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Abstract—We analyze the optimization landscape of a re-
cently introduced tunable class of loss functions called «-loss,
a € (0,00], in the logistic model. This family encapsulates
the exponential loss (« = 1/2), the log-loss (¢« = 1), and
the 0-1 loss (&« = oo0) and contains compelling properties that
enable the practitioner to discern among a host of operating
conditions relevant to emerging learning methods. Specifically, we
study the evolution of the optimization landscape of a-loss with
respect to « using tools drawn from the study of strictly-locally-
quasi-convex functions in addition to geometric techniques. We
interpret these results in terms of optimization complexity via
normalized gradient descent.

I. INTRODUCTION

The performance of a classification algorithm, in terms of
accuracy, tractability, and convergence guarantees crucially
depends on the choice of the loss function during training.
Consider a feature vector X € X, an unknown finite-valued
label Y € ), and a hypothesis h : X — ). The canonical
0-1 loss, given by 1[h(X) # Y], is considered an ideal loss
function that captures the probability of incorrectly guessing
the true label Y using h(X). However, since the 0-1 loss is
neither continuous nor differentiable, its applicability in state-
of-the-art learning algorithms is highly restricted.

Surrogate loss functions that approximate the 0-1 loss
such as log-loss, exponential loss, sigmoid loss, etc. have
generated much interest [1]-[14]. While early research was
predominantly focused on convex losses [1], [3]-[5], more
recent works propose the use of non-convex losses as a means
to moderate the behavior of an algorithm [2], [6], [10], [12].
This is primarily due to the fact that modern learning models
(e.g., deep learning) are inherently non-convex as they involve
vast functional compositions [15]; further, non-convex losses
are also believed to provide increased robustness over convex
losses [2], [6], [10], [12].

There have been numerous theoretical attempts to capture
the non-convex optimization landscape which is the loss
surface induced by the learning model, underlying distribution,
and the surrogate loss function itself [12], [16]-[22]. Notably,
Hazan et al. [16] propose the notion of Strict-Local-Quasi-
Convexity (SLQC) to parametrically quantify quasi-convex
functions, and provide convergence guarantees for the effi-
ciency of the Normalized Gradient Descent (NGD) algorithm
(originally introduced in [23]) optimizing such functions.

In [13], Sypherd et al. introduce a tunable class of loss
functions called a-loss, o € [1,00], which includes log-
loss (o« = 1) and the soft 0-1 loss (¢ = o0); they prove
that it satisfies many desirable properties for surrogate losses
including the notion of classification-calibration [1]. In the
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extended version of this paper [14], Sypherd et al. extend
a-loss to the range o € (0, 00] which includes exponential
loss (@« = 1/2); they prove that the extended range of «
also induces classification-calibrated losses and has desirable
convexity characteristics. Further, they show experimentally
that, relative to log-loss (o« = 1), & > 1 achieves increased
robustness to noise while o < 1 achieves better accuracy for
imbalanced classes.

In this paper, we present three main contributions for the
logistic model (the hypothesis class of sigmoid soft classi-
fiers [24]): (i) we show that the expected risk under a-loss
is strongly convex for o € (0,1] (under mild distribution
assumptions); (ii) we provide, in a quantitative manner, bounds
for the evolution of the SLQC parameters of the expected
risk of a-loss as « increases, which is most useful in a
neighborhood of ap = 1 when combined with the first result;
(iii)) we study a saturation effect of a-loss in the logistic
model, i.e., how the distance between the expected risk for
a > 1 quickly resembles the expected risk of @ = oco. As
a byproduct of the analysis in the second point, we prove
an equivalent form of the SLQC definition that can be of
independent interest. Based on our theoretical analysis into
the evolution of the optimization landscape with respect to «,
we ultimately posit that there is a small range of o useful
to the practitioner, thereby drastically reducing the search for
the optimal value of « in practice. Further, via the saturation
effect, we argue that this narrow search in « is sufficient for
the logistic model.

II. PRELIMINARIES
A. a-loss Definition and Interpretations

Definition 1. Let P()) be the set of probability distributions
over Y. For a € (0,00], we define a-loss for o € (0,1) U
(1,00), 1 : Y x P(Y) = Ry as

Iy Pr) = S L= Pe@) e

and, by continuous extension, I*(y, Py) := —log Py (y) and
1°°(y, Py) :== 1 = Py (y).

