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Abstract

Recent developments in quantum embedding theories have provided attractive ap-

proaches to correlated calculations for large systems. In this work, we extend our

previous work [J. Chem. Theory Comput. 2019, 15, 4497 – 4506; J. Phys. Chem. Lett.

2019, 10, 6368 – 6374] on Bootstrap Embedding (BE) to enable correlated ab ini-

tio calculations at the coupled cluster with singles and doubles (CCSD) level for large

molecules. We introduce several new algorithmic developments that significantly reduce

the computational cost of BE, while maintaining its accuracy. The resulting implemen-

tation scales as O(N3) for the integral transform and O(N) for the CCSD calculation.

Numerical results on a series of conjugated molecules suggest that BE with reasonably

sized fragments can recover more than 99.5% of the total correlation energy of a full

CCSD calculation, while the required computational resources (time and storage) com-

pare favorably to one popular local correlation scheme, domain localized pair natural

orbital (DLPNO). The largest BE calculation in this work involves ∼ 2900 basis func-

tions and can be performed on a single node with 16 CPU cores and 64 GB of memory

in a few days. We anticipate these developments represent an important step towards

the application of BE to solve practical problems.
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1 Introduction

Accurately modelling the electronic structure of chemical systems is crucial to understanding

the atomistic mechanisms of many functional materials and designing new ones.1–5 Achieving

this goal from first principles requires correlated calculations that can capture the electron

correlation missing at the Hartree-Fock6,7 (HF) level. However, due to the fast growing

computational cost with system size [O(Np) where p ≥ 5 in general], the range of systems

that can be modelled by correlated calculations is limited.8–12

One way to circumvent this scaling curse is quantum embedding.13–23 Conventionally,

embedding methods reduce the computational cost by singling out a subset of degrees of

freedom and treating them using a high-level theory, while leaving the rest of the system,

as well as the interaction with the aforementioned subsystem handled by a low-level theory

(i.e., bath). This scheme is particularly useful when there is a natural separation between the

degrees of freedom that one desires to investigate and those that are relatively "inert". Such

separations could be based on either an energetic criterion or a real-space metric. An example

of the former is the complete active space (CAS) methods24–26 that are often used when a

single-reference description of the system fails. Examples of the latter are the various flavors

of wave function theory (WFT)-in-density functional theory (DFT) embedding15,16,27,28 and
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DFT-in-DFT embedding,29–31 which have been demonstrated useful on many systems where

the interesting chemistry occurs at a spatially confined region. In what follows, this scheme

is referred to as "local embedding".

In addition to local embedding, recent developments have also suggested the possibility

of "global embedding". Here, the basic idea is divide and conquer: one partitions a large

system into smaller fragments (e.g., in terms of localized orbitals), repeatedly applies the

aforementioned local embedding to each fragment, and then assembles local contributions

to obtain a global estimate of the desired property. As a more general approach, the global

embedding can be applied to systems where a separation of degrees of freedom is vague or

does not exist at all. We note that in literature this scheme is also referred to as the fragmen-

tation method32,33 and represents the "bottom-up" approach to reduced-scaling correlated

calculations.

In contrast, a "top-down" approach to reduced-scaling correlated calculations is local

correlation theory. In these methods, one starts with a set of fully delocalized equations for

the whole system and discards terms that are (hopefully) unimportant to the computation

of the desired properties. Since the pioneering works of Pulay and Saebo34–36 in the 1980s,

many research groups have contributed to this field, leading to the developments of a vast

number of theories as well as numerical techniques, including Local Møller-Plesset perturba-

tion theory to the second order37,38 (LMP2), local coupled cluster theory39–41 (LCC) and its

orbital-specific virtual42,43 (OSV) variant, Laplace transform MP2,44,45 divide-and-conquer-

based MP246 and CC47,48 (DC-MP2 and CC), fragment molecular orbital49–52 (FMO), tensor

hypercontraction53–55 (THC), to name a few. We particularly mention the domain localized

pair natural orbital56–58 (DLPNO) approach, which represents one of the most popular local

correlation methods that has been widely benchmarked59–63 and used.64–67

In this work, we focus on a specific class of global embedding/fragmentation methods

based on the Schmidt decomposition.68–71 Schmidt decomposition preserves the entanglement

between fragments and baths which makes it suitable for embedding chemical systems. We
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mention here seminal works towards that direction within the framework of density matrix

embedding theory72,73 (DMET) and related methods74–79 from the Chan group (on simple

atomic latices,73 a chemical reaction,80 and simple solids81), the Gagliardi group (on bond

dissociation82,83 and simple solids84), and the Scuseria group (on simple solids85). One major

challenge faced by these works is that the rigid partition of a system into non-overlapping

fragments could cause ambiguity and lead to slow convergence with fragment size.80,86 The

latter is also known to the fragmentation community.87

Recently, we have developed bootstrap embedding86,88–90 (BE) aimed at solving both

problems. BE is formulated using overlapping fragments that allow more flexible partition-

ing of a chemical system and give rise to a set of inter-fragment matching conditions (vide

infra) that significantly boosts the accuracy of the embedding. Numerical tests have con-

firmed both the applicability of BE to general molecular systems89,90 and its fast convergence

with fragment size.90 However, these tests were performed on medium-sized molecules and

with a relatively inaccurate high-level solver (MP291) due to the preliminary nature of the

implementation.90

Here, we show that with a production-level implementation, BE provides an efficient

"bottom-up" alternative to local correlation methods for large molecular systems. Specifi-

cally, we implement BE with the more accurate coupled cluster with singles and doubles92,93

(CCSD) local solver, and largely reduce the computational cost by streamlining the fragment

choices, developing an efficient integral transform algorithm, and optimizing the algorithm

for density matching. We demonstrate our method on conjugated molecular systems con-

taining up to ∼ 2900 basis functions in a minimal basis, where BE with reasonably sized

fragments consistently recovers ≥ 99.5% of the total correlation energy of a full CCSD calcu-

lation. Both the time and space requirements of BE compare favorably to DLPNO-CCSD.

