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Three Variants of Differential Privacy: Lossless
Conversion and Applications
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Abstract—We consider three different variants of differential
privacy (DP), namely approximate DP, Rényi DP (RDP), and
hypothesis test DP. In the first part, we develop a machinery for
optimally relating approximate DP to RDP based on the joint
range of two f-divergences that underlie the approximate DP and
RDP. In particular, this enables us to derive the optimal approx-
imate DP parameters of a mechanism that satisfies a given level
of RDP. As an application, we apply our result to the moments
accountant framework for characterizing privacy guarantees of
noisy stochastic gradient descent (SGD). When compared to the
state-of-the-art, our bounds may lead to about 100 more stochas-
tic gradient descent iterations for training deep learning models
for the same privacy budget. In the second part, we establish a
relationship between RDP and hypothesis test DP which allows
us to translate the RDP constraint into a tradeoff between type
I and type II error probabilities of a certain binary hypothesis
test. We then demonstrate that for noisy SGD our result leads
to tighter privacy guarantees compared to the recently proposed
f-DP framework for some range of parameters.

Index Terms—Differential privacy, Rényi divergence, binary
hypothesis testing, f-divergences, moments accountant, stochastic
gradient descent.

I. INTRODUCTION

IFFERENTIAL privacy (DP) [2] has become the de facto
D standard for privacy-preserving data analytics. Intuitively,
a randomized algorithm is said to be differentially private
if its output does not vary significantly with small perturba-
tions of the input. DP guarantees are usually cast in terms of
properties of the difference of the information density [3] of
the algorithm’s output and two different inputs—referred to
as the privacy loss random variable in the DP literature. In
fact, several variants of DP has been proposed based on dif-
ferent properties of privacy loss random variable. Informally
speaking, a mechanism is said to satisfy (g, §)-DP [2] if the
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privacy loss random variable is bounded by ¢ with probabil-
ity 1 — 4. A mechanism is said to be («, y)-Rényi differential
privacy (RDP) [4] if the oth moment of the privacy loss ran-
dom variable is upper bounded by y; see Section II for more
details.

Several methods have recently been proposed to ensure
differentially private training of machine learning (ML) mod-
els [5]-[10]. Here, the parameters of the model determined
by a learning algorithm (e.g., weights of a neural network or
coefficients of a regression) are sought to be differentially pri-
vate with respect to the data used for fitting the model (i.e.,
the training data). When the model parameters are computed
by applying stochastic gradient descent (SGD) to minimize
a given loss function, DP can be ensured by directly adding
noise to the gradient. The empirical and theoretical flexibility
of this noise-adding procedure for ensuring DP was demon-
strated, for example, in [5], [6]. This method is currently being
used for privacy-preserving training of large-scale ML mod-
els in industry, see, e.g., the implementation of [11] in the
Google’s open-source TensorFlow Privacy framework [12].

Not surprisingly, for a fixed training dataset, privacy deteri-
orates with each SGD iteration. In practice, the DP constraints
(i.e., € and §) are set a priori, and then mapped to a permissi-
ble number of SGD iterations for fitting the model parameters.
Thus, a key question is: given a DP constraint, how many
iterations are allowed before the SGD algorithm is no longer
private? The main challenge in determining the DP guarantees
provided by noisy SGD is keeping track of the evolution of
the privacy loss random variable during subsequent gradient
descent iterations. This can be done, for example, by invok-
ing advanced composition theorems for DP, such as [13], [14].
Such composition results, while theoretically significant, may
be loose due to their generality (e.g., they do not take into
account the noise distribution used by the privacy mechanism).

Recently, Abadi et al. [5] circumvented the use of DP
composition results by developing a method called moments
accountant (MA). Instead of dealing with DP directly, the MA
approach provides privacy guarantees in terms of RDP for
which composition has a simple linear form [4]. Once the pri-
vacy guarantees of the SGD execution are determined in terms
of RDP, they are mapped back to DP guarantees in terms of &
and § via a relationship between DP and RDP [5, Th. 2] allow-
ing for converting from one to another. This approach renders
tighter DP guarantees than those obtained from advanced com-
position theorems (see [5, Fig. 2]). Nevertheless, the existing
conversion rules between RDP and DP are loose. In this
article, we provide a framework which settles the optimal

2641-8770 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Fei Wei. Downloaded on May 24,2021 at 14:34:35 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-4960-6081
https://orcid.org/0000-0001-7439-4645
https://orcid.org/0000-0002-7493-1428
https://orcid.org/0000-0003-4779-0102
https://orcid.org/0000-0001-8122-5444

ASOODEH et al.: THREE VARIANTS OF DIFFERENTIAL PRIVACY: LOSSLESS CONVERSION AND APPLICATIONS 209

conversion between RDP and DP, and thus further enhances
the privacy guarantee obtained by the MA approach. Our tech-
nique relies on the information-theoretic study of joint range
of f-divergences: we first describe both DP and RDP using
two certain types of the f-divergences, namely E; and x¢
divergences (see Section II). We then apply [15, Th. 8] to char-
acterize the joint range of these two f-divergences which, in
turn, leads to the “optimal” conversion between RDP and DP
(see Section III). Specifically, this optimal conversion allows
us to derive bounds on the number of noisy SGD iterations
for a given DP parameters ¢ and §. Our result improves upon
the state-of-the-art [5] by allowing more training iterations
(often hundreds more) for the same privacy budget, and thus
providing higher utility for free (see Section IV).

In the second part of this article, we revisit another variant
of DP based on binary hypothesis testing. Consider an attacker
who, given a mechanism’s output, aims to determine if a cer-
tain individual (say Alice) has participated in the input dataset.
This goal can be thought of as a hypothesis testing problem:
rejecting the null hypothesis corresponds to the absence of
Alice in the input dataset. It is well-known that (g, §)-DP is
equivalent to enforcing that the type II error probability of any
(possibly randomized) such test at significance level (or type
I error probability) 7 is lower bounded by 1 — § — ¢°t [14],
[16]. Thus, for small ¢ and &, any test is essentially power-
less, i.e., it is impossible to have both small type I and type II
error probabilities. This view of privacy (which we henceforth
call hypothesis test DP) brings an operational interpretation
for DP. This notion of privacy has recently been parameter-
ized by a convex and decreasing function f : [0, 1] — [0, 1]
that specifies the tradeoff between type I and type II error
probabilities. A mechanism is said to be f-DP [17] if, given a
mechanism’s output, the type II error probability of any test
for a given significance level t is lower bounded by f(7).
Thus, if f(r) is approximately 1 — 7, then any tests will be
essentially powerless. This new definition is shown to provide
easily interpretable privacy guarantees. This is in sharp con-
trast with RDP whose privacy guarantee does not enjoy a clear
interpretation (see [18] for more details).

Our goal is to address the interpretability issue of RDP by
relating RDP to f-DP. We first prove an explicit expression for
the RDP guarantee of mechanism in terms of the type I and
type II probabilities corresponding to the “optimal” test (given
by Neyman-Pearson lemma). We remark that our expression
is similar to an unproved formula that appeared first in [19,
eq. (2.79)]. Conversely, we develop a machinery to implicitly
relate RDP constraint to f-DP by constructing an achievable
region of type I and type II error probabilities among all tests.
This relationship is in particular interesting for the privacy
analysis of iterative ML algorithm in that it converts the simple
linear composition property of RDP to an interpretable privacy
guarantee in terms of f-DP. Another approach for deriving an
interpretable and tight privacy guarantee for ML algorithms is
to resort to the general composition result of f-DP [17, Th.
3.2]. This approach is advocated in [20] for the privacy anal-
ysis of noisy SGD in training neural networks. We compare
our results with [17], [20] in two different directions:

e The f-DP guarantee can be easily related to (e, §)-DP

(see [17, Proposition 2.12]). It is argued in [20, Ths. 1 and

2] that f-DP guarantee of SGD always yields a strictly
stronger (&, §)-DP guarantee than what would be obtained
by moments accountant. We empirically show that this
does not hold if one incorporates our optimal RDP-to-DP
conversion rule into the moments accountant framework;
i.e., the improved moments accountant might outperform
f-DP, see Fig. 5.

o Rather then using the general composition results of
f-DP, we propose to apply the linear composability of
RDP and then convert the resulting guarantee to f-DP.
Focusing on SGD with Gaussian noise, we demonstrate
that there exists a threshold for variance below which
our approach strictly outperforms f-DP, see Fig. 8 and
Fig. 9.

