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Abstract—We consider three different variants of differential
privacy (DP), namely approximate DP, Rényi DP (RDP), and
hypothesis test DP. In the first part, we develop a machinery for
optimally relating approximate DP to RDP based on the joint
range of two f -divergences that underlie the approximate DP and
RDP. In particular, this enables us to derive the optimal approx-
imate DP parameters of a mechanism that satisfies a given level
of RDP. As an application, we apply our result to the moments
accountant framework for characterizing privacy guarantees of
noisy stochastic gradient descent (SGD). When compared to the
state-of-the-art, our bounds may lead to about 100 more stochas-
tic gradient descent iterations for training deep learning models
for the same privacy budget. In the second part, we establish a
relationship between RDP and hypothesis test DP which allows
us to translate the RDP constraint into a tradeoff between type
I and type II error probabilities of a certain binary hypothesis
test. We then demonstrate that for noisy SGD our result leads
to tighter privacy guarantees compared to the recently proposed
f -DP framework for some range of parameters.

Index Terms—Differential privacy, Rényi divergence, binary
hypothesis testing, f -divergences, moments accountant, stochastic
gradient descent.

I. INTRODUCTION

D IFFERENTIAL privacy (DP) [2] has become the de facto
standard for privacy-preserving data analytics. Intuitively,

a randomized algorithm is said to be differentially private
if its output does not vary significantly with small perturba-
tions of the input. DP guarantees are usually cast in terms of
properties of the difference of the information density [3] of
the algorithm’s output and two different inputs—referred to
as the privacy loss random variable in the DP literature. In
fact, several variants of DP has been proposed based on dif-
ferent properties of privacy loss random variable. Informally
speaking, a mechanism is said to satisfy (ε, δ)-DP [2] if the
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privacy loss random variable is bounded by ε with probabil-
ity 1− δ. A mechanism is said to be (α, γ )-Rényi differential
privacy (RDP) [4] if the αth moment of the privacy loss ran-
dom variable is upper bounded by γ ; see Section II for more
details.
Several methods have recently been proposed to ensure

differentially private training of machine learning (ML) mod-
els [5]–[10]. Here, the parameters of the model determined
by a learning algorithm (e.g., weights of a neural network or
coefficients of a regression) are sought to be differentially pri-
vate with respect to the data used for fitting the model (i.e.,
the training data). When the model parameters are computed
by applying stochastic gradient descent (SGD) to minimize
a given loss function, DP can be ensured by directly adding
noise to the gradient. The empirical and theoretical flexibility
of this noise-adding procedure for ensuring DP was demon-
strated, for example, in [5], [6]. This method is currently being
used for privacy-preserving training of large-scale ML mod-
els in industry, see, e.g., the implementation of [11] in the
Google’s open-source TensorFlow Privacy framework [12].
Not surprisingly, for a fixed training dataset, privacy deteri-

orates with each SGD iteration. In practice, the DP constraints
(i.e., ε and δ) are set a priori, and then mapped to a permissi-
ble number of SGD iterations for fitting the model parameters.
Thus, a key question is: given a DP constraint, how many
iterations are allowed before the SGD algorithm is no longer
private? The main challenge in determining the DP guarantees
provided by noisy SGD is keeping track of the evolution of
the privacy loss random variable during subsequent gradient
descent iterations. This can be done, for example, by invok-
ing advanced composition theorems for DP, such as [13], [14].
Such composition results, while theoretically significant, may
be loose due to their generality (e.g., they do not take into
account the noise distribution used by the privacy mechanism).
Recently, Abadi et al. [5] circumvented the use of DP

composition results by developing a method called moments
accountant (MA). Instead of dealing with DP directly, the MA
approach provides privacy guarantees in terms of RDP for
which composition has a simple linear form [4]. Once the pri-
vacy guarantees of the SGD execution are determined in terms
of RDP, they are mapped back to DP guarantees in terms of ε

and δ via a relationship between DP and RDP [5, Th. 2] allow-
ing for converting from one to another. This approach renders
tighter DP guarantees than those obtained from advanced com-
position theorems (see [5, Fig. 2]). Nevertheless, the existing
conversion rules between RDP and DP are loose. In this
article, we provide a framework which settles the optimal
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conversion between RDP and DP, and thus further enhances
the privacy guarantee obtained by the MA approach. Our tech-
nique relies on the information-theoretic study of joint range
of f -divergences: we first describe both DP and RDP using
two certain types of the f -divergences, namely Eλ and χα

divergences (see Section II). We then apply [15, Th. 8] to char-
acterize the joint range of these two f -divergences which, in
turn, leads to the “optimal” conversion between RDP and DP
(see Section III). Specifically, this optimal conversion allows
us to derive bounds on the number of noisy SGD iterations
for a given DP parameters ε and δ. Our result improves upon
the state-of-the-art [5] by allowing more training iterations
(often hundreds more) for the same privacy budget, and thus
providing higher utility for free (see Section IV).
In the second part of this article, we revisit another variant

of DP based on binary hypothesis testing. Consider an attacker
who, given a mechanism’s output, aims to determine if a cer-
tain individual (say Alice) has participated in the input dataset.
This goal can be thought of as a hypothesis testing problem:
rejecting the null hypothesis corresponds to the absence of
Alice in the input dataset. It is well-known that (ε, δ)-DP is
equivalent to enforcing that the type II error probability of any
(possibly randomized) such test at significance level (or type
I error probability) τ is lower bounded by 1 − δ − eετ [14],
[16]. Thus, for small ε and δ, any test is essentially power-
less, i.e., it is impossible to have both small type I and type II
error probabilities. This view of privacy (which we henceforth
call hypothesis test DP) brings an operational interpretation
for DP. This notion of privacy has recently been parameter-
ized by a convex and decreasing function f : [0, 1] → [0, 1]
that specifies the tradeoff between type I and type II error
probabilities. A mechanism is said to be f -DP [17] if, given a
mechanism’s output, the type II error probability of any test
for a given significance level τ is lower bounded by f (τ ).
Thus, if f (τ ) is approximately 1 − τ , then any tests will be
essentially powerless. This new definition is shown to provide
easily interpretable privacy guarantees. This is in sharp con-
trast with RDP whose privacy guarantee does not enjoy a clear
interpretation (see [18] for more details).
Our goal is to address the interpretability issue of RDP by

relating RDP to f -DP. We first prove an explicit expression for
the RDP guarantee of mechanism in terms of the type I and
type II probabilities corresponding to the “optimal” test (given
by Neyman-Pearson lemma). We remark that our expression
is similar to an unproved formula that appeared first in [19,
eq. (2.79)]. Conversely, we develop a machinery to implicitly
relate RDP constraint to f -DP by constructing an achievable
region of type I and type II error probabilities among all tests.
This relationship is in particular interesting for the privacy
analysis of iterative ML algorithm in that it converts the simple
linear composition property of RDP to an interpretable privacy
guarantee in terms of f -DP. Another approach for deriving an
interpretable and tight privacy guarantee for ML algorithms is
to resort to the general composition result of f -DP [17, Th.
3.2]. This approach is advocated in [20] for the privacy anal-
ysis of noisy SGD in training neural networks. We compare
our results with [17], [20] in two different directions:

• The f -DP guarantee can be easily related to (ε, δ)-DP
(see [17, Proposition 2.12]). It is argued in [20, Ths. 1 and

2] that f -DP guarantee of SGD always yields a strictly
stronger (ε, δ)-DP guarantee than what would be obtained
by moments accountant. We empirically show that this
does not hold if one incorporates our optimal RDP-to-DP
conversion rule into the moments accountant framework;
i.e., the improved moments accountant might outperform
f -DP, see Fig. 5.

• Rather then using the general composition results of
f -DP, we propose to apply the linear composability of
RDP and then convert the resulting guarantee to f -DP.
Focusing on SGD with Gaussian noise, we demonstrate
that there exists a threshold for variance below which
our approach strictly outperforms f -DP, see Fig. 8 and
Fig. 9.

