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System Identification of High-Dimensional Linear
Dynamical Systems With Serially Correlated

Output Noise Components
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Abstract—We consider identification of linear dynamical sys-
tems comprising of high-dimensional signals, where the output
noise components exhibit strong serial, and cross-sectional correla-
tions. Although such settings occur in many modern applications,
such dependency structure has not been fully incorporated in
existing approaches in the literature. In this paper, we explicitly
incorporate the dependency structure present in the output noise
through lagged values of the observed multivariate signals. We
formulate a constrained optimization problem to identify the space
spanned by the latent states, and the transition matrices of the
lagged values simultaneously, wherein the constraints reflect the low
rank nature of the state information, and the sparsity of the transi-
tion matrices. We establish theoretical properties of the estimators,
and introduce an easy-to-implement computational procedure for
empirical applications. The performance of the proposed approach,
and the implementation procedure is evaluated on synthetic data,
and compared with competing approaches, and further illustrated
on a data set involving weekly stock returns of 75 US large financial
institutions for the 2001–2017 period.

Index Terms—Alternating minimization, convergence, convex
optimization, high-probability error bounds.

I. INTRODUCTION

D ISCRETE time linear dynamical systems (LDS) are
widely used in a number of scientific fields including mod-

eling the behavior of engineering control systems [54], as well
as data in economics [28], [29] and medical studies [31], [49]. A
linear time-invariant system, also known as a linear state-space
model, assumes that the system consists of a multivariate latent
state ft and a multivariate observed signal Xt ∈ R

p, whose
dynamics are governed by the following equations:

Xt = Λft + ut, (observation equation)

ft = Φft−1 + vt, (state equation)
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wherein both ut and ηt are mean-zero Gaussian random vectors.
One approach to identifying the parameters of such a system is
the expectation-maximization (EM) algorithm [26], [46] built
upon the Markov property of the system, where the E-step
computes the expected log-likelihood using the Kalman Filter
(KF; [32], [33]) and a forward-backward recursion, and the
M-step calculates the parameter estimates by taking partial
derivatives with respect to the Gaussian log-likelihood. Other
popular approaches include subspace-based identification meth-
ods that relate the state space representation to more traditional
input-output forms, e.g., N4SID [51], MOESP [52]; see also [43]
and references therein.

A KF-based method is generally applicable to systems with
states and output signals of moderate dimensions, but has its
limitations when these dimensions become large. Past literature
on the subject has considered various extensions of the clas-
sical KF to larger systems with the aid of regularization, and
the corresponding modeling frameworks can be categorized as
follows:

C1 Systems comprising of a large number of states. In this
setting, despite the fact that the system has a large number
of states, the effective or the intrinsic number of states
is assumed to be small; system identification is accom-
plished either by imposing a sparsity constraint on the
state estimates [5], [19] or a low-rank constraint on the
state transition matrix [16]; other variants are discussed
in [36], [45] and references therein.

C2 Systems comprising of a large panel of observed sig-
nals. In this setting, the number of states remains small,
whereas that of the observed signals is large. For system
identification, [20] proposed an EM-type algorithm with
regularization on the state loading matrix, under the rather
stringent assumption that the covariance matrix of the
observation noise ut is diagonal, i.e., conditional on the
states ft, the observed signals are mutually indepen-
dent. [34] considered distributing the calculations for the
KF, assuming that the covariance matrix of ut is block
diagonal, with each block having small dimension. [14]
considered sketching the signals, which reduces their
dimension and enables using standard KF-based
algorithms.

Recent applications of LDS in electric circuits [39], neuro-
science [49] and finance [23] involve large panels of signals
whose sizes often exceed the number of available observations.
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Further, as noted in [20] such signals may exhibit additional tem-
poral and cross-sectional dependency through their output noise,
even after accounting for their common structure as captured
by latent states. Note that such non-diagonal correlation struc-
ture for the output noise would potentially render the classical
EM-algorithms infeasible due to the singularity of intermediate
quantities involved in the E-step. Without further constraints
on the structure of the model parameters (e.g., [20]), an alter-
native approach is to use principal component analysis, e.g.,
PCA-ID [21], which shares similarities with statistical factor
analysis (e.g., [18], [48]). The latent states are estimated based
on the Singular Value Decomposition of the observed signals
Xt. However, for the number of latent states to be correctly
identified and the parameter to be consistently estimated, the
correlation amongst the coordinates of the observation noise
ut needs to be sufficiently weak, as discussed in [8], [9]. In
particular, the presence of strongly correlated coordinates in ut

can lead to overestimation of the number of states [27] and also
has detrimental effects for prediction [3].

In this paper, we consider identification of large scale
LDS (setting C2) under a significantly more relaxed assump-
tion on the correlation structure of ut, which allows for
both cross-sectional and temporal dependence amongst its co-
ordinates. Further, we consider high-dimensional scaling of
the LDS for our theoretical analysis, wherein the dimension
of the signal grows with the number of observations (time
points). Hence, the main contributions are: (a) the general-
ization of the linear state-space model to accommodate both
high-dimensional observed signals and strongly serially and
cross-correlated coordinates of the output noise; (b) the iden-
tification of system parameters and prediction of future signal
values, through the formulation of a penalized least squares
problem that is solved by a block-coordinate descent algorithm;
and (c) establishing finite sample high-probability error bounds
for the convergent solution estimates of the aforementioned
problem.

The remainder of this paper is organized as follows. In
Section II, we introduce our model setup, an identification
procedure for the model parameters and discuss how to predict
future values of the signal vector. Theoretical properties of the
obtained estimates of the model parameters are established in
Section III. In Section IV, we introduce an empirical implemen-
tation procedure and present the performance evaluation of the
estimates based on synthetic data. In Section V, an application
of our model to weekly stock return data of large US financial
institutions for the period from 2001 to 2017 is considered.
Finally, Section VI concludes the paper.

Notation: Throughout this paper, for some generic matrix A
of dimension m× n, we use ||| · |||to denote its matrix norms,
including the operator norm |||A|||op, the Frobenius norm |||A|||F,
the nuclear norm |||A|||∗, |||A|||1 = max1≤j≤n

∑m
i=1 |aij |, and

|||A|||∞ = max1≤i≤m

∑n
j=1 |aij |. We use ‖A‖1 =

∑
i,j |aij |

and ‖A‖∞ = maxi,j |aij | to denote the element-wise 1-norm
and infinity norm. Additionally, we use �(A) to denote its
spectral radius (max |λ(A)|). For two matricesA andB of com-
mensurate dimensions, denote their inner product by 〈〈A,B〉〉 =
trace(A	B). Finally, we write A � B if there exists some

absolute constant c that is independent of the model parameters
such that A ≥ cB; A � B is analogously defined.

II. PROBLEM FORMULATION, IDENTIFICATION

AND PREDICTION

We start by introducing the model in question assuming
that the output noise ut in the (observation equation) follows
a sparse VAR(d) model that simultaneously incorporates the
cross-sectional and serial structure amongst its coordinates; that
is, ut = Bd(L)εt where L is the lag operator, and Bd(L) :=
Ip −B1 L−B2 L

2 − · · ·BdL
d is the lagged matrix polyno-

mial for some weakly sparse Bi’s. To convey the main argu-
ments, we assume without loss of generality that d = 1 and let
B(L) ≡ B1(L) = Ip −BL for ease of exposition, and present
the extension to the general lag case in Supplement-I.

To this end, consider an LDS comprising of the latent state
variable ft and the observed signal Xt ∈ R

p; ft follows some
VAR model with lagged polynomial Φ(L) := I−∑w

h=1 ΦhL
h

and the dynamics of Xt are governed by the latent factor ft; that
is,

ft = Φ1ft−1 + · · ·Φwft−w + vt,

Xt = Λ̃ft + ut; (1)

ut is the output noise whose dynamics satisfy B(L)ut = εt, as
previously mentioned. Multiplying both sides of (1) by B(L)
leads to the following lag-adjusted representation for the obser-
vation equation:

Xt = ΛFt +BXt−1 + εt, (2)

where Ft ∈ R
K(K � p) collects the lags of ft, so that it only

impacts the dynamics of Xt contemporaneously through Λ, i.e.,

Ft =

[
ft
ft−1

]
and Λ =

[
Λ̃, −BΛ̃

]
.

Further, εt is a mean zero white noise process and is strictly ex-
ogenous, satisfying Cov(Xt−1, εt+h) = 0 and Cov(Ft, εt+h) =
0, ∀h ≥ 0. The primary focus of this paper is on the observation
equation in (2), including the identification of its components
(transition matrix B, the loading matrix Λ and the state Ft) and
the prediction of the observed signalXt, under high-dimensional
scaling, where both the number of observations T and the size
of the signal p grow. Note that we only require B to be weakly
sparse, the notion of which can be formalized through the
definition of an �q ball constraint of radius Rq for some fixed
q ∈ [0, 1] (c.f., [41]):

Bq(Rq) :=

⎧⎨⎩B ∈ R
p×p :

p∑
i,j

|Bij |q ≤ Rq

⎫⎬⎭ . (3)

The case of exact sparsity corresponds to q = 0, where B ∈
Bq(R0) has at most R0 nonzero entries; whereas for q ∈ (0, 1],
theRq ball imposes constraints on the decay rate of the elements
|Bij |’s.

