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Abstract—We analyze the optimization landscape of a re-
cently introduced tunable class of loss functions called α-loss,
α ∈ (0,∞], in the logistic model. This family encapsulates
the exponential loss (α = 1/2), the log-loss (α = 1), and
the 0-1 loss (α = ∞) and contains compelling properties that
enable the practitioner to discern among a host of operating
conditions relevant to emerging learning methods. Specifically, we
study the evolution of the optimization landscape of α-loss with
respect to α using tools drawn from the study of strictly-locally-
quasi-convex functions in addition to geometric techniques. We
interpret these results in terms of optimization complexity via
normalized gradient descent.

I. INTRODUCTION

The performance of a classification algorithm, in terms of
accuracy, tractability, and convergence guarantees crucially
depends on the choice of the loss function during training.
Consider a feature vector X ∈ X , an unknown finite-valued
label Y ∈ Y , and a hypothesis h : X → Y . The canonical
0-1 loss, given by 1[h(X) 6= Y ], is considered an ideal loss
function that captures the probability of incorrectly guessing
the true label Y using h(X). However, since the 0-1 loss is
neither continuous nor differentiable, its applicability in state-
of-the-art learning algorithms is highly restricted.

Surrogate loss functions that approximate the 0-1 loss
such as log-loss, exponential loss, sigmoid loss, etc. have
generated much interest [1]–[14]. While early research was
predominantly focused on convex losses [1], [3]–[5], more
recent works propose the use of non-convex losses as a means
to moderate the behavior of an algorithm [2], [6], [10], [12].
This is primarily due to the fact that modern learning models
(e.g., deep learning) are inherently non-convex as they involve
vast functional compositions [15]; further, non-convex losses
are also believed to provide increased robustness over convex
losses [2], [6], [10], [12].

There have been numerous theoretical attempts to capture
the non-convex optimization landscape which is the loss
surface induced by the learning model, underlying distribution,
and the surrogate loss function itself [12], [16]–[22]. Notably,
Hazan et al. [16] propose the notion of Strict-Local-Quasi-
Convexity (SLQC) to parametrically quantify quasi-convex
functions, and provide convergence guarantees for the effi-
ciency of the Normalized Gradient Descent (NGD) algorithm
(originally introduced in [23]) optimizing such functions.

In [13], Sypherd et al. introduce a tunable class of loss
functions called α-loss, α ∈ [1,∞], which includes log-
loss (α = 1) and the soft 0-1 loss (α = ∞); they prove
that it satisfies many desirable properties for surrogate losses
including the notion of classification-calibration [1]. In the

extended version of this paper [14], Sypherd et al. extend
α-loss to the range α ∈ (0,∞] which includes exponential
loss (α = 1/2); they prove that the extended range of α
also induces classification-calibrated losses and has desirable
convexity characteristics. Further, they show experimentally
that, relative to log-loss (α = 1), α > 1 achieves increased
robustness to noise while α < 1 achieves better accuracy for
imbalanced classes.

In this paper, we present three main contributions for the
logistic model (the hypothesis class of sigmoid soft classi-
fiers [24]): (i) we show that the expected risk under α-loss
is strongly convex for α ∈ (0, 1] (under mild distribution
assumptions); (ii) we provide, in a quantitative manner, bounds
for the evolution of the SLQC parameters of the expected
risk of α-loss as α increases, which is most useful in a
neighborhood of α0 = 1 when combined with the first result;
(iii) we study a saturation effect of α-loss in the logistic
model, i.e., how the distance between the expected risk for
α ≥ 1 quickly resembles the expected risk of α = ∞. As
a byproduct of the analysis in the second point, we prove
an equivalent form of the SLQC definition that can be of
independent interest. Based on our theoretical analysis into
the evolution of the optimization landscape with respect to α,
we ultimately posit that there is a small range of α useful
to the practitioner, thereby drastically reducing the search for
the optimal value of α in practice. Further, via the saturation
effect, we argue that this narrow search in α is sufficient for
the logistic model.