A. Related Work

Since the introduction of the approximate DP in [2], it
has been extensively studied especially for iterative ML algo-
rithms, see [7], [10], [21]-[32] to name a few. Perhaps one
of the most fundamental primitive in statistical privacy is
the study of composition; how privacy degrades under as the
algorithm iterates. There are still continued efforts to better
understand the composition of DP. The advanced composition
result for DP was derived [13]. In a pioneering work, [14]
obtained an optimal homogeneous composition theorem for
(e, 8)-DP. It is, however, shown to be #P hard to compute
the DP parameters under heterogeneous composition [33]. A
substantial recent effort has been devoted to relaxing the DP
constraints using divergences between probability distributions
to address the weakness of (g, §)-DP in handling compo-
sition [4], [5], [34]-[37]. For instance, [4], [5], [34], [35]
considered Rényi divergence and showed that the optimal pri-
vacy parameters under composition have simple linear forms.
Once composition is handled, the resulting privacy param-
eters are converted to (g, 5)-DP via some conversion rule,
e.g., [5, Th. 2], [35, Proposition 1.3], and [4, Proposition 3].
This technique significantly improves on earlier privacy anal-
ysis of SGD. This technique has been extended by follow-up
work [11]. More recently, a new relaxed version of DP (not
divergence-based), termed f-DP was proposed in [17] and
shown to enjoy a rather simple composition property. This
new definition of DP was used in [20] for the privacy analysis
in training deep neural networks.

B. Paper Organization

In Section II, we provide several preliminary definitions
and results and also mathematically formulate our main
goals. In Section III, we characterize the optimal relationship
between RDP and DP and apply it to the moments accoun-
tant framework in Section IV. The content of Sections III
and IV appeared in the conference version [1] without proofs.
Section V concerns the second main goal of this article,
that is, deriving a relationship between RDP and hypothesis
test DP.

C. Notation

We denote by D the universe of all possible datasets and by
(X, F) a measurable space with Borel o-algebra F. We also
use P(X) to denote the set of all probability measures on X.
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We use capital letters, e.g., X to denote random variables. We
write X ~ P to describe the fact that X is distributed according
to P. We also use the notation ~ to indicate the neighborhood
relationship between datasets, i.e., given two datasets d and
d', we write d ~ d' if their Hamming distance is equal to one.
For a pair of distributions P and Q and constant « > 1, we let

1 oo dP\“* !
o 1¢ Q[(@)] M

denote the Rényi divergence of order «. Also, given a
real-valued convex function f satisfying f(1) = 0, the
f-divergence [38], [39] between P and Q is defined as

dpP
Dy(Pl|Q) = Eqg [f(@ﬂ- ©)

For any real number a, we write (a)4 for max{a, 0} and for
a € [0, 1], we write a for 1 — a.

Dy (P|Q) =

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we revisit several definitions and basic results
that will be key for the discussion in the subsequent sections.
A mechanism M : D — P(X) assigns a probability distribu-
tion My to each dataset d € DD. Given a pair of neighboring
datasets d ~ d’, the privacy loss random variable is defined
as Ly 4 = log 3/\/\1;‘/ (X) where X ~ M, and ((11/\/\//[1:/ represents
the Radon-Nikodym derivative. Given an output of the mech-
anism M and a pair d ~ d’, consider the following problem

of testing My against M y:
Hy: X~ Mg vs.

Hi X~ M,. 3)

Let ﬂ%l/ : [0, 1T — [0, 1] denote the optimal tradeoff between

type I error (i.e., the probability of declaring H; when the

truth is Hp) and type II error (i.e., the probability of declaring

Hp when the truth is Hj). More specifically, ﬁj{‘/’{(t) is the

smallest type II error when type I error equals 7. The mapping

T ,le\‘fl/ () is sometimes called the tradeoff function.
Definition 1: A mechanism M : D — P(X) is said to be
e (£,6)-DP [2] for e > 0 and § € [0, 1) if

sup  My(A) — e My (A) < 6. 4
AeF.d~d
o (a,y)-RDP [4] for > 1 and y > 0 if
sup Do (Mgl Mg) < y. &)
d~d'

o f-DP [17] for a convex and non-increasing function!
f :10,1] — [0, 1] if for all T € [0, 1]

inf B (D) = f(). ©)

It can be shown that (4) is implied if the tail event
{Lgo > €} occurs with probability at most § for all d ~ d’,
and (5) is implied if (and only if) the oth moment of Ly »
is upper bounded by y. It is worth noting that the definition
of RDP is closely related to zero-concentrated DP [34], [35].

1Both f-DP and f-divergence are defined in terms of convex functions. In
order to be consistent with their original notation, we use f to denote the
function in both definitions. It will be clear from the context and as a result
will not lead to confusion.

Different properties of these two variants of DP have been
extensively studied. One well-studied property of these two
definitions is the composition (to be discussed in details in
Section IV). As mentioned earlier, RDP tightly handles com-
position as opposed to the existing composition theorems for
(&, 8)-DP [13], [14] known to be either loose for many practi-
cal mechanisms or intractable to compute [33]. With this clear
advantage comes a shortcoming: RDP suffers from the lack of
operational interpretation, see [18]. To address this issue, the
RDP guarantee is often translated into a DP guarantee via the
following result.

Theorem 1 [5, Th. 2]: If the mechanism M is («, y)-RDP,
then it satisfies (e, §)-DP for any ¢ > y and

§ = e~ l@=De=y) 7

This theorem establishes a relationship between RDP and DP
that is extensively used in several recent differentially private
ML applications, e.g., [9], [37], [40]-[44] to name a few. A
prime use case for this relationship is the moments accountant
(MA) [5] which is the current state-of-the-art privacy analysis
technique for ML algorithms. However, despite its extensive
use, Theorem 1 is loose in general and does not hold for all
range of ¢ > 0. For instance, as we see later, for Gaussian
mechanisms this relationship holds for ¢ — 0 only when
the variance of noise goes to infinity. Given its widespread
applications, it seems very natural to aim at determining the
optimal relationship between (e, §)-DP and (¢, y)-RDP. More
precisely, we seek to answer the following question.

Question One: Given an (¢, y)-RDP mechanism M, what
are the smallest ¢ and § such that M is (g, §)-DP?

We settle this question in Section III by expressing
the optimal relationship via a simple one-variable convex
optimization program. Incorporating this relationship into MA,
we introduce the improved MA and quantify the resulting
improvement in terms of privacy and utility in two differ-
ent settings: T-fold homogeneous composition of Gaussian
mechanism and noisy SGD algorithm.

As we shall see later, RDP is remarkably efficient in han-
dling composition, making it an appealing notion of privacy for
iterative algorithms such as SGD. Nevertheless, it lacks inter-
pretability, see [18] for more details. Following the success of
hypothesis test (3) in providing interpretation of approximate
DP, we seek to relate RDP constraint to the tradeoff function
inf; gz ,Bj’gl/ (). Such relationship enables us to provide inter-
pretable privacy guarantees for several iterative machine learn-
ing algorithms. It can be verified that 1 — v — inf; ﬂ% (1)
quantifies the fundamental indistinguishability of neighbor-
ing datasets based on the mechanism’s output. Therefore, one
effective way to describe the above relationship is to construct
an outer bound for the region encompassed between the curves
T+ 1 —1and 7 — infgy ﬂf\‘f{(r); the so-called privacy
region of M. Now we can describe the above relationship as
follows.

Question Two: Given an (¢, y)-RDP mechanism, what is
the characterization of its privacy region?

We provide an outer bound for the solution of this ques-
tion in Section V and then demonstrate it for both 7-fold
homogeneous composition of Gaussian mechanism and noisy
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Theorem 3

)-RD
1

P
Lemma 1
[16, Thm. 2.4]
Prop. Lemma 4 [17, Prop. 2.12]

Hypothesis test DP

Fig. 1. The diagrammatic summary of the key relationships between three
variants of DP studied in this article.

SGD algorithm. Interestingly, for the latter scenario, this outer
bound is tighter than what would be obtained from applying
results in [20].

We summarize our results on the relationship between
(¢, 8)-DP, («, y)-RDP, and f-DP in Fig.1.