We believe these developments represent an important step towards the application of BE

to solve practical problems.

This article is organized as follows. In section 2, we briefly review the formalism of BE,
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and present the techniques developed in this work towards an efficient implementation. Some

details regarding the CCSD implementation are also discussed. In section 3, we articulate

the computational details. In section 4, we present results of both the accuracy and compu-

tational efficiency of BE compared to DLPNO-CCSD. In section 5, we conclude this work

by pointing out several future directions.

2 Theory

2.1 Bootstrap Embedding

Consider the following second-quantized Hamiltonian that describes a chemical system,

Ĥ =
N∑
µν

hµνc
†
µcν +

1

2

N∑
µνλσ

Vµνλσc
†
µc
†
λcσcν , (1)

where h and V are the standard one- and two-electron integrals [in the (11|22) notation],

and c†µ (cν) creates (annihilates) an electron in a local orbital (LO), |φµ〉. In what follows, we

assume these LOs form an orthonormal basis. Suppose we have obtained the HF solution,

|Φ0〉, to Ĥ. We define a fragment A by specifying a subset of NA LOs, {φµ}µ∈A (typically,

NA � N). Then the HF state has the following product structure73

|Φ0〉 =

( NA∑
p=1

λAp |fAp 〉 ⊗ |bAp 〉
)
⊗ |Φenv,A

0 〉, (2)

Equation (2) is called a Schmidt decomposition of |Φ0〉 on fragment A (see Supporting

Information for the algorithmic details) and divides the system into three parts: the fragment

orbitals {fAp }
NA
p=1 which we choose to be the fragment LOs {φµ}µ∈NA

,74 the bath orbitals

{bAp }
NA
p=1 that are entangled with the fragment orbitals, and the environment |Φenv,A

0 〉 that is

disentangled with the fragment orbitals. The 2NA fragment + bath orbitals are called the

embedding orbitals (EOs) and span an active space with the environment being a spectator,
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giving rise to the following embedding Hamiltonian,

ĤA = Eenv,A +

2NA∑
pq

hApqa
A†
p a

A
q +

1

2

2NA∑
pqrs

V A
pqrsa

A†
p a

A†
r a

A
s a

A
q , (3)

where

Eenv,A = Tr (h + Fenv,A)Penv,A,

hApq =
N∑
µν

TAµpF
env,A
µν TAνq,

V A
pqrs =

N∑
µνλσ

TAµpT
A
νqVµνλσT

A
λrT

A
σs,

(4)

where TA = [Tf,A|Tb,A] is the coefficient matrix of {|fAp 〉} and {|bAp 〉}, Penv,A is the one-

particle density matrix (1PDM) of the environment, and Fenv,A is the Fock matrix of the

environment. Note that ĤA has no higher order interaction terms, which is an advantage of

using a mean-field bath.94 ĤA constructed by eqs. (3) and (4) is sometimes said to have an

"interacting" bath in the literature.80

In BE, we partition a system into Nfrag overlapping fragments (see section 2.2 for de-

tails). For each fragment, the constituent LOs (which are the fragment orbitals by our

choice) are recognized as either center or edge depending on whether a LO lies at the bulk

or the surface of the fragment. In general, the wave function on the center LOs is more

accurately described by the high-level fragment calculation than the edge ones because the

latter interact more strongly with the corresponding (low-level) bath. This surface error

leads to the aforementioned slow convergence of traditional fragmentation methods using

non-overlapping fragments. When fragments overlap, by contrast, the wave function on the

edge LOs of one fragment could be better described in other fragments if they are the center

LOs there. This observation suggests an approach to improving the embedding: matching

the wave function (e.g., in terms of density matrix) on the edge LOs of each fragment to that

on the corresponding center LOs of other fragments. This idea is schematically illustrated
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in fig. 1.
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Figure 1: Schematic illustration of BE density matching. LO 2 (or atom 2, see section 2.2)
is the center LO (atom) in fragment A and the edge LO (atom) in fragment B. Hence, we
match the wave function on LO (atom) 2 in fragment B to that in fragment A (orange up
arrow). Other arrows can be understood in a similar way.