II. PRELIMINARIES

A. α-loss Definition and Interpretations

Definition 1. Let P(Y) be the set of probability distributions
over Y . For α ∈ (0,∞], we define α-loss for α ∈ (0, 1) ∪
(1,∞), lα : Y × P(Y)→ R+ as

lα(y, PY ) :=
α

α− 1

[
1− PY (y)1−1/α

]
, (1)

and, by continuous extension, l1(y, PY ) := − logPY (y) and
l∞(y, PY ) := 1− PY (y).

Note that l1/2(y, PY ) := P−1Y (y)−1. We refer to l1/2 as the
soft exponential loss and l∞ as the soft 0-1 loss; observe that
l1 recovers log-loss. For (y, PY ) fixed, note that lα(y, PY )
is continuous in α. The above definition of α-loss presents
a tunable class of loss functions that value the probabilistic
estimate of the label differently as a function of α.

Consider random variables (X,Y ) ∼ PX,Y . Observing
X , one can construct an estimate Ŷ of Y such that Y −
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X − Ŷ form a Markov chain. One can use expected α-
loss EX,Y [lα(Y, PŶ |X)], hence called α-risk, to quantify the
effectiveness of the estimated posterior PŶ |X . In particular,

EX,Y
[
l1(Y, PŶ |X)

]
= EX

[
H(PY |X=x, PŶ |X=x)

]
, (2)

where H(P,Q) := H(P ) + DKL(P‖Q) is the cross-entropy
between P and Q. Similarly,

EX,Y [l∞(Y, PŶ |X)] = P[Y 6= Ŷ ], (3)

i.e., the expected α-loss for α =∞ equals the probability of
error. Recall that the expectation of the 0-1 loss is also the
probability of error [25]; thus, we say that α-loss for α =∞
is a soft version of the 0-1 loss. The following result by Liao et
al. provides an explicit characterization of the risk-minimizing
posterior under α-loss.

Proposition 1 ( [26, Lemma 1]). For each α ∈ [1,∞], the
minimal α-risk is

min
PŶ |X

EX,Y
[
lα(Y, PŶ |X)

]
=

α

α− 1

(
1− e

1−α
α HAα (Y |X)

)
,

(4)

where HA
α (Y |X) =

α

1− α
log
∑
y

(∑
x
PX,Y (x, y)α

)1/α
is the

Arimoto conditional entropy of order α [27]. The resulting
unique minimizer, P ∗

Ŷ |X(y|x), is the α-tilted true posterior

P ∗
Ŷ |X(y|x) =

PY |X(y|x)α∑
y
PY |X(y|x)α

. (5)

The proof of Proposition 1 can be found in [26] and is
easily extended to the case where α ∈ (0, 1). For α = ∞,
minimizing the corresponding risk leads to making a single
guess on the most likely label; on the other hand, for α = 1,
such a risk minimization involves minimizing the average log-
loss, and therefore, obtaining the true posterior belief.

We note that α-loss exhibits different operating conditions
through the choice of α; see [14] for experimental considera-
tion of robustness and class imbalance trade-offs. With respect
to (5), as α increases from 1 to ∞, α-loss increasingly limits
the effect of low probability outcomes; on the other hand, as α
decreases from 1 towards 0, α-loss places increasingly higher
weights on low probability outcomes.

B. Strict-Local-Quasi-Convexity

We briefly review Strict-Local-Quasi-Convexity which was
introduced by Hazan et al. in [16]. For θ0 ∈ Rd and r > 0, we
let Bd(θ0, r) := {θ ∈ Rd : ‖θ − θ0‖ ≤ r}. For simplicity, we
let Bd(r) = Bd(0, r); also note that all norms are Euclidean.

Definition 2. Let θ, θ0 ∈ Rd, κ, ε > 0. We say that f : Rd →
R is (ε, κ, θ0)-Strictly-Locally-Quasi-Convex (SLQC) in θ, if
at least one of the following applies:

1) f(θ)− f(θ0) ≤ ε.
2) ‖∇f(θ)‖ > 0, and for every θ′ ∈ Bd(θ0, ε/κ) it holds

that 〈∇f(θ), θ′ − θ〉 ≤ 0.

