pathway appear especially well suited for generating global di-

versity in gene expression. The amplification characteristics of

the EGFR pathway are capable of driving high-intensity ERK ac-

tivity bursts in response to even sub-saturating concentrations of

ligand, and the attenuation of these pulses by negative feedback

is rapid, resulting in ERK output that magnifies external changes

in AREG concentration. Subsequently, the genes responding to

ERK activity do so with a wide range of kinetic properties (Uhlitz

et al., 2017), continuously translating the temporal dynamics of

the pathway into different gene expression profiles. It is intriguing

to speculate that the prevalence and potency of the RAS-ERK

pathway in tumorigenesis may be a consequence not only of

its target functions (as other, less prevalent pathways, also stim-

ulate cell proliferation and migration) but also of its ability to act

as a generator of cellular diversity. It is also possible that the ca-

pacity to diversify gene expression profiles may be an important

aspect of the function of RAS-ERK signaling within the develop-

mental processes in which it acts. In vivo data indicate that tran-

sient gradients of EGFR ligand signaling on the scale of 50 mm

drive pulsatile ERK activity in C. elegans vulval patterning (de la

Cova et al., 2017), or in the mouse epidermis (Hiratsuka et al.,

2015). These dynamic patterns could create variation in ERK-

controlled gene expression similar to that observed here, which

could play a role in determining cell fate (Hamilton et al., 2019). A

key question yet to be resolved is how the ligand gradients within

a tumor differ quantitatively from those in normal developing tis-

sues. Our data suggest that ETGs, such as EGR1, FOSL1, MYC,

and FOS, could help to address this question by creating an

expression signature that reflects the dynamic status of ERK

signaling, which may be useful in identifying EGFR signaling gra-

dients in vivo using transcriptional profiling.

Our system makes it possible to model and quantify EGFR-

mediated generation of gene expression variability in vitro.

However, it by no means recapitulates the full complexity of tu-

mor physiology. Many additional sources of variability are pre-

sent in the TME, including other cytokines, metabolites, ions,

and ECMs. Futhermore, many genes other than Egr1 and Fra-1

contribute to tumor cell survival and drug response. Nonethe-

less, this experimental system can be used to further investigate

particular mechanisms behind spatial heterogeneity and to eval-

uate applicable candidate inhibitors for their ability to reduce tu-

mor cell heterogeneity, a property that is likely closely related to

their efficacy (Shea et al., 2018), but for which no direct measure-

ment has yet been available. It remains important to determine

which forms of gene expression heterogeneity play a functional

role in cancer cell spread or survival and which forms are simply

an epiphenomenon of deregulated tumor cell states. Our simula-

tions characterize the behavior of cells within a two-gene expres-

sion landscape, but overall transcriptional variability occurs in a

highly multidimensional space. An essential, though challenging,

next step relies on the effort to identify, at the single-cell level, the

relationship between variation in these many dimensions and

relevant cellular phenotypes. We expect that the data andmodel

presented here will help to guide experiments in which heteroge-

neity is manipulated in vivo on the appropriate time and length

scales.

Key Changes Prompted by Reviewer Comments

In response to the reviewer comments, we added additional

analysis of single-cell gene expression data and performed anal-

ysis of DNA damage responses in relation to ETG expression.

We reorganized the presentation of the computational model

and reworded our interpretation regarding the correlation be-

tween Fra-1 and DNA damage response to indicate that they co-

vary and a direct relationship cannot be established in the cur-

rent context. We also added a section to the STAR Methods

denoting the cell density and conditions used to determine the

concentration of free AREG in our experiments by ELISA. For

context, the complete transparent peer review record is included

within the Supplemental Information.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Cell Culture and Media