III. OPTIMAL RELATIONSHIP BETWEEN RDP AND DP

In this section, we aim at computing the fundamental worst-
case DP privacy parameter guaranteed by an (¢, y)-RDP
mechanism, thereby answering Question One. To this goal,
we first express constraints in both (g, §)-DP and («, y)-RDP
in terms of two f-divergences. Given A > 1, the f-divergence
associated with f(f) = (t — A);+ = max{t — A, 0}, is called
E,-divergence [45] (aka hockey-stick divergence [46]) and
given by

E.(PIQ) = /(dP — AdQ); = sup[P(A) — 1Q(A)].  (8)

AeF
Also, for any a > 1, the f- dlvergence associated with
fl) = — (t"‘ — 1) is denoted by?> x%(P||Q). Note that
Dy (PIIQ) = Zilog(l + (@ — x*(P|Q)) for a pair of
probability distributions P and Q.
It is shown in [48] that

Mis (,8)-DP <= sup Eee(My||[My) <68. (9)

d~d'
Similarly, it can be verified that:

M is (a, y)-RDP <= sup x*(MyMag) < x(y), (10
d~d'
where
ela=Dy _ 1
Xy) = ———— (1)

-1
Let the set of all (&, y)-mechanisms be denoted by M, (y),
ie.,

My (y) ={M :D— PX) : Mis (a, y)-RDP}.

This definition, together with (9), enables us to precisely
formulate Question One. In fact, Question One amounts to
computing 85 (y)

85(y) :=inf{s € (0, 1) : VM € My(y) is (¢,8)-DP} (12)
= sup  sup Ep(MyllMa), (13)
MeMy(y) d~d

2 x“-divergence is also referred to as a-Hellinger divergence, see [47].

where the equality comes from (9) and (10). The map y —
8% () in fact specifies the “optimal” conversion rule from RDP
to DP for a given ¢ > 0. An equivalent way of describing such

conversion is through the following quantity fixing é € (0, 1)
e (y) :=infle >0 : VM € My(y) is (s, 6)-DP}.  (14)

Similarly, the optimal conversion from DP to RDP is formu-
lated by

vE(8) =sup{y >0: VM e M, (y) is (¢, 8§)-DP} (15)

= i g b x : 16
MDIEP(X) dmd/x (X MallMa)) (16)
st. Eee (MyllMy) =8 Vd~d,  (17)

where the x ~'(-) denotes the functional inverse of x (-) in (11),
i.e., and is given by X_l(t) = alTl log(1+ (¢ —1)1). We seek to
compute &5 (y) (or equivalently, eg(y)); however, it turns out
that y£(6) is simpler to compute. As a result, in the following
we focus on the latter first.

Notice that, according to (10), the set M, (y) can be equiva-
lently characterized by the constraint x*(My||Mg) < x(¥),
where x(y) is defined in (11). Hence, y +— 85(y) in fact
constitutes the upper boundary of the convex set

R = { (X (Mal M), B Mall M) [YM. d ~ d'}.
(18)

This simple observation has some key implications. First, 85 (-)
is non-decreasing and concave. Second, the upper boundary
can be equivalently given by the map § — y (8). Furthermore,
to compute yS(-) or 85 (-), it suffices to characterize . This
allows us to cast the problem of computing y, (-) as charac-
terizing the joint range of E; and x® divergences. To tackle
the latter problem, we refer to [15] whose main result is as
follows.
Theorem 2 [15, Th. 8]: We have

[ (Dr(PI0). Dy(PI0)

where conv(-) denotes the convex hull operator and

8= { (D (PolIQb). Dy(Pol|00)) |Po. 05 € P((0, 1D)].

This theorem states that characterizing the joint range of any
pair of f-divergences can be reduced without loss of generality
to the binary case. For completeness, we give a more direct
proof for the case of x* and E, divergences in Appendix A.
We formalize this insight in Theorem 3 and establish a simple
variational formula for y(-) involving a one-parameter log-
convex minimization program. Hence, the optimization (16),
which can potentially be of significant complexity, turns into
a simple tractable problem.

Theorem 3: For any o > 1, ¢ > 0, and § € (0, 1),

} — conv(B) (19)

1
yi@) =e+ n logM(a, ¢, 3), (20)
o —

where p :=1 — p and

M(a, &, 8) = min [p“(p — o) p (e — p +5)1‘°‘].

pes, 1)
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— Exact.a=2,6=05
+ Bound,a=2,6=05 4
— Exacla=5.£=1
. Bound,a=5,6=1 2
— ExacLa=10,e=2
Bound, a =10, =2 0

—— Bound in [18]
—— Bound in (27)
—— Exact

0 2 4 6 8 0.0 0.5 1.0 15 20
yin (a, y)-RDP yin (@, y)-RDP

Fig. 2. Left: The exact values of the map 8 — y¢ (8) obtained via numerically
solving convex optimization problem (20). The dotted curves indicate the
lower bound on ¥ (8) according to Theorem 4 for three pairs of (e, ). Right:
Comparison of the exact values of the map ¢ +— yZ(8) with the bounds
obtained from (25) and [18, Th. 21] (i.e., considering only the first term in
the minimization in (25)) with @ =2 and § = 1074,

The proof of this theorem relies on Theorem 2 and is given
in Appendix B. It can be shown that the term inside the loga-
rithm is convex in p and hence this optimization problem can
be numerically solved with an arbitrary accuracy. It seems,
however, not simple to analytically derive yS (§). Nevertheless,
we obtain a lower bound in the following theorem that closely
approximates y}(8). We provide its proof in Appendix C.
Theorem 4: For any ¢ > 0 and o > 1, we have

Ve (0) =0, (21)
VvE©) = & —log(1 — 8), ifas>1, (22
vE(8) > max{g(a, &,8), f(e, 6, 8)}, if 0<ad <],
(23)
where

1 a

,E,0) =68 — log —

gla,&,8) =¢ a_1°% 5

with ¢ = 2(1 — Ly*=1 and

1 . 51\
_110g<(e —ouS)(m) +a8>.

In Fig. 2 (left panel), we numerically solve (20) for three
pairs of («,¢) and compare them with their corresponding
bounds obtained from Theorem 4, highlighting the tightness of
the above lower bound. As indicated earlier and illustrated in
this figure, the lower bound on y;; (-) in Theorem 4 is translated
into an upper bound on §5(-). In practice, it is often more
appealing to design differentially private mechanisms with a
hard-coded value of § (as opposed to the fixed ¢). To address
this practical need, we convert the lower bound in Theorem 4
to an upper bound on eg(~).

Lemma 1: For « > 1 and y > 0, we have

fla,e,8) =¢e+
o

el(y) = (y +log1 —8)),, if as>1, (24)
and if 0 < ad < 1
5 1 . b
gq(y) < ﬁmrn{<(a — Dy —log §_a)+

el@=Dy _1
o

where ¢, was defined in Theorem 4. Moreover, 82 ) =0.
This lemma is obtained by solving equality (22) and inequal-
ity (23) for ¢. Unlike g(a, ¢, §), the map ¢ — f(«, &, §) seems

complicated to invert. To get around this difficulty, we use the
first-order approximation of f(«, €, §) around § = 0 to invert
the inequality (23). The details are relegated to Appendix D. It
is worth mentioning that Balle et al. [18, Th. 21] has recently
proved & (y) <y-— log = via a fundamentally different
approach Their bound corresponds to the first term in (25),
and thus weaker than Lemma 1. To emphasize on the advan-
tage of (25) over [18, Th. 21], we plot these two bounds in
Fig. 2 (right panel) for « =2 and 8 = 1074, As observed in
this figure, considering only the first term in (25) would lead
to non-trivial loss in ¢ especially when y is sufficiently small.
This observation is analytically justified by the fact that the
first term in (25) does not tend to zero as y — 0 for reason-
able values of « and § whereas the second term does for any
6>0and o > 1.

Remark 1: As an important special case, this lemma
demonstrates that an («, y)-RDP mechanism provides (0, §)-
DP guarantee if y < log(;%y) and § € [¢q @Dy, 1] See
Appendix E for the detalled derivation. Notice that this is
stronger than what would be obtained from Theorem 1 from
which (0, §)-DP cannot be achieved for y > 0.

IV. IMPROVED MOMENTS ACCOUNTANT AND GAUSSIAN
MECHANISMS

Moments accountant (MA) was recently proposed by
Abadi et al. [5] as a method to bypass advanced composi-
tion theorems [13], [14]. Given a mechanism M, the T-fold
adaptive homogeneous composition M7 is a mechanism that
consists of T copies of M, i.e., M, ..., MT) such that the
input of M’ may depend on the outputs of M!, ... K Mi~L,
Determining the privacy parameters of M7 in terms of those
of M is an important problem in practice and thus has been
subject of an extensive body of research, see [5], [13], [14],
[37].