Intuitively, if θ0 is fixed, then, for every θ, either f(θ) is
ε-close to f(θ0) or the constraint cone induced by the set of
θ′ about θ0 requires quasi-convex functional descent behavior.
This relaxed notion of quasi-convexity aligns with a natural
adaptation of the Gradient Descent (GD) algorithm, namely,
Normalized Gradient Descent (NGD) [16] as summarized in
Algorithm 1 below. Similar to the convergence guarantees for

Algorithm 1 Normalized Gradient Descent (NGD)
1: Input: T Iterations, θ1 ∈ Rd, learning rate η > 0
2: for t = 1, 2, . . . , T do
3: Update: θt+1 = θt − η

∇f(θt)

‖∇f(θt)‖
4: Return θ̄T = arg min

θ1,...,θT

f(θt)

GD for convex functions, the following result by Hazan et al.
summarizes such guarantees of NGD for SLQC functions.

Proposition 2 ([16, Theorem 4.1]). Fix ε > 0, let f : Rd → R,
and θ∗ = arg minθ∈Rd f(θ). If f is (ε, κ, θ∗)-SLQC in every
θ ∈ Rd, then by running Algorithm 1 with η = ε/κ and
T ≥ κ2‖θ1 − θ∗‖2/ε2, we have f(θ̄T )− f(θ∗) ≤ ε.

For an (ε, κ, θ0)-SLQC function, a smaller ε provides better
optimality guarantees. Given ε > 0, smaller κ leads to faster
optimization as the number of required iterations increases
with κ2. Finally, by using projections, NGD can be easily
adapted to work over convex and closed sets including Bd(r).

III. LANDSCAPE EVOLUTION IN THE LOGISTIC MODEL
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Figure 1. The landscape of α-loss (Rα for α = 0.95, 1, 2, 10) in the logistic
model, where features are normalized and r = 100, for a 2D-GMM with
P[Y = −1] = 0.12 = 1 − P[Y = 1], µX|Y=−1 = [−0.18, 1.49],
µX|Y=1 = [−0.01, 0.16], Σ−1 = [3.20,−2.02;−2.01, 2.71], and Σ1 =
[4.19, 1.27; 1.27, 0.90].

In this section, we quantify the optimization complexity
of NGD by characterizing the SLQC constants (ε and κ)
of the α-risk within a neighborhood of α = 1 (log-loss)
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in the logistic model. For α ≤ 1, we find that the α-risk
is strongly convex under mild distributional assumptions; for
α > 1 we reinterpret the SLQC definition to provide bounds on
SLQC constants as α increases. Finally, we provide a result
which characterizes a saturation effect of the α-risk in the
logistic model, i.e., the fact that the α-risk observes uniform
convergence with respect to α =∞ as α increases.

Prior to stating our main results, we clarify the setting
and provide necessary definitions. Let X ∈ Bd(1) := {x ∈
Rd : ‖x‖ ≤ 1} be the normalized feature, Y ∈ {−1,+1}
the label and Sn = {(Xi, Yi) : i = 1, . . . , n} the training
dataset where, for each i ∈ {1, . . . , n}, the samples (Xi, Yi)
are independently drawn according to an unknown distribution
PX,Y . For a given r > 0, we consider the logistic model and its
associated hypothesis class G = {gθ : θ ∈ Bd(r)}, composed
of parameterized soft classifiers gθ such that

gθ(x) = σ(〈θ, x〉), (6)

with σ : R→ [0, 1] being the sigmoid function given by

σ(z) =
1

1 + e−z
. (7)

For convenience, we present the following short form of α-
loss in the logistic model which is equivalent to the expanded
expression in [13]. For α ∈ (0,∞], α-loss is given by

lα(y, gθ(x)) =
α

α− 1

[
1− gθ(yx)1−1/α

]
. (8)

For α = 1, l1 is the logistic loss and we recover logistic
regression by optimizing this loss. Further, note that in this
setting y · 〈x, θ〉 is the margin, and (8) is convex for α ∈ (0, 1]
and quasi-convex for α > 1 in y · 〈x, θ〉; see the extended
version [14] for proofs of these facts.