Note that I*/2(y, Py) := Py ' (y)—1. We refer to [!/2 as the
soft exponential loss and [*° as the soft 0-1 loss; observe that
I' recovers log-loss. For (y, Py) fixed, note that [®(y, Py)
is continuous in «. The above definition of a-loss presents
a tunable class of loss functions that value the probabilistic
estimate of the label differently as a function of a.

Consider random variables (X,Y) ~ Pxy. Observing
X, one can construct an estimate Y of Y such that Y —
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X — Y form a Markov chain. One can use expected a-
loss Ex,y[I*(Y, Py |y )], hence called a-risk, to quantify the
effectiveness of the estimated posterior Pf’l - In particular,

Exy [0, Pyx)| = Ex [H(Pyix—as Pyix,)| . @

where H(P,Q) := H(P) + Dk.(P||Q) is the cross-entropy
between P and (). Similarly,

3

i.e., the expected a-loss for o« = co equals the probability of
error. Recall that the expectation of the 0-1 loss is also the
probability of error [25]; thus, we say that a-loss for a = oo
is a soft version of the 0-1 loss. The following result by Liao et
al. provides an explicit characterization of the risk-minimizing
posterior under «-loss.

Ex y[I®(Y, Py )] = BIY # 7],

Proposition 1 ( [26, Lemma 1]). For each « € [1,00], the
minimal o-risk is

IIDTliIl EX,Y [la (Yf7 P{,lx)]

YIXx

- (1 _ el‘TﬂH:(Y\m)
a—1 ’
G
1o 08 > (Z Py y(z, y)a) is the
— A\ 5
Arimoto conditional entropy of order o [27]. The resulting

unique minimizer, P)T,‘ «Wlz), is the a-tilted true posterior

where HA(Y|X) = a

P )
P;; X(y|fﬂ) _ vx (ylz) _. (5)
| > Pyix(ylz)
y

The proof of Proposition 1 can be found in [26] and is
easily extended to the case where o € (0,1). For a = oo,
minimizing the corresponding risk leads to making a single
guess on the most likely label; on the other hand, for a =1,
such a risk minimization involves minimizing the average log-
loss, and therefore, obtaining the true posterior belief.

We note that a-loss exhibits different operating conditions
through the choice of «; see [14] for experimental considera-
tion of robustness and class imbalance trade-offs. With respect
to (5), as « increases from 1 to oo, a-loss increasingly limits
the effect of low probability outcomes; on the other hand, as «
decreases from 1 towards 0, a-loss places increasingly higher
weights on low probability outcomes.

B. Strict-Local-Quasi-Convexity

We briefly review Strict-Local-Quasi-Convexity which was
introduced by Hazan et al. in [16]. For 6y € R and r > 0, we
let By(0o,7) := {0 € R%: ||§ — 6| < r}. For simplicity, we
let By4(r) = B4(0,7); also note that all norms are Euclidean.

Definition 2. Let 0,0y € R%, k,e > 0. We say that f : R? —
R is (e, K, 0p)-Strictly-Locally-Quasi-Convex (SLQC) in 0, if
at least one of the following applies:
D f(0) = f(6o) <e
2) IVf(0)]| > 0, and for every 8’ € By(0o,€/k) it holds
that (Vf(0),60' — 0) <O0.

Intuitively, if 6y is fixed, then, for every 6, either f(6) is
e-close to f(fp) or the constraint cone induced by the set of
6’ about g requires quasi-convex functional descent behavior.
This relaxed notion of quasi-convexity aligns with a natural
adaptation of the Gradient Descent (GD) algorithm, namely,
Normalized Gradient Descent (NGD) [16] as summarized in
Algorithm 1 below. Similar to the convergence guarantees for

Algorithm 1 Normalized Gradient Descent (NGD)
1: Input: T Iterations, §; € R, learning rate n > 0
2. fort=1,2,...,7 do
V()

3: Update: 041 = 0 — ="t
R NI
4: Return 07 = argmin f(6;)

15,01

GD for convex functions, the following result by Hazan et al.
summarizes such guarantees of NGD for SLQC functions.