Advanced composition theorems [13], [14] are well-known
results that provide the DP parameters of M™) for general
mechanisms. However, they can be loose and do not take into
account the particular noise distribution under consideration
(e.g., Gaussian noise). MA was shown to significantly improve
upon advanced composition theorems in specific applications
such as SGD. The cornerstone of MA is the linear compos-
ability of RDP: If M!, ..., MT are each («, y)-RDP, then it
is shown in [5, Th. 2] that MD) is (&, y T)-RDP. This result
is then translated into DP privacy parameters via Theorem 1.
In general, we assume this holds for all « > 1 and hence one
can obtain the best privacy parameters by optimizing over «.
That is, MD is (g, 8)-DP for any ¢ > 0 and

§ = inf e~ @ DE—v@D)
a>1 ’

(26)

where y (@) = maxg~g Dy (Mg4l|My) is the RDP parameter
of the constituent mechanism M and the dependence on « is
made clear. Equivalently, MD) is (g, 8)-DP for § € (0, 1) and

1

e = inf y()T — logé. 27
a>1 a—1

Since a > (¢—1)Dy (P]|Q) is convex [49, Corollary 2] for any

pair of probability measures P and Q, the above minimization
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Fig. 3. The privacy parameter ¢ of the 7-fold homogeneous composition of
Gaussian mechanism each with o = 20 according to MA (see (29)) and our
bound in Lemma 2. We assume § = 1072,

is a log-convex problem, and hence, can be solved within an
arbitrary accuracy. Furthermore, we show in Section IV that
this minimization has a simple form for Gaussian mechanisms
and can be solved analytically. For the rest of this section, we
assume M is a Gaussian mechanism and exploit Lemma 1 to
derive tighter privacy parameters than (27).

A. Composition Results for Gaussian Mechanisms

Let f : D — R" be a query function and M be a
Gaussian mechanism with variance o?; more specifically,
X = R" and My = N(f(d),o?1,) for each d € D.
For simplicity, we assume that f has unit L,-sensitivity, i.e.,
supg~q /() — f(@)ll2 = 1. Since

357 S @ — (@), = e
(28)

sup Do (Mgl Ma) =
d~d

it follows that M is (o, y(«@))-RDP for all « > 1 where
y(a) = pa and p = 20% In light of the linear composability
of RDP, we obtain that M7 the T-fold adaptive composition
of M, is («, y(a)T)-RDP. Hence, we deduce from (27) that
M s (e, 8)-DP for any § € (0, 1) and

1 / 1
e=inf y(a)T———logd=pT+,/4pT log —. 29)
a>1 a—1 1)

We next use the machinery developed in the previous section
to obtain a tighter bound for the privacy parameter of M)
than (29). To do so, define

e%(p, T) := inf 5 (paT). (30)
a>1

Invoking Lemma 1, we can obtain an upper bound for
& (p, ).

Lemma 2: The T-fold adaptive homogeneous composition
of the Gaussian mechanism with variance o2 is (&% (p,T),6)-
DP with § € (0, 1) and

P . oT
€ (p,T)Smm{eo(p,T), e1(p, 1), (T+10g(1—5)> }
+

€29

1

where p = 357 and

inf
1
oe I'E

eo(p,T) == (32)

)
ol — og — | ,
],0 ot—lg;a

—— Moments Accountant
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Fig. 4.  Privacy parameter ¢ of noisy SGD algorithm according to MA
(see (29)) and our bound (see Lemma 2) for § = 105, The parameters of
the algorithm are o = 4 and the sub-sampling rate ¢ = 0.001.

—1
>, (33)

epol(oz—l)T

od

inf
ae(l,%] o=
and ¢, is as defined in Theorem 4.

The bound given in this lemma can shed light on the
optimal variance of the Gaussian mechanism M required
to ensure that MT is (e, 8)-DP. To put our result in per-
spective, we first mention two previously-known bounds.
Advanced composition theorems (see [13, Th. II1.3]) require

2 = Q(w). Abadi ef al. [5, Th. 1] improved
this result by showing that o2 suffices to be linear in T;
more precisely, o> = Q(w). To have a better compari-
son with our final result, we write this result more explicitly.

o

Plugging y (@) = 307 into (27) (or (26)), we can write

e1(p, T) = log<1+

T €
— <sup— + —logé 34
202_alir])a+a(oz—l) g 34
/ 1
=¢e—2logs—2 (a—log(S)logE, (35)
and hence assuming § is sufficiently small, we obtain
22 Mo Ly Do ! (36)
o — log -+ — .
=2 85T log §~!

We are now in order to state our result.

Theorem 5: The T-fold adaptive homogeneous composition
of a Gaussian mechanism with variance o2 is (g, §)-DP, for
e > 28log 1, if

, 2T 1

T 2T
o= —lo g—+———<10g(210g8 )—l—l—loge)
€ 5 ¢

2
0 log (log(S ) .
 logs—!

The proof of this theorem is based on a relaxation of
Theorem 4 obtained by ignoring f(«, €, §). Considering both
f and g will result in a stronger result at the expense of
more involved analysis. Comparing with (36), Theorem 5
indicates that, providing ¢ is sufficiently small, the variance
of each constituent Gaussian mechanism can be reduced by
i—g(log(Z logé~!) + 1 — loge) compared to what would be
obtained from MA.

B. Illustration of Our Bounds

We now empirically compare Lemma 2 with the MA guar-
antee (29) that has been extensively used in the state-of-the-art

Authorized licensed use limited to: Fei Wei. Downloaded on May 24,2021 at 14:34:35 UTC from IEEE Xplore. Restrictions apply.



214 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Algorithm 1 Noisy SGD

1: Input: Dataset d = {x1, ..., x,}, loss function £(@, x), ini-
tial point 6, batch size m, noise variance o2, and clipping
threshold C.

2. fort=1,...,T do

3:  Select randomly a batch I, C [n] of size m

4 g(x;) = Vol(6, x;), fori e l,

s B = g0 min{l, 55)

6 Orp1 =60 — [0, &) +0CZ],  Z~N(O,D
7: end for

8: Output 67

differentially private algorithms, e.g., [9], [11], [37], [40]-[44].
We do so in two different settings: (1) vanilla 7-fold composi-
tion of the Gaussian mechanisms with fixed variance, and (2)
noisy SGD algorithm.

1) Vanilla Gaussian Composition: Here, we wish to obtain
bounds on the privacy parameter ¢ of M) where
M is a Gaussian mechanism with ¢ = 20. In
Fig. 3, we compare Lemma 2 with MA when § =
1073, According to this plot, our result enables us to
achieve a smaller privacy parameter by up to 0.75,
i.e., Maxre[1000] sﬁAA(p, T) — e‘s(p, T) = 0.75 where
8ﬁ,|A(p, T) is the ¢ given in (29). This privacy ampli-
fication may have important impacts on recent private
deep leaning algorithms. Alternatively, one can observe
that our result allows for more iteration for the same ¢,
e.g., 100 more iterations for any & larger than 6.

2) Noisy SGD: SGD is the standard algorithm for train-
ing many machine learning models. In order to fit a
model without compromising privacy, a standard prac-
tice is to add Gaussian noise to the gradient of each
mini-batch, see e.g., [5]-[8], [22], [40], [43]. The prime
use of MA was to exploit the RDP’s simple composi-
tion property in deriving the privacy parameters of the
noisy SGD algorithm [5, Algorithm 1]. To have a fair
comparison, we analyze this algorithm (see Algorithm 1)
with the sub-sampling rate ¢ = 0.001 and noise param-

eter 0 = 4 and then compute its DP parameter via (29)
2

with p = (l_qw (see [5, Lemma 3]) and § = 1072,
We then compare it in Fig. 4 with Lemma 2 with the
same p and o. As demonstrated in this figure, our
result allows remarkably more epochs (often over a hun-
dred) within the same privacy budget and thus providing
higher utility.

Since Lemma 1 is shown to improve on the composition
results of MA, it is reasonable to construct the improved MA:
First use the linear composability of RDP to take into account
the composition and then use Lemma 1 to convert the resulting
RDP guarantee to (g, §)-DP. We next show that improved MA
might lead to tighter guarantee than hypothesis test privacy.