For θ ∈ Bd(r), we define the α-risk Rα as the risk of (8),

Rα(θ) := EX,Y [lα(Y, gθ(X))]. (9)

The α-risk (9) is plotted for several values of α in a two-
dimensional Gaussian Mixture Model (GMM) in Figure 1.
Further, observe that, for all θ ∈ Bd(r),

R∞(θ) := EX,Y [l∞(Y, gθ(X))] = P[Y 6= Ŷθ], (10)

where Ŷθ is a random variable such that for all x ∈ Bd(1),
P[Ŷθ = 1|X = x] = gθ(x).

In order to study the landscape of the α-risk, we compute
the gradient and Hessian of (8), by employing the following
useful properties of the sigmoid

d

dz
σ(z) = σ(z)(1− σ(z)); σ(−z) = 1− σ(z). (11)

Indeed, a straightforward computation shows that

∂

∂θj
lα(y, gθ(x)) =

[
−ygθ(yx)1−1/α(1− gθ(yx))

]
xj , (12)

where θj , xj denote the j-th components of θ and x, respec-
tively. Thus, the gradient of α-loss in (8) is

∇θlα(Y, gθ(X)) = F1(α, θ,X, Y )X, (13)

where F1(α, θ, x, y) is the expression within brackets in (12).
Another straightforward computation yields

∇2
θl
α(Y, gθ(X)) = F2(α, θ,X, Y )XXT , (14)

where F2 is given by

F2(α, θ, x, y) = g1−α
−1

θ (yx)
(
g′θ(yx)−

(
1− α−1

)
g2θ(−yx)

)
.

We now turn our attention to the case where α ∈ (0, 1]; we
find that for this regime, Rα is strongly convex; see Figure 1.
Prior to stating the result, for two matrices A,B ∈ Rd×d,
we let ≥ denote the Loewner (partial) order in the positive
semi-definite cone. That is, we write A ≥ B when A − B is
a positive semi-definite matrix. For a matrix A ∈ Rd×d, let
λ1(A), . . . , λd(A) be its eigenvalues. Finally, we recall that a
function is m-strongly convex if and only if its Hessian has
minimum eigenvalue m ≥ 0 [28].

Theorem 1. Let Σ := E[XXT ]. If α ∈ (0, 1], then Rα(θ) is
Λ(α, r) mini∈[d] λi (Σ)-strongly convex in θ ∈ Bd(r), where

Λ(α, r) = σ1−1/α(r)
(
σ′(r)−

(
1− α−1

)
σ2(−r)

)
. (15)

Proof. For each α ∈ (0, 1], it can readily be shown that
each component of F2(α, θ, x, y) is positive and monotonic
in 〈θ, x〉, which implies that F2(α, θ, x, y) ≥ Λ(α, r) ≥ 0.
Now, consider Rα(θ) = E[lα(Y, gθ(X))]. We have

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))]

= EX,Y [F2(α, θ,X, Y )XXT ]

≥ Λ(α, r)E[XXT ] (16)
= Λ(α, r)Σ ≥ 0, (17)

where we used an identity of positive semi-definite matrices
for (16) (see, e.g., [29, Ch. 7]); for (17), we used the fact
that Λ(α, r) ≥ 0 and we recognize that Σ is positive semi-
definite as it is the autocorrelation of the random vector
X ∈ Bd(1) (see, e.g., [30, Ch. 7]). We also note that
mini∈[d] λi (Σ) ≥ 0 (see, e.g., [29, Ch. 7]). Thus, ∇2

θRα(θ)
is positive semi-definite for every θ ∈ Bd(r). Therefore,
since λmin(∇2Rα(θ)) ≥ Λ(α, r) mini∈[d] λi (Σ) ≥ 0 for
every θ ∈ Bd(r) [29, Corollary 4.3.12], we have that Rα is
Λ(α, r) mini∈[d] λi (Σ)-strongly convex for α ∈ (0, 1].