A. Related Work

Since the introduction of the approximate DP in [2], it
has been extensively studied especially for iterative ML algo-
rithms, see [7], [10], [21]–[32] to name a few. Perhaps one
of the most fundamental primitive in statistical privacy is
the study of composition; how privacy degrades under as the
algorithm iterates. There are still continued efforts to better
understand the composition of DP. The advanced composition
result for DP was derived [13]. In a pioneering work, [14]
obtained an optimal homogeneous composition theorem for
(ε, δ)-DP. It is, however, shown to be #P hard to compute
the DP parameters under heterogeneous composition [33]. A
substantial recent effort has been devoted to relaxing the DP
constraints using divergences between probability distributions
to address the weakness of (ε, δ)-DP in handling compo-
sition [4], [5], [34]–[37]. For instance, [4], [5], [34], [35]
considered Rényi divergence and showed that the optimal pri-
vacy parameters under composition have simple linear forms.
Once composition is handled, the resulting privacy param-
eters are converted to (ε, δ)-DP via some conversion rule,
e.g., [5, Th. 2], [35, Proposition 1.3], and [4, Proposition 3].
This technique significantly improves on earlier privacy anal-
ysis of SGD. This technique has been extended by follow-up
work [11]. More recently, a new relaxed version of DP (not
divergence-based), termed f -DP was proposed in [17] and
shown to enjoy a rather simple composition property. This
new definition of DP was used in [20] for the privacy analysis
in training deep neural networks.

B. Paper Organization

In Section II, we provide several preliminary definitions
and results and also mathematically formulate our main
goals. In Section III, we characterize the optimal relationship
between RDP and DP and apply it to the moments accoun-
tant framework in Section IV. The content of Sections III
and IV appeared in the conference version [1] without proofs.
Section V concerns the second main goal of this article,
that is, deriving a relationship between RDP and hypothesis
test DP.

C. Notation

We denote by D the universe of all possible datasets and by
(X,F) a measurable space with Borel σ -algebra F . We also
use P(X) to denote the set of all probability measures on X.
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We use capital letters, e.g., X to denote random variables. We
write X ∼ P to describe the fact that X is distributed according
to P. We also use the notation ∼ to indicate the neighborhood
relationship between datasets, i.e., given two datasets d and
d′, we write d ∼ d′ if their Hamming distance is equal to one.
For a pair of distributions P and Q and constant α ≥ 1, we let

Dα(P‖Q) := 1

α − 1
logEQ

[(
dP

dQ

)α]
(1)

denote the Rényi divergence of order α. Also, given a
real-valued convex function f satisfying f (1) = 0, the
f -divergence [38], [39] between P and Q is defined as

Df (P‖Q) := EQ

[
f

(
dP

dQ

)]
. (2)

For any real number a, we write (a)+ for max{a, 0} and for
a ∈ [0, 1], we write ā for 1 − a.

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we revisit several definitions and basic results
that will be key for the discussion in the subsequent sections.
A mechanism M : D → P(X) assigns a probability distribu-
tion Md to each dataset d ∈ D. Given a pair of neighboring
datasets d ∼ d′, the privacy loss random variable is defined
as Ld,d′ := log dMd

dMd′ (X) where X ∼ Md and dMd
dMd′ represents

the Radon-Nikodym derivative. Given an output of the mech-
anism M and a pair d ∼ d′, consider the following problem
of testing Md against Md′ :

H0 : X ∼ Md vs. H1 : X ∼ Md′ . (3)

Let βdd′
M : [0, 1] → [0, 1] denote the optimal tradeoff between

type I error (i.e., the probability of declaring H1 when the
truth is H0) and type II error (i.e., the probability of declaring
H0 when the truth is H1). More specifically, βdd′

M(τ ) is the
smallest type II error when type I error equals τ . The mapping
τ 	→ βdd′

M(τ ) is sometimes called the tradeoff function.
Definition 1: A mechanism M : D → P(X) is said to be
• (ε, δ)-DP [2] for ε ≥ 0 and δ ∈ [0, 1) if

sup
A∈F ,d∼d′

Md(A) − eεMd′(A) ≤ δ. (4)

• (α, γ )-RDP [4] for α > 1 and γ ≥ 0 if

sup
d∼d′

Dα(Md‖Md′) ≤ γ. (5)

• f -DP [17] for a convex and non-increasing function1

f : [0, 1] → [0, 1] if for all τ ∈ [0, 1]

inf
d∼d′ β

dd′
M(τ ) ≥ f (τ ). (6)

It can be shown that (4) is implied if the tail event
{Ld,d′ > ε} occurs with probability at most δ for all d ∼ d′,
and (5) is implied if (and only if) the αth moment of Ld,d′
is upper bounded by γ . It is worth noting that the definition
of RDP is closely related to zero-concentrated DP [34], [35].

1Both f -DP and f -divergence are defined in terms of convex functions. In
order to be consistent with their original notation, we use f to denote the
function in both definitions. It will be clear from the context and as a result
will not lead to confusion.

Different properties of these two variants of DP have been
extensively studied. One well-studied property of these two
definitions is the composition (to be discussed in details in
Section IV). As mentioned earlier, RDP tightly handles com-
position as opposed to the existing composition theorems for
(ε, δ)-DP [13], [14] known to be either loose for many practi-
cal mechanisms or intractable to compute [33]. With this clear
advantage comes a shortcoming: RDP suffers from the lack of
operational interpretation, see [18]. To address this issue, the
RDP guarantee is often translated into a DP guarantee via the
following result.

Theorem 1 [5, Th. 2]: If the mechanism M is (α, γ )-RDP,
then it satisfies (ε, δ)-DP for any ε > γ and

δ = e−(α−1)(ε−γ ). (7)

This theorem establishes a relationship between RDP and DP
that is extensively used in several recent differentially private
ML applications, e.g., [9], [37], [40]–[44] to name a few. A
prime use case for this relationship is the moments accountant
(MA) [5] which is the current state-of-the-art privacy analysis
technique for ML algorithms. However, despite its extensive
use, Theorem 1 is loose in general and does not hold for all
range of ε ≥ 0. For instance, as we see later, for Gaussian
mechanisms this relationship holds for ε → 0 only when
the variance of noise goes to infinity. Given its widespread
applications, it seems very natural to aim at determining the
optimal relationship between (ε, δ)-DP and (α, γ )-RDP. More
precisely, we seek to answer the following question.

Question One: Given an (α, γ )-RDP mechanism M, what
are the smallest ε and δ such that M is (ε, δ)-DP?
We settle this question in Section III by expressing

the optimal relationship via a simple one-variable convex
optimization program. Incorporating this relationship into MA,
we introduce the improved MA and quantify the resulting
improvement in terms of privacy and utility in two differ-
ent settings: T-fold homogeneous composition of Gaussian
mechanism and noisy SGD algorithm.
As we shall see later, RDP is remarkably efficient in han-

dling composition, making it an appealing notion of privacy for
iterative algorithms such as SGD. Nevertheless, it lacks inter-
pretability, see [18] for more details. Following the success of
hypothesis test (3) in providing interpretation of approximate
DP, we seek to relate RDP constraint to the tradeoff function
infd∼d′ βdd′

M(τ ). Such relationship enables us to provide inter-
pretable privacy guarantees for several iterative machine learn-
ing algorithms. It can be verified that 1 − τ − infd∼d′ βdd′

M(τ )

quantifies the fundamental indistinguishability of neighbor-
ing datasets based on the mechanism’s output. Therefore, one
effective way to describe the above relationship is to construct
an outer bound for the region encompassed between the curves
τ 	→ 1 − τ and τ 	→ infd∼d′ βdd′

M(τ ); the so-called privacy
region of M. Now we can describe the above relationship as
follows.