C. Comparison with f-DP

As mentioned earlier, f-DP (see Definition 6) leads to
stronger DP guarantee than what is obtained by MA for noisy
SGD algorithms. More precisely, Bu et al. [20, Th. 2] showed

—— Our Bound
— Buetal

1072

Fig. 5. Comparison of parameters of ¢ and § in noisy SGD algorithm

obtained from Lemma 2 and [20, Th. 2]. The parameters of the algorithm are
as follows: ¢ = 0.003, epoch E = 30 (hence T = % = 10000), and o = 0.6.

that if one applies composition results of f-DP (i.e., [17, Th.
3.2]) to noisy SGD algorithms and then converts it to DP
(via [17, Proposition 3.12]), then the resulting & is asymptot-
ically smaller than (29) for any § € (0, 1) provided that the
sub-sampling rate g is scaled as —= with T being the num-
ber of iteration. A natural question raised here is whether this
result still holds if we replace MA with the improved MA.

In Fig. 5, we consider noisy SGD algorithm with Gaussian
noise with o = 0.6 and sub-sampling rate ¢ = 0.003 (similar
to [20, Fig. 2]) and compare Lemma 2 with [20, Th. 2]. As
clearly illustrated by this figure, the improved MA may yield
tighter privacy guarantees than what f-DP promises.

V. HYPOTHESIS TESTING PRIVACY

In this section, we investigate the relationship between RDP
and hypothesis test privacy, that is, we focus on Question
Two in the introduction. Let X be the output of a mecha-
nism M. For any pair of neighboring dataset d ~ d’, we
consider the hypothesis test (repeated from the introduction
for convenience)

Hy: X~ Mg vs. Hy: X~ My. 37

The fundamental efficiency of a randomized test between Hy
and H; is delineated by a decision rule, a random transfor-
mation Pzx : X — P({0, 1}) where 1 indicates that Hy is
rejected. Type I and type II error probabilities correspond-
ing to the decision rule Pzx are given by fPZ|X(1|x)./\/ld(dx)
and f Pz1x(0]x) M4 (dx), respectively. To capture the optimal
tradeoff between type I and type II error probabilities, it is
customary to define tradeoff function ,37\‘/’{ : [0,1] — [0, 1]
given by

B (v) = in / P (010 My () (38)

where the infimum is taken over all decision rules Pzx such
that fPZ\X(1|x)/\/ld(dx) <.

Note that we can always assume, without loss of gener-
ality, that 7 + ,3%(7:) < 1, since for any decision rule one
can take its negation. The line 7 + ﬂjj\‘fl[ (t) = 1 indicates the
complete indistinguishability between d and d’ on the basis
of a mechanism’s output. It follows from the definition that
the map 7 +— ﬂ;{‘ft/ (7) is non-increasing and convex. Recall
that the mechanism M is said to be f-DP for a convex and
non-increasing function f that is majorized by infgy ,35{‘/1{,
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that is if f(7) < 1nfd~drﬂ (‘L') for any t € [0, 1]. Hence,
the problem of determmmg the relationship between RDP
and f-DP reduces to characterizing the set (r, 8) such that
B > inf, g ﬂ% () for all mechanisms M with a certain level
of RDP guarantee. To this goal, we define the privacy region
of mechanism M as

_ U{(r,ﬁ)e[o,l] pld (r)<,3<1_f}
d~d'
It was shown by [14], [16] that a mechanism M is (e, §)-DP
if and only if

Cp C Cle, 8) = {(r, B)el0, 11 : v+

21—5,ﬁ+e8r35}. (39)

Remark 2: Recall from the definition of E,-divergence (8)
that, for any pair of distributions (P, Q) and positive A, we
have E; (P||Q) = P(gP >N — AQ(gg > )A). Since accordlng

to Neyman-Pearson lemma ,3 ('L') ./\/ld/(log q M - > ¢)

where 7 = ./\/ld(log q Md’ < ¢g), it follows that the line
B = e (1 —1 —8§), with § := ming~y Ees (My||Myg),
supports M from below. Swapping d and d’, we deduce
that the line 8 = 1 — §; — ¢t is another supporting line
of Cpq with slope €. Due to the convexity of Cpg, the
collection of all supporting lines losslessly constructs Cay;
thus, (50 C(e, 8:) = Caq. In other words, the collection of
{(e, 8¢)}e>0 and the mapping t — infyy ,3 (r) capture the
same privacy guarantee. This provides a new lens to explore,
delineate and interpret privacy guarantee achieved by differen-
tial privacy. This new perspective has recently been adopted
by Dong et al. [17]. To illustrate this observation, consider
the Gaussian mechanism. It is easy to see that for Gaussian
mechanisms (assuming unit Lp-sensitivity)

1 1
§o =0 -0+ — ) —eO| —c0 — — |, 40)
20 20

where & is the standard normal CDF. On the other
hand, for a Gaussian mechanism M with variance o2, the
Neyman- Pearson lemma implies that the tradeoff function

inf, .z ,3 (‘L’) G 1 (1), where
Gu(®) = &(®7'(1 = 1) — ), (41)
and ®~! is the inverse of ®. It is worth mentioning that Gu(1)

in fact corresponds to the smallest type II error probability of
testing AV(0, 1) against N (i, 1) with type I error probability
being t. In Fig. 6, we identify the region Cpq by its lower
boundary (red curve) given by the above tradeoff function and
its upper boundary § = 1 — t. The blue curve is the lower
boundary of C(g, §,) for ¢ = 1.

While the DP constraint can be operationally interpreted
via (39), it is not clear how to obtain a similar interpretation
for RDP constraint. Nevertheless, we wish to obtain some
implications of a mechanism’s RDP constraints on its privacy
regions. We begin by giving an explicit formula for the RDP
guarantee of a mechanism in terms of the derivative of the
map T > ,3 (1) ford ~ d'.

Fig. 6. Two outer bounds for the Gaussian mechanism with 02 = 1: The
red curve is the map t — <I>(<i[>*1 (7) — 1/0) and the blue curve specifies the
region C(g, 8¢) for ¢ = 1 and §¢ given in (40).

Proposition 1: Given o > 1, a mechanism M is («, y)-
RDP for

suleog(l — B (0)+ / |Fdd/(r>|1—“dr>,

d~d &~
(42)

where Tyq (1) = & B34 (7).

The proof of this result relies on a general fact: all
f-divergences between M, and My can be explicitly
expressed in terms of the derivative of ,Bji(f{. This was men-
tioned, without a proof, in [19, eq. (2.79)] in a completely
different context and was recently proved in [17, Proposition
B.4]. We give a more direct proof in Appendix H.

Proposition 1 provides an explicit RDP guarantee for a
mechanism with a given hypothesis test privacy constraint. The
other direction seems more practical: Given an (o, y)-RDP
mechanism, what can we say about its privacy region Cpq?
There are two approaches to address this question. First, one
can use the machinery developed in Section III to relate («, y)-
RDP constraint to (¢, §;(y))-DP and then declare C(e, §,(y))
as an outer bound for the privacy region for any ¢ > 0.
Alternatively, one can use information theoretic results (such
as data processing inequality) to directly relate Rényi diver-
gence to type I and type II error probabilities in hypothesis
testing (37) (see [50]). In the following, we delineate these
two approaches.

Since all («, y)-RDP mechanisms are (g, 85(y))-DP, we
immediately obtain the following result from (39).

Lemma 3: Let M be an («, y)-RDP mechanism. Then, we
have

Cm S ()€ 550)).

>0

(43)

Note that since ¢ +— §5(y) characterizes the DP param-
eters of the worst mechanism in M (y), it follows that
the privacy regions of all («, y)-RDP mechanisms are con-
tained in [, C(e, 8, (y)), or equivalently, UMeMa(y) Cm C
Nez0Cle. 85(1)).

Instead of dealing with the infinite collection of (g, 85 (y))
and taking the intersection of C(g, 85(y)), we can alternatively
focus on the tradeoff function (see Remark 2). That is, we wish
to study the privacy regions of RDP mechanisms by directly
computing bounds on the tradeoff function rather than convert-
ing RDP into (e, §)-DP. Adopting this viewpoint, we establish
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Fig. 7. The outer bounds for the privacy region of the T-fold homoge-
neous Gaussian mechanism. The regions marked as Bound 1 and Bound 2
correspond to (52) and (53), respectively and the region marked as Exact cor-
responds to (51). Recall that the privacy “regions” are to be interpreted as the
region between depicted curves and the diagonal line ¢ + 8 = 1.

two outer bounds for the privacy region of an («, y)-RDP
mechanism in the following lemma.