Observe that for r > 0, Λ(α, r) is monotonically decreasing
in α. Therefore, Rα becomes more strongly convex as α
approaches zero. It can be shown that Rα is Cr,α-Lipschitz in
θ where Cr,α := σ(r)(1 − σ(r))1−1/α. Thus, in conjunction
with Theorem 1 and a result by Hazan et al. in [16] (after
Definition 3) which holds by assuming Σ > 0, we provide
the following corollary which explicitly characterizes SLQC
constants of Rα for α ∈ (0, 1].

Corollary 1. If 0 < α ≤ 1, Σ > 0, and θ0 ∈ Bd(r), then, for
every ε > 0, the α-risk Rα is (ε, Cr,α, θ0)-SLQC in θ ∈ Bd(r)
where Cr,α = σ(r)(1− σ(r))1−1/α.

As α tends to zero, Cr,α tends to infinity which implies that
the learning rate of NGD, ηα = ε/κα = ε/Cr,α also tends
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to zero. Thus, by Proposition 2, the number of iterations of
NGD, Tα, tends to infinity as α tends to zero. Therefore, for
α ∈ (0, 1], there is a trade-off in the desired strong-convexity
of Rα and the computational complexity of NGD.

Next, we study the evolution of SLQC parameters of Rα in a
neighborhood of α = 1 as we increase α. Since Rα tends more
towards the probability of error (expectation of 0-1 loss) as α
approaches infinity, we find that SLQC constants deteriorate
and the computational complexity of NGD increases as we
increase α. Our next main result leverages the following novel
lemma, which is a structural result for general differentiable
functions that provides an alternative formulation of the second
requirement of SLQC functions in Definition 2; proof details
and illustrations can be found in the extended version [14].

Lemma 1. Assume that f : Rd → R is differentiable, θ0 ∈ Rd
and ρ > 0. If θ ∈ Rd is such that ‖θ − θ0‖ > ρ, then the
following are equivalent:

1. 〈−∇f(θ), θ′ − θ〉 ≥ 0 for all θ′ ∈ Bd (θ0, ρ),
2. 〈−∇f(θ), θ0 − θ〉 ≥ ρ‖∇f(θ)‖.

Intuitively, Lemma 1 reformulates the SLQC requirement
that the gradient points in the ‘right’ direction into an expres-
sion which is reminiscent of a Cauchy-Schwarz inequality.

We now present two Lipschitz inequalities which will be
useful in the sequel. In the extended version [14], Sypherd et
al. show that for α ∈ [1,∞], Rα is Lr-Lipschitz in α where

Lr :=
(r + log 2)2

2
. (18)

It can similarly be shown that for α ∈ [1,∞], ∇Rα is Jr-
Lipschitz in α−1 ∈ [0, 1] where

Jr := (r + log 2)σ(r). (19)

Finally, for ease of notation, let

Iα0,ε0,r(θ0) = inf
θ∈Bd(r)

Rα0
(θ)−Rα0

(θ0)>ε0

‖∇Rα0
(θ)‖. (20)

Using Lemma 1 and the Lipschitz relations (18) and (19), we
provide the following result which gives precise bounds on the
degradation of SLQC constants for any initial α0 ∈ [1,∞].

Theorem 2. Let α0 ∈ [1,∞], ε0, κ0 > 0, and θ0 ∈ Bd(r). If
Rα0 is (ε0, κ0, θ0)-SLQC in θ ∈ Bd(r), and

0 ≤ α− α0 <
α2
0Iα0,ε0,r(θ0)

2Jr

(
1 + r κ0

ε0

) , (21)

then Rα is (ε, κ, θ0)-SLQC in θ ∈ Bd(r) with

ε = ε0 + 2Lr(α− α0), (22)

and

ε

κ
=
ε0
κ0

1−

(
1 + 2r κ0

ε0

)
Jr(α− α0)

αα0Iα0,ε0,r(θ0)− Jr(α− α0)

 . (23)

Proof. For ease of notation let ρ0 = ε0
κ0

and ρ = ε
κ . Let

θ ∈ Bd(r) be arbitrary and consider the following cases.