Question Two: Given an (α, γ )-RDP mechanism, what is
the characterization of its privacy region?
We provide an outer bound for the solution of this ques-

tion in Section V and then demonstrate it for both T-fold
homogeneous composition of Gaussian mechanism and noisy
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Fig. 1. The diagrammatic summary of the key relationships between three
variants of DP studied in this article.

SGD algorithm. Interestingly, for the latter scenario, this outer
bound is tighter than what would be obtained from applying
results in [20].
We summarize our results on the relationship between

(ε, δ)-DP, (α, γ )-RDP, and f -DP in Fig.1.

III. OPTIMAL RELATIONSHIP BETWEEN RDP AND DP

In this section, we aim at computing the fundamental worst-
case DP privacy parameter guaranteed by an (α, γ )-RDP
mechanism, thereby answering Question One. To this goal,
we first express constraints in both (ε, δ)-DP and (α, γ )-RDP
in terms of two f -divergences. Given λ ≥ 1, the f -divergence
associated with f (t) = (t − λ)+ = max{t − λ, 0}, is called
Eλ-divergence [45] (aka hockey-stick divergence [46]) and
given by

Eλ(P‖Q) =
∫

(dP − λdQ)+ = sup
A∈F

[P(A) − λQ(A)]. (8)

Also, for any α > 1, the f -divergence associated with
f (t) = 1

α−1 (t
α − 1) is denoted by2 χα(P‖Q). Note that

Dα(P‖Q) = 1
α−1 log(1 + (α − 1)χα(P‖Q)) for a pair of

probability distributions P and Q.
It is shown in [48] that

M is (ε, δ)-DP ⇐⇒ sup
d∼d′

Eeε (Md‖Md′) ≤ δ. (9)

Similarly, it can be verified that:

M is (α, γ )-RDP ⇐⇒ sup
d∼d′

χα(Md‖Md′) ≤ χ(γ ), (10)

where

χ(γ ) := e(α−1)γ − 1

α − 1
. (11)

Let the set of all (α, γ )-mechanisms be denoted by Mα(γ ),
i.e.,

Mα(γ ) := {M : D → P(X) : M is (α, γ )-RDP}.
This definition, together with (9), enables us to precisely
formulate Question One. In fact, Question One amounts to
computing δε

α(γ )

δε
α(γ ) := inf{δ ∈ (0, 1) : ∀M ∈ Mα(γ ) is (ε, δ)-DP} (12)

= sup
M∈Mα(γ )

sup
d∼d′

Eeε (Md‖Md′), (13)

2χα-divergence is also referred to as α-Hellinger divergence, see [47].

where the equality comes from (9) and (10). The map γ 	→
δε
α(γ ) in fact specifies the “optimal” conversion rule from RDP
to DP for a given ε ≥ 0. An equivalent way of describing such
conversion is through the following quantity fixing δ ∈ (0, 1)

εδ
α(γ ) := inf{ε ≥ 0 : ∀M ∈ Mα(γ ) is (ε, δ)-DP}. (14)

Similarly, the optimal conversion from DP to RDP is formu-
lated by

γ ε
α (δ) := sup{γ ≥ 0 : ∀M ∈ Mα(γ ) is (ε, δ)-DP} (15)

= inf
M:D→P(X)

inf
d∼d′ χ

−1(χα(Md‖Md′)
)

(16)

s.t. Eeε (Md‖Md′) ≥ δ ∀d ∼ d′, (17)

where the χ−1(·) denotes the functional inverse of χ(·) in (11),
i.e., and is given by χ−1(t) = 1

α−1 log(1+(α−1)t). We seek to
compute δε

α(γ ) (or equivalently, εδ
α(γ )); however, it turns out

that γ ε
α (δ) is simpler to compute. As a result, in the following

we focus on the latter first.
Notice that, according to (10), the set Mα(γ ) can be equiva-

lently characterized by the constraint χα(Md‖Md′) ≤ χ(γ ),
where χ(γ ) is defined in (11). Hence, γ 	→ δε

α(γ ) in fact
constitutes the upper boundary of the convex set

Rα :=
{(

χα(Md‖Md′), Eeε (Md‖Md′)
)∣∣∣∀M, d ∼ d′}.

(18)

This simple observation has some key implications. First, δε
α(·)

is non-decreasing and concave. Second, the upper boundary
can be equivalently given by the map δ 	→ γ ε

α (δ). Furthermore,
to compute γ ε

α (·) or δε
α(·), it suffices to characterize Rα . This

allows us to cast the problem of computing γ ε
α (·) as charac-

terizing the joint range of Eλ and χα divergences. To tackle
the latter problem, we refer to [15] whose main result is as
follows.

Theorem 2 [15, Th. 8]: We have{(
Df (P‖Q), Dg(P‖Q)

)∣∣∣P, Q ∈ P(X)
}

= conv(B) (19)

where conv(·) denotes the convex hull operator and

B :=
{(

Df (Pb‖Qb), Dg(Pb‖Qb)
)∣∣∣Pb, Qb ∈ P({0, 1})

}
.

This theorem states that characterizing the joint range of any
pair of f -divergences can be reduced without loss of generality
to the binary case. For completeness, we give a more direct
proof for the case of χα and Eλ divergences in Appendix A.
We formalize this insight in Theorem 3 and establish a simple
variational formula for γ ε

α (·) involving a one-parameter log-
convex minimization program. Hence, the optimization (16),
which can potentially be of significant complexity, turns into
a simple tractable problem.

Theorem 3: For any α > 1, ε ≥ 0, and δ ∈ (0, 1),

γ ε
α (δ) = ε + 1

α − 1
logM(α, ε, δ), (20)

where p̄ := 1 − p and

M(α, ε, δ) := min
p∈(δ,1)

[
pα(p − δ)1−α + p̄α

(
eε − p + δ

)1−α
]
.
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Fig. 2. Left: The exact values of the map δ 	→ γ ε
α (δ) obtained via numerically

solving convex optimization problem (20). The dotted curves indicate the
lower bound on γ ε

α (δ) according to Theorem 4 for three pairs of (α, ε). Right:
Comparison of the exact values of the map ε 	→ γ ε

α (δ) with the bounds
obtained from (25) and [18, Th. 21] (i.e., considering only the first term in
the minimization in (25)) with α = 2 and δ = 10−4.

The proof of this theorem relies on Theorem 2 and is given
in Appendix B. It can be shown that the term inside the loga-
rithm is convex in p and hence this optimization problem can
be numerically solved with an arbitrary accuracy. It seems,
however, not simple to analytically derive γ ε

α (δ). Nevertheless,
we obtain a lower bound in the following theorem that closely
approximates γ ε

α (δ). We provide its proof in Appendix C.
Theorem 4: For any ε ≥ 0 and α > 1, we have

γ ε
α (0) = 0, (21)

γ ε
α (δ) = ε − log(1 − δ), if αδ ≥ 1, (22)

γ ε
α (δ) ≥ max{g(α, ε, δ), f (α, ε, δ)}, if 0 < αδ < 1,

(23)

where

g(α, ε, δ) := ε − 1

α − 1
log

ζα

δ
,

with ζα := 1
α
(1 − 1

α
)α−1 and

f (α, ε, δ) := ε + 1

α − 1
log

((
eε − αδ

)( δ − 1

δ − eε

)α

+ αδ

)
.

In Fig. 2 (left panel), we numerically solve (20) for three
pairs of (α, ε) and compare them with their corresponding
bounds obtained from Theorem 4, highlighting the tightness of
the above lower bound. As indicated earlier and illustrated in
this figure, the lower bound on γ ε

α (·) in Theorem 4 is translated
into an upper bound on δε

α(·). In practice, it is often more
appealing to design differentially private mechanisms with a
hard-coded value of δ (as opposed to the fixed ε). To address
this practical need, we convert the lower bound in Theorem 4
to an upper bound on εδ

α(·).
Lemma 1: For α > 1 and γ ≥ 0, we have

εδ
α(γ ) = (γ + log(1 − δ))+, if αδ ≥ 1, (24)

and if 0 < αδ < 1

εδ
α(γ ) ≤ 1

α − 1
min

{(
(α − 1)γ − log

δ

ζα

)
+
,

× log

(
e(α−1)γ − 1

αδ
+ 1

)}
, (25)

where ζα was defined in Theorem 4. Moreover, εδ
α(0) = 0.