Mathematically, the intuition above can be formulated as a set of constrained optimiza-

tions. Consider two overlapping fragments, A and B. Let EA be the set of edge LOs of A

and CB the center LOs of B. Then, EA∩CB denotes the overlapping region where one needs

to match the wave function of A to that of B. In this works, we focus on matching elements

of the 1PDM of different fragments. The fragment calculation of A is then constrained as

follows

min
ΨA
〈ĤA〉A, s.t. 〈aA†p aAq 〉A = PB

pq,

∀p, q ∈ EA ∩ CB, ∀B 6= A

(5)

where 〈 · · · 〉A = 〈ΨA| · · · |ΨA〉, and we loop over all fragments B 6= A to enumerate all the

matching conditions for A. The same analysis can be repeated for all fragments, leading to a

set of Nfrag coupled constrained optimizations that corresponds to the following Lagrangian

L =

Nfrag∑
A

[
〈ĤA〉A − EA(〈1̂〉A − 1)+

Nfrag∑
B 6=A

∑
pq∈EA∩CB

λApq
(
〈aA†p aAq 〉A − PB

pq

)]
+

µ

[(Nfrag∑
A

∑
p∈CA

〈aA†p aAp 〉A
)
−Ne

]
(6)
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where {λApq} are the Lagrangian multipliers for the density matching, and µ is a global

chemical potential that fixes the total number of electrons [assuming fragment centers do

not overlap; see eq. (10) and the discussion there]. Making eq. (6) stationary with respect

to ΨA leads to an eigenvalue equation for fragment A

(
ĤA +

∑
pq∈EA

λApqa
A†
p a

A
q + µ

∑
p∈CA

aA†p a
A
p

)
|ΨA〉 = EA|ΨA〉, (7)

where the bare embedding Hamiltonian ĤA [eq. (3)] is dressed by a local effective potential

λ̂A as well as a global chemical potential µ. Note that the matching happens only for the

fragment orbitals, which are strictly local to each fragment. Also note that |Φ0〉 is kept

fixed in the density matching. Although a DMET-style bath optimization72,73 is possible

and straightforward, we do not explore it in this work.

The BE equations [eq. (7)] for different fragments are highly coupled since the target

densities {PB
pq} in eq. (7) will change after solving the BE equations for the target fragments.

To decouple these equations, we adopt an iterative algorithm (algorithm 1) where in each

step eq. (7) is solved with fixed target densities obtained from the last cycle. The algorithm

is deemed converged when the root mean square error

ε =

[
1

Ncons

Nfrag∑
A

∑
B 6=A

∑
pq∈EA∩CB

(PA
pq − PB

pq)
2

]1/2

(8)

drops below some threshold τBE (Ncons is the total number of constraints). Our previous

works suggest that the simple fixed-point algorithm 1 converges quite well in most cases.89,90

An efficient algorithm for solving eq. (7) will be presented in section 2.4.

Before moving on, we discuss how BE computes global expectation values. Without loss

of generality, consider a one-electron operator Ô =
∑N

µν Oµνc
†
µcν . For the simple case where
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Algorithm 1 BE iteration

Input: Ne, {ĤA}, {PA}, τBE
Initialization: µ← 0, λA ← 0 ∀A
while ε > τBE do

for A = 1 : Nfrag do
λA ← ĤA, {PB}, µ . eq. (7)

end for
µ, {PA} ← {ĤA,λA}, Ne

ε← {PA} . eq. (8)
end while

fragments do not overlap,

〈Ô〉 =
1

2

N∑
µν

Oµν

Nfrag∑
AB

δµ∈Aδν∈B
(
〈c†µcν〉A + 〈c†µcν〉B

)
. (9)

Equation (9) is dubbed the "democratic" strategy in DMET80 since when the two opera-

tors of c†µcν come from different fragments, the average of both local expectations is used.

The generalization of eq. (9) to a general many-body operator is straightforward. For the

overlapping fragments used in this work (section 2.2), the center LOs of each fragment do

not overlap (i.e., CA ∩ CB = ∅. ∀A 6= B) and fully partition the system. As a result,

eq. (9) is also applicable to these overlapping fragments by replacing the two δ-functions

with δµ∈CA
δν∈CB

. We give here an explicit expression for the total BE energy

EBE =

Nfrag∑
A

∑
p∈CA

[ 2NA∑
q

(
hApq −

1

2
Genv,A
pq

)
PA
pq +

1

2

2NA∑
qrs

V A
pqrsΓ

A
pqrs

]
, (10)

where Genv,A is the Coulomb-exchange part of Fenv,A; {PA} and {ΓA} are the fragment

1PDMs and 2PDMs (see section 2.5 for more details), respectively. For the more general

cases where fragment centers also overlap, one can again take the "democratic" strategy and

use the average value computed using all fragment centers for the overlapping region. This

strategy was used in our previous work.90
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2.2 Fragment Choices

In BE, a fragment consists of a set of LOs that are "close" to each other by some measure.

Thus, any fragment choices must have a clear definition for the connectivity between LOs.

Following this line, we have explored two strategies in our previous works, one based on

individual LOs89 and the other on atoms90 (i.e., all LOs centered on the same atom are

regarded as the minimal unit), and found that the latter leads to faster convergence for

molecular BE calculations. For this reason, we use atoms-based fragments in this work.

Graph

Map

Molecule

Previous work
•••

This work
•••

Partition

Figure 2: Schematic illustration of partitioning a molecule into overlapping fragments based
on atoms and chemical bonds. The old (ref. 90) and new fragment choices are displayed for
m = 3 and n = 2 (see discussion in the main text), respectively. The new scheme generates
fewer fragments.

In the original atom-based scheme,90 a molecule is first mapped onto a graph with its

atoms and chemical bonds being the nodes and edges of the graph (fig. 2). Then, all con-

nected subgraphs up to a given size (say, m atoms) are identified as fragments (the case of

m = 3 is schematically illustrated in fig. 2). While being well-defined and applicable to gen-

eral chemical systems, this scheme generates fragments whose number (Nfrag) rises quickly

with both the fragment size and the dimension of the system due to the recognization of all

connected subgraphs as fragments. The dependence of Nfrag on fragment size discourages the

use of large fragments that are necessary for accurate BE calculations, while the dependence

on dimension limits the range of applicable systems. In addition, a fast growing Nfrag also

raises the space complexity for storing the transformed integrals (see section 2.3).