Proposition 2 ([16, Theorem 4.1]). Fixe > 0, let f : R - R,
and 0* = argmingcpa f(0). If f is (€,K,0%)-SLQC in every
0 € R, then by running Algorithm 1 with 1 = ¢/k and
T > k2|0, — 0%||?/€%, we have f(Or) — f(0*) < e

For an (e, k, 0y)-SLQC function, a smaller € provides better
optimality guarantees. Given € > 0, smaller « leads to faster
optimization as the number of required iterations increases
with 2. Finally, by using projections, NGD can be easily
adapted to work over convex and closed sets including B4(r).

III. LANDSCAPE EVOLUTION IN THE LOGISTIC MODEL

a=0.95

X~

100 -100

a-Risk
o o
%> © -

o
3

=1s)
S>

100 100
o' 62 o' 92

100 -100

Figure 1. The landscape of a-loss (R for o = 0.95, 1,2, 10) in the logistic
model, where features are normalized and » = 100, for a 2D-GMM with
PY = —-1] = 012 = 1 - PY = 1], HX|Y=—1 = [-0.18,1.49],
fx|y—1 = [~0.01,0.16], $_; = [3.20, —2.02; —2.01,2.71], and 51 =
[4.19,1.27;1.27,0.90].

In this section, we quantify the optimization complexity
of NGD by characterizing the SLQC constants (¢ and k)
of the a-risk within a neighborhood of @ = 1 (log-loss)
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in the logistic model. For « < 1, we find that the a-risk
is strongly convex under mild distributional assumptions; for
o > 1 we reinterpret the SLQC definition to provide bounds on
SLQC constants as « increases. Finally, we provide a result
which characterizes a saturation effect of the a-risk in the
logistic model, i.e., the fact that the a-risk observes uniform
convergence with respect to v = oo as « increases.

Prior to stating our main results, we clarify the setting
and provide necessary definitions. Let X € By(1) := {x €
R? : ||z|| < 1} be the normalized feature, Y € {—1,+1}
the label and S, = {(X;,Y:) : ¢ = 1,...,n} the training
dataset where, for each i € {1,...,n}, the samples (X;,Y;)
are independently drawn according to an unknown distribution
Px y. For a given r > 0, we consider the logistic model and its
associated hypothesis class G = {gg : 6 € B4(r)}, composed
of parameterized soft classifiers gy such that

g0(x) = ({0, z)), (6)
with o : R — [0, 1] being the sigmoid function given by
1
o) = 1 )

For convenience, we present the following short form of a-
loss in the logistic model which is equivalent to the expanded
expression in [13]. For a € (0, 00], a-loss is given by

1%(y, 90(x)) = % 1- ge(yl’)l_l/“} . (8)

For = 1, [! is the logistic loss and we recover logistic
regression by optimizing this loss. Further, note that in this
setting y - (x, 0) is the margin, and (8) is convex for a € (0, 1]
and quasi-convex for a > 1 in y - (z,0); see the extended
version [14] for proofs of these facts.

For 6 € B4(r), we define the a-risk R, as the risk of (8),

Ra(ﬁ) = Exvy[la(Y, gg(X))] (9)

The a-risk (9) is plotted for several values of « in a two-
dimensional Gaussian Mixture Model (GMM) in Figure 1.
Further, observe that, for all § € By(r),

Roo(0) == Exy [I™(Y,9s(X)] =P[Y #Y4],  (10)

where Yp is a random variable such that for all z € By(1),
PlYy = 1|X = z] = go(x).

In order to study the landscape of the a-risk, we compute
the gradient and Hessian of (8), by employing the following
useful properties of the sigmoid
o(—z)=1-o0(2).

d
Qa(z) =o0(2)(1 —0o(2)); (11)

Indeed, a straightforward computation shows that

o 90() = [~ygelu) (1 goly))] 0, (12)

where 67, 27 denote the j-th components of @ and x, respec-
tively. Thus, the gradient of a-loss in (8) is

Vol®(Y,90(X)) = Fi(o, 0, X,Y)X, (13)

where Fy(a, 0, x,y) is the expression within brackets in (12).
Another straightforward computation yields

V3 (Y, g9(X)) = Fo(a,0, X, V)X X7, (14)

where F5 is given by

Fa(a,0,2,9) = gi~" (yz) (gh(yx) — (1 — @) g3 (—ya)).