To ensure that the observed signal process Xt is covariance
stationary, we require that the spectral radius of B satisfies
�(B) < 1 without further restricting Λ. Additionally, under the
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assumption that the spectral density of Xt exists, the spectral
density of the filtered process Zt := B(L)Xt = ΛFt + ε satis-
fies

gZ(ω) = ΛgF (ω)Λ
	 + gε(ω) + gε,F (ω)Λ

	 + ΛgF,ε(ω);

correspondingly, the spectral density of Xt is given by

gX(ω) =
[B−1(eiω)

]
gZ(ω)

[B−1(eiω)
]∗
.

Note that gX(ω) and gX,Y (ω) denote the spectrum and cross-
spectrum of some generic processes {Xt} and {Yt}:

gX(ω) :=
1

2π

∞∑
h=−∞

ΣX(h)e−iωh and

gX,Y (ω) :=
1

2π

∞∑
h=−∞

ΣX,Y (h)e
−iωh, (4)

with ΣX(h) := E(XtX
	
t−h) and ΣX,Y (h) := E(XtY

	
t−h).

A. Identification Through a Convex Program

First note that the parameters of the model posited in (2) are
not uniquely identifiable in the absence of additional constraints.
In this study, we tackle the parameter identification problem
through the following two steps: in Step (a), we formulate a
convex program and develop an algorithm that can identify the
state hyperplane (defined in the sequel) and the transition matrix
B; subsequently, in Step (b), we reconstruct the latent states
from the estimated state hyperplane, subject to the imposed
identifiability constraint.

a) Identification of the state hyperplane and the transition
matrix: Given a snapshot of the p-dimensional observable
Xt process {x0, x1, . . . , xT } of length (T + 1), let XT :=
[x1, . . . , xT ]

	 and XT−1 := [x0, . . . , xT−1]
	 respectively de-

note the response matrix and the lagged regressor matrix of size
T × p; F ∈ R

T×K and E ∈ R
T×p are analogously defined with

Ft’s and εt’s (t = 1, . . . , T ) stacked in their rows, respectively.
We additionally define the state hyperplane associated with F as
Θ := FΛ	 ∈ R

T×p, and note that Θ is a low-rank component
with rank at mostK. With the above notation, the sample version
for the observation equation in (2) can be written as

XT = Θ+ XT−1B
	 + E.

Under the assumption that the transition matrix B ∈ R
p×p is

sparse and the state hyperplane Θ = FΛ	 ∈ R
T×p is low rank,

we formulate the following constrained optimization problem:

min
B,Θ

{
1

2T |||XT −Θ− XT−1B
	|||2F
}
,

subject to rank(Θ) ≤ r, ‖B‖1 ≤ ξ, for some r and ξ, (5)

whose feasible region is determined through a rank constraint
imposed on Θ and a sparsity-inducing norm constraint imposed
on B.

The rank constraint in (5) renders the feasible region non-
convex and makes it particularly hard to characterize the ob-
tained solution analytically, which depends on the initial values
provided to the algorithm. Thus, as commonly undertaken in the
literature (e.g., [2]), we consider a tight convex relaxation of the

Algorithm 1: Estimating B and Θ by Solving (6).

Input: Observed signals {xt}Tt=0, tuning parameters λB ,
λΘ

1 Initialization: set B(0) = O;
2 Iterate until convergence:
3 For fixed B̂(m−1), update Θ̂(m) as:

Θ̂(m) = arg min ΘL(Θ; B̂(m−1),XT ,XT−1, λB , λΘ),

where the minimum can be obtained by a proximal
gradient descent algorithm involving a soft singular value
thresholding (SVT) step; each inner iteration indexed by t
solves the following minimization with some stepsize ζ:

Θ̂(m,[t+1]) = arg min Θ

{
〈〈Θ,∇G(m)(Θ̂(m,[t]))〉〉

+ (ζ/2)|||Θ−Θ(m,[t])|||2F + λΘ||| Θ√
T
|||∗
}
,

G(m)(Θ) := 1
2T |||XT − XT−1(B̂

(m−1))	 −Θ|||2F.
4 For fixed Θ̂(m), update B̂(m) as

B̂(m) = arg min BL(B̂(m−1); Θ̂(m),XT ,XT−1, λB , λΘ),

where each row j solves a Lasso regression (in parallel):

B̂
(m)
j· = arg min β∈Rp

{
1

2T ||
[
XT − Θ̂(m)

]
·j − XT−1β||2

+ λB‖β‖1
}
.

Output: Estimated sparse transition matrix B̂ and the
low rank hyperplane Θ̂.

rank constraint, and the solution to the convexified program has
convergence guarantees independent of the initializer. Formally,
we consider obtaining the estimator through the convex program
in (6), which can be derived from (5) by alternatively considering
the nuclear norm constraint for the state hyperplane and the �1
norm constraint for the sparse transition matrix B in Lagrangian
form:

(B̂, Θ̂) = arg min B,ΘL(B,Θ;XT ,XT−1, λB , λΘ),

L :=
1

2T
|||XT −Θ− XT−1B

	|||2F + λB‖B‖1 + λΘ||| Θ√
T
|||∗,

(6)

where λB and λΘ are tuning parameters. The solution (B̂, Θ̂)
can be obtained by a block-coordinate descent algorithm that
alternately minimizes with respect to B and Θ, as outlined in
Algorithm 1.

b) Reconstruction of the states: The solution to (8) provides
an estimate of the state hyperplane, based on which realizations
of the K-dimensional latent state process {Ft} can be recon-
structed under certain identifiability restrictions. Note that for
any invertible matrix Q ∈ R

K×K , the following equality holds:

Θ = FΛ	 =
[
FQ	] [ΛQ−1

]	
:= F̌Λ̌	;

hence given Θ, to fully identify the states and the correspond-
ing loading matrix (F,Λ) from their observationally equivalent
counterpart (F̌, Λ̌), a total number of K2 restrictions is required
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to address such indeterminacy. Specifically, let the singular
value decomposition of Θ̂ be Θ̂ = ÛD̂V̂ 	. Depending on the
application of interest, the following identification restrictions
lead to state estimates with different properties (see also [10]):

R1 Orthogonal states: the states are assumed orthogonal, i.e.,
1
T F	F = IK , with Λ	Λ being diagonal. In this case, the

states’ estimate is given by F̂ =
√
T Û .

R2 Orthogonal loadings: the loading are assumed orthogo-
nal, i.e., 1

pΛ
′Λ = IK , with F	F being diagonal. In this

case, the state’ estimate is given by F̂ = 1√
p ÛD̂.

R3 Unrestricted states: the K ×K upper sub-matrix of Λ is
assumed an identity matrix and the states F are left unre-

stricted, i.e.,Λ = [
IK
∗ ]. Consequently, the states’ estimate

F̂ is given by the first K columns of Θ̂, i.e., F̂ = Θ̂,1:K .
It is worth noting that irrespective of the identification restric-

tions, the space spanned by the estimated states is invariant once
Θ̂ is obtained; moreover, predicting future values of Xt does not
require an exact recovery of Ft, as discussed next.

B. Signal/Output Prediction

Given estimates B̂ of the transition matrix and Θ̂ of the hy-
perplane, we consider the following procedure that first obtains
prediction of the filtered process Zt := Xt −BXt−1 through
projection onto the space spanned by the states, followed by a
lag adjustment to obtain those of the Xt signal.

To this end, according to the model in (2), the filtered process
Zt can be represented as Zt = ΛFt + εt, whose h-step-ahead
best linear predictor based on FT−k, k ≥ 0 is given by the
projection Proj(ZT+h |Span(F, T )), where Span(F, T ) denotes
the linear space spanned by {Ft}Tt=1 [47]. In particular, based
on estimate B̂, the filtered process Zt can be estimated through
ẑt := xt − B̂xt−1, whose common space estimate corresponds
to Θ̂. Using the surrogate process {ẑt}, let the sample covariance
be Σ̂Z(h) :=

1
T−h

∑T
t=h+1 ẑtẑ

	
t−h; the h-step-ahead prediction

of {zt} is then given by

ẑT+h =

{
Σ̂Z(h)V̂

[
V̂ 	Σ̂Z(0)V̂

]−1
}
(V̂ 	ẑT ), (7)

where columns of V̂ are the right singular vectors of Θ̂ corre-
sponding to the nonzero singular values, and they are effectively
a set of orthonormal bases for the space spanned by the states.
In the case where h = 1, x̂T+1 = B̂xT + ẑT+1|T ; in the case
where h > 1, x̂T+h can be obtained inductively by sequentially
estimating xT+i, for all 0 < i ≤ h. Algorithm 2 outlines the
prediction procedure.

The empirical performance of the parameter estimation and
the prediction procedure is considered in Section IV under
various data generating mechanisms.

III. THEORETICAL PROPERTIES

To establish statistical properties of the estimators, a ball
constraint on the feasible region of Θ is required to incur
additional compactness on the low rank component that limits
the spikiness of its entries, and this enables identification of the

Algorithm 2: Obtaining an h-Step-Ahead Prediction of the
Signals.