The problem of the original atom-based scheme is the inclusion of all connected subgraphs
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as fragments. To that end, we here adopt a simpler fragment definition: the atom-centered

fragments. In this scheme, each atom is associated with only one fragment composed of (1)

that atom and (2) all atoms from up to the (n − 1)-th coordination shell. Thus, n = 1

is the minimal size where every atom is a fragment. n = 2 adds the nearest neighbors to

each fragment, and n = 3 further includes the second-nearest neighbors (the case of n = 2

is schematically illustrated in fig. 2). In all cases, the number of atom-centered fragments

satisfy Nfrag ≤ Natom, where "<" could happen since for some atoms (e.g., the end atoms of

a chain), the corresponding fragments are completely contained in the adjacent fragments

and hence are discarded. We note that for the special case of 1D chain-like molecules such

as polyacetylenes, the atom-centered scheme with n = 1, 2, 3, · · · is equivalent to the original

atom-based scheme with m = 1, 3, 5, · · · . However, beyond 1D the new scheme generates

far fewer fragments compared to the old one, making it suitable for large-scale molecular

calculations. We also note that due to the inclusion of the most important local interactions

for each atom, the performance of BE based on the atom-centered fragments is not degraded,

as will be clear from the numerical results in section 4.

2.3 Integral Transform

Like many other electron correlation methods, one computational bottleneck of BE is the

transformation of the electron-repulsion integrals (ERIs) from the atomic orbital (AO) basis

to the working basis, which in our case is the EOs for each fragment [eq. (4)]. The naïve

algorithm performing such AO-to-EO transform one fragment at a time has the correct fifth-

power formal scaling and can be accelerated by standard techniques in literature.95–101 For

overlapping fragments, however, there is a work redundancy problem in the naïve algorithm

that we tackle first below.

Consider a fragment A composed of m atoms {ai}mi=1, with their respective EO coefficient

matrices [eq. (4)] denoted by TA and {Tai}. We first note that the EOs of A have the same
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span as the EOs of its constituent atoms, i.e.

TA = T̄AUA, (11)

where T̄A = [Ta1| · · · |Tan ] and UA is a full rank square matrix (see Supporting Information

for details). Equation (11) suggests that the EOs of a fragment can be reconstructed from

the EOs of its constituent atoms. Consequently, the embedding ERIs of a fragment can be

reconstructed from the embedding ERIs of its constituent atoms, too. This can be seen by

substituting eq. (11) into eq. (4), which gives

V A
pqrs =

2NA∑
tuvw

V̄ A
tuvwU

A
tpU

A
uqU

A
vrU

A
ws, (12)

where

V̄ A
tuvw =

N∑
µνλσ

VµνλσT̄
A
µpT̄

A
νqT̄

A
λrT̄

A
σs (13)

is a four-tensor tiled by the ERIs of all the atom-quartets (ai, aj, ak, al) formed from A’s

constituent atoms,

V
(ai,aj ,ak,al)
tuvw =

N∑
µνλσ

VµνλσT
ai
µtT

aj
νuT

ak
λv T

al
σw. (14)

Note that eq. (14) scales as O(N4Na) for each atom-quartet (Na is the number of LOs on

atom a), which is much more expensive than the local transform eq. (12), which scales as

O(N5
A).

Now consider the case where l ≥ 2 fragments overlap. From the discussion above, it is

clear that the embedding ERIs of all l fragments can be reconstructed from the embedding

ERIs of all the unique atom-quartets formed from the atoms underlying all l fragments. This

observation suggests a two-step algorithm for the ERI transform:

1. perform the expensive AO-to-EO ERI transform eq. (14) for all unique atom-quartets

from the l fragments;
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2. perform the fast local transform eq. (12) for each fragment to recover the fragment

ERIs from the atom-quartet ERIs.

Here, the key saving is from the fact that the overlapping fragments share the same set of

atom-quartet ERIs in the overlapping region, and hence the expensive AO-to-EO transform

eq. (14) needs to be performed only once for these EOs. In contrast, in the naïve algorithm

these transforms are repeated l times (one for each fragment), which results in redundant

computation. The set of unique atom-quartets in step 1 is called the connected atom-

quartets for a set of overlapping fragments, and represents the minimum work needed for

transforming a four-tensor. Similarly, the connected atom-pairs represent the minimum work

for transforming two indices.

Having resolved the work redundancy problem, we briefly discuss two standard techniques

that further lower the computational cost. First, the fifth-power scaling can be reduced to

O(N3) via integral screening using the Cauchy-Schwarz inequality,99–102

|Vµνλσ| ≤
√
JµνJλσ, (15)

where Jµν = Vµνµν . For large molecules described by local basis functions (AOs in our case),

the number of significant shell-pairs (Nsp), i.e. those satisfying

Jµν ≥ τsp (16)

for some threshold τsp, grows only linearly with N , resulting in O(N2) significant ERIs and

hence an O(N3) scaling for the ERI transform. Second, we use density fitting95–98 (DF) to

resolve the ERIs

Vµνλσ ≈
Naux∑
P

ṼµνP ṼPλσ, (17)
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where P indexes a second, auxiliary basis {χP}Naux
P=1 , and

ṼµνP =
Naux∑
Q

(µν|Q)[S−1/2]QP , (18)

where SPQ = (P |Q). The number of significant elements in Ṽ still scales quadratically

with system size after integral screening, but the pre-factor is largely reduced since typically

Naux � Nsp.