We now turn our attention to the case where « € (0, 1]; we
find that for this regime, R,, is strongly convex; see Figure 1.
Prior to stating the result, for two matrices A, B € R%*¢,
we let > denote the Loewner (partial) order in the positive
semi-definite cone. That is, we write A > B when A — B is
a positive semi-definite matrix. For a matrix A € R*9, let
A1(A), ..., Aq(A) be its eigenvalues. Finally, we recall that a
function is m-strongly convex if and only if its Hessian has
minimum eigenvalue m > 0 [28].

Theorem 1. Let X := E[XXT|. If a € (0,1], then R, (0) is
Ao, r) min;eq Ai (X)-strongly convex in 0 € By(r), where

Aa,r) = o7V (r) (U'/(T‘) - (1 - a_l) 02(77”)) . (15)

Proof. For each a € (0,1], it can readily be shown that
each component of Fy(«, 6, x,y) is positive and monotonic
in (0, ), which implies that Fy(a, 8, 2,y) > Ala,r) > 0.
Now, consider R, (0) = E[I*(Y, go(X))]. We have
ViRa(0) = Ex,y[V5I*(Y, 90(X))]
=Exy[F2(a,0, X, Y)XXT]
> Ao, ")E[XXT)
= Ao, )X >0,

(16)
a7

where we used an identity of positive semi-definite matrices
for (16) (see, e.g., [29, Ch. 7]); for (17), we used the fact
that A(«,r) > 0 and we recognize that 3 is positive semi-
definite as it is the autocorrelation of the random vector
X € Ba(1) (see, e.g., [30, Ch. 7]). We also note that
min;eq Ai (X) > 0 (see, e.g., [29, Ch. 7]). Thus, V2R, (0)
is positive semi-definite for every 6 € B,(r). Therefore,
since Amin(VZRo(0)) > Ao, 7)mingepq \i () > 0 for
every 0 € By(r) [29, Corollary 4.3.12], we have that R, is
A(a,7) mingeq A; (X)-strongly convex for a € (0, 1]. O

Observe that for 7 > 0, A(a, r) is monotonically decreasing
in «. Therefore, R, becomes more strongly convex as «
approaches zero. It can be shown that R, is C. ,-Lipschitz in
0 where C,,, := o(r)(1 — o(r))'~/*. Thus, in conjunction
with Theorem 1 and a result by Hazan er al. in [16] (after
Definition 3) which holds by assuming > > 0, we provide
the following corollary which explicitly characterizes SLQC
constants of R, for a € (0,1].

Corollary 1. If0 < a <1, ¥ >0, and 0y € By(r), then, for
every € > 0, the c-risk Ry, is (€,Ch o, 00)-SLQC in 0 € By(r)
where C,. o, = a(r)(1 — o(r))t=1/e,

As o tends to zero, C). , tends to infinity which implies that
the learning rate of NGD, 1, = €¢/k, = €¢/C, , also tends
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to zero. Thus, by Proposition 2, the number of iterations of
NGD, T,, tends to infinity as « tends to zero. Therefore, for
a € (0,1], there is a trade-off in the desired strong-convexity
of R, and the computational complexity of NGD.

Next, we study the evolution of SLQC parameters of R, in a
neighborhood of @ = 1 as we increase . Since R,, tends more
towards the probability of error (expectation of 0-1 loss) as
approaches infinity, we find that SLQC constants deteriorate
and the computational complexity of NGD increases as we
increase ov. Our next main result leverages the following novel
lemma, which is a structural result for general differentiable
functions that provides an alternative formulation of the second
requirement of SLQC functions in Definition 2; proof details
and illustrations can be found in the extended version [14].

Lemma 1. Assume that f : R¢ — R is differentiable, 6, € R¢
and p > 0. If 0 € R? is such that ||0 — 6| > p, then the
following are equivalent:

1. (=Vf(0),0' —8) >0 for all ¢ € By (0o, p),

2. (=Vf(0),00 — 0) = pl[Vf(O)]|

Intuitively, Lemma 1 reformulates the SLQC requirement
that the gradient points in the ‘right’ direction into an expres-
sion which is reminiscent of a Cauchy-Schwarz inequality.