Case 1: If Rα0
(θ)−Rα0

(θ0) ≤ ε0, then,

Rα(θ)−Rα(θ0) = Rα(θ)−Rα0
(θ) +Rα0

(θ)

−Rα0
(θ0) +Rα0

(θ0)−Rα(θ0)

≤ Lr|α− α0|+ ε0 + Lr(α− α0). (24)

Since ε0 + 2Lr(α− α0) = ε, we have Rα(θ)−Rα(θ0) ≤ ε.
Case 2: If Rα0(θ) − Rα0(θ0) > ε0, then, since Rα0 is
(ε0, κ0, θ0)-SLQC in θ by assumption, we have that
‖∇Rα0

(θ)‖ > 0, and for every θ′ ∈ B(θ0, ρ0) it holds that
〈∇Rα0

(θ), θ0 − θ〉 ≤ 0. By Lemma 1, we want to prove that

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖, (25)

for ρ given by (23). By the Cauchy-Schwarz inequality,

〈−∇Rα(θ), θ0 − θ〉 ≥ 〈−∇Rα0
(θ), θ0 − θ〉

− ‖∇Rα(θ)−∇Rα0
(θ)‖‖θ0 − θ‖

≥ ρ0‖∇Rα0
(θ)‖ − Jr(α−10 − α−1)2r, (26)

since ∇Rα is Jr-Lipschitz in α−1 and θ0 − θ ∈ Bd(2r), and
since Rα0 is SLQC, we apply Lemma 1. For ease of notation,
we temporarily let ∆ = Jr(α

−1
0 −α−1). Continuing, we have

ρ0‖∇Rα0
(θ)‖ −∆2r ≥ ρ0‖∇Rα(θ)‖ −∆2r

− ρ0‖∇Rα0
(θ)−∇Rα(θ)‖

≥ ρ0‖∇Rα(θ)‖ −∆(ρ0 + 2r), (27)

which follows by the reverse triangle inequality and since
∇Rα(θ) is Jr-Lipschitz in α−1. Further, we have that

0 < Iα0,ε0,r(θ0)− Jr(α−10 − α−1) ≤ ‖∇Rα(θ)‖, (28)

which follows by the reverse triangle inequality, by the fact
that ∇Rα(θ) is Jr-Lipschitz in α−1, and the definition of α in
(21) since α < α2

0Iα0,ε0,r(θ0)J−1r +α0 and α2
0 ≤ αα0. Thus,

returning to (27), we let Γ = ∆(ρ0 +2r) and I = Iα0,ε0,r(θ0)
for ease of notation and we have

ρ0‖∇Rα(θ)‖ − Γ = ‖∇Rα(θ)‖
(
ρ0 −

Γ

‖∇Rα(θ)‖

)
≥ ‖∇Rα(θ)‖

(
ρ0 −

(ρ0 + 2r)Jr

I(α−10 − α−1)−1 − Jr

)
(29)

where we used the inequality in (28). Since we assume that

0 ≤ α− α0 <
α2
0I

2Jr
(
1 + rρ−10

) , (30)

returning to (29), it can be shown using α2
0 ≤ αα0 that

(1 + 2rρ−10 )Jr

I(α−10 − α−1)−1 − Jr
< 1. (31)

Therefore, we finally obtain that

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖, (32)

where ρ > 0 is given by

ρ = ρ0

(
1− (1 + 2rρ−10 )Jr

I(α−10 − α−1)−1 − Jr

)
(33)

as desired.
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Combining Corollary 1 and Theorem 2, we provide the
following corollary which quantifies the evolution of SLQC
constants for α0 = 1 as α increases.