This lemma is obtained by solving equality (22) and inequal-
ity (23) for ε. Unlike g(α, ε, δ), the map ε 	→ f (α, ε, δ) seems

complicated to invert. To get around this difficulty, we use the
first-order approximation of f (α, ε, δ) around δ = 0 to invert
the inequality (23). The details are relegated to Appendix D. It
is worth mentioning that Balle et al. [18, Th. 21] has recently
proved εδ

α(γ ) ≤ γ − 1
α−1 log

δ
ζα

via a fundamentally different
approach. Their bound corresponds to the first term in (25),
and thus weaker than Lemma 1. To emphasize on the advan-
tage of (25) over [18, Th. 21], we plot these two bounds in
Fig. 2 (right panel) for α = 2 and δ = 10−4. As observed in
this figure, considering only the first term in (25) would lead
to non-trivial loss in ε especially when γ is sufficiently small.
This observation is analytically justified by the fact that the
first term in (25) does not tend to zero as γ → 0 for reason-
able values of α and δ whereas the second term does for any
δ > 0 and α > 1.

Remark 1: As an important special case, this lemma
demonstrates that an (α, γ )-RDP mechanism provides (0, δ)-
DP guarantee if γ < log( α

α−1 ) and δ ∈ [ζαe(α−1)γ , 1
α
]. See

Appendix E for the detailed derivation. Notice that this is
stronger than what would be obtained from Theorem 1 from
which (0, δ)-DP cannot be achieved for γ > 0.

IV. IMPROVED MOMENTS ACCOUNTANT AND GAUSSIAN

MECHANISMS

Moments accountant (MA) was recently proposed by
Abadi et al. [5] as a method to bypass advanced composi-
tion theorems [13], [14]. Given a mechanism M, the T-fold
adaptive homogeneous composition M(T) is a mechanism that
consists of T copies of M, i.e., (M1, . . . ,MT) such that the
input of Mi may depend on the outputs of M1, . . . ,Mi−1.
Determining the privacy parameters of M(T) in terms of those
of M is an important problem in practice and thus has been
subject of an extensive body of research, see [5], [13], [14],
[37].
Advanced composition theorems [13], [14] are well-known

results that provide the DP parameters of M(T) for general
mechanisms. However, they can be loose and do not take into
account the particular noise distribution under consideration
(e.g., Gaussian noise). MA was shown to significantly improve
upon advanced composition theorems in specific applications
such as SGD. The cornerstone of MA is the linear compos-
ability of RDP: If M1, . . . ,MT are each (α, γ )-RDP, then it
is shown in [5, Th. 2] that M(T) is (α, γ T)-RDP. This result
is then translated into DP privacy parameters via Theorem 1.
In general, we assume this holds for all α > 1 and hence one
can obtain the best privacy parameters by optimizing over α.
That is, M(T) is (ε, δ)-DP for any ε ≥ 0 and

δ = inf
α>1

e−(α−1)(ε−γ (α)T), (26)

where γ (α) := maxd∼d′ Dα(Md‖Md′) is the RDP parameter
of the constituent mechanism M and the dependence on α is
made clear. Equivalently, M(T) is (ε, δ)-DP for δ ∈ (0, 1) and

ε = inf
α>1

γ (α)T − 1

α − 1
log δ. (27)

Since α 	→ (α−1)Dα(P‖Q) is convex [49, Corollary 2] for any
pair of probability measures P and Q, the above minimization

Authorized licensed use limited to: Fei Wei. Downloaded on May 24,2021 at 14:34:35 UTC from IEEE Xplore.  Restrictions apply. 



ASOODEH et al.: THREE VARIANTS OF DIFFERENTIAL PRIVACY: LOSSLESS CONVERSION AND APPLICATIONS 213

Fig. 3. The privacy parameter ε of the T-fold homogeneous composition of
Gaussian mechanism each with σ = 20 according to MA (see (29)) and our
bound in Lemma 2. We assume δ = 10−5.

is a log-convex problem, and hence, can be solved within an
arbitrary accuracy. Furthermore, we show in Section IV that
this minimization has a simple form for Gaussian mechanisms
and can be solved analytically. For the rest of this section, we
assume M is a Gaussian mechanism and exploit Lemma 1 to
derive tighter privacy parameters than (27).

A. Composition Results for Gaussian Mechanisms

Let f : D → R
n be a query function and M be a

Gaussian mechanism with variance σ 2; more specifically,
X = R

n and Md = N (f (d), σ 2In) for each d ∈ D.
For simplicity, we assume that f has unit L2-sensitivity, i.e.,
supd∼d′ ‖f (d) − f (d′)‖2 = 1. Since

sup
d∼d′

Dα(Md‖Md′) = α

2σ 2
sup
d∼d′

∥∥f (d) − f (d′)
∥∥
2 = α

2σ 2
,

(28)

it follows that M is (α, γ (α))-RDP for all α > 1 where
γ (α) = ρα and ρ = 1

2σ 2 . In light of the linear composability
of RDP, we obtain that M(T), the T-fold adaptive composition
of M, is (α, γ (α)T)-RDP. Hence, we deduce from (27) that
M(T) is (ε, δ)-DP for any δ ∈ (0, 1) and

ε= inf
α>1

γ (α)T− 1

α−1
log δ=ρT+

√
4ρT log

1

δ
. (29)

We next use the machinery developed in the previous section
to obtain a tighter bound for the privacy parameter of M(T)

than (29). To do so, define

εδ(ρ, T) := inf
α>1

εδ
α(ραT). (30)

Invoking Lemma 1, we can obtain an upper bound for
εδ(ρ, T).

Lemma 2: The T-fold adaptive homogeneous composition
of the Gaussian mechanism with variance σ 2 is (εδ(ρ, T), δ)-
DP with δ ∈ (0, 1) and

εδ(ρ, T)≤min

{
ε0(ρ, T), ε1(ρ, T),

(
ρT

δ
+ log(1−δ)

)
+

}
,

(31)

where ρ = 1
2σ 2 and

ε0(ρ, T) := inf
α∈

(
1, 1

δ

]
(

ραT − 1

α − 1
log

δ

ζα

)
+
, (32)

Fig. 4. Privacy parameter ε of noisy SGD algorithm according to MA
(see (29)) and our bound (see Lemma 2) for δ = 10−5. The parameters of
the algorithm are σ = 4 and the sub-sampling rate q = 0.001.

ε1(ρ, T) := inf
α∈

(
1, 1

δ

]
1

α − 1
log

(
1 + eρα(α−1)T − 1

αδ

)
, (33)

and ζα is as defined in Theorem 4.
The bound given in this lemma can shed light on the

optimal variance of the Gaussian mechanism M required
to ensure that M(T) is (ε, δ)-DP. To put our result in per-
spective, we first mention two previously-known bounds.
Advanced composition theorems (see [13, Th. III.3]) require
σ 2 = 
(

T log(1/δ) log(T/δ)

ε2
). Abadi et al. [5, Th. 1] improved

this result by showing that σ 2 suffices to be linear in T;
more precisely, σ 2 = 
(

T log(1/δ)
ε2

). To have a better compari-
son with our final result, we write this result more explicitly.
Plugging γ (α) = α

2σ 2 into (27) (or (26)), we can write

T

2σ 2
≤ sup

α>1

ε

α
+ 1

α(α − 1)
log δ (34)

= ε − 2 log δ − 2

√
(ε − log δ) log

1

δ
, (35)

and hence assuming δ is sufficiently small, we obtain

σ 2 ≥ 2T

ε2
log

1

δ
+ T

ε
+ O

(
1

log δ−1

)
. (36)

We are now in order to state our result.
Theorem 5: The T-fold adaptive homogeneous composition

of a Gaussian mechanism with variance σ 2 is (ε, δ)-DP, for
ε > 2δ log 1

δ
, if

σ 2 ≥ 2T

ε2
log

1

δ
+ T

ε
− 2T

ε2

(
log

(
2 log δ−1

)
+ 1 − log ε

)

+ O

(
log2

(
log δ−1

)
log δ−1

)
.