B Human Tissue Samples

d METHOD DETAILS

B Reporter Line Construction

B Live-Cell Microscopy and Co-culture Conditions

B Immunofluorescence Microscopy

B DNA Damage Response Assay

B Amphiregulin ELISA

d QUANTIFICATION AND STATSTICAL ANALYSIS

B Imaging, Data Processing, and Statistics and Normal-

ization

B Dynamic Modeling

B Single Cell RNA Sequencing and Analysis

B Sequencing Strategy
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B Reference for Read Alignment

B Drop-seq Pipeline and Generation of the Gene Expres-

sion Matrix

B Species Mixing Experiment

B Cell QC and Clustering

B Excess Variance Calculation and Delta-Excess

Variance
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Supplemental Information can be found online at https://doi.org/10.1016/j.

cels.2020.07.004.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Fra-1, clone C-12 Santa Cruz Biotechnology Cat#sc28310; RRID: AB_627632

Anti-Egr-1, clone 15F7 Cell signaling Cat#4153; RRID: AB_2097038

Anti-c-Fos, clone 9F6 Cell signaling Cat#2250; RRID: AB_2247211

Anti-c-Myc Cell Signaling Cat#9402; RRID: AB_2151827

Anti-pH2AX Millipore Sigma Cat#05-636; RRID: AB_2755003

TGFa function blocking antibody R&D Systems Cat#AF-239; RRID: AB_2201779

Amphiregulin function blocking antibody R&D Systems Cat#MAB262; RRID: AB_2060676

Biological Samples

Human Invasive Ductal Carcinoma Comparative Human Tissue Network, NCI De-identified

Chemicals, Peptides, and Recombinant Proteins

Epidermal growth factor Peprotech Cat#AF-100-15

Amphiregulin Peprotech Cat# 100-55B

TAPI-0 Tocris Cat#5523

Erlotinib Selleck Biochemicals Cat#S1023

Gefitinib (ZD1839) Selleck Biochemicals Cat#S1025

PD0325901 Selleck Biochemicals Cat#S1036

Sodium Selenite Sigma-Aldrich Cat#S5261

Beta-Estradiol Sigma-Aldrich Cat#E2758

Transferrin Sigma-Aldrich Cat#T8158

Prolactin Sigma-Aldrich Cat#L6520

Cholera Toxin Sigma-Aldrich Cat#C8052

Hydrocortisone Sigma-Aldrich Cat#H0888

Insulin Sigma-Aldrich Cat#I9278

Bovine Serum Albumin Sigma-Aldrich Cat#A7906

Heat Inactivated Horse Serum Life Technologies Cat#26050

10mM Dragon Green Bangs Laboratory Cat# FC06F-10163

Puromycin Life Technologies Cat#A113803

Laminin-111 Life Technologies Cat#23017015

Fugene HD Promega Cat#E2311

Cell Culture Media

DMEM/F-12 1:1 Life Technologies Cat#11320

Critical Commercial Assays and Sequencing Regents

Amphiregulin ELISA R&D Systems Cat#DY262

DSQ 3x9 array microfluidic device Nanoshift N/A

Barcoded Beads SeqB ChemGenes Corp. MACOSKO-2011-10B

Agencourt AMPure XP beads Beckman Coulter Cat#A63881

Nextera XT (Illumina) sample preparation kit Illumina FC-131-1024

Deposited Data

Raw sequencing data GEO GSE118312

Experimental Models: Cell Lines

Human: MCF-10A, clone 5E Joan Brugge, Harvard Medical School

(Janes et al., 2010)

RRID:CVCL_0598

Human: 5E/Fra1::mCherry/EKAR3 (Gillies et al., 2017) Available on request

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, John

Albeck (jgalbeck@ucdavis.edu).

Materials Availability

Plasmids generated in this study are forthcoming to Addgene. Plasmids will be are available upon request from the Lead Contacts.