Lemma 4: Let M be an («, y)-RDP mechanism. Then, the
privacy region of M satisfies

Cu S B e 0. : da@IB) = 7. du(BllT) = 7} (44)
c{@p e d@Ip) < y.d(Ble) <7} @)

where d(allb) = alogy + leog% and dy(allb) =
Lo log(a®b' = +a*b'~%) for a, b € (0, 1).

Proof: Let Pzx be an optimal randomized test mapping
the mechanism’s output X to a binary variable Z correspond-
ing to Hy and Hjy, ie., [Pzx(Olx)My(dx) = 1 — 7 and
fPZ|x(0|x).Md/(dx) = ﬂjl\‘fll(r). (The existence of such an
optimal randomized test is guaranteed by Neyman-Pearson
lemma.) Due to the data processing inequality, we have

Dy(MyllMg) = D, (Bernoulli(r)”Bernoulli(l - ﬁ;’(j(r)))

= du(1 - 1B ). (46)

This in turn implies that for all d ~ d’

max{d, (1= 7185 (D). da(BRGOM =)} =7, @)

which in turn implies (44) by noticing that a — dy(a||b) is
decreasing for a < b and similarly b — d(a||b) is decreasing
for b < a. Since o« — D, (P||Q) is non-decreasing [49, Th. 3],
the inclusion (45) follows immediately. [ |

It is worth mentioning that d, (a||b) is closely related to [18,
Definition 9]. Note that although the set in (45) strictly con-
tains the one in (44), it enables us to derive a simple outer
bound for the privacy region of mechanisms when optimizing
over «. This is formalized in the following result which is an
immediate corollary of Lemma 4.

Corollary 1: If mechanism M is («, y(«))-RDP for all
o > 1. Then its privacy region satisfies

Cm € (@ B) - da@IIB) < y(@), du(BlT) < y(@)}

a>1
(48)
C ﬂ{(f, B) 1 d(T|B) < y(@).d(Bllt) < y(@)}.
a>1
(49)

To demonstrate the accuracy of Corollary 1, we consider
Gaussian mechanisms for the remainder of this section. Recall
that the Gaussian mechanism with variance o2 is (o, y)-RDP
for y = pa with p = 2%2 Recall that the T-fold composi-
tion of such mechanism is («, paT)-RDP, implying that M D)
is a Gaussian mechanism with variance # Hence, according

to (41), we have
. dd’ _
inf Bl (1) = G pr() (50)

This, in turn, implies that C ) the privacy region of MD
is given by

Cun =@ B e 0.1 : Gy sp=1-1}). 6D

Specializing Corollary 1 to M), we can express outer bounds
given in (48) and (49) as

Con S (@ B) : du(ZIIB) < paT.du(Bl) < paT}

a>1
(52)
c{@p 017 d@Ip) < oT. d(Bll7) = pT}.
(53)

In Fig. 7, we compare these outer bounds with the exact
privacy region given in (51). Note that the region (49),
while being weaker than the region in (48), can be explicitly
characterized for Gaussian mechanisms. For a more realistic
application, we apply Corollary 1 to noisy SGD algorithm
(i.e., Algorithm (1)). This algorithm can be thought of as
a T-fold composition of Gaussian mechanism with an addi-
tional feature of subsampling (line 3 in Algorithm 1) with
rate g = % As before, we invoke [5, Lemma 3] to obtain that
each iteration of this algorithm is approximately (e, atp,)-RDP

where p, = for positive integer @ < 1 4+ o2 log q%

q
(1—¢)o?
and ¢ < %. Thus, after T iterations the algorithm is

(a0, apyT)-RDP. Corollary 1 therefore gives

Csap(NE [{(T. B) : du(TlIB)<epyT, du(BlIT) <ty T},
acA
(54)

where A is the set of admissible « indicated above. On the
other hand, subsampling and composition results of f-DP ([17,
Th. 4.2] and [17, Th. 3.2], respectively) can be exploited to
approximate (asymptotically in T) the tradeoff function for
the Algorithm 1 and thus to construct an outer bound for the
privacy region [20]:

Csep) € [ p e D?: G =p=1-t|]. (55
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Fig. 8. The outer bounds for the privacy region of SGD algorithm according
to our RDP-based bound (54) (blue solid curve) and f-DP [20] (red dashed
curve) with the subsampling rate ¢ = 256/60000. As the blue curve lies above
the red curve for o < 0.7, our bound yields tighter privacy region. Since the
intersection in (54) is over only integer «, the blue curve may not be smooth

for large T.
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Fig. 9. The difference between the area of the region in the right-hand
side of (55) and (54) with the subsampling rate ¢ = 256/60000. A positive
value indicates that the outer bound in (54) is smaller than that in (55), or
equivalently, RDP leads to a tighter privacy guarantee that f-DP.

where u = g T(e'/o* — 1) and G, (-) was defined in (41). In
Fig. 8, we illustrate this bound together with (54) for different
number of iterations and ¢. The numerical findings indicate
that there always exists a o for any sub-sampling rate g such
that our RDP-based outer bound (54) is tighter than f-DP
bound (55) for all o < oy irrespective of the number of itera-
tions. For instance, og &~ 0.7 in Fig. 8, that is, (54) is tighter
than (55) for all o < 0.7 and any number of iterations. To bet-
ter support this claim, we compute the area of the regions on
the right-hand sides of (54) and (55) and report the differences
in Fig. 9 for different values of ¢ and 7. Positive numbers indi-
cate that the former is a smaller region, or equivalently, the
outer bound in (54) is tighter than (55); thus supporting our
claim.

CONCLUSION

In this article, we investigated the relationship between
three variants of differential privacy, namely approximate DP,
Rényi DP, and hypothesis test DP. First, we established the
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optimal relationship between Rényi DP and approximate DP
that enables us to derive the optimal approximate DP param-
eters of a mechanism that satisfies a given level of Rényi
DP. In order to show its practicality, we applied this result
to the moments accountant framework for characterizing pri-
vacy guarantees of noisy stochastic gradient descent. When
compared to the state-of-the-art, our result was shown to lead
to about 100 more stochastic gradient descent iterations for
training deep learning models for the same privacy budget,
and thus provide better accuracy without any privacy degra-
dation. In the second part, we analyzed the implications of
Rényi DP constraint in terms of the tradeoff between type I
and type II error probabilities of a certain binary hypothesis
test which formalizes the hypothesis test DP. More specifi-
cally, we derived an outer bound for the region of type I and
type II error probabilities (also known as the privacy region)
achievable by a mechanism that satisfies a given level of Rényi
DP. We then used this result to characterize the privacy region
of noisy stochastic gradient descent algorithm. Compared to
the existing results (obtained via sub-sampling and composi-
tion results of recently proposed f-DP framework), our outer
bound was empirically shown to be tighter for a practical range
of the noise variance.

APPENDIX A
SUFFICIENCY OF BINARY DISTRIBUTIONS FOR
CHARACTERIZING Ry

We provide a direct proof for the fact that it suffices to
consider the Bernoulli distributions for characterizing R. The
following argument is a natural extension of the proof of [51,
Lemma 2]. Let P and Q be two general distributions on X.
We wish to show that the for any A > 1 and @ > 1 the
optimization

inf Dy (PllQ)
P,0eP(X)

st.  Ev(PlQ) =4, (56)

is achieved by Bernoulli distributions. Let ¢ : X — {1, 2} be
defined as

1, if 5@ = A
PO =1, i dg(x) <A 7
Also, define Bernoulli distributions Py and Qp on {1, 2} as
follows
Poy = [ P, (58)
x:p(x)=j
and
Ob()) = / O(dx), (59
x:p(x)=j
for j € {1, 2}. Note that in this case, we can write
IP=101 = [ 1P ~ 0@ (60)
= / (P(dx) — 20(dx))
P(x)=1
+ [ oo - pa (61)
$(x)=2
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= Pp(1) = 20p(1) + 20p(2) — Pp(2) (62)
= [Pp(1) = AQp (D) + [Pp(2) —A0p(2)|  (63)
= [IPb — A0l (64)

Notice that E; (P||Q) = 1|P —AQ| + 1(1 — 1) and hence the
above implies that E; (P||Q) = E; (Pp||Qpb). On the other hand,
the data processing inequality for Rényi divergence implies
that Dy (P||Q) > Dy (Ppl||Qp). These two observations demon-
strate that the minimum of Dy (P||Q) subject to E; (P||Q) > §
is achieved by Bernoulli distributions.