We now present two Lipschitz inequalities which will be
useful in the sequel. In the extended version [14], Sypherd et
al. show that for « € [1,00], R, is L.-Lipschitz in o where

(r +log2)?
—

It can similarly be shown that for o € [1,00], VR, is J,-
Lipschitz in a1 € [0, 1] where

L, = (18)

Jp = (r +log2)o(r). (19)
Finally, for ease of notation, let
IU“),E(),T(QO) = eelé}if(lr) HVRO«) (6) || (20)

Raq (0)—Rag (00)>¢€g

Using Lemma 1 and the Lipschitz relations (18) and (19), we
provide the following result which gives precise bounds on the
degradation of SLQC constants for any initial o € [1, o).

Theorem 2. Let o € [1,00], €9, k0 > 0, and 0y € By(r). If
R, is (€0, Ko,00)-SLQOC in 6 € By(r), and

Oé Oé() €0, T(HO)

0<a—ag< ; 2D
27, (1+7r2)
then R, is (€, k,00)-SLOC in 0 € By(r) with
e=¢ey+2L-(a— ag), (22)
and
e _a (1 + 27“:—3) Jp (o — ) -
K Ko acplageo,r(00) — Jr(a—ag) |
Proof. For ease of notation let pg = E(; and p = . Let

6 € B4(r) be arbitrary and consider the following cases.

Case 1: If R,,(0) — Ra,(00) < €, then,

Ro (9) — Rq (90) =R, (9) - Rao (9) + Rao (6)
- RO‘(] (90) + Ra() (90> — R, (00)
< Lpla—ap|l + € + Le(a — ap).  (24)
Since €9 + 2L, (o — ap) = €, we have R, (0) — R (6p) < e.

Case 2: If R,,(0) — Ra,(6o) > €0, then, since R,, is
(€0, k0,00)-SLQC in 6 by assumption, we have that
IVRa, (0)]] > 0, and for every 6’ € B(6y, po) it holds that
(VRa,(0),00 — ) < 0. By Lemma 1, we want to prove that

(=VRa(0),00 — 0) = pl VR (0)]], (25)
for p given by (23). By the Cauchy-Schwarz inequality,
<_VRoc(0)a o — 9> > <_VR040(9)700 - 9)
— VR (8) = VRa, (9)][1160 — 0
> pol| VRay (0)]| = Jr(ag" —a™h)2r, (26)
since VR, is J,-Lipschitz in ! and 6y — 0 € By(2r), and
since R, is SLQC, we apply Lemma 1. For ease of notation,
we temporarily let A = J,.(ay ' —a~!). Continuing, we have
PollV Rao (0)]| — A2r > po|| VR (0)|| — A2r
— p0l[VRay (0) = VR4 (0) ||

> pol|[VR&(0)|| — A(po + 2r), (27)

which follows by the reverse triangle inequality and since
VR, (0) is J.-Lipschitz in o~!. Further, we have that

0 < Jageor(fo) = Jr(ag ' —a™h) < [VRa(O)ll,  (28)

which follows by the reverse triangle inequality, by the fact
that VR, (0) is J,-Lipschitz in ™!, and the definition of « in
(21) since & < A lng e (00)J 1 + o and af < aay. Thus,
returning to (27), we let I' = A(pg+2r) and I = I, ¢, (00)
for ease of notation and we have

r
IV Rl =T = IV Ra(O)] (0~ 1
IVR(0)]
(pO + QT)JT )
> ||VR,(6 — 29
> 9RO (- ) @
where we used the inequality in (28). Since we assume that
2
I
0§a7a0<L71, 30)
2J, (1 +7p, )
returning to (29), it can be shown using ozg < aqq that
1+ 2rpyt)J,
(1+ o) <1 31)
Iag" —a= )=t —J,
Therefore, we finally obtain that
<7VR04(9)790 - 9) Z IOHVRQ(Q)”v (32)
where p > 0 is given by
(1+2rpg ) Jr )
= 1- 33
4 Po ( I(Oégl — &71)71 — JT ( )
as desired. O
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Combining Corollary 1 and Theorem 2, we provide the
following corollary which quantifies the evolution of SLQC
constants for g = 1 as « increases.