Data and Code Availability

MATLAB code and R markdown files are available at https://www.mcb.ucdavis.edu/faculty-labs/albeck/data.htm. Imaging data re-

quests will be fulfilled by the Lead Contacts. Sequencing data have been uploaded to the GEO repository: GEO accession

GSE118312.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Media

HMT-3522 cell lines were maintained in DMEM/ F12 supplemented with prolactin, insulin, sodium selenite, hydrocortisone, b-estro-

gen, transferrin, and EGF (S1 only), as previously described (Kenny and Bissell, 2007). MCF10A-5E cell lines were maintained in

DMEM/F12media supplemented with 5%horse serum, insulin, cholera toxin, hydrocortisone, and EGF. All cell lines weremaintained

in 5% C02 at 37�C.

Human Tissue Samples

De-identified human breast cancer tissue samples were provided by the Cooperative Human Tissue Network, as described in STAR

Methods, in accordance with IRB protocols. Other investigators may have received samples from these same tissue specimens.

METHOD DETAILS

Reporter Line Construction

Reporter cell lines were created using lentiviral transduction from plasmid DNA containing the ERK Translocation Reporter (ERKTR)

(Regot et al., 2014) fused to fluorescent proteins as indicated below. T4-2 reporter lines were constructed with ERKTR-mVenus. S1

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HMT-3522 Mina Bissell, Lawrence Berkeley National

Laboratory (Briand et al., 1987;

Rizki et al., 2008)

Available on request

Recombinant DNA

Plasmid: pPBJ-EKAR3nes-puro (Sparta et al., 2015) Addgene # forthcoming

Plasmid: pLJM1-ERKTR-mCherry-puro This paper Addgene # forthcoming

Plasmid: pLJM1-ERKTR-mTurquoise2-puro This paper Addgene # forthcoming

Plasmid: pLJM1-ERKTR-mVenus-puro This paper Addgene # forthcoming

Plasmid: pAAV-Fra1-mCherry (Gillies et al., 2017) Addgene # forthcoming

pX330-U6-Chimeric_BB-CBh-hSpCas9 (Cong et al., 2013) Addgene #

42230

Plasmid: pX330-FOSL1 (Gillies et al., 2017) Addgene # forthcoming

Software and Algorithms

NIS-Elements AR ver. 4.20 Nikon RRID:SCR_014329

Bio-Formats ver. 5.1.1 (May 2015) OME RRID:SCR_000450

uTrack 2.0 (Jaqaman et al., 2008) http://www.utsouthwestern.edu/labs/

danuser/software/

MATLAB Mathworks SCR_001622

Seurat Satija Laboratory https://satijalab.org/seurat/

R Studio R Studio https://rstudio.com/

Other

Glass Bottom Plates, #1.5 cover glass In Vitro Scientific Cat#P24-1.5H-N, P96-1.5H-N
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reporter lines were constructed using ERKTR-mTurquoise2 or ERKTR-mCherry. Reporter expressing cells were selected with puro-

mycin followed by sorting using flow cytometry. Flow sorting was conducted using a wide gating strategy to maximally preserve the

inherent heterogeneity of S1 and T4-2 cell populations. MCF10A-EKAR-Fra-1::mCherry cell lines were generated previously using

the EKAR3 reporter inserted into MCF10A cells carrying mCherry fused to the C terminus of endogenous FOSL1 (Fra-1) locus (Gillies

et al., 2017).

Live-Cell Microscopy and Co-culture Conditions

Live-cell microscopy was conducted on multi-well plates with #1.5 glass bottoms that were coated with laminin-111 (Invitrogen,

Carlsbad, CA). 50ug/ml Laminin-111 was deposited onto glass wells overnight in 20mM sodium acetate buffer containing 1mM

CaCl2 to generate a fractal laminin-coated surface (Hochman-Mendez et al., 2014). Immediately prior to plating, the wells were

washed once with PBS to remove excess buffer and laminin. For mono-culture experiments, cells were plated at a density of

9000 cells/ well for both S1 and T4-2 cells. For co-culture experiments, total cell density was kept constant and the ratio of