The proof of this theorem is based on a relaxation of
Theorem 4 obtained by ignoring f (α, ε, δ). Considering both
f and g will result in a stronger result at the expense of
more involved analysis. Comparing with (36), Theorem 5
indicates that, providing δ is sufficiently small, the variance
of each constituent Gaussian mechanism can be reduced by
2T
ε2

(log(2 log δ−1) + 1 − log ε) compared to what would be
obtained from MA.

B. Illustration of Our Bounds

We now empirically compare Lemma 2 with the MA guar-
antee (29) that has been extensively used in the state-of-the-art
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Algorithm 1 Noisy SGD
1: Input: Dataset d = {x1, . . . , xn}, loss function �(θ, x), ini-

tial point θ0, batch size m, noise variance σ 2, and clipping
threshold C.

2: for t = 1, . . . , T do
3: Select randomly a batch It ⊂ [n] of size m
4: gt(xi) = ∇θ �(θt, xi), for i ∈ It
5: g̃t(xi) = gt(xi)min{1, C

‖gt(xi)‖2 }
6: θt+1 = θt − ηt

m

[∑
i∈It g̃t(xi) + σCZ

]
, Z ∼ N (0, I)

7: end for
8: Output θT

differentially private algorithms, e.g., [9], [11], [37], [40]–[44].
We do so in two different settings: (1) vanilla T-fold composi-
tion of the Gaussian mechanisms with fixed variance, and (2)
noisy SGD algorithm.
1) Vanilla Gaussian Composition: Here, we wish to obtain

bounds on the privacy parameter ε of M(T) where
M is a Gaussian mechanism with σ = 20. In
Fig. 3, we compare Lemma 2 with MA when δ =
10−5. According to this plot, our result enables us to
achieve a smaller privacy parameter by up to 0.75,
i.e., maxT∈[1000] εδ

MA(ρ, T) − εδ(ρ, T) = 0.75 where
εδ

MA(ρ, T) is the ε given in (29). This privacy ampli-
fication may have important impacts on recent private
deep leaning algorithms. Alternatively, one can observe
that our result allows for more iteration for the same ε,
e.g., 100 more iterations for any ε larger than 6.

2) Noisy SGD: SGD is the standard algorithm for train-
ing many machine learning models. In order to fit a
model without compromising privacy, a standard prac-
tice is to add Gaussian noise to the gradient of each
mini-batch, see e.g., [5]–[8], [22], [40], [43]. The prime
use of MA was to exploit the RDP’s simple composi-
tion property in deriving the privacy parameters of the
noisy SGD algorithm [5, Algorithm 1]. To have a fair
comparison, we analyze this algorithm (see Algorithm 1)
with the sub-sampling rate q = 0.001 and noise param-
eter σ = 4 and then compute its DP parameter via (29)
with ρ = q2

(1−q)σ 2 (see [5, Lemma 3]) and δ = 10−5.
We then compare it in Fig. 4 with Lemma 2 with the
same ρ and σ . As demonstrated in this figure, our
result allows remarkably more epochs (often over a hun-
dred) within the same privacy budget and thus providing
higher utility.

Since Lemma 1 is shown to improve on the composition
results of MA, it is reasonable to construct the improved MA:
First use the linear composability of RDP to take into account
the composition and then use Lemma 1 to convert the resulting
RDP guarantee to (ε, δ)-DP. We next show that improved MA
might lead to tighter guarantee than hypothesis test privacy.

C. Comparison with f -DP

As mentioned earlier, f -DP (see Definition 6) leads to
stronger DP guarantee than what is obtained by MA for noisy
SGD algorithms. More precisely, Bu et al. [20, Th. 2] showed

Fig. 5. Comparison of parameters of ε and δ in noisy SGD algorithm
obtained from Lemma 2 and [20, Th. 2]. The parameters of the algorithm are
as follows: q = 0.003, epoch E = 30 (hence T = E

q = 10000), and σ = 0.6.

that if one applies composition results of f -DP (i.e., [17, Th.
3.2]) to noisy SGD algorithms and then converts it to DP
(via [17, Proposition 3.12]), then the resulting ε is asymptot-
ically smaller than (29) for any δ ∈ (0, 1) provided that the
sub-sampling rate q is scaled as 1√

T
with T being the num-

ber of iteration. A natural question raised here is whether this
result still holds if we replace MA with the improved MA.
In Fig. 5, we consider noisy SGD algorithm with Gaussian

noise with σ = 0.6 and sub-sampling rate q = 0.003 (similar
to [20, Fig. 2]) and compare Lemma 2 with [20, Th. 2]. As
clearly illustrated by this figure, the improved MA may yield
tighter privacy guarantees than what f -DP promises.

V. HYPOTHESIS TESTING PRIVACY

In this section, we investigate the relationship between RDP
and hypothesis test privacy, that is, we focus on Question
Two in the introduction. Let X be the output of a mecha-
nism M. For any pair of neighboring dataset d ∼ d′, we
consider the hypothesis test (repeated from the introduction
for convenience)

H0 : X ∼ Md vs. H1 : X ∼ Md′ . (37)

The fundamental efficiency of a randomized test between H0
and H1 is delineated by a decision rule, a random transfor-
mation PZ|X : X → P({0, 1}) where 1 indicates that H0 is
rejected. Type I and type II error probabilities correspond-
ing to the decision rule PZ|X are given by

∫
PZ|X(1|x)Md(dx)

and
∫

PZ|X(0|x)Md′(dx), respectively. To capture the optimal
tradeoff between type I and type II error probabilities, it is
customary to define tradeoff function βdd′

M : [0, 1] → [0, 1]
given by

βdd′
M(τ ) := inf

∫
PZ|X(0|x)Md′(dx) (38)

where the infimum is taken over all decision rules PZ|X such
that

∫
PZ|X(1|x)Md(dx) ≤ τ .

Note that we can always assume, without loss of gener-
ality, that τ + βdd′

M(τ ) ≤ 1, since for any decision rule one
can take its negation. The line τ + βdd′

M(τ ) = 1 indicates the
complete indistinguishability between d and d′ on the basis
of a mechanism’s output. It follows from the definition that
the map τ 	→ βdd′

M(τ ) is non-increasing and convex. Recall
that the mechanism M is said to be f -DP for a convex and
non-increasing function f that is majorized by infd∼d′ βdd′

M ,
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that is if f (τ ) ≤ infd∼d′ βdd′
M(τ ) for any τ ∈ [0, 1]. Hence,

the problem of determining the relationship between RDP
and f -DP reduces to characterizing the set (τ, β) such that
β ≥ infd∼d′ βdd′

M(τ ) for all mechanisms M with a certain level
of RDP guarantee. To this goal, we define the privacy region
of mechanism M as

CM :=
⋃
d∼d′

{
(τ, β) ∈ [0, 1]2 : βdd′

M(τ ) ≤ β ≤ 1 − τ
}
.