Algorithm 2 BE ERI transform

Input: {Ta}Natom
a=1 , {UA}Nfrag

A=1 , {(ai, aj)}
Nap

ĩj=1
, {(ai, aj, ak, al)}Naq

ĩjkl=1
.

for ĩj = 1 : Nap do
Ṽ ĩj
tuP ←

∑N
µν ṼµνPT

ai
µtT

aj
νu . eq. (18)

end for
for ĩjkl = 1 : Naq do

V ĩjkl
tuvw ←

∑Naux
P Ṽ ĩj

tuP Ṽ
k̃l
Pvw . eq. (17)

end for
for A = 1 : Nfrag do

V A
pqrs ←

∑2NA

tuvw V̄
A
tuvwU

A
ptU

A
quU

A
rvU

A
sw . eqs. (12) and (13)

end for

On the basis of all above, we present our efficient ERI transform algorithm in algorithm 2,

where we extend the two-step algorithm from above to accommodate integral screening and

DF. The aforementioned connected atom-pairs and quartets are respectively denoted by

{(ai, aj)}Nap

ĩj=1
and {(ai, aj, ak, al)}Naq

ĩjkl=1
in algorithm 2. The time and space complexities of

each step are tabulated in table 1. For a fixed fragment size, the overall computational

scaling is O(N3) in time for the AO-to-EO transform of all connected atom-pairs (first loop

in algorithm 2) and O(N) in space for storing the final results {VA}. Note that the O(N2)

storage requirement of the first step can be readily handled through batching the loop over

shell-pairs. Indeed, for the largest calculation in this work (BE3 on C720), the peak memory

footprint of the first step is only ∼ 20 GB after batching, which is much smaller compared to

the fragment ERIs (∼ 50 GB). We also note that the O(N3) time complexity can be further

lowered to O(N2) by using local DF,38,41,103,104 which we will explore in a subsequent work.
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Table 1: Time and space complexities of the three loops in algorithm 2. Na and NA are the
typical size for an atom and a fragment (in terms of the number of LOs), respectively. Nap

and Naq are the number of connected atom-pairs and quartets, respectively.

Loop Time Space
ĩj O(NapNspNauxN

2
a ) O(NapNauxN

2
a )

ĩjkl O(NaqNauxN
4
a ) O(NaqN

4
a )

A O(NfragN
5
A) O(NfragN

4
A)

2.4 Density Matching

In addition to the integral transform, the determination of the BE matching potentials ({λ̂A})

represents a second computational bottleneck. Mathematically, for each fragment one solves

the following non-linear system of equations

PA
pq(λ

A) = PB
pq, ∀p, q ∈ EA ∪ CB, ∀B 6= A (19)

to determine the matching potential, λ̂A, in terms of its matrix elements, λA. This step

naturally scales linearly with system size [because Nfrag ∼ O(N)] but our previous imple-

mentation based on the Newton’s method to solve eq. (19) has a huge pre-factor.90 In the

Newton’s method,105 the Jacobian matrix, JA = ∇λAP A, is built and inverted in each cy-

cle. The time complexity of a Jacobian build is O(NA
cons) for each fragment (using either

finite-difference or analytic gradients) with NA
cons the total number of 1PDM elements being

constrained for fragment A. Since NA
cons grows rapidly with fragment size (larger fragments

have higher chance to overlap), this again hinders the use of large fragments which are

necessary for accurate embedding calculations.

In this work, we instead use a quasi-Newton method, the BFGS algorithm,105 to solve

eq. (19). In BFGS, an approximate Jacobian is refined at every cycle using only the value

(as opposed to the gradient) of the density matrix elements. This reduces the per-cycle

computational cost to O(1). Compared to the Newton’s method, however, BFGS could

take more cycles to converge when the initial Jacobian is poor. To that end, we find that
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the HF Jacobian, which can be computed analytically by solving the coupled perturbed

HF (CPHF) equation,106 is a cost-effective choice. Numerical tests show that the BFGS

algorithm with a HF initial Jacobian typically converges in < 10 cycles for solving eq. (19),

and this number is only weakly dependent on the fragment size (fig. S4), leading to an O(1)

overall computational cost for each fragment. In addition, although we focus on CCSD in

this work, tests using other local solvers also show similar convergence rates, which renders

the BFGS + HF initial Jacobian approach promising for general use in BE.

2.5 CCSD Density Matrices

As seen in section 2.1, computing the BE total energy requires 1PDM and 2PDM from each

fragment calculation. For CCSD, there are two ways to define these density matrices (DMs).