Input: Time series data {xt}Tt=0, estimates B̂ and Θ̂

1 Obtain the filtered process ẑt := x̂t − B̂xt−1 and its
sample cross-covariance estimates Σ̂z(i), for all
0 ≤ i ≤ h;

2 For i = 1, 2, . . . , h:
3 Obtain ẑT+i through

ẑT+i :=

{
Σ̂Z(i)V̂

[
V̂ 	Σ̂Z(0)V̂

]−1
}
(V̂ 	ẑT )

where columns of V̂ are the right singular vectors of Θ̂
corresponding to the nonzero singular values;

4 Obtain x̂T+i through x̂T+i := ẑT+i + B̂x̂T+i−1.
Output: Predicted values x̂T+i, 0 < i ≤ h.

sparse component B. To this end, throughout this section, we
consider estimators that are solutions to the following convex
program:

(B̂, Θ̂) = arg min B,ΘL, subject to Θ ∈ B∞(φ,XT−1)

L := 1
2T |||XT −Θ− XT−1B

	|||2F + λB‖B‖1 + λΘ||| Θ√
T
|||∗,

(8)

where B∞(φ,XT−1) is a box constraint given by

B∞(φ,XT−1) :=

{
Θ : ‖Θ‖∞ ≤ φ√

Tp · |||XT−1/
√
T ||| op

}
.

φ is chosen such that the true value of the parameters Θ�

is always feasible. We will provide further illustration on the
interpretation of such a box constraint in Section III-A; see
also Remark 4 in Supplement-III. (B̂, Θ̂) falls into the class
of regularized M -estimators, whose theoretical properties have
been extensively studied in the statistical literature for diverse
settings (e.g., [1], [38]).

A road map to establish properties of the estimators for (Θ, B)
is given next: first in Section III-A we derive non-asymptotic
statistical error bounds for Θ̂ and B̂ under certain regularity
conditions, when the proposed estimation procedure is based
on a deterministic realization of the observable process {Xt}.
In particular, the required regularity conditions primarily entail
the restricted strong convexity (RSC) condition [2] and that the
choice of λB and λΘ being in accordance with some deviation
condition [38]. Subsequently, in Section III-B, we establish that
the required conditions are satisfied with high probability, and
provide probabilistic analogues of key model parameters’ error
bounds for random realizations drawn from the underlying ob-
servable Gaussian process {Xt} and the latent process {Ft}. We
also briefly discuss how the model identifiability issue is tackled
through the constrained formulation adopted in (8). Finally in
Section III-C, from a numerical perspective, we establish the
convergence of the proposed iterative algorithm to a stationary
point. All proofs are deferred to Appendices A, B and the
Supplement. Throughout our exposition, we use superscript 
 to
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denote the true value of the parameters of interest, and denote the
errors of the estimators byΔΘ := Θ̂−Θ� andΔB := B̂ −B�,
respectively. Additionally, the underlying processes are assumed
Gaussian, although empirically the proposed estimator exhibits
decent performance even in the presence of heavy tails (see
Section IV).

A. Statistical Error Bounds with Deterministic Realizations

We start by introducing additional notation required for the
ensuing technical developments. Let �T (B,Θ;X) denote the
loss function, given by

�T (B,Θ;X) :=
1

2T
|||XT −Θ− XT−1B

	|||2F.

The dimension of the latent state Ft is given by K and thus
rank(Θ�) = K. Further, given some thresholded level η > 0,
let S�

η denote the strong support set of B�, and we use sη to
denote its cardinality, that is,

S�
η := {(i, j) : |B�

ij | > η} and sη := ‖S�
η‖0. (9)

Finally, let Σ̂E := 1
T E	E denote the sample covariance matrix of

the noise process and let Λmax(Σ̂E) be its maximum eigenvalue.
Formally, the RSC condition (c.f., [2], [41]) is defined as follows.

Definition 1. (Restricted Strong Convexity (RSC)): For some
generic data matrix X ∈ R

T×p, it satisfies the RSC condition
with respect to norm Φ with curvature αRSC > 0 and tolerance
τtol ≥ 0 if

1

2T
|||XΔ|||2F ≥ αRSC

2
|||Δ|||2F − τtolΦ

2(Δ), ∀Δ ∈ R
p×p.

In our context, we consider the �1 norm regularizer and thus
Φ(Δ) = ‖Δ‖1.

Further, for high dimensional sparse VAR models (which
corresponds to Θ = 0 in the proposed formulation in (2)), the
tuning parameter λB needs to satisfy a deviation condition [13],
[38], namely,

λB ≥ c0‖∇B�T −∇2
B�T (B

�)	‖∞, for some constant c0 > 0,

which can be simplified to λB ≥ ‖X	
T−1E/T‖∞. Under the

current model setup, however, the deviation condition is sig-
nificantly more involved and requires proper modifications to
incorporate quantities associated with the state hyperplane, as
seen in Theorem 1.

Before stating the main results, we provide a brief discussion
on the box constraint on Θ, which aims to “limit” the spikiness
of the low rank component, and hence the interaction between
the spaces respectively spanned by the latent states and the
observable lag Xt−1 — in particular, for Θ and B to be properly
recovered, such interaction can not be too large. Due to the basis
vectors of the space spanned by the states being latent, a direct
restriction on the interaction is impractical and conceptually
unsatisfying, whereas the box constraint adopted effectively
restricts the product of the signals from the two spaces and
serves our objective, as shown in the proof of Theorem 1 and
Remark 3. Note that this constraint is in similar spirit to the ones
in the literature (e.g., [2], [40]), and the presence of the norm of

X in the box constraint is necessary due to the two spaces having
distinct bases.

Theorem 1 (Error bound for (B̂, Θ̂) under fixed realizations):
Suppose fixed realizations XT−1 ∈ R

T×p of process Xt ∈ R
p

satisfy the RSC condition with curvature αRSC > 0 and a toler-
ance τtol such that

128τtol

(
sη + (2K)

(
λΘ

λB

)2
)

< min{αRSC, 1}. (10)

Then, for any matrix pair (B�,Θ�) that generates the evolution
of the Xt process, for estimators (B̂, Θ̂) obtained by solving
the optimization (8) with regularization parameters λB and λΘ

satisfying

λB ≥ 2‖X	
T−1E/T‖∞ + 4φ/

√
Tp and λΘ ≥ Λ1/2

max(Σ̂E),
(11)

the following error bound holds for some positive constants C1,
C2 and C3:

|||ΔB |||2F + |||ΔΘ/
√
T |||2F ≤ C1 · EB + C2 · EΘ + C3 · Eτtol ,

(12)

where α′ := min{αRSC, 1},

EB :=

(
λB

α′

)2
⎧⎨⎩sη +

α′

λB

∑
(i,j)/∈S�

η

|B�
ij |
⎫⎬⎭ ,

EΘ :=

(
λΘ

α′

)2

K,

Eτtol :=
(τtol

α′
)⎛⎝ ∑

(i,j)/∈S�
η

|B�
ij |
⎞⎠2

.

Next, we comment on the error bound in (12) and the required
conditions in (10). The error bound encompasses three terms
that are respectively associated with the transition matrix B, the
low rank component Θ, and the tolerance τtol that measures the
extent to which the log-likelihood function deviates from strong
convexity (see Definition 1). Both EB and EΘ depend on three
components: (1) the overall curvature of the objective function as
captured by αRSC, (2) the interaction structure between various
components of the underlying processes, as captured by the
tuning parameters λB and λΘ, and (3) the inherent structure of
the parameters as captured by sη ,

∑
(i,j)/∈S�

η
|Bij | and K — in

particular, due to the approximately sparse structure of B�, both
the density level sη of its strong support set and the magnitude of
its “weak” entries play a role, with the two respectively reflecting
the estimation error and the approximation error (c.f., [2]) after
proper scaling. The curvature as measured by αRSC dictates the
constraint to which the tolerance τtol needs to conform (see
Equation (10)), and such a constraint is also interrelated to sη and
K — for (10) to be satisfied, neither K nor sη can be too large.
Regarding the tuning parameters, λB can be sub-divided into
two terms: the cross-product term ‖X	

T−1E/T‖∞ measures the
maximum interaction between the design matrix XT−1 and the
noise E, which according to the model assumption (population
level) should center around 0; the term φ/

√
Tp corresponds to
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an upper bound on the interaction between the latent and the
observed spaces, respectively spanned by Ft and Xt−1. For λΘ,
we require that it dominates the maximum signal coming from
the white noise process in the form ofΛ1/2

max(Σ̂E). Thus, a smaller
λB is needed when interactions between associated terms are
weaker and similarly a smaller λΘ is needed if the magnitude
of the noise is weaker, thus leading to a tighter error bound for
the estimates. Finally, it is worth noting that Eτtol is a result of
the weakly sparse structure of B; in the special case where B is
exactly sparse, this term would be 0.

Corollary 1 gives the bound of ΔB and ΔΘ with specific
choice of the thresholded level η, which determines the strong
support set (see Equation (9)) of the true value B� lying in the
�q ball of radius Rq (see definition in Equation (3)).

Corollary 1: Under the same set of conditions as in The-
orem 1, with B� ∈ Bq(Rq), by choosing the thresholded level
according to η = λB/α

′ whereα′ := min{αRSC, 1}, the follow-
ing error bound holds for some positive constants C1, C2 and
C3:

|||ΔB |||2F+|||ΔΘ/
√
T |||2F ≤ C1 ·

(
λB

α′

)2−q

Rq+C2 ·
(
λΘ

α′

)2
K

+ C3 · τtol

α′

(
λB

α′

)2−2q

R2
q .

B. High Probability Bounds Under Random Realizations

Next, we provide high probability bounds/concentrations for
key quantities associated with the derived error bound in Sec-
tion III-A, for random realizations of the underlying Gaussian
processes. Specifically, this involves the verification of the RSC
condition, as well as the examination of quantities associated
with the deviation condition to which the choice of (λB , λΘ)
needs to conform, as shown in (11).