It was shown by [14], [16] that a mechanism M is (ε, δ)-DP
if and only if

CM ⊆ C(ε, δ) :=
{
(τ, β) ∈ [0, 1]2 : τ + eεβ

≥ 1 − δ, β + eετ ≥ δ̄
}
. (39)

Remark 2: Recall from the definition of Eλ-divergence (8)
that, for any pair of distributions (P, Q) and positive λ, we
have Eλ(P‖Q) = P( dP

dQ ≥ λ) − λQ( dP
dQ ≥ λ). Since according

to Neyman-Pearson lemma βdd′
M(τ ) = Md′(log dMd

dMd′ ≥ ε)

where τ = Md(log
dMd
dMd′ ≤ ε), it follows that the line

β = e−ε(1 − τ − δε), with δε := mind∼d′ Eeε (Md‖Md′),
supports M from below. Swapping d and d′, we deduce
that the line β = 1 − δε − eετ is another supporting line
of CM with slope eε. Due to the convexity of CM, the
collection of all supporting lines losslessly constructs CM;
thus,

⋂
ε≥0 C(ε, δε) = CM. In other words, the collection of

{(ε, δε)}ε≥0 and the mapping τ 	→ infd∼d′ βdd′
M(τ ) capture the

same privacy guarantee. This provides a new lens to explore,
delineate and interpret privacy guarantee achieved by differen-
tial privacy. This new perspective has recently been adopted
by Dong et al. [17]. To illustrate this observation, consider
the Gaussian mechanism. It is easy to see that for Gaussian
mechanisms (assuming unit L2-sensitivity)

δε = �

(
−εσ + 1

2σ

)
− eε�

(
−εσ − 1

2σ

)
, (40)

where � is the standard normal CDF. On the other
hand, for a Gaussian mechanism M with variance σ 2, the
Neyman-Pearson lemma implies that the tradeoff function
infd∼d′ βdd′

M(τ ) = G 1
σ
(τ ), where

Gμ(τ) = �
(
�−1(1 − τ) − μ

)
, (41)

and �−1 is the inverse of �. It is worth mentioning that Gμ(τ)

in fact corresponds to the smallest type II error probability of
testing N (0, 1) against N (μ, 1) with type I error probability
being τ . In Fig. 6, we identify the region CM by its lower
boundary (red curve) given by the above tradeoff function and
its upper boundary β = 1 − τ . The blue curve is the lower
boundary of C(ε, δε) for ε = 1.

While the DP constraint can be operationally interpreted
via (39), it is not clear how to obtain a similar interpretation
for RDP constraint. Nevertheless, we wish to obtain some
implications of a mechanism’s RDP constraints on its privacy
regions. We begin by giving an explicit formula for the RDP
guarantee of a mechanism in terms of the derivative of the
map τ 	→ βdd′

M(τ ) for d ∼ d′.

Fig. 6. Two outer bounds for the Gaussian mechanism with σ 2 = 1: The
red curve is the map τ 	→ �(�−1(τ̄ )−1/σ) and the blue curve specifies the
region C(ε, δε) for ε = 1 and δε given in (40).

Proposition 1: Given α > 1, a mechanism M is (α, γ )-
RDP for

γ= sup
d∼d′

1

α−1
log

(
1−βdd′

M(0)+
∫ 1

0
|�dd′(τ )|1−αdτ

)
,

(42)

where �dd′(τ ) = d
dτ βdd′

M(τ ).
The proof of this result relies on a general fact: all

f -divergences between Md and Md′ can be explicitly
expressed in terms of the derivative of βdd′

M . This was men-
tioned, without a proof, in [19, eq. (2.79)] in a completely
different context and was recently proved in [17, Proposition
B.4]. We give a more direct proof in Appendix H.
Proposition 1 provides an explicit RDP guarantee for a

mechanism with a given hypothesis test privacy constraint. The
other direction seems more practical: Given an (α, γ )-RDP
mechanism, what can we say about its privacy region CM?
There are two approaches to address this question. First, one
can use the machinery developed in Section III to relate (α, γ )-
RDP constraint to (ε, δε

α(γ ))-DP and then declare C(ε, δε
α(γ ))

as an outer bound for the privacy region for any ε ≥ 0.
Alternatively, one can use information theoretic results (such
as data processing inequality) to directly relate Rényi diver-
gence to type I and type II error probabilities in hypothesis
testing (37) (see [50]). In the following, we delineate these
two approaches.
Since all (α, γ )-RDP mechanisms are (ε, δε

α(γ ))-DP, we
immediately obtain the following result from (39).

Lemma 3: Let M be an (α, γ )-RDP mechanism. Then, we
have

CM ⊆
⋂
ε≥0

C(ε, δε
α(γ )

)
. (43)

Note that since ε 	→ δε
α(γ ) characterizes the DP param-

eters of the worst mechanism in Mα(γ ), it follows that
the privacy regions of all (α, γ )-RDP mechanisms are con-
tained in

⋂
ε≥0 C(ε, δε

α(γ )), or equivalently,
⋃

M∈Mα(γ ) CM ⊆⋂
ε≥0 C(ε, δε

α(γ )).

Instead of dealing with the infinite collection of (ε, δε
α(γ ))

and taking the intersection of C(ε, δε
α(γ )), we can alternatively

focus on the tradeoff function (see Remark 2). That is, we wish
to study the privacy regions of RDP mechanisms by directly
computing bounds on the tradeoff function rather than convert-
ing RDP into (ε, δ)-DP. Adopting this viewpoint, we establish
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Fig. 7. The outer bounds for the privacy region of the T-fold homoge-
neous Gaussian mechanism. The regions marked as Bound 1 and Bound 2
correspond to (52) and (53), respectively and the region marked as Exact cor-
responds to (51). Recall that the privacy “regions” are to be interpreted as the
region between depicted curves and the diagonal line τ + β = 1.

two outer bounds for the privacy region of an (α, γ )-RDP
mechanism in the following lemma.

Lemma 4: Let M be an (α, γ )-RDP mechanism. Then, the
privacy region of M satisfies

CM ⊆
{
(τ, β) ∈ (0, 1)2 : dα(τ̄‖β) ≤ γ, dα

(
β̄‖τ) ≤ γ

}
(44)

⊆
{
(τ, β) ∈ (0, 1)2 : d(τ̄‖β) ≤ γ, d

(
β̄‖τ) ≤ γ

}
, (45)

where d(a‖b) = a log a
b + ā log ā

b̄
and dα(a‖b) :=

1
α−1 log(a

αb1−α + āα b̄1−α) for a, b ∈ (0, 1).
Proof: Let PZ|X be an optimal randomized test mapping

the mechanism’s output X to a binary variable Z correspond-
ing to H0 and H1, i.e.,

∫
PZ|X(0|x)Md(dx) = 1 − τ and∫

PZ|X(0|x)Md′(dx) = βdd′
M(τ ). (The existence of such an

optimal randomized test is guaranteed by Neyman-Pearson
lemma.) Due to the data processing inequality, we have

Dα(Md‖Md′) ≥ Dα

(
Bernoulli(τ )‖Bernoulli

(
1 − βdd′

M(τ )
))

= dα

(
1 − τ‖βdd′

M(τ )
)
, (46)

This in turn implies that for all d ∼ d′

max
{

dα

(
1 − τ‖βdd′

M(τ )
)
, dα

(
βdd′
M(τ )‖1 − τ

)}
≤ γ, (47)

which in turn implies (44) by noticing that a 	→ dα(a‖b) is
decreasing for a < b and similarly b 	→ dα(a‖b) is decreasing
for b < a. Since α 	→ Dα(P‖Q) is non-decreasing [49, Th. 3],
the inclusion (45) follows immediately.

It is worth mentioning that dα(a‖b) is closely related to [18,
Definition 9]. Note that although the set in (45) strictly con-
tains the one in (44), it enables us to derive a simple outer
bound for the privacy region of mechanisms when optimizing
over α. This is formalized in the following result which is an
immediate corollary of Lemma 4.

Corollary 1: If mechanism M is (α, γ (α))-RDP for all
α > 1. Then its privacy region satisfies

CM ⊆
⋂
α>1

{
(τ, β) : dα(τ̄‖β) ≤ γ (α), dα

(
β̄‖τ) ≤ γ (α)

}

(48)

⊂
⋂
α>1

{
(τ, β) : d(τ̄‖β) ≤ γ (α), d

(
β̄‖τ) ≤ γ (α)

}
.