Corollary 2. Let Σ > 0, α0 = 1, ε0 > 0, and θ0 ∈ Bd(r). If

0 ≤ α− 1 <
Iα0,ε0,r(θ0)

2Jr

(
1 + r σ(r)ε0

) , (34)

then Rα is (ε, κ, θ0)-SLQC in θ ∈ Bd(r) with

ε = ε0 + 2Lr(α− 1), (35)

and

ε

κ
=

ε0
σ(r)

1−

(
1 + 2r σ(r)ε0

)
Jr(α− 1)

αIα0,ε0,r(θ0)− Jr(α− 1)

 . (36)
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Figure 2. The landscape of α-loss, Rα (α = 1, 1.001) in the logistic
model, where the features are normalized and r = 5, for a 2D-GMM with
P[Y = 1] = P[Y = −1], µX|Y=−1 = [0.4, 0.4], µX|Y=1 = [1, 1],
Σ = [3, 0.2; 0.2, 1.5]. For α = 1, the red region depicts ε0/κ0 which
is calculated using Corollary 1 about θ0, where θ0 is set to be the global
minimum of R1 and is depicted by the star; for illustrative purposes, we set
ε0 = 0.4 and it is depicted by the yellow plane. For α = 1.001, the red
region depicts ε/κ about θ0 (the star) and ε is also depicted by the yellow
plane; both quantities approximate the bounds given by Corollary 2.

An illustration of the degradation of SLQC constants as
specified by Corollary 2 for increasing α is presented in
Figure 2 for a two-dimensional GMM. Intuitively, we find that
for a fixed θ0 ∈ Bd(r), increasing α is equivalent to reducing
the radius of the ε/κ ball about θ0 and increasing the value
of ε. Both of these effects hinder the optimization process and
increase the required number of iterations of NGD as stated
in Proposition 2.

While the learning practitioner would ultimately like to
approximate the intractable 0-1 loss (approximated by α =
∞), the bounds presented in Theorem 2 suggest that the
computational complexity of NGD quickly worsens as α
increases. Fortunately, in the logistic model, α-loss exhibits
a saturation effect whereby smaller values of α resemble the

landscape induced by α =∞. More concretely, the saturation
effect of α-loss is the fact that the uniform distance between
Rα and R∞ decreases geometrically in α as summarized by
the following lemma.

Lemma 2. If α, α′ ∈ [1,∞], then for all θ ∈ Bd(r),

|Rα(θ)−Rα′(θ)| ≤ Lr
∣∣∣∣ 1α − 1

α′

∣∣∣∣ , (37)

where Lr is given in (18).

See Figure 3 for an illustration which depicts how quickly
the landscape for α > 1 resembles the α =∞ landscape.
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Figure 3. An illustration of the saturation effect of α-loss (Rα for α =
4,∞) in the logistic model, where features are normalized and r = 100,
for a 2D-GMM with P[Y = −1] = 0.61 = 1 − P[Y = 1], µX|Y=−1 =
[−0.14, 0.21], µX|Y=1 = [0.06, 0.43], Σ−1 = [0.38, 0.25; 0.25, 3.17],
and Σ1 = [2.07,−1.62;−1.62, 1.97].

IV. CONCLUDING REMARKS

In this work, we analyze the evolution of the α-loss land-
scape in the logistic model by examining different regimes
of α. As α approaches zero, Rα becomes more strongly
convex (see Theorem 1), but the computational complexity
of NGD increases since the Lipschitz constant of Rα grows.
As α approaches infinity, Rα becomes more non-convex
since SLQC parameters degrade (see Theorem 2), which also
increases the computational complexity of NGD; however,
accuracy increases since the landscape of α-loss tends towards
that of the ∞-loss, i.e., the 0-1 loss. Combining Corollary 1
and Theorem 2, we provide explicit bounds to quantify the
evolution of SLQC parameters of Rα in the logistic model
for α in a neighborhood of 1 (see Corollary 2). Using a
moderately large α, α-loss leads to similar performance as the
desired, and computationally harder to optimize, 0-1 loss (see
Lemma 2); this is a saturation effect of α-loss in the logistic
model. Therefore, for the logistic model, we ultimately posit
that there is a narrow range of α useful to the practitioner.
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