We introduce additional notation for subsequent develop-
ments. For some generic process {Xt}, in addition to the auto-
covariance function ΣX(h) and its spectral density gX(ω), we
define its maximum and minimum eigenvalue associated with
the spectral density gX(ω) introduced in Section II as follows
(see also [13]):

M(gX) := ess sup
ω∈[−π,π]

Λmax(gX(ω)),

m(gX) := ess inf
ω∈[−π,π]

Λmin(gX(ω)).

For two generic centered processes {Xt} and {Yt} that are
assumed jointly covariance stationary, whose cross-spectral den-
sity is given by gX,Y (ω) (see (4)), the upper extreme for gX,Y (ω)
is analogously defined as

M(gX,Y ) := ess sup
ω∈[−π,π]

√
Λmax

(
g∗X,Y (ω)gX,Y (ω)

)
.

In general gX,Y (ω) �= gY,X(ω), but M(gX,Y ) = M(gY,X).
For the processes involved in our proposed model, recall that

{Xt}, {εt} and {Ft} are mean zero Gaussian processes. In
particular, {εt} is a noise process that does not exhibit temporal

nor cross-sectional dependence, hence it is effectively a Gaus-
sian random vector with covariance Σε = σ2

ε Ip, and its spectral
density simplifies to gε(ω) =

Σε

2π . Further, we define the shifted
process {ε̃t := εt+1} for notation convenience.

The following lemma verifies that with high probability, for
random realizations of the process {Xt}, the RSC condition is
satisfied provided that the sample size is sufficiently large.

Lemma 1 (verification of the RSC condition): Consider X ∈
R

T×p whose rows are some random realization {x0, . . . , xT−1}
of the stable {Xt} process with dynamic given in (2). Then there
exist positive constants ci (i = 1, 2) such that with probability
at least 1− c1 exp(−c2 T ), the RSC condition holds for X with
curvature αRSC and tolerance τtol satisfying

αRSC = πm(gX), and τtol = γ2
(αRSC

2

)( log p

T

)
,

where γ := 54M(gX)/m(gX), provided that T � sη log p.
The next lemma establishes a high probability bound for the

interaction term (X	
T−1E/T ) that influences the choice of λB

through its elementwise �∞ norm.
Lemma 2 (High probability bound for ‖X	

T−1E/T‖∞): Con-
sider X ∈ R

T×p and E ∈ R
T×p whose rows are random re-

alizations {x0, . . . , xT−1} and {ε1, . . . , εT } drawn from the
processes in (2). There exist positive constants ci (i = 0, 1, 2)
such that for sample size T � log p, with probability at least
1− c1 exp(−c2 log p), the following bound holds:

‖X	E/T‖∞ ≤ c0 (M(gX) +M(gε) +M(gX,ε̃))

√
log p

T
.

(13)

Note that with the definition of the shifted processes {ε̃t},
we have gX,ε̃(ω) = e−ihωgX,ε(ω), which implies M(gX,ε̃) =
M(gX,ε). Hence, the term that measures the upper extreme
of the cross-spectrum between Xt and the shifted process
in (13) can be replaced by its unshifted counterpart. Moreover,
since gε(ω) =

σε

2π , its upper extreme is given by M(gε) =
Λmax(Σε)/(2π) = σ2

ε /(2π).
The next lemma provides upper bounds for the maximum

eigenvalue of the sample covariance matrix Σ̂E.
Lemma 3 (High probability concentration for Λmax(Σ̂E)):

Consider E ∈ R
T×p whose rows are independent realizations

of the mean zero Gaussian random vector εt with covariance
Σε. Then, for sample size T � p, with probability at least 1−
exp(−T/2), the following bound holds:

Λmax(Σ̂E) ≤ 9Λmax(Σε).

Proofs for Lemmas 1 to 3 can be found in Appendix B.
Up to this stage, we have verified the RSC condition and

obtained the high probability bounds for quantities that are
associated with the choice of (λB , λΘ), for random realizations
from the underlying processes. Theorem 2 combines the results
in Corollary 1 and Lemmas 1 to 3, and provides a high prob-
ability error bound of the estimates when the data are random
realizations from the underlying processes, as stated next.

Theorem 2 (High probability error bound for random realiza-
tions): Consider data of length (T + 1) {x0, . . . , xT } from the
p-dimensional observable process {Xt}, whose dynamics are
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described in (2) with B� ∈ Bq(Rq). Then, there exist universal
positive constants ci (i = 1, 2, 3) and c′i (i = 1, 2), such that for
sample size T � p and regularization parameters

λB = c1 (M(gX) +M(gε) +M(gX,ε))
√

log p
T + c2

φ√
Tp

,

λΘ = c3Λ
1/2
max(Σε),

with probability at least 1− c′1 exp(−c′2 log p), the solution
(B̂, Θ̂) of the conex problem (8) has the following estimation
error bound for some thresholded level η > 0:

|||ΔB |||2F + |||ΔΘ/
√
T |||2F ≤ C1 · E ′

B + C2 · E ′
Θ + C3 · E ′

τtol
,

(14)

where

E′
B := λ2

B

(
sη + ‖B�

Sc
η
‖1
)
=
(
sη + ‖B�

Sc
η
‖1
)
· O
([

log p

T

])
,

E′
Θ := λ2

Θ K = O(K),

E′
τtol

:= τtol

(
‖B�

Sc
η
‖21
)
=
(
‖B�

Sc
η
‖21
)
· O
([

log p

T

])
.

Ci (i = 1, 2, 3) are positive constants that depend on the upper
and lower extremes of the underlying processes, but are inde-
pendent of T and p.

Note that Theorem 2 requires that T � p for the correspond-
ing quantities to properly concentrate, which in turn leads to
the estimation errors for ΔB and ΔΘ being jointly bounded.
This sample size requirement is of the same order as in classical
factor analysis1 literature (e.g., [10]) for independent and iden-
tically distributed (iid) data, and also shows up for the problem
of recovering a low-rank component based on noisy data in
high-dimensional statistics (e.g., [2]).

Corollary 2 provides the order of each term in the error bound
as a function of T, p,K and Rq , when the level of thresholding
is set at some prespecified level.

Corollary 2: Under the same set of conditions as in The-
orem 2, by choosing the level of thresholding as κλB with
κ := max{m−1(gX), π}, the following holds for E′

B , E′
Θ and

E′
τtol

:

E′
B = O

([
log p

T

]1−q/2

Rq

)
,

E′
Θ = O(K) = O(1),

E′
τtol

= O
([

log p

T

]2−q

R2
q

)
.

As a consequence, the following error bound holds for B̂ and Θ̂
with probability at least 1− c′1 exp(−c′2 log p):

|||ΔB |||2F + |||ΔΘ/
√
T |||2F � O(1). (15)

We further discuss the bounds obtained in (14) and (15) next.

1In classical factor analysis, for both the factors and its loadings to be
consistently estimated, both

√
p/T → 0 and

√
T/p → 0 are required to hold

simultaneously.

Remark 3: The bound in (14) has a similar form to the one in
Section 3.4 of [2] for the case where an �1 norm regularizer is
considered; in their setting, the coefficient matrix of the linear
model for iid sub-Gaussian data can be decomposed into a
sparse and a low rank component. When the two components are
exactly sparse/low-rank, under certain regularity conditions, the
error bound in [2] takes the formλ2 s+ μ2 K with appropriately
chosen tuning parameters λ and μ. In particular, for random
realizations, one gets

λ � ‖X′E/T‖∞ +
φ√
p · p = O

(√
log p/T

)
,

μ � |||X′E/T |||op = O
(√

p/T
)
; (16)

the second term in (16) is due to the box constraint imposed
on the low rank component (with φ being the compatibility
constant) to encourage its identifiability w.r.t. the sparse one.
Consequently, the error bound becomes s · O(log p/T ) +K ·
O(p/T ) and vanishes for p = o(T ). However, it is worth high-
lighting that in the setting of [2], the two components share the
same observed bases (i.e., coordinates of the Xt’s) that span
the space of the predictors; moreover, the bases are assumed
uncorrelated with the noise εt at the population level, which
leads to a vanishing bound, as long as (X′E/T ) properly con-
centrates. In contrast, the nature of the non-vanishing upper
bound provided in (15) is a consequence of the fact that for
an LDS, Ft is latent, and therefore there is no observed basis
for the low rank component in the formulated optimization
problem, which renders the latent state hyperplane Θ and the
error term being not distinguishable. Mathematically, this is
manifested through the choice of λΘ that needs to dominate
Λ
1/2
max(Σ̂E) (see (11)); for random realizations, this quantity

concentrates, but does not vanish. Note that the structure of the
underlying optimization problem is similar to that of the noisy
matrix completion problem, for which the same phenomenon of
a non-vanishing error bound occurs [17], due to the violation
of the Restricted Isometry Property. Further details on model
identifiability are given in Supplement-III.

C. Convergence Analysis of Algorithm 1

The convergence property of Algorithm 1 can be established
using familiar arguments and exploiting its convex nature.
Specifically, the objective function is given by

f(B,Θ) := �T (X;B,Θ) + λB‖B‖1 + λΘ|||Θ/
√
T |||∗

and is jointly convex in (B,Θ), with a convex feasible region
B∞(φ,XT−1). Thus, it directly follows from [50] that the alter-
nating minimization that generates the sequence {(B̂(k), Θ̂(k))}
converges to a stationary point which is also a global optimum,
though the global optimum is not necessarily unique.