S1:T4-2 cells adjusted for a particular experiment (e.g. 30:70 S1 to T4-2 ratio corresponds to a combination of 2700 and 6300 cells

per well, respectively). Plates were then incubated for 24 h in complete media. After 24 h, plates were washed twice in media con-

taining no additives then placed in custom imaging media (DMEM/ F12 without phenol red, riboflavin, and folic acid) containing hy-

drocortisone, b-estrogen, transferrin, andHoechst stain (1:100,000), then incubated overnight prior to live-cell microscopy. Following

preparation, plates were imaged on a Nikon Ti-E inverted microscope fitted with an environmental chamber. A single stage position

was chosen within each well of the plate and time lapse images were captured every 6 min under the indicated conditions with

20X 0.75 NA objective and Andor Zyla 5.5 scMOS camera. Automated imaging was performed using NIS-Elements AR software.

Immunofluorescence Microscopy

For fixed staining experiments cells were plated exactly as described for live cell imaging experiments. Following treatment and in-

cubation under the indicated conditions cells were fixed in 4%paraformaldehyde in phosphate buffered saline for 20min. Wells were

then blocked with buffer containing 0.1% Triton and 4% bovine serum albumin. Primary antibodies were used at 1:400 dilution. Sec-

ondary antibodies were used at a 1:200 dilution. Nuclei were stained with Hoechst-33342 and imaged using a DAPI filter set; nuclear

stain images are labeled ‘DAPI’ for brevity.

DNA Damage Response Assay

MCF10A or T4-2 cells were treated with vehicle control, amphiregulin or EGF, respectively, and with erlotinib or carboplatin. Media

were then washed out at 12 h and cells fixed at time scales of 0,1,2, and 3 h post-washout using paraformaldehyde. Cells were then

co-stained with pH2AX-Alexa 488, Fra-1, and Egr1 antibodies for imaging and analysis.

Amphiregulin ELISA

To ascertain the concentration of free AREG present in our imaging experiments, media was removed from multiple wells of an im-

aging plate at a time point corresponding with the start live cell imaging experiments and subjected to ELISA. Seeding density was

9000 cells per well. Measurement of media amphiregulin levels were made using the Quantikine human amphiregulin ELISA kit per

the manufacturer instructions.

QUANTIFICATION AND STATSTICAL ANALYSIS

Imaging, Data Processing, and Statistics and Normalization

For all experiments >500 cells were analyzed per condition unless otherwise indicated. Each imaging dataset presented is represen-

tative of at least two independent replicate experiments. Image, data processing, and statistics were performed using custom

MATLAB software as previously described (Pargett and Albeck, 2018; Pargett et al., 2017). Linear regression was performed using

a Theil-Sen estimator as previously described (Gillies et al., 2017). Temporal Variability Index (TVI) was calculated by taking the ab-

solute value of the mean differential of filtered Fra-1 intensity ðFra1FÞ over time divided by the mean.

TVI =

����
d

dt
ðFra1FÞ

����

�
Fra1F

Fra-1 filtering was performed in MATLAB employing an infinite input response and Butterworth filter design set to lowpass filtering

to remove high frequency noise with a periodicity < 30 min. All t-tests were calculated using an unpaired approach, significance was

considered P <0.05.

Partial least squares regression (PLSR) analysis was performed as previously described (Gillies et al., 2017) by incorporating all

replicates and fixed time point data into the analysis.

Dynamic Modeling

The model of ERK dependent gene expression (Equations 1, 2, 3, and 4) was constructed from a mass action approximation of four

steps: (1) phosphorylation of a transcription factor by ERK (TFP), (2) transcription of target mRNA (mRNA), (3) translation of target
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protein (P), and (4) potential stabilization of target protein by ERK-dependent phosphorylation (PP). Additionally, a regulatory term is

included in the transcription process allowing negative feedback from target protein onto its own production. Stabilization and nega-

tive feedback are included as at least several ERK target genes are known to be phosphorylated by ERK, inhibiting their degradation,

and feedback is a common feature in gene expression, evidenced for ERK target genes by decreasing mRNA expression after long

term stimulus (Gillies et al., 2017; Uhlitz et al., 2017). The model is formulated as a delay differential equation to account for the effec-

tive lag times of transcription and translation without explicitly addressing the complex processes involved. Parameters, and their

values for Fra-1 and Egr1, are listed in Table S1.