The unrelaxed CCSD DMs are defined as107

P unrlx
pq = 〈Φ0|e−T̂a†paqeT̂ |Φ0〉,

Γunrlx
pqrs = 〈Φ0|e−T̂a†pa†rasaqeT̂ |Φ0〉,

(20)

where

T̂ =
∑
ia

tiaa
†
aai +

1

4

∑
ijab

tiajba
†
aaia

†
baj, (21)

where tia and tiajb are the standard CCSD excitation amplitudes.6,107 The relaxed CCSD

DMs are defined as108,109

P rlx
pq = 〈Λ0|e−T̂a†paqeT̂ |Φ0〉,

Γrlx
pqrs = 〈Λ0|e−T̂a†pa†rasaqeT̂ |Φ0〉,

(22)

where 〈Λ0| = 〈Φ0|(1̂ + Λ̂), and

Λ̂ =
∑
ia

λiaa
†
iaa +

1

4

∑
ijab

λiajba
†
iaaa

†
jab, (23)
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where λia and λiajb are the standard CCSD de-excitation amplitudes107 (or the Lagrangian

multipliers in the variational formulation of CC110).

When traced with the Hamiltonian, both DMs give the correct CCSD total energy and

hence are suitable for evaluating the BE energy using eq. (10). In terms of computational

efficiency, the unrelaxed definition [eq. (20)] is preferred since it does not require solving

for the de-excitation amplitudes. The relaxed DMs [eq. (22)], on the other hand, have

an extra advantage of giving the correct first-order response properties.108,109 Indeed, the

relaxed CCSD DMs have been used to evaluate the DMET energy by other authors.80,81,85

However, for all systems tested in this work, numerical calculations suggest that BE based

on the unrelaxed DMs gives consistently better estimate for the total energy compared to

the relaxed ones (figs. S1 and S2). For this reason, results reported below are all based

on the unrelaxed CCSD DMs. While the source of this unanticipated result is still under

investigation, we note that similar results have been observed in our previous work using

MP2 as the local solver for BE.90

3 Computational Details

In what follows, we benchmark the accuracy and computational efficiency of BE on a series

of molecular systems of increasing size. The molecular structures are provided in Supporting

Information. BE is implemented in frankenstein111 that uses Libint2112 for integral eval-

uation and PySCF113 for the CCSD solver. The spin-restricted HF (RHF) and spin-restricted

CCSD are used as the low- and high-level theories, respectively.

As discussed in ref. 90, Schmidt decomposition-based embedding is not efficient for re-

covering the dynamic correlation in large basis sets and is best regarded as an approach to

full-valence active space (FVAS) calculations. We hence use a minimal basis (STO-3G114)

for all calculations in this work with def2-SVP/C115 as the auxiliary basis for DF. A true

FVAS implementation will be presented in a future work.
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To avoid bath disentanglement90 and reduce computational cost, core molecular orbitals

(MOs) are frozen as in previous works.85 The remaining MOs (both occupieds and virtuals)

are then localized by the Foster-Boys scheme116 to obtain the orthonormal LO basis. We

note that the known difficulties of localizing virtual orbitals87,117 are not observed here due

to the use of a minimal basis. For the FVAS calculations in larger bases, other strategies

that avoid explicit orbital localizations34,118 could potentially be used.

BE calculations using the atom-centered fragments up to n = 3 (see section 2.2) are

considered in this work and are denoted by BEn. The BE iteration is deemed converged when

the density matching error eq. (8) drops below τBE = 10−6, which roughly translates to an

error of 10−5 ∼ 10−4 Eh for the correlation energy. Since the computed BE correlation energy

is relatively insensitive to the shell-pair screening eq. (16), a relatively large threshold (τsp =

10−4) is employed, which introduces an error of ∼ 10−5Eh that is below the convergence

threshold above.

The total correlation energy from a full CCSD calculation (frozen core but no DF) using

PySCF is used as benchmark whenever possible. We also compare BE to a local correlation

method, DLPNO-CCSD, as implemented in ORCA119 whenever possible (frozen core and DF

using the same auxiliary basis). The standard parameters (e.g., thresholds for pair-selection)

in ORCA are used for DLPNO-CCSD and no attempts are made to tune them for the specific

systems studied in this work.

Finally, all timing data reported below are the wall time recorded on a single computa-

tional node that has 16 Intel E5-2650@2.00GHz CPU cores, 64 GB of memory, and 500 GB

of disk space. Any calculations requiring more memory/disk space are deemed failed. The

most time-consuming steps in the BE integral transform are formulated as matrix multipli-

cations and multithreaded by OpenMP, while the BE iteration is parallelized trivially since

different fragment calculations are independent. In both steps, a 10 ∼ 12-fold speedup is ob-

served on the 16-core machine mentioned above. For CCSD and DLPNO-CCSD, the default

parallelism provided by the respective software packages is used.
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4 Results and Discussion

4.1 Fullerenes 1

20 36 60 78 100
180 240

320
500

720

Figure 3: Molecular structure of the fullerene series studied in this work. The number of
carbon atoms for each molecule is shown in grey.

We first study a series of fullerene molecules ranging from 20 to 720 carbon atoms (fig. 3).

The smaller ones in this series (e.g., C20, C36, and C60) have been extensively studied at

various levels of theory,120–123 while the larger ones have been investigated only by more

approximate methods.124,125 Some of them exhibit strong electron correlation in the ground

state, while others do not or are still in debate.126,127 The versatile electronic structure of

these molecules render them a good test bed for benchmarking our method.