To conclude this section, we remark that the theoretical formu-
lation in (8) can be solved in an analogous way to Algorithm 1.
Specifically, the update of Θ requires modification to satisfy the
constraint on the feasible region of Θ, and the partial minimiza-
tion can be solved by employing the composite gradient descent
algorithm of [42] that involves singular value thresholding steps.
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Algorithm 3: Empirical Implementation for Obtaining B̂emp

and Θ̂emp Through Alternate Minimization.

Input: Time series data {xt}Tt=0, tuning parameter λB ,
rank constraint r.

1 Initialization: Initialize with B̄(0) = 0 and
Θ̄(0) = SVT(XT );

2 Iterate until convergence:
3 Update B̄(m) with the plug-in Θ̄(m−1) so that each row j

is obtained with Lasso regression (in parallel) and solves

B̄
(m)
j· = arg minβ

{
1

2T
‖
[
XT − Θ̄(m−1)

]
·j
− XT−1β‖

2

+ λB‖β‖1
}
.

4 Update Θ̄(m) by singular value thresholding (SVT): do
SVD on the lagged value-adjusted hyperplane, i.e., let

UDV 	 := XT − XT−1B̄
(m),

where D := diag(d1, . . . , dmin(T,p)), and construct Θ̄(m)

by

Θ̄(m) = UDrV, where Dr := diag (d1, . . . , dr, 0, . . . , 0) .

Output: Estimated sparse transition matrix B̂emp = B̄(∞)

and the low rank hyperplane Θ̂emp = Θ̄(∞).

Nevertheless, the modified algorithm is also convergent, as the
one in Algorithm 1.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

Next, we present results for simulation studies under various
settings to demonstrate the performance of the proposed formu-
lation of the LDS model.

An empirical algorithmic relaxation. The actual implementa-
tion of Algorithm 1 requires λB , λΘ as inputs, which in practice
are challenging to select. On the other hand, the computation pro-
cedure designed for solving the convex program in (6) suggests
that to obtain the estimates boils down to alternating between the
following two steps: (1) a regularized regression (lasso) update
on the rows of B; and (2) an SVT update on Θ. This naturally
motivates the following steps in the implemented version of the
algorithm, outlined next in Algorithm 3.

Algorithm 3 outlines the algorithmic relaxation to obtaining
(B̂, Θ̂) in (6), and it can be viewed as an alternating minimization
algorithm that solves

min
B,Θ

{
1

2T |||XT −Θ− XT−1B
	|||2F + λB‖B‖1

}
,

subject to rank(Θ) ≤ r. (17)

For each update, the partial minimization step with respect to Θ
or B ensures that the value of the objective function is always
non-ascending, which together with the fact that the objective

function is bounded below guarantees convergence of the ob-
jective function iterates. In practice, the algorithm is terminated
when the descent magnitude of the objective function between
successive iterations is smaller than some pre-specified tolerance
level. This algorithm does not provide guarantees of convergence
to a stationary point of the sequence of (Θ̄(k), B̄(k)) iterates,
which requires stronger assumptions — either the convexity of
the objective function and the constraint region, or the uniform
compactness of the generated sequence of iterates.

Choice of the tuning parameter λB and the rank constraint
r. The implementation of Algorithm 3 requires a specific pair
of (λB , r) as input. We consider choosing the optimal pair of
(λB , r) based on the information criterion proposed in [4], called
the Panel Information Criterion (PIC) and defined as:

PIC(λB , r) :=
1
Tp |||XT − Θ̂emp − XT−1B̂

	
emp|||2F

+ σ̂2
[
logT
T ‖B̂emp‖0 + r(T+p

Tp ) log(Tp)
]
,

(18)

where σ̂2 = 1
Tp |||XT − Θ̂emp − XT−1B̂

	
emp|||2F and (B̂emp,

Θ̂emp) are solutions to (17) with the plug-in (λB , r) pair.
The optimal pair (λB , r) is then selected in two steps: in
step 1, we obtain (λ0

B , r
0) that gives the smallest PIC over

a lattice GλB
× Gr := {λ(1)

B , . . . , λ
(j1)
B } × {r(1), . . . , r(j2)};

in step 2, we fix r at (d+ 1)× r0 where d is the number
of lags corresponding to the sparse VAR(d) model, and
seek for λopt

B over a grid that minimizes PIC(λB , (d+ 1)r0).
The optimal pair of tuning parameters is then given by
(λopt

B , ropt) := (λopt
B , (d+ 1)× r0), with ropt being the effective

dimensionality of the states.
Data generating mechanism. Synthetic data are generated

according to the model representation in 2. Starting from the
standard state-space model representation Xt = Λ̃ft + ut, ut is
serially correlated and follows a weakly sparseVAR(d)model;2

at each timestamp t, the K-dimensional state ft is generated
according to aVAR(w)model ft = Φ1ft−1 + · · ·+Φwft−w +
vt where vt ∼ N (0, σ2

vI); decorrelatingut leads to the following
dynamic of Xt:

Xt = Λ̃ft −BΛ̃ft−1 +BXt−1 + εt =: ΛFt +BXt−1 + εt,

where Λ = [Λ̃, BΛ̃] and Ft = (f	
t , f

	
t−1)

	 ∈ R
2K .

We consider several simulation settings as listed in Table I
to test various facets of the model, primarily encompassing the
dimensionality of the system p and the states, as well as the
sparsity structure of B and its spectral radius that captures the
level of autocorrelation. In addition to settings S0 to S4 where
εt is Gaussian, to test the robustness of the proposed model in
the presence of heavy tails, we consider also cases where εt
follows some multivariate t distribution (S5, S6). Throughout
all numerical experiments presented in this section, the sample
size T is fixed at 200 and the spectral radius of the VAR(w)
system is set randomly from Unif[0.6, 0.8].

2Throughout this section, we assume d = 1; additional consideration for d >
1 have been deferred to Supplement-I.
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TABLE I
SIMULATION SETTINGS FOR DATA GENERATED ACCORDING TO A LAG-ADJUSTED STATE-SPACE REPRESENTATION

To generate the sparse transition matrix B, for each row
that corresponds to the coefficients of each single time series
regression, its (strong) support set is randomly generated to meet
the specified density level requirement (i.e.,2/por5/p); nonzero
entries are then generated from ±Unif[mB − 0.1,mB + 0.1]
for some mB > 0 that dictates the magnitude. In the case of
a weakly sparse B, entries in the weak support set are gener-
ated from Unif([−10%mB , 10%mB ]) and thus having smaller
magnitude compared with those in the strong one. Finally, all
entries are scaled to the specified �(B) level is satisfied to ensure
that the system is stationary. For the dense loading matrix Λ,
its entries are generated from ±Unif[mΛ − 0.1,mΛ + 0.1] for
some mΛ > 0. It is worth noting that the values of mB and mΛ

are set so that the state/lag relative strength is satisfied, measured
by the empirical relative signal-to-noise ratio for the ΛFt and
the BXt−1 component.

For comparison purposes, we also present the performance
evaluation of the common space recovery (to be defined later)
and the prediction accuracy of the signals in the case where
components are identified via standard Principal Components
analysis (e.g., [48]) with the lag-adjusting term ignored. Note
that for most settings, as the dimensionality of the signal exceeds
the number of available data points, identification through a
Kalman-filter based EM algorithm is not necessarily feasible
and thus its performance is not considered in the comparisons.

Performance evaluation. To measure the accuracy of the
parameter estimates and signal prediction, we focus on the
following four components of the model:

– For the sparse transition matrix B we use sensitivity
SEN = TP

TP+FN , specificity SPC = TN
FP+TN and relative error

in Frobenius norm (RErrB) as evaluation criteria; in the
case where B is weakly sparse, despite the fact that entries
in the weak support set are not exactly zero, they are
effectively deemed as zeros for comparison purpose.

– For the state hyperplane Θ, we measure its relative error in
Frobenius norm (RErrΘ) and its relative projection error,
defined as ProjErrΘ := |||Π

̂Θ −ΠΘ� |||F/|||ΠΘ� |||F, where
ΠΘ� := QΘ�Q	

Θ� withQΘ� being the orthonormal basis of
Θ�;Π

̂Θ can be analogously defined. Note that the following
correspondence between sin θ distance and the projection
error holds: |||sin θ(Θ̂,Θ�)|||2F = 1

2 |||Π̂Θ −ΠΘ� |||F; more-
over, this metric is not applicable in high-dimensional
regimes (p ≥ T ) where it would remain at zero.

– For the common space, in the case where it is estimated
with the proposed lag-adjusted state-space representation,
at the population level it is captured by BXt−1 + ΛFt and
hence its estimate is given by Θ̂ + XT−1B̂

	; whereas in

the case where the model is estimated based on classical
PC analysis, the estimated state hyperplane coincides with
that of the common space. For this quantity, we present the
relative error in Frobenius norm of the estimates.

– For the one-step-ahead prediction, we measure its squared
�2 norm w.r.t. the oracle x�

T+1, that is, ‖x̂T+1 −
x�
T ‖2/‖x�

T ‖2, where the oracle is given byx�
T+1 = BxT +

ΛFT+1 and can be viewed as the “denoised” version of
xT+1.