APPENDIX B
PROOF OF THEOREM 3
First notice that, in light of Theorem 2, the convex set R,
defined in (18) is equal to the convex hull of the set B, . given
by

Ba,e = {(x*(PpllQb), Ees (PbllOp)) |Po, Qb € PO, 1))}
(65)

where Pp, = Bernoulli(p) and Qp = Bernoulli(g) with param-
eters p,q € (0, 1). For any pair of such distributions, define
Y = x*(Pp|lQp) and § = E.(Py||Qp). We first show that
the convex hull of By . is given by

Boe ={F.8[8 €10, 1), 7 > 7} (66)
with ¥ (8) given by
76 = inf  x“(PplQp)
0<p,g<l1
s.t.  Eee(Ppl|Qp) > 6. 67)

To this goal, we need to demonstrate that for any A € [0, 1]
and pairs of points (31, 81), (2, 82) € By.e, we have (AY] +
)_\)72,)\81 + 5«32) € l;a,g, where A = 1 — A, or equivalently
A81 + 282 € [0, 1) and APy + APr > P (A8 + A82). Hence, it
suffices to show that § — y(§) is convex.

Let pi,qi € (0,1) with p; > g; be the optimal solution
of (67) for §;, i = 1,2, and Py ;, Qp,; be the corresponding
Bernoulli distributions. For any A € [0, 1], we construct two
Bernoulli distribution Pp; and Qp; with parameters p;, =
Ap1 + Ap2 and g5 = Aq1 + Aq2, respectively. It can be verified
that

Eet (Po,all0b2) = pr — € (68)
=ap1+ipy— ¢ (hqr +2q2)  (69)
> A81 + 182, (70)

i.e., (py, g») is feasible for Ad; + A8>. In addition, from the
convexity of x, we have that

AV DAY (82) = Ax* (Po,11Qb,1)+Ax* (Po210b2)  (71)
> x*(Pb,210b.2) (72)
> )7(}.8]‘}‘)_\,82). (73)

Therefore, the function () is convex in § and hence Ba, o 1S
the convex hull of {ﬁ’a,g. In light of Theorem 2, this in turn
implies that R, =

o, €

The above analysis shows that § + y(8) in fact consti-
tutes the upper boundary of By . and thus R,. Since x(-) is
a bijection, this allows us to deduce

x 1 (x*(Poll Qb))
st Eee(PpllOpb) > 6,

) = inf
)’a( ) 0<}Jr,lq<l
(74)

and hence the optimization problem (16) can be converted to
the above two-parameter optimization problem.
Expanding both x¢ and E.c, we can explicitly write (74) as

yi@®) = inf

log(paqlfoz _’_I—yaélfa)
O<g<p<l o —1

st. p—gqe® >3, (75)

where § < 1 and y < oo. Let h(p, ¢; o) indicate the objective
function of the optimization problem in (75). For any given
o > 1 and p € (0, 1), the partial derivative of h(p, g; o) with
respect to g is given by

dh(p.q;a)  p*q*—1A-—p)*A -9
dg g+ 1= p)(l -
which is negative for all 0 < ¢ < p < 1, and therefore,
h(p, q; o) is decreasing in q. In addition, for ¢ > 0 and § €
[0, 1), the two constraints 0 < g < p < 1 and p — ge® > §
in (75) can be equivalently rewritten as

s<p<l1
0<g<?

eS

(76)

5 (77)

Thus, the infimum in (75) is attained at g = ‘"L;ga and therefore,

fora > 1,6 € [0,1) and ¢ > 0, the optimization problem
in (75) is simplified as

@ DE®=8) = ipf p“(P—S)l_“+I3a(68—p+8)l_a,

pe(s.1)
(78)
which is the desired result. |
APPENDIX C

PROOF OF THEOREM 4

Recall that the optimization problem in Theorem 3 is equiv-
alent to (78). Let h{(p; «, 8, ¢) indicate the objective function
in (78). One can verify that for > 1,8 € [0, 1) and ¢ > 0, the
mapping p — h1(p; «, 8, ) is convex. Therefore, the numer-
ical result of y; () can be easily obtained for any given «, §
and e.

To get closed-form expressions, we explore lower bounds
of (78) as follows.

Lower bound 1: Ignoring the second term in A1 (p; «, 8, €),
we obtain

cOTDEOE) > inf o (p — §)1

e (79)
pE(.1)

We note that the objective function in (79) is convex in p, as
. . 2
it can be verified that %p“(p — &)~ equals

a —l—a a=2 1—a\2
@=Da(pip—8"7 —pTp-57) =0,
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and therefore, by setting the first derivative to be 0, we
obtain the optimal solution for the corresponding uncon-
strained problem as p* = «d. Since o > 1, it follows that
the optimal solution of (79) is given by p* = min{«d, 1}, and
therefore

(@ DE® =) (gaa(a _ 1)1_0‘)1{058 <1)
+ ((1 - 5)1‘“)1{a8 > 1} (80)

with equality holds if and only if «é > 1, where 1{-} denotes
the indicator function. Thus, if «é > 1, we have y5(8) =
& —log(1 — §), and if «é < 1, we have the lower bound

a—1
i) > e — ! log<i(1 — l) ) (81)
a—1 Sa o
=8—%110g%1. (82)

Lower bound 2: To obtain the second lower bound, we note
that the function & (p; «, 8, ¢) is convex in §. This enables
us to bound h(p; «,d,¢) from below by using its linear
approximation at § = 0. Hence we can write
oh(p; o, 6 =0, 8)8

04

1-p\*
=p+@—Ds+(—
e —p
x (e —p—(a— 1)),
with equality if and only if 6 = 0. Therefore, we have
o o
@-DOE®=8) 5 g <1 _ ( ! _p> >p+ < ! _p>
pe(s,1) e —p e —p
x (€ — (@ — 1)) + (a — 1)8. (83)

Let iy (p; «, 6, €) indicate the objective function of (83). In the
following, we prove the monotonicity of A, (p; «, 6, €) in p for
a>1,1>68=>0and ¢ > 0. Taking the first derivative of
hy(p; a, 8, €) with respect to p, we have

h(p;a,8,e) > h(p;a,8§ =0,¢) +

dha(p;a,8,8) 1—p\*
ap = (eg —p>
y (a(es —Dp+(a—1)45—¢€) B 1)
(e —p)1—p)
= hi(p;a,d,¢)
> 1+(1_p> <—a(68_1)—1> (84)
e —p l—p
= hy(p; @, €)
> hy(p=46;a,¢) (35)
£ _ o\ _ s & _ so—1
_ (ef —6) ) ae 1)é (86)
(ef —8)*
_ hs(8, a, €) 87)
(ef —8)*
> hs(8,a, e =0) _o, (88)
(e — o)
where

« the inequality in (84) follows from the fact that the func-
tion h3(p; @, 8, €) is increasing in §, and therefore, for 1 >
§=>0, h3(p;a,8,e) > h3(p;a,8 =0,¢) = hy(p; a, &)
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« the inequality in (85) is due to the fact that the function
ha(p; a, €) is increasing in p as shown below

0 hs(p; «, o Ca—
4([’ o 8)=O[(O[—1)(€8_1)2pa Z(ea_p) o 1>O
ap
and therefore, for p € (6,1), ha(p;, &) > ha(p =
S, a,e).

o the inequality in (88) is from the monotonicity of the
function h5(8, «, €) in . Specifically,

3 hs(8, a, &) ol o
T=a68<(68—6) —(1-95) l)zo

and thus, for ¢ > 0, h5(5, a, &) > hs(8,a, e =0) = 0.
Therefore, the objective function hy(p; o, 8,¢e) in (83) is
increasing in p, and therefore, we have

@ DGE®=8) > p(p =81, 8, ¢) (89)
-8\
=a8+<e5—8> (¢® —as) (90

with equality if and only if 6 = 0. Thus, we have

L 8 L8\ e 8 91
10g<0[ +<m) (E —O[)) 91

o —

Yed) > e+

where the equality holds if and only if § = 0 which leads
to yg (6 = 0) = 0. The lower bounds (82) and (91) give the
desired result. |

APPENDIX D
PROOF OF LEMMA 1

From the first part of the proof of Theorem 4, we have

donl= (y — Lolog {i)+ if a8 <1
o
= (y +log(l —§)), otherwise.