To benchmark the effect of fragment size and matching conditions on the accuracy of BE,

we first focus on C20 ∼ C100 where the full CCSD results are available. In fig. 4, we present the

relative error of the total correlation energy computed by BE2 and BE3. The DLPNO-CCSD

results are also included for comparison. For these molecules, the fragments in BE2 and

BE3 consist of 4 and 10 atoms, respectively. For BE2, adjacent fragments overlap through

individual atoms, and the intra-atomic populations and coherences are matched between

fragments. For BE3, fragments overlap through individual atoms and/or two adjacent atoms

(i.e., chemical bonds). Hence, one can choose to match only the intra-atomic properties on
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Figure 4: Percentage error of the total correlation energy computed by BE (with different-
sized fragments and matching conditions, see the main text) and DLPNO-CCSD for five E-
polyacetylene fullerene molecules. BEn(0) denotes the one-shot calculation without density
matching. One can see that the error of BE3/BE3’ is consistently below ±0.5% (highlited
in grey).

individual atoms (denoted by BE3’ in fig. 4) or additionally the inter-atomic coherences

across chemical bonds (denoted by BE3 in fig. 4). For both BE2 and BE3, we also present

the one-shot results (i.e., without density matching) for comparison [denoted by BEn(0)].

Several observations can be made from fig. 4. First and perhaps quite remarkably, without

density matching the error of BE3(0) is consistently higher than that of BE2(0) in almost

all cases [except for C20 where BE3(0) with 10-atom fragments almost amounts to a full

CCSD calculation]. This should be compared to the calculations with density matching

which, in sharp contrast, greatly reduce the error of the one-shot results [BE2 vs BE2(0);

BE3/BE3’ vs BE3(0)] and show monotonic convergence with fragment size (BE3/BE3’ vs

BE2). These observations highlight the importance of reducing the surface error of the

embedded fragments, which in BE is achieved self-consistently through the inter-fragment

density matching. Second, the improvement obtained by matching the coherences across

chemical bonds in BE3 is marginal for these molecules: both BE3 and BE3’ deliver very

accurate results that falls in the window of ±0.5% of error in all cases. This performance

is comparable to that of DLPNO-CCSD, even though they approximate the full-system
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calculations in very different manners.

(a) (b)

Figure 5: Computational time of (a) the integral transform and (b) the first CCSD cycle
(for BE, the first BE iteration cycle) for BE2, BE3, DLPNO-CCSD and CCSD applied to a
series of fullerene molecules. The apparent scaling factor γ obtained from fitting to aNγ + b
is reported for each series of data. BE exhibits the expected cubic (for integral transform)
and linear (for BE iteration) scaling and compares favorably to DLPNO.

Having established the accuracy of BE, we now turn to benchmark its computational

efficiency using all molecules shown in fig. 3. The wall time of the BE integral transform

and the first BE iteration cycle is presented in fig. 5 together with both CCSD and DLPNO-

CCSD for comparison (for these two, the time of the first CCSD cycle is plotted in fig. 5b).

The apparent scaling factor γ is labelled for each series of data. For CCSD and DLPNO-

CCSD, we managed to obtain results up to C100 and C240, respectively. Larger calculations

failed due to exceeding the memory and/or disk space limit (section 3).

For the integral transform (fig. 5a), BE displays the expected O(N3) scaling owing to the

integral screening [eqs. (15) and (16)]. The cubic scaling of BE is lower than the fifth-power

scaling of full CCSD but still higher than the almost linear scaling [O(N1.5)] of DLPNO due

to the use of global DF as discussed in section 2.3. Nevertheless, the wall time of BE3 is

an order of magnitude lower than that of DLPNO for almost all cases, and also becomes

lower than the full CCSD starting from C78. This observation indicates that for these quasi-

2D, conjugated systems, the embedding strategy ("bottom-up") can be more efficient in

exploring the locality of the electron correlation than the local correlation scheme ("top-
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down"), potentially due to the small HOMO-LUMO gaps degrading the effectiveness of the

latter (e.g., the pair selection process in DLPNO). This efficiency difference is also reflected

in the storage requirement: the integral transform of BE can be performed completely in

memory (except for the final results, which are stored on disk) even for the largest calculation

(C720/BE3). DLPNO, by contrast, requires more than 500 GB of disk space for C320 using

the standard parameters in ORCA.

For the iteration step (fig. 5b), BE displays the expected linear scaling similar to DLPNO

[O(N0.9)]. BE3 also becomes comparable to DLPNO in the actual computational time

starting at C78. The computational efficiency of BE, as discussed above, is a result of both

an improved density matching algorithm (section 2.4) and a streamlined fragment choice

(section 2.2). We also emphasize the importance of different fragment calculations being

independent, which leads to constantly high parallelism of BE especially for large systems

(section 3). In contrast, the parallelism of PySCF’s full CCSD calculations degrades as system

size grows, leading to an eighth-power apparent scaling that is much higher than the O(N6)

formal scaling.

It is also interesting to note how differently the computational cost grows with fragment

size in the two steps: BE3 is ∼ 3 times slower than BE2 for the integral transform (fig. 5a),

but the ratio raises to > 100 for the iteration step (fig. 5b). Such a large difference can be

understood from the scaling dependence on the fragment size for each step. The integral

transform scales linearly with fragment size through the dependence on Nap (table 1), while

the BE iteration scales as the sixth-power with fragment size when using CCSD as the local

solver. However, since the integral transform dominates the overall cost for large molecules,

the overall cost of BE grows only linearly with fragment size in this size regime. This mild

dependence on fragment size is crucial for obtaining the accurate BE3 results in fig. 4.
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4.2 E-polyacetylenes

In the above example, BE displays comparable or even higher computational efficiency com-

pared to the more established local correlation method, DLPNO. This trend, however, does

not always hold. Here, we show a simple example, E-polyacetylenes (C2kH2k+2), where BE

fails to outperform DLPNO for reducing the computational cost of full CCSD.