(49)

To demonstrate the accuracy of Corollary 1, we consider
Gaussian mechanisms for the remainder of this section. Recall
that the Gaussian mechanism with variance σ 2 is (α, γ )-RDP
for γ = ρα with ρ = 1

2σ 2 . Recall that the T-fold composi-
tion of such mechanism is (α, ραT)-RDP, implying that M(T)

is a Gaussian mechanism with variance σ 2

T . Hence, according
to (41), we have

inf
d∼d′ β

dd′
M(T) (τ ) = G√

2ρT(τ ) (50)

This, in turn, implies that CM(T) the privacy region of M(T)

is given by

CM(T) =
{
(τ, β) ∈ (0, 1)2 : G√

2ρT(τ ) ≤ β ≤ 1 − τ
}
. (51)

Specializing Corollary 1 toM(T), we can express outer bounds
given in (48) and (49) as

CM(T) ⊆
⋂
α>1

{
(τ, β) : dα(τ̄‖β) ≤ ραT, dα

(
β̄‖τ) ≤ ραT

}

(52)

⊂
{
(τ, β) ∈ [0, 1]2 : d(τ̄‖β) ≤ ρT, d

(
β̄‖τ) ≤ ρT

}
.

(53)

In Fig. 7, we compare these outer bounds with the exact
privacy region given in (51). Note that the region (49),
while being weaker than the region in (48), can be explicitly
characterized for Gaussian mechanisms. For a more realistic
application, we apply Corollary 1 to noisy SGD algorithm
(i.e., Algorithm (1)). This algorithm can be thought of as
a T-fold composition of Gaussian mechanism with an addi-
tional feature of subsampling (line 3 in Algorithm 1) with
rate q = m

n . As before, we invoke [5, Lemma 3] to obtain that
each iteration of this algorithm is approximately (α, αρq)-RDP

where ρq = q2

(1−q)σ 2 for positive integer α ≤ 1 + σ 2 log 1
qσ

and q < 1
16σ . Thus, after T iterations the algorithm is

(α, αρqT)-RDP. Corollary 1 therefore gives

CSGD(T)⊆
⋂
α∈A

{
(τ, β) : dα(τ̄‖β)≤αρqT, dα

(
β̄‖τ)≤αρqT

}
,

(54)

where A is the set of admissible α indicated above. On the
other hand, subsampling and composition results of f -DP ([17,
Th. 4.2] and [17, Th. 3.2], respectively) can be exploited to
approximate (asymptotically in T) the tradeoff function for
the Algorithm 1 and thus to construct an outer bound for the
privacy region [20]:

CSGD(T) ⊆
{
(τ, β) ∈ (0, 1)2 : Gμ(τ) ≤ β ≤ 1 − τ

}
, (55)
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Fig. 8. The outer bounds for the privacy region of SGD algorithm according
to our RDP-based bound (54) (blue solid curve) and f -DP [20] (red dashed
curve) with the subsampling rate q = 256/60000. As the blue curve lies above
the red curve for σ ≤ 0.7, our bound yields tighter privacy region. Since the
intersection in (54) is over only integer α, the blue curve may not be smooth
for large T .

Fig. 9. The difference between the area of the region in the right-hand
side of (55) and (54) with the subsampling rate q = 256/60000. A positive
value indicates that the outer bound in (54) is smaller than that in (55), or
equivalently, RDP leads to a tighter privacy guarantee that f -DP.

where μ = q
√

T(e1/σ 2 − 1) and Gμ(·) was defined in (41). In
Fig. 8, we illustrate this bound together with (54) for different
number of iterations and σ . The numerical findings indicate
that there always exists a σ0 for any sub-sampling rate q such
that our RDP-based outer bound (54) is tighter than f -DP
bound (55) for all σ ≤ σ0 irrespective of the number of itera-
tions. For instance, σ0 ≈ 0.7 in Fig. 8, that is, (54) is tighter
than (55) for all σ ≤ 0.7 and any number of iterations. To bet-
ter support this claim, we compute the area of the regions on
the right-hand sides of (54) and (55) and report the differences
in Fig. 9 for different values of σ and T . Positive numbers indi-
cate that the former is a smaller region, or equivalently, the
outer bound in (54) is tighter than (55); thus supporting our
claim.

CONCLUSION

In this article, we investigated the relationship between
three variants of differential privacy, namely approximate DP,
Rényi DP, and hypothesis test DP. First, we established the

optimal relationship between Rényi DP and approximate DP
that enables us to derive the optimal approximate DP param-
eters of a mechanism that satisfies a given level of Rényi
DP. In order to show its practicality, we applied this result
to the moments accountant framework for characterizing pri-
vacy guarantees of noisy stochastic gradient descent. When
compared to the state-of-the-art, our result was shown to lead
to about 100 more stochastic gradient descent iterations for
training deep learning models for the same privacy budget,
and thus provide better accuracy without any privacy degra-
dation. In the second part, we analyzed the implications of
Rényi DP constraint in terms of the tradeoff between type I
and type II error probabilities of a certain binary hypothesis
test which formalizes the hypothesis test DP. More specifi-
cally, we derived an outer bound for the region of type I and
type II error probabilities (also known as the privacy region)
achievable by a mechanism that satisfies a given level of Rényi
DP. We then used this result to characterize the privacy region
of noisy stochastic gradient descent algorithm. Compared to
the existing results (obtained via sub-sampling and composi-
tion results of recently proposed f -DP framework), our outer
bound was empirically shown to be tighter for a practical range
of the noise variance.

APPENDIX A
SUFFICIENCY OF BINARY DISTRIBUTIONS FOR

CHARACTERIZING Rα

We provide a direct proof for the fact that it suffices to
consider the Bernoulli distributions for characterizing Rα . The
following argument is a natural extension of the proof of [51,
Lemma 2]. Let P and Q be two general distributions on X.
We wish to show that the for any λ ≥ 1 and α > 1 the
optimization

inf
P,Q∈P(X)

Dα(P‖Q)

s.t. Eλ(P‖Q) ≥ δ, (56)

is achieved by Bernoulli distributions. Let φ : X → {1, 2} be
defined as

φ(x) =
{
1, if dP

dQ (x) ≥ λ

2, if dP
dQ (x) < λ.

(57)

Also, define Bernoulli distributions Pb and Qb on {1, 2} as
follows

Pb(j) =
∫

x:φ(x)=j
P(dx), (58)

and

Qb(j) =
∫

x:φ(x)=j
Q(dx), (59)

for j ∈ {1, 2}. Note that in this case, we can write

‖P − λQ‖ =
∫
X

|P(dx) − λQ(dx)| (60)

=
∫

φ(x)=1
(P(dx) − λQ(dx))

+
∫

φ(x)=2
(λQ(dx) − P(dx)) (61)
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= Pb(1) − λQb(1) + λQb(2) − Pb(2) (62)

= |Pb(1) − λQb(1)| + |Pb(2) − λQb(2)| (63)

= ‖Pb − λQb‖. (64)

Notice that Eλ(P‖Q) = 1
2‖P − λQ‖ + 1

2 (1− λ) and hence the
above implies that Eλ(P‖Q) = Eλ(Pb‖Qb). On the other hand,
the data processing inequality for Rényi divergence implies
that Dα(P‖Q) ≥ Dα(Pb‖Qb). These two observations demon-
strate that the minimum of Dα(P‖Q) subject to Eλ(P‖Q) ≥ δ

is achieved by Bernoulli distributions.