Corollary 2. Let ¥ >0, ag =1, €9 > 0, and 6y € By(r). If
I&oﬁoyT(GO)

0<a—1< —oowrifo) (34)
o(r)
27, (14 r22)
then R, is (€,k,00)-SLOC in 6 € B,(r) with
e=¢€y+2L.(a—1), (35)
and
o(r)
o, (1+2r%2) J(a = 1) 6
K G(T) a[au,éoﬂ'( 0) - ‘]T(a - 1)
a=1 o =1.001

a-Risk
a-Risk

Figure 2. The landscape of a-loss, Rn (o = 1,1.001) in the logistic
model, where the features are normalized and r = 5, for a 2D-GMM with
Py = 1] = P[Y = =1}, pxjy=—1 = [04,04], px|y=1 = [1,1],

= [3,0.2;0.2,1.5]. For « = 1, the red region depicts €y/ko which
is calculated using Corollary 1 about g, where g is set to be the global
minimum of Ry and is depicted by the star; for illustrative purposes, we set
€0 = 0.4 and it is depicted by the yellow plane. For o = 1.001, the red
region depicts €/ about 0 (the star) and € is also depicted by the yellow
plane; both quantities approximate the bounds given by Corollary 2.

An illustration of the degradation of SLQC constants as
specified by Corollary 2 for increasing « is presented in
Figure 2 for a two-dimensional GMM. Intuitively, we find that
for a fixed 6y € B4(r), increasing « is equivalent to reducing
the radius of the €¢/x ball about 6, and increasing the value
of e. Both of these effects hinder the optimization process and
increase the required number of iterations of NGD as stated
in Proposition 2.

While the learning practitioner would ultimately like to
approximate the intractable 0-1 loss (approximated by a =
00), the bounds presented in Theorem 2 suggest that the
computational complexity of NGD quickly worsens as «
increases. Fortunately, in the logistic model, a-loss exhibits
a saturation effect whereby smaller values of « resemble the

landscape induced by o = co. More concretely, the saturation
effect of a-loss is the fact that the uniform distance between
R, and R, decreases geometrically in o as summarized by
the following lemma.

Lemma 2. If o, € [1,00], then for all § € B4(r),

; (37

where L, is given in (18).

See Figure 3 for an illustration which depicts how quickly
the landscape for a > 1 resembles the a = oo landscape.

%
0‘3'3'. i

i ‘“\"://':\‘ m\

‘0 “ \\ “. O
i \‘}\\}}}\l("“"“,,\. i

o‘o‘om

R 1‘ \
"' /"%\ \ \\\
ik 0

’ (R
m ...‘.0"

‘o
S
0%
5

a-Risk
a-Risk

-100
-100
0
[

100 100
02 91 92

-100

100 100 1
[4

Figure 3. An illustration of the saturation effect of a-loss (Ro for a =
4,00) in the logistic model, where features are normalized and » = 100,
for a 2D-GMM with P[Y = —1] = 0.61 = 1 = P[Y = 1], px|y——1 =
[-0.14,0.21], EX|y=1 = [0.06,0.43], ¥_1 = [0.38,0.25;0.25, 3.17],
and X = [2.07, —1.62; —1.62,1.97].

IV. CONCLUDING REMARKS

In this work, we analyze the evolution of the a-loss land-
scape in the logistic model by examining different regimes
of a. As o approaches zero, R, becomes more strongly
convex (see Theorem 1), but the computational complexity
of NGD increases since the Lipschitz constant of R, grows.
As « approaches infinity, R, becomes more non-convex
since SLQC parameters degrade (see Theorem 2), which also
increases the computational complexity of NGD; however,
accuracy increases since the landscape of a-loss tends towards
that of the oo-loss, i.e., the 0-1 loss. Combining Corollary 1
and Theorem 2, we provide explicit bounds to quantify the
evolution of SLQC parameters of R, in the logistic model
for o in a neighborhood of 1 (see Corollary 2). Using a
moderately large «, a-loss leads to similar performance as the
desired, and computationally harder to optimize, 0-1 loss (see
Lemma 2); this is a saturation effect of a-loss in the logistic
model. Therefore, for the logistic model, we ultimately posit
that there is a narrow range of « useful to the practitioner.
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