d

dt
TFPðtÞ = kpTF �ERKðtÞ �

�
TFT �TFPðtÞ

�
� kdTF �TF

PðtÞ (Equation 1)

d

dt
mRNAðtÞ =

kb + km � TFPðt � tmÞ�
Pðt�tmÞ+PPðt�tmÞ

KD

�y

+ 1

� kBm �mRNAðtÞ (Equation 2)

d

dt
PðtÞ = kP �mRNAðt� tPÞ + kdP �P

PðtÞ� ðkBP + kpPÞ �PðtÞ (Equation 3)

d

dt
PPðtÞ = kpP �ERKðtÞ �PðtÞ� ðkBPP + kdPÞ �P

PðtÞ (Equation 4)

Single Cell RNA Sequencing and Analysis

Cell Lines Used for Sequencing and Treatments

To conduct single cell RNA sequencing experiments the following cells were grown under standard culture conditions for 4 days then

dissociated with 0.25% trypsin/ EDTA and rinsed into phosphate buffered saline immediately before Drop-seq. S1 and T4-2 mono-

culture cells were grown as described previously with the media changed daily. S1/T4-2 cells were grown under the same conditions

except that no exogenous growth factors were added. S1a cells received new media daily containing 100ng/ml amphiregulin. Spe-

cies mixing experiments were performed using mouse embryonic fibroblasts (MEFs) (Figure S2A).

Drop-seq

Droplets were generated using a DSQ 3x9 array microfluidic part (Nanoshift, Emeryville, CA, USA) using a Drop-seq setup according

toMacosko et al. (2015) (Online-Dropseq-Protocol-v.3.1-Dec-2015, http://mccarrolllab.com/dropseq/). Droplet sizewas determined

using fluorescent beads (P=S/2%) as described (Measuring-Droplet-Volume-in-Home-Made-Devices, http://mccarrolllab.com/

dropseq/). Barcoded beads and cells were loaded at concentrations specified in (Figure S2C). Prior to the collection, cell syringes

and tubing were blocked using PBS + 0.1% BSA. A magnetic mixing disc was inserted into the cell syringe to allow for manual

cell mixing during the run and the cell pump was used in a vertical position. Droplets were collected in 50mL Falcon tubes and

the target volume of aqueous flow varied in between 1-1.2mL of the cell suspension. Droplets were broken immediately after collec-

tion and reverse transcription, exonuclease-treatment and further processing was conducted as described previously (Macosko

et al., 2015). For each library, three test PCRs (50ml) each containing a bead equivalent of 100 STAMPs were conducted to determine

the optimal cycle number for library amplification. 35ml of each test PCRwere purified using Agencourt AMPure XP beads (21ml beads

(0.6X) and 7ml of H2O for elution) and the DNA concentrations were determined using a Qubit 4 Fluorometer. A concentration in be-

tween 400-1000pg/ml was taken as optimal. A variable number of PCR reactions was conducted to amplify the available 1st strand

cDNA also with 100 STAMP bead equivalents per reaction with the optimal cycle number (50 ml volume; 4 + 8-11 cycles, Figure S2C).

12-ml fractions of each PCR reaction were pooled, then double-purified with 0.6X volumes of Agencourt AMPure XP beads and eluted

in H2O using 1/3rd of the bead volume. 1ml of the amplified cDNA libraries were quantified Qubit 4 Fluorometer and library size dis-

tribution verified on a BioAnalyzer High Sensitivity Chip (Agilent). 600 pg cDNA of the library was fragmented and amplified (12 cycles)

using the Nextera XT (Illumina) sample preparation kit. The libraries were double-purified with 0.63 volumes of AMPure XPBeads and

quantified.