(a) (b)

Figure 6: Computational time of (a) the integral transform and (b) the first CCSD cycle
(for BE, the first BE iteration cycle) for BE2, BE3, DLPNO-CCSD and CCSD applied to a
series of E-polyacetylene molecules (C2k in the x-axis is short for C2kH2k+2). The apparent
scaling factor γ obtained from fitting to aNγ + b is reported for each series of data. Note
that the DLPNO wall time of both steps increases abruptly at C160, which is attributed to
the increased size of the ERIs eventually exceeding the memory limit of 4 GB per CPU core
(section 3) beyond C160 (fig. S5 and table S2).

The timing data that parallel fig. 5 are presented in fig. 6 for E-polyacetylenes from 16

to 512 carbon atoms. While BE displays the same apparent scalings as above and becomes

faster than full CCSD even for C48H50, the relative overhead between BE and DLPNO is

much higher compared to the previous example. For the integral transform (fig. 6a), BE3

has a similar wall time compared to DLPNO for small molecules, but becomes slower than

DLPNO for larger ones due to the higher computational scaling (cubic vs nearly linear). This

comparison highlights the effect of local DF in reducing the computational cost especially

for systems of low dimensions. Another con of using global DF is the need to invert an

Naux×Naux matrix [S]PQ in eq. (18), which poses a numerical challenge for large molecules.
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Indeed, even though the extrapolated wall time from fig. 6a suggests that a BE3 calculation

could be performed for C1024H1026 in ∼ 105 s, in practice the Cholesky decomposition fails

for inverting [S]PQ even for E-polyacetylenes beyond C512H514.

For the iteration step (fig. 6b), the wall time of both BE2 and BE3 is significantly higher

than that of DLPNO in almost all cases. A detailed examination of the BE calculations

suggests that the BFGS algorithm (section 2.4) still performs very well for solving eq. (19)

(convergence achieved in 3 ∼ 5 cycles for all fragments and all molecules). Thus, the large

overhead of the BE iteration observed here mainly reflects the inefficiency of the local solver

itself: the regular CCSD solver could be adapted to better exploit the locality structure of

the embedding Hamiltonians.

Despite the loss in computational efficiency, the accuracy of BE follows a similar trend

as in the previous example. A figure that parallels fig. 4 for the first five E-polyacetylene

molecules in the series (16 ∼ 80 carbon atoms) is presented in Supporting Information (fig.

S3). As can be seen from the plot, the error of the total correlation energy computed using

BE3 and BE3’ consistently falls in the window of ±0.2%, which is comparable to DLPNO.

5 Conclusion

In conclusion, we show in this work that BE provides an efficient approach to the correlated

calculations of large molecules. Specifically, BE with CCSD as the local solver and using

atom-centered fragments including up to the second nearest neighbors (i.e., BE3) successfully

reproduces the total correlation energy of full CCSD calculations with a typical error less

than 0.5%. Both the accuracy and computational efficiency are comparable to the more

established local correlation method, DLPNO, making BE a promising candidate for more

practical applications.

The implementation of BE presented here can be further improved from several per-

spectives. First, both the time and space complexities of the BE integral transform can be
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reduced by an order of magnitude by replacing the global DF with a local one.38,41,103,104

Second, the locality of the embedding Hamiltonians could be exploited by the local solver

to further lower the overhead of the BE iteration step. These two improvements will render

BE more competitive compared to the existing methods.

In the future, BE could be extended in several directions. First, although the relative

error of BE energy is low, this accuracy may not translate to the energy change of a reaction

due to an “unbalanced” description of different states by BE. Thus, it is necessary to system-

atically benchmark BE’s performance of predicting energy differences in a practical setting.

Second, although the Foster-Boys orbitals work well in this work, there are many other op-

tions for orbital localization34,118,128–130 that could potentially further boost the performance

of BE. Thus, a systematic investigation on the effect of different LOs is a straightforward but

nonetheless very important next step. Third, as long as the integral transform dominates

the computational cost, using a local solver beyond CCSD would not significantly increase

the computational time but could potentially improve BE’s accuracy. Fourth, the minimal-

basis implementation developed here could be extended to perform FVAS calculations to

recover the valence electron correlation in larger basis sets (e.g., applying BE to the sub-

space spanned by localized valence orbitals118). The remaining electron correlation, mainly

weak and dynamic in nature, could potentially be described at a low cost by perturbation

theory.131 In addition, although the fixed RHF bath works well in this work, there are cases

where the quality of the bath is important.72,81 Thus, one can either adopt a better bath

wave function83,94 or perform explicit bath optimization.81 Last but not least, the theory

presented here for molecules is applicable to general chemical systems including solid-state

materials. BE hence may offer a convenient approach to the correlated calculations in solids.
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Supporting Information (i) Derivation of the Schmidt decomposition of a mean-field

state. (ii) Proof of eq. (11). (iii) Comparing the accuracy of BE correlation energy computed

using the relaxed and the unrelaxed CCSD DMs. (iv) Error of BE correlation energy of

E-polyacetylene molecules from C16H18 to C80H82. (v) Rate of convergence of the BFGS

algorithm for different fragment size and matching conditions. (vi) Timing data of selected

steps of E-polyacetylenes DLPNO calculations. (vii) Structures of all molecules studied in

this work.
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