As Table II demonstrates, for all four components, estimates
obtained from Algorithm 3 exhibit good performance. In partic-
ular, (i) the proposed method is robust to the sparsity structure
of B, as both exactly-sparse and weakly-sparse settings yield
very satisfactory strong support recovery (see S1, S2 and S4).
(ii) A larger panel size p leads to improved state hyperplane
recovery, as manifested in the form of smaller relative error in
its magnitude estimation, although it requires the sparsity of the
transition matrix to decrease accordingly (recall that it is set to
2/p); however, the performance deteriorates as the dynamics
of ft become more complex (e.g., S4). (iii) A strong signal
in the lag-space leads to improved recovery of B, despite the
presence of stronger temporal dependence which empirically
incurs the algorithm to take more iterations to converge (e.g.,
S3). For all settings, PIC correctly determines the dimension of
the states, which translates into the correct identification of the
rank constraint.

Additionally, the proposed model is relative robust to the
presence of heavy tails, although the performance deteriorates
compared to the Gaussian case. Specifically, when the distri-
bution shows significant deviation from Gaussian (e.g., S5), the
degradation manifests itself through less satisfactory recovery in
the support of B and larger error of the estimated factor space;
whereas the forecasting performance isn’t affected. On the other
hand, with lighter tails (e.g., S6), the performance becomes
comparable to the Gaussian case.

Finally, in most settings, the proposed method outperforms
the standard PC analysis in both the common space recovery
and the one-step-ahead forecasting.

V. APPLICATION TO RETURNS OF US FINANCIAL ASSETS

State-space models have been widely used in financial ap-
plications (e.g., [24]). In particular, they have been employed
in analyzing the dynamics of asset returns, either for the pur-
pose of identifying risk factors (i.e., the latent states), or for
estimating the covariance structure amongst assets for better
portfolio diversification and asset allocation (e.g., [25]). We
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TABLE II
PERFORMANCE EVALUATION FOR VARIOUS SIMULATION SETTINGS, MEDIAN ACROSS 100 REPLICATIONS

apply the proposed modeling framework to a set of stock returns
corresponding to 75 large US financial institutions, spanning
the period of 2001–2017. This time period contains a number of
significant events for the financial industry, including the growth
of mortgage bank securities [6] in the early 2000 s, rapid changes
in monetary policy in 2004–2006, the great financial crisis [22]
in 2008–2009 and the European debt crisis in 2011–2012. Our
analysis identifies a number of interesting patterns, especially
around the period 2007–2009 encompassing the beginning,
height and immediate aftermath of the US financial crisis, both
through changes in the structure of the latent states and that of
partial autocorrelations governed by the VAR model transition
matrix B of the log-returns of these financial assets.

Data. The data consist of weekly stock risk-free returns3 cor-
responding to 75 large financial institutions in terms of market
capitalization, for the period of January 2001 to December 2017
and were obtained from the Center for Research in Security
Prices (CRSP) database. The 75 companies are categorized
into three sectors: banks (SIC code 6000–6199), broker/dealers
(SIC code 6200–6299) and insurance companies (SIC code
6300–6499), with 25 in each sector (see also [15]). As we
require that the data be available for the entire time span under
consideration, 56 firms are kept for further analysis, since the
remaining ones either went bankrupt or were forced to merge
with financially healthier companies (e.g. Lehman Brothers and
Merill Lynch in 2008, respectively). Additionally, based on
previous analysis (c.f., [15], [35]) the time period is broken into
the following sub-periods: 2001–2006 (pre-crisis), 2007–2009
(crisis), 2010–2017 (post-crisis).

The analysis is based on 104-week-long rolling windows
to avoid issues with possible non-stationarity of the data, a
commonly used strategy in the literature ([15], [35]), that al-
lows monitoring changes in the dimension of the state over
time, as well as the sparsity level of B which measures the
connectivity of the partial autocorrelation network across these
financial institutions. We fit the proposed lag-adjusted LDS in
each time window, with tuning parameters selected according
to the PIC criterion (see Section IV). As Fig. 1 shows, sharp
changes are observed in the temporal dependence structure of
stock returns—two change points respectively correspond to
the beginning of the 2007 sub-prime mortgage crisis and the
ending of the 2008–2009 global financial crisis. Specifically,
for the pre- and post-crisis periods, the density of the transition

3The risk-free return of Stock i at time t is calculated as r̃i,t = ri,t − rrf,t =
pi,t−pi,(t−1)

pi,(t−1)
− rrf,t, where pi,t is its stock price at time t and rrf,t is the

risk-free rate.

Fig. 1. Results after fitting the model to the real data based on 104-week-
long rolling windows over time. Left axis: the connectivity level of B̂; right
axis: intrinsic dimensionality of the states. Time stamps on the horizontal axis
correspond to the mid-point of the window in question.

matrix B stays at a level close to zero, suggesting that little
serial correlation exists in the observation noise component after
the effect of the latent state (that captures the overall market
direction [7]) is accounted for. During the crisis period, however,
the connectivity level of B̂ witnesses a sharp increase, with the
maximum corresponds to the sampling window from Dec 2006
to Dec 2008, during which multiple major events of the financial
crisis occurred. Note that with data at the weekly frequency and
rolling samples of size 104, the dimensionality of the latent state
is identified as one for almost all times, corresponding to a “mar-
ket factor” with all financial institutions contributing positively
to it. Of note, for a short period centered at June-July 2010,
the dimension of the estimated latent state becomes two. The
key contributor to the second state variable is AIG, with some
minor contribution stemming from other insurance companies
(e.g., United Health Group, Manulife Financial Corp). Given
the timing of the emergence of the second latent state and its
primary contributors, a possible explanation relates to the active
market activities of AIG. Specifically, the recapitalization deal
among AIG, the Federal Reserve and the Treasury was launched
in Sept 2010 and closed in Jan 2011; a number of transactions
have taken place pre/during/post this time frame from 2010 to
2011, in which AIG sold its subsidiaries or conducted an IPO in
the overseas market to raise capital. Additionally, in May 2011,
the Treasury initiated its first AIG stock sale to reduce its stake.

To further investigate the composition of the latent state and
the temporal dependence structure amongst the observed signals
during the financial crisis period, we further focus on the 2008
data. Specifically, we consider daily data from January 2008 to
December 2008 that cover 253 consecutive trading days and fit
the proposed lag-adjusted LDS. Note that for this part of the
analysis, the sample consists of 72 stocks. Using PIC, a two-
dimensional latent state is identified, with the first component
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Fig. 2. Top panel: factor composition. Bottom panel: partial autocorrelation
network during the crisis, after proper thresholding of entries with small mag-
nitudes. Top 5 emitters: MFC, MMC, MS, AON, PGR. Top receivers (in white
bars): HIG, NCC, LNC, XL, AIG. Node colors indicate their respective sector
(gray–INS, yellow-BA, green–PB).

capturing 55% of the R-squared statistic, followed by 11% for
the second component. For reconstruction purposes, we assume
they are orthogonal so that their respective composition can be
directly retrieved from the singular vectors of Θ̂, as shown in
Section II-A.

As depicted in the left panel of Fig. 2, all financial institutions
contribute positively to the first component, with dominating
contributors across all three groups (banks, insurance companies
and brokers/dealers). The composition of the second component
exhibits an interesting pattern: two negative contributors are
FRE (Freddie Mac) and FNM (Fannie Mae), while the pos-
itive ones are primarily from the insurance group. However,
AIG—unlike its peers—shows almost zero contribution to the
second component, albeit its strong contribution to the first one.
The latter is consistent with other findings in the literature that
AIG played a prominent role during the crisis; see [30] and
references therein..4 In the lower panel of Fig. 2, we plot the
partial autocorrelation network of the firms during the crisis after
properly thresholding the entries that have small magnitudes,
with red edges denoting positive links and with blue negative
ones. Nodes that belong to the same group are colored identi-
cally. A careful examination of the node weighted in/out-degrees
shows that the top emitters are relatively uniform, in the sense
that their weighted out-degrees do not differ by much; whereas
the top receivers are dominating, since the weighted in-degrees
for top receivers are significantly higher compared with the rest.
Further, an examination of the individual names show that top

4According to an estimate as of January 2010, AIG accounted for 38% of the
total losses incurred by insurance companies ($98.2 bn out of $261 bn) since
2007. Source: Bloomberg, see also [44]

emitters heavily concentrate in the insurance sector, and some
of the top receivers are also major contributors to the states’
composition, e.g., AIG to the 1st component, HIG to the 2nd, etc.
This finding partially aligns with the role that many insurance
companies played in magnifying the impact of the crisis on
the overall stability of the financial system, due to their large
insurance underwriting of Credit Default Swaps and subsequent
exposure to accentuated risks [22]. However, this analysis points
to the importance of insurance companies based on publicly
available data and before their role in the crisis was fully revealed
and understood. It is worth noting that with the same set of data,
classical factor analysis using the information criterion proposed
in [9] only identifies 1 factor, which further substantiates the
aforementioned point that classical factor analysis may lead to
skewed inference when strong correlation amongst the coordi-
nates of the observation noise is present.

VI. DISCUSSION

In this paper, we introduced a novel modeling framework that
generalizes the classical state-space model on LDS, to accom-
modate large scale panels of observed signals/time series in the
presence of strong cross-correlations across components of the
observation noise process. This is accomplished by including
lags of the observed signals and further assuming that the au-
toregressive structure is sparse for identification purposes. Note
that the transition matrix of the autoregressive structure provides
useful and interpretable information, as shown in our application
study and also noted in [23], [37]. The LDS parameters are
estimated through penalized least squares. Specifically, based
on the proposed algorithm, the estimators possess finite-sample
high probability error bounds that can be expressed in terms of
the key structural parameters (T, p,K and sparsity), and they
exhibit superior empirical performance in synthetic data.