92)

Next, we obtain a closed-form upper bound on sg(y)
from the function f(w,¢&,8) in Theorem 4. To do so, let
fi(e, €, 8) be the expression inside the logarithm in f(«, ¢, §),
ie., fila, e, 8) = (f — 055)(55__815 )¥ 4+ «d. The second partial
derivative of f(§, «, €) with respect to § is given by

)S"‘ (e (1 — 26 4+ €°) —ad(ef — 1)).
82(ef — 8)%(8 — ¢*)?

Therefore, for « > 1, ¢ > 0 and § € (0, 1), the convexity of

f1, a, &) in § is guaranteed by

e+ 1)
- <0. 93
2ef +a(et —1) — ©3)

(o — 1)0[(68 —1

Let fo(a, &) = poetD

TFa@ =T and therefore, if § — fo(a, ) <0,
we have

)/5(5) Ef(“,eﬂs) =&+

log(fi(e, €, 8)) (94)

a—1
3G =0,a
> ¢+ log(fi(a.e.8 = 0) 4 1@ =0 @e) s
a1 95
1
— o+ — log(e™@V 4 a8 — ase ™), (95)
o

with equality if and only if § = 0. In the following, we prove
that § < é is a sufficient condition for § — f2(«t, &) < 0 by
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showing that f>(o, ¢) > 1/« for any o > 1. Taking the first
partial derivative of f>(w, €) with respect to &, we have

dfr(a, €) . 6‘9((2 + a)e? — 2ue® — a)

96
de (2¢f 4+ a(ef —1))? ©0)
++/20(a+1
SO l<ef <SREER o)
> 0, otherwise,

and therefore,

fz(a,g)_l Zf2<a’8:10gw) _l
o 24« o

2(e? +a(y2a(@+ 1) — 1) —2)

= 8
a2+ a)? %)
. B
o (){(24-0:)2 ©9)
Q)
T arar (o

where the inequality in (100) follows from the fact that f3(«)
is monotonically increasing in « > 1 as shown below:

ds@ _ V2 420) oo
RN T +2y20(l 4+ o) +4a —2 > 0.

(101)
Therefore, from the inequality in (95), we have that for § <
1/,
s 1 ey 1
< 1 1 102
sa(y)_a_log( — +> (102)
and equality holds if and only if y = 0, ie,
ey =0)=0. [
APPENDIX E
DERIVATION OF REMARK 1
Note that it can be verified that y — ﬁ logc% < 0 for

5 > ;ae(""])y. Combined with o8 < 1, we therefore have
82()/) =0 for & € [¢ue@ D7, é]. To have a valid non-empty
interval, we must have the condition {ae(""l)” < é that is
simplified to 1 —e™7 < é A similar holds for the case o > 1:
we have y +1log(1 —8) < 0if § > 1 —e~ 7. Hence, 82{()/) =0
if § > max{l —e77, 1/a}.

APPENDIX F
PROOF OF LEMMA 2

Recall that for the T-fold composition of Gaussian mecha-
nism with variance o2, we have y () = apT where p = 1/02.
From Lemma 1, we have that for d > 1 and 0 < § < 1,

sg(p(xT) = (paT +log(1 —98)) (103)
and therefore,
O, T) = inf &% (paT) (104)
o>
< inf (paT + log(l — 8)), (105)
a>1
T
_ (p— + log(l — 5)) : (106)
$ +

In addition, from Lemma 1, we have that for 0 < ad < 1,
58( pT) < min{( oT ! log ) )
o < apT — — ,
“ a—1 "¢/,

. log<(a—1)x(apT)+1>}’
a—1 ad

e,oa(ot—l)T_l

T > and therefore,

where x (apT) =

(o, T) = inf & (paT)
a>1

1 8
< inf min{(a,oT— log —) ,
+

l<a<% a—1 Cu
1 epa(ot—l)T -1

1 I+ —).

a—1 0g< al )}
107)
Combining the two inequalities in (106) and (107), we
obtain the upper bound of £(p, T) in Lemma 2. ]

APPENDIX G

PROOF OF THEOREM 5

Lemma 2 illustrates that the T-fold adaptive homogeneous

composition of the Gaussian mechanism with variance o2 is

(e, §)-DP where

T 1 3
s= inf ~— — —log—. (108)
1<a§% 20 a—1 S
-1
Assuming that % < %, or equivalently ¢ > 28logs™!,

-1
we can plug o = mgTa in the above expression to derive

the following lower bound for o>

(8—2 log %)Tlog %

—e+21og L —e42log L 2log 4
82<8_10g%+ . 50g510g< 82]()g0§g$)_10g< (?Eg(S))

(109)
1
2T10g% T 2T<10g<210g3)+1—10g8) T
=72 o &2 2:2 log L
e=log 5

1
x [4 log2A+(8—68)10gA+282—58+4]+0(—>

21
log” 5
(110)
T oe 1y L 2T(1 (21 3—1)+1 1 )
=—10g —+———=1(10 (0] —loge
2 gS 22 g g g
log2(log 8!
0 g( g ) . (111)
log 61
where

« the expression in (110? is the Taylor expansion of (109)

log

at § =0and A = T‘S,
e in (110) as § — 0, we have loch*1 — 00, therefore,
for any fixed finite ¢ and T, the fourth term is of order

log?(log s~ 1) . 1
O(W) and dominates O(W)'

It is worth mentioning that this choice of « has already
appeared in literature, see [43, Discussion after Thm 35]. W
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APPENDIX H
PROOF OF PROPOSITION 1

Recall that My and My are the output distributions of
mechanism M when running on two neighboring datasets
d and d’, respectively. For notational simplicity, let P and
Q denote M,y and My, respectively and also B(r) denote
ﬁ (‘L’) We wish to prove a more general result than
Proposmon I: For any convex real-valued function f with
f(1) =0, we show

Df(P”Q):/ 1B'( )lf(lﬂ( )|) (112)

where B'(7) = %ﬂ(r). For a given A > 0, define

dpP dpP

where, as before, 1{-} denotes the indicator function. Then,
since T — B(t) specifies the optimal tradeoff between type I
and type II error probabilities of testing P against O, we have
from Neyman-Pearson lemma that

dP
B(ty) = Q(— > ?»)~

(113)

114
0 (114)
Before we begin the proof of (112), we need the following
fact that will be needed later.
Fact: We have

(%Tx = A B@) (115)
We prove this fact as follows:
- dp_[dP dpP
o =1 g g =]+l | e
(116)
=1- /mm{ dp }dQ (117)
dQ’
=1- /1P|:dQ > j|dt (118)
o LdP T a
= A/OO lP|:d—P > ti|dt (119)
w7 Ldo

where equality in (118) comes from the formula that E[U] =
[Pr(U > ndt for any non-negative random variable U. We
can hence write
o
1-u-M@) :/ lP[d—P > t:|dt
A A 2 do

Taking a derivative, with respect to A, of both sides of this
identity, we obtain the desired result (115). It is worth not-
ing that if we consider E,-divergence for any non-negative A
(rather than A > 1), then the left-hand side of (116) is in fact
equal to E; (P||Q), because it can be easily verified that

E,.(P|Q) = sup P(A) — AQ(A) = T, — AB(w).
AcCX

(120)

Hence, (119) gives an equivalent formula for E,-divergence
for L > 0.
Proof of (112): We have

dP\ do 1
Ds(PIQ) =ff<@>@d1’=/o f(t);dfz

(121)

_ /OOf(_ dr,/dt )dﬁ(r,)/dtdrt 122)
0 dp(w)/dt) dr/dt
! 1
= — d 123
/()f( ﬂ())ﬂ(r)r (123)

where the equality in (122) follows from (115). The desired
result follows by noticing that T +— B(t) is decreasing and
hence B'(t) <0 1mply1ng that —B'(1) = |,B (). l

Plugging f (1) =

1 1 —a
x*(PIQ) = —— —ﬂ(0)+/ Iﬁ’(r)ll dr |, (124)
a—1 0

implying

1 1 —a
Du(PQ) = — log 1—/3<0)+/O (18 @) e
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