Sequencing Strategy

Nextera libraries were sequenced on Illumina Nextseq 500 sequencers using the NextSeq High Output v2 kit (75 cycles), using a

custom primer and a custom paired end sequencing strategy, R1 20bp, index 8bp, R2 remaining bp (Macosko et al., 2015).

The five Nextera libraries were pooled and a total of 9.9k anticipated STAMPs were loaded on the flow cell with the following

library portions; S1/MEF: 5%, T4: 17.1%, T4/S1: 30.3%, S1: 17.2%, S1 amphiregulin: 13.1%. The pool was sequenced on two

NextSeq 500 runs. Raw sequencing data have been submitted to the GEO repository and are available under GEO accession

GSE118312.
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Reference for Read Alignment

For the species mixing experiment we used a mixed reference (human+mouse) available at GEO accession GSE63269 (Macosko

et al., 2015). For mapping of T4 and S1 reads we used the human genome primary assembly (GRCh38) available at https://www.

ensembl.org/ and release 92 gene models. Sequences for transgenic markers mCherry and mVenus were added to the reference.

Drop-seq Pipeline and Generation of the Gene Expression Matrix

All Drop-seq data were processed using Drop-seq Tools v1.12 as described previously (http://mccarrolllab.com/wp-content/

uploads/2016/03/DropseqAlignmentCookbookv1.2Jan2016.pdf) (Macosko et al., 2015). Bowtie2 (v2.2.6)(Langmead et al., 2009)

was used for read alignment with the settings –phred33 –very-sensitive -N 1.

Species Mixing Experiment

To determine whether single cells were generated, wemixed S1 cells andMEF (mouse) cells, thenmapped the resultant data against

a hybrid reference containing both human andmouse genes. Cells were loaded at approximately 100 cells/uL (50cells/ml final), which

would be expected to give�2.5% doublet rate, similar to the 1.6% doublet rate observed in the experiment (Figure S2A). This library

was sequenced very shallow since its sole purpose was doublet assessment.

Cell QC and Clustering

Cells with more than 500/2k and less than 6k/30k genes/UMIs were considered in the analyses (Figure S2BDropseqStats). Cells with

more than 10% of mitochondrial expression were filtered out and excluded from downstream analyses. 10,212 cells remained after

filtering with medians of 2,653 genes and 6,283 UMIs. Analyses were conducted using R package Seurat (v2.2.1)(Satija et al., 2015).

Excess Variance Calculation and Delta-Excess Variance

UMI counts for each cell were converted to transcripts per million (TPM) by scaling all cell-wise counts to 1,000,000. For each cell

population i and each gene g, under the assumption of a negative binomial distribution, we computed its mean expression mi;g

and variance vi;g, then calculated gene-wise dispersion parameters ai;gfrom the expression vi;g = mi;g +ai;gm
2
i;g. We observed a linear

trend between log mi;g and log ai;g for all cell populations, indicating as the mean expression of a gene increased, the overdispersion

tends to decrease. Therefore, to measure change in dispersion for each gene between two populations (when the mean may also

change), we instead compare ‘‘excess variance’’. For every pair of populations i and j being compared, we fit an ‘‘excess variance’’

term Ei;g = ðmi;g � bm i;gÞ, where the fitted overdispersion estimate bm i;g is generated by performing Local Polynomial Regression Fitting

(loess) using R version 3.4.4 with span=1, simultaneously regressing log ai;g on log mi;g and log aj;g on log mj;g over all genes g. Sta-

tistical significance was calculated using a paired, two-sided Wilcoxon signed rank test between all Ei;g and Ej;g. See Data S1 for a

complete list of genes and relative excess variance.

Parameters were selected to match previously data collected on average mRNA and protein expression kinetics (Gillies et al.,

2017; Schwanh€ausser et al., 2011; Uhlitz et al., 2017).
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