As mentioned in the introductory section, the LDS modeling
framework assumes that the dynamics of a large panel of sig-
nals are driven by a low-dimensional state variable; given the
latent nature of the state variables, they are estimated through
the “compression” of the observed ones which is a low-rank
component relative to the system. Another class of models for
multivariate signals assumes that the temporal evolution of an
observed signal is influenced by others within the system (and
possibly external sources), where the dependency amongst the
coordinates can be modeled explicitly and thus the contempo-
raneous relationship among them can be examined directly. For
example, the posited model in [12] enables one to identify the
few “neighbors” that impact the value of a signal, as well as the
magnitude of such influence. Further, the online version allows
for the data to be collected in a sequential manner, and the coef-
ficient matrix that encodes the inter-relationship across signals
can slowly vary. Note that at the modeling class level, this is
similar to a VAR-X model (e.g., see [35] and references therein)
in that both models aim to express explicitly the dependency of
one signal on the others within the system, and also allow for
impact from external sources, although the former focuses on the
contemporaneous impact, whereas the VAR-X model focuses on
lead-lag relationships.
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APPENDIX A
PROOFS FOR STATISTICAL ERROR BOUNDS

Before presenting the proof of Theorem 1, we first define key
quantities associated with the regularizers. Given some η (to be
specified later), let S�

η denote the thresholded support set of B�,
i.e., S�

η := {(i, j) : |B�
ij | > η}, and let the SVD of Θ� be Θ� =

(U�)D�(V �)	, with U�
K and V �

K respectively denoting the first
K columns of U� and V �. Let S, M and their complements
respectively be defined as follows:

S :=
{
Δ ∈ R

p×p |Δij = 0 for (i, j) /∈ S�
η

}
,

S
c :=

{
Δ ∈ R

p×p |Δij = 0 for (i, j) ∈ S�
η

}
,

and

M :=
{
Δ ∈ R

T×p | row(Δ) ⊆ V �
K and col(Δ) ⊆ U�

K

}
,

M
⊥ :=

{
Δ ∈ R

T×p | row(Δ) ⊥ V �
K and col(Δ) ⊥ U�

K

}
.

Further, for some generic matrix Δ1 ∈ R
p×p, we define its

projection on S and S
c (denoted by Δ1|S and Δ1|Sc , resp.) as

Δ1|S,ij := 1
{
(i, j) ∈ S�

η}Δ1,ij and

Δ1|Sc,ij := 1
{
(i, j) /∈ S�

η}Δ1,ij . (19)

With the above definitions and projections, ∀Δ1 ∈ R
p×p, we

can write

Δ1 = Δ1|S +Δ1|Sc , ‖Δ1‖1 = ‖Δ1|S‖1 + ‖Δ1|Sc‖1, (20)

and note that the following inequality holds:

‖Δ1|S‖1 ≤ √
s|||Δ1|S|||F ≤ √

s|||Δ1|||F, (21)

as Δ1|S has at most s nonzero entries where s := |S�
η |. In

an analogous way, for some generic matrix Δ2 ∈ R
T×p, its

projections on M and M
⊥ (denoted by Δ2|M and Δ2|M⊥ , resp.)

are defined as

Δ2|M := U�

[
Δ̃2,11 Δ̃2,12

Δ̃2,21 O

]
(V �)	 and

Δ2|M⊥ := U�

[
O O

O Δ̃2,22

]
(V �)	, (22)

where Δ̃2 is given as below and partitioned as:

Δ̃2 = (U�)	Δ2(V
�) =

[
Δ̃2,11 Δ̃2,12

Δ̃2,21 Δ̃2,22

]
, with Δ̃2,11 ∈ R

K×K .

Note that the following relationship holds ∀Δ2 ∈ R
T×p:

Δ2 = Δ2|M +Δ2|M⊥ ,

|||Δ2|||∗ = |||Δ2|M +Δ2|M⊥ |||∗ = |||Δ2|M|||∗ + |||Δ2|M⊥ |||∗.
(23)

Next, we introduce concepts and lemmas regarding decompos-
able regularizers [41]. Define the weighted regularizer as

R(B,Θ) := ‖B‖1 + λΘ

λB
|||Θ/

√
T |||∗,

and let ΔB := B̂ −B� and ΔΘ := Θ̂−Θ�.

Lemma 4: With the definitions of projections in (19) and (22),
the following inequality holds:

R(B�,Θ�)−R(B̂, Θ̂)≤ R(ΔB|S,ΔΘ|M)−R(ΔB|Sc ,ΔΘ|M⊥)

+ 2R(B�
Sc ,Θ

�
M⊥).

Lemma 5: With the definition of (22), the following holds for
some generic Δ ∈ R

T×p:

rank(ΔM) ≤ 2 · rank(Θ�).

The proofs of these two lemmas are deferred to Supplement-
II. Based on the above preparatory steps, we present next the
proof of Theorem 1.

Proof of Theorem 1: We prove the bound for ΔB := B̂ −B�

and ΔΘ := Θ̂−Θ� under the imposed regularity conditions,
where (B̂, Θ̂) is the solution to the optimization problem (8).
Using the optimality of (B̂, Θ̂) and the feasibility of (B�,Θ�),
the following basic inequality holds:
1

2T |||XT−1Δ
	
B +ΔΘ|||2F ≤ 1

T

(〈〈Δ	
B ,X

	
T−1E〉〉+ 〈〈ΔΘ,E〉〉

)
+ λB

(
||B�||1 − ||B̂||1

)
+ λΘ

(
|||Θ�/

√
T |||∗ − |||Θ̂/

√
T |||∗
)
.

(24)

The LHS can be equivalently written as
1

2T |||XT−1Δ
	
B +ΔΘ|||2F

= 1
2T

(
|||XT−1Δ

	
B |||2F+|||ΔΘ|||2F+2〈〈XT−1Δ

	
B , Θ̂−Θ�〉〉

)
,

and by rearranging, (24) becomes
1

2T |||XT−1Δ
	
B |||2F + 1

2 |||ΔΘ/
√
T |||2F

≤ 1
T 〈〈XT−1Δ

	
B , Θ̂−Θ�〉〉+ 1

T 〈〈Δ	
B ,X

	
T−1E〉〉+ 1

T 〈〈ΔΘ,E〉〉

+ λB

(
||B�||1 − ||B̂||1

)
+ λΘ

(
|||Θ�/

√
T |||∗ − |||Θ̂/

√
T |||∗
)
.

(25)

Based on (25), the rest of the proof is divided into three parts: in
part (i), we provide a lower bound for the LHS primarily using
the RSC condition; in part (ii), we provide an upper bound for
the RHS with the designated choice of λB and λΘ; in part (iii),
we align the two sides and obtain the error bound after some
rearrangement.

Part i. In this part, we obtain a lower bound for the LHS of (25).
Using the RSC condition for Xn−1, the following lower bound
holds for the LHS of (25):

1
2T |||XT−1Δ

	
B |||2F + 1

2 |||ΔΘ/
√
T |||2F

≥ αRSC
2 |||ΔB |||2F + 1

2 |||ΔΘ/
√
T |||2F − τtol‖ΔB‖21.

(26)

To further lower-bound (26), consider an upper bound for
||ΔB ||1 with the aid of (24). By Hölder’s inequality, the fol-
lowing inequalities hold for the inner products:

1

T
〈〈Δ	

B ,X
	
T−1E〉〉 ≤ ‖ΔB‖1‖X	

T−1E/T‖∞, (27)

and
1
T 〈〈ΔΘ,E〉〉 ≤ |||ΔΘ√

T
|||∗||| E√

T
|||op = |||ΔΘ/

√
T |||∗Λ1/2

max(Σ̂E).

(28)
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By choosing λB ≥ 2‖X	
T−1E/T‖∞ and λΘ ≥ Λ

1/2
max(Σ̂E), the

following inequality can be derived from the non-negativity of
the RHS in (24):

0 ≤ λB

2 ‖ΔB‖1 + λΘ|||ΔΘ/
√
T |||∗ + λBR(B�,Θ�)

− λBR(B̂, Θ̂)

(1)

≤ λB

2 ‖ΔB|S‖1 + λB

2 ‖ΔB|Sc‖1 + λΘ|||ΔΘ|M√
T

|||∗ + λΘ|||ΔΘ|M⊥√
T

|||∗
+ λB

(R(ΔB|S,ΔΘ|M)−R(ΔB|Sc ,ΔΘ|M⊥)+2R(B�
Sc ,Θ

�
M⊥)
)
,

where the first two terms in (1) come from (20), the next two
terms come from (23) and the last three terms use Lemma 4.
After writing out R(·, ·) and rearranging, we obtain

λB

2 ‖ΔB|Sc‖1 ≤ 3λB

2 ‖ΔB|S‖1 + 2λΘ|||ΔΘ|M√
T

|||∗
+ 2R(B�

|Sc ,Θ
�
|M⊥);

adding λB

2 ‖ΔB|S‖1 to both sides gives

‖ΔB‖1 ≤ 4R(ΔB|S,ΔΘ|M) + 4R(B�
|Sc ,Θ

�
|M⊥). (29)

Note that for R(ΔB|S,ΔΘ|M), using (21) and Lemma 5,

R(ΔB|S,ΔΘ|M) = ‖ΔB|S‖1 + λΘ

λB
|||ΔΘ|M√

T
|||∗

≤ √
s|||ΔB|S|||F + λΘ

λB
(
√

2K)|||ΔΘ|M√
T

|||F

≤ √
s|||ΔB |||F + λΘ

λB
(
√

2K)|||ΔΘ/
√
T |||F.

(30)

Plug (30) into (29), and by the Cauchy-Schwartz inequality, we
have

||ΔB ||21
≤ 32

(
s+ (2K)( λΘ

λB
)2
)(

|||ΔB |||2F + |||ΔΘ√
T
|||2F
)
+ 32‖B�

Sc‖21.
(31)

Combine (26) and (31), a lower bound for the LHS of (25) is
given by[αRSC

2
− 32τtol

(
s+ (2K)( λΘ

λB
)2
)]

|||ΔB |||2F

+

[
1

2
− 32τtol

(
s+ (2K)( λΘ

λB
)2
)]

|||ΔΘ/
√
T |||2F

− 32τtol‖B�
Sc‖21.

With the designated choice of τtol satisfying 32τtol(s+
(2K)( λΘ

λB
)2) ≤ min{αRSC, 1}/4, the above bound can be fur-

ther lower bounded by

min{αRSC, 1}
4

(
|||ΔB |||2F + |||ΔΘ/

√
T |||2F

)
− 32τtol‖B�

Sc‖21.
(32)

Part ii. Next, we obtain an upper bound for the RHS of (25).
Using the triangle inequality and Hölder’s inequality, the first

term satisfies

1
T |〈〈XT−1Δ

	
B , Θ̂−Θ�〉〉|

≤ 1
T |〈〈Δ	

B ,X
	
T−1Θ̂〉〉|+ 1

T |〈〈Δ	
B ,X

	
T−1Θ

�〉〉|
≤ ‖ΔB‖1‖X	

T−1Θ̂/T‖∞ + ‖ΔB‖1‖X	
T−1Θ

�/T‖∞
≤ ‖ΔB‖1|||XT−1

T |||1‖Θ̂‖∞ + ‖ΔB‖1|||XT−1

T |||1‖Θ�‖∞.
(33)

Using the fact that bothΘ� and Θ̂ are feasible and satisfy the box
constraintΘ ∈ B∞(φ,XT−1), the RHS of (33) is upper bounded
by 2φ√

Tp
· ‖ΔB‖1; thus, by choosing λB ≥ 4φ/

√
Tp, we have

1

T
|〈〈XT−1Δ

	
B , Θ̂−Θ�〉〉| ≤ λB

2
||ΔB ||1.

With (27) and (28), by choosing λB ≥ 2‖X	
T−1E/T‖∞ +

4φ/
√
Tp andλΘ ≥ Λ

1/2
max(Σ̂E), the following upper bound holds

for the RHS of (25):

λB‖ΔB‖1 + λΘ‖ΔΘ‖∗
+ λB

(
R(ΔB|S,ΔΘ|M) + 2R(B�

|Sc ,Θ
�
|M⊥)
)
−R(ΔB|Sc ,ΔΘ|M⊥)

≤ λB

(‖ΔB|S‖1 + ‖ΔB|Sc‖1
)
+ λΘ

(
|||ΔΘ|M√

T
|||∗ + |||ΔΘ|M⊥√

T
|||∗
)

+ λB

(R(ΔB|S,ΔΘ|M)−R(ΔB|Sc ,ΔΘ|M⊥)
)

+ 2λBR(B�
Sc ,Θ

�
M⊥)

where the inequality uses (20) and (23). By writing out
R(·, ·) and canceling terms, the right hand side is fur-
ther upper bounded by 2λB‖ΔB|S‖1 + 2λΘ|||ΔΘ|M/

√
T |||∗ +

2λBR(B�
Sc
,Θ�

M⊥), that is,

2λBR(ΔB|S,ΔΘ|M) + 2λBR(B�
Sc ,Θ

�
M⊥).

Using (30), a final upper bound for the RHS of (25) can be
written as

(2λB)
√
s|||ΔB |||F + (2λΘ)

√
2K|||ΔΘ/

√
T |||F + (2λB)‖B�

Sc‖1.
(34)

Part iii. Aligning (32) and (34) then rearranging terms associated
with ΔB and ΔΘ gives the claimed bound in (12). �

Proof of Corollary 1: First we note that by the definition of
Bq(Rq), the following holds for the strong support set

Rq ≥
∑
i,j

|Bij |q ≥
∑

(i,j)∈S�
η

|Bij |q ≥ ηqsη, (35)

which then gives η−qRq . Further, the following inequality holds
for the weak support set:∑

(i,j)/∈S�
η

|Bij | =
∑

(i,j)/∈S�
η

(|Bij |q|Bij |1−q) ≤ Rqη
1−q. (36)

Setting η = λB/α
′ and plugging (35) and (36) into (12) yields

the desired result. �
Theorem 2 and Corollary 2 can be readily obtained by

plugging Lemmas 1 to 3 into to Theorem 1 and Corollary 1
respectively, and thus their proofs are omitted.
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APPENDIX B
PROOFS FOR LEMMAS

Proof of Lemma 1: First, suppose we have that ∀ v ∈ R
p,

1

2
v′Σ̂Xv =

1

2
v′
(

X′X
T

)
v ≥ αRSC

2
‖v‖22 − τtol‖v‖21; (37)

then, for all Δ ∈ R
p×p, and letting Δj denote its jth column,

the RSC condition automatically holds since

1
2T |||XΔ|||2F =

1

2

q∑
j=1

Δ′
j

(
X′X
T

)
Δj

≥ αRSC

2

q∑
j=1

‖Δj‖22 − τtol

q∑
j=1

‖Δj‖21

≥ αRSC

2
|||Δ|||2F − τtol‖Δ‖21.

Therefore, it suffices to verify that (37) holds. In [13, Proposition
4.2], the authors prove a similar result under the assumption that
Xt is a VAR(d) process. Here, we adopt the same proof strategy
and state the result for a more general process Xt.

Specifically, by [13, Proposition 2.4(a)], ∀v ∈ R
p, ‖v‖ ≤ 1

and η > 0,

P

[∣∣v′ (Σ̂X − ΣX(h)
)
v
∣∣ > 2πM(gX)η

]
≤ 2η exp

(−cT min{η2, η}) .
Applying the discretization in [13, Lemma F.2] and taking the
union bound, define K(2 s) := {v ∈ R

p, ‖v‖ ≤ 1, ‖v‖0 ≤ 2k},
and the following inequality holds:

P

[
sup

v∈K(2k)

∣∣v′ (Σ̂X − ΣX(h)
)
v
∣∣ > 2πM(gX)η

]
≤ 2 exp

(−cT min{η, η2}+ 2 kmin{log p, log(21ep/2 k)}) .
With the specified γ = 54M(gX)/m(gX), set η = γ−1, then
apply results from [38, Lemma 12] with Γ = Σ̂X − ΣX(0) and
δ = πm(gX)/27, so that the following holds

1

2
v′Σ̂Xv ≥ αRSC

2
‖v‖2 − αRSC

2 k
‖v‖21,

with probability at least 1− 2 exp(−cT min{γ−2, 1}+
2k log p) and note that min{γ−2, 1} = γ−2 since γ > 1.
Finally, let k = min{cTγ−2/(c′ log p), 1} for some c′ > 2, and
conclude that with probability at least 1− c1 exp(−c2 T ), the
inequality in (37) holds with

αRSC = πm(gX), τtol = αRSCγ
2 log p

2T
,

and so does also the RSC condition. �
Proof of Lemma 2: We note that

1

T
||X	E||∞ = max

1≤i,j≤p

∣∣e	i (X	E/T
)
ej
∣∣,

where ei is the p-dimensional standard basis with the ith entry
being 1. Applying [13, Proposition 2.4(b)], for an arbitrary pair
of (i, j), the following inequality holds:

P
[∣∣e	i (X	E/T

)
ej
∣∣ > 2π (M(gX) +M(gε) +M(gX,ε̃)) η

]

≤ 6 exp
(−cT min{η2, η}) .

Taking a union bound over all 1 ≤ i, j ≤ p, and the following
bound holds:

P

[
max

1≤i,j≤p

∣∣e	i (X	E/T
)
ej
∣∣ > 2π (M(gX) +M(gε)

+ M(gX,ε̃)) η
]

≤ 6 exp
(−cnmin{η2, η}+ 2 log p

)
.

Set η = c′
√

log p/T for c′ > (2/c) and with the choice of
T � log p, min{η2, η} = η2, then with probability at least
1− c1 exp(−c2 log p), the following bound holds:

1

T
‖X	E‖∞ ≤ c0 (M(gX) +M(gε) +M(gX,ε̃))

√
log p

T
.

�
Proof of Lemma 3: For E whose rows are iid realizations of

a Gaussian random vector εt, by [53, Lemma 9], the following
bound holds:

P

[∣∣∣∣∣∣∣∣∣Σ̂E − Σε

∣∣∣∣∣∣∣∣∣
op
≥Λmax(Σε)δ(T, p, η)

]
≤2 exp(−Tη2/2),

where δ(T, p, η) := 2(
√

p
T + η) + (

√
p
T + η)2. In particular,

by the triangle inequality, with probability at least 1−
2 exp(−Tη2/2),

|||Σ̂E|||op ≤ |||Σε|||op + |||Σ̂E − Σε|||op ≤ Λmax(Σε)

+ Λmax(Σε)δ(T, p, t).

So for T ≥ p, by setting η = 1, which yields δ(T, p, η) ≤ 8 so
that with probability at least 1− 2 exp(−T/2), the following
bound holds:

Λmax(Σ̂E) ≤ 9Λmax(Σε).
�
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