APPENDIX B
PROOF OF THEOREM 3

First notice that, in light of Theorem 2, the convex set Rα

defined in (18) is equal to the convex hull of the set Bα,ε given
by

Bα,ε = {(
χα(Pb‖Qb), Eeε (Pb‖Qb)

)∣∣Pb, Qb ∈ P({0, 1})}
(65)

where Pb = Bernoulli(p) and Qb = Bernoulli(q) with param-
eters p, q ∈ (0, 1). For any pair of such distributions, define
γ̃ := χα(Pb‖Qb) and δ := Eeε (Pb‖Qb). We first show that
the convex hull of Bα,ε is given by

B̄α,ε = {
(γ̃ , δ)

∣∣δ ∈ [0, 1), γ̃ ≥ γ̃ (δ)
}

(66)

with γ̃ (δ) given by

γ̃ (δ) = inf
0<p,q<1

χα(Pb‖Qb)

s.t. Eeε (Pb‖Qb) ≥ δ. (67)

To this goal, we need to demonstrate that for any λ ∈ [0, 1]
and pairs of points (γ̃1, δ1), (γ̃2, δ2) ∈ Bα,ε, we have (λγ̃1 +
λ̄γ̃2, λδ1 + λ̄δ2) ∈ B̄α,ε, where λ̄ = 1 − λ, or equivalently
λδ1 + λ̄δ2 ∈ [0, 1) and λγ̃1 + λ̄γ̃2 ≥ γ̃ (λδ1 + λ̄δ2). Hence, it
suffices to show that δ 	→ γ̃ (δ) is convex.

Let pi, qi ∈ (0, 1) with pi ≥ qi be the optimal solution
of (67) for δi, i = 1, 2, and Pb,i, Qb,i be the corresponding
Bernoulli distributions. For any λ ∈ [0, 1], we construct two
Bernoulli distribution Pb,λ and Qb,λ with parameters pλ =
λp1 + λ̄p2 and qλ = λq1 + λ̄q2, respectively. It can be verified
that

Eeε

(
Pb,λ‖Qb,λ

) = pλ − eεqλ (68)

= λp1 + λ̄p2 − eε
(
λq1 + λ̄q2

)
(69)

≥ λδ1 + λ̄δ2, (70)

i.e., (pλ, qλ) is feasible for λδ1 + λ̄δ2. In addition, from the
convexity of χα , we have that

λγ̃ (δ1)+λ̄γ̃ (δ2) = λχα
(
Pb,1‖Qb,1

)+λ̄χα
(
Pb,2‖Qb,2

)
(71)

≥ χα
(
Pb,λ‖Qb,λ

)
(72)

≥ γ̃
(
λδ1+λ̄δ2

)
. (73)

Therefore, the function γ̃ (δ) is convex in δ and hence B̄α,ε is
the convex hull of Bα,ε. In light of Theorem 2, this in turn
implies that Rα = B̄α,ε.

The above analysis shows that δ 	→ γ̃ (δ) in fact consti-
tutes the upper boundary of Bα,ε and thus Rα . Since χ(·) is
a bijection, this allows us to deduce

γ ε
α (δ) = inf

0<p,q<1
χ−1(χα(Pb‖Qb)

)
s.t. Eeε (Pb‖Qb) ≥ δ, (74)

and hence the optimization problem (16) can be converted to
the above two-parameter optimization problem.
Expanding both χα and Eeε , we can explicitly write (74) as

γ ε
α (δ) = inf

0<q<p<1

1

α − 1
log

(
pαq1−α + p̄α q̄1−α

)

s.t. p − qeε ≥ δ, (75)

where δ < 1 and γ < ∞. Let h(p, q;α) indicate the objective
function of the optimization problem in (75). For any given
α > 1 and p ∈ (0, 1), the partial derivative of h(p, q;α) with
respect to q is given by

∂ h(p, q;α)

∂q
= pαq−α − (1 − p)α(1 − q)−α

pαq1−α + (1 − p)α(1 − q)1−α
, (76)

which is negative for all 0 < q < p < 1, and therefore,
h(p, q;α) is decreasing in q. In addition, for ε ≥ 0 and δ ∈
[0, 1), the two constraints 0 < q < p < 1 and p − qeε ≥ δ

in (75) can be equivalently rewritten as{
δ < p < 1
0 < q <

p−δ
eε .

(77)

Thus, the infimum in (75) is attained at q = p−δ
eε , and therefore,

for α > 1, δ ∈ [0, 1) and ε ≥ 0, the optimization problem
in (75) is simplified as

e(α−1)(γ ε
α (δ)−ε) = inf

p∈(δ,1)
pα(p−δ)1−α+p̄α

(
eε−p+δ

)1−α
,

(78)

which is the desired result. �

APPENDIX C
PROOF OF THEOREM 4

Recall that the optimization problem in Theorem 3 is equiv-
alent to (78). Let h1(p;α, δ, ε) indicate the objective function
in (78). One can verify that for α > 1, δ ∈ [0, 1) and ε > 0, the
mapping p 	→ h1(p;α, δ, ε) is convex. Therefore, the numer-
ical result of γ ε

α (δ) can be easily obtained for any given α, δ

and ε.
To get closed-form expressions, we explore lower bounds

of (78) as follows.
Lower bound 1: Ignoring the second term in h1(p;α, δ, ε),

we obtain

e(α−1)(γ ε
α (δ)−ε) ≥ inf

p∈(δ,1)
pα(p − δ)1−α (79)

We note that the objective function in (79) is convex in p, as
it can be verified that ∂2

∂p2
pα(p − δ)1−α equals

(α − 1)α
(

p
α
2 (p − δ)

−1−α
2 − p

α−2
2 (p − δ)

1−α
2

)2 ≥ 0,
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and therefore, by setting the first derivative to be 0, we
obtain the optimal solution for the corresponding uncon-
strained problem as p∗ = αδ. Since α > 1, it follows that
the optimal solution of (79) is given by p∗ = min{αδ, 1}, and
therefore

e(α−1)(γ ε
α (δ)−ε) ≥

(
δαα(α − 1)1−α

)
1{αδ < 1}

+
(
(1 − δ)1−α

)
1{αδ ≥ 1} (80)

with equality holds if and only if αδ ≥ 1, where 1{·} denotes
the indicator function. Thus, if αδ ≥ 1, we have γ ε

α (δ) =
ε − log(1 − δ), and if αδ < 1, we have the lower bound

γ ε
α (δ) ≥ ε − 1

α − 1
log

(
1

δα

(
1 − 1

α

)α−1
)

(81)

= ε − 1

α − 1
log

ζα

δ
. (82)

Lower bound 2: To obtain the second lower bound, we note
that the function h1(p;α, δ, ε) is convex in δ. This enables
us to bound h1(p;α, δ, ε) from below by using its linear
approximation at δ = 0. Hence we can write

h1(p;α, δ, ε) ≥ h1(p;α, δ = 0, ε) + ∂h1(p;α, δ = 0, ε)

∂δ
δ

= p + (α − 1)δ +
(
1 − p

eε − p

)α

× (
eε − p − (α − 1)δ

)
,

with equality if and only if δ = 0. Therefore, we have

e(α−1)(γ ε
α (δ)−ε) ≥ inf

p∈(δ,1)

(
1 −

(
1 − p

eε − p

)α)
p +

(
1 − p

eε − p

)α

× (
eε − (α − 1)δ

) + (α − 1)δ. (83)

Let h2(p;α, δ, ε) indicate the objective function of (83). In the
following, we prove the monotonicity of h2(p;α, δ, ε) in p for
α > 1, 1 > δ ≥ 0 and ε ≥ 0. Taking the first derivative of
h2(p;α, δ, ε) with respect to p, we have

∂ h2(p;α, δ, ε)

∂ p
= 1 +

(
1 − p

eε − p

)α

×
(

α(eε − 1)(p + (α − 1)δ − eε)

(eε − p)(1 − p)
− 1

)

=: h3(p;α, δ, ε)

≥ 1 +
(
1 − p

eε − p

)α(
−α(eε − 1)

1 − p
− 1

)
(84)

=: h4(p;α, ε)

> h4(p = δ;α, ε) (85)

= (eε − δ)α − δ̄α − α(eε − 1)δ̄α−1

(eε − δ)α
(86)

=:
h5(δ, α, ε)

(eε − δ)α
(87)

≥ h5(δ, α, ε = 0)

(eε − δ)α
= 0, (88)

where
• the inequality in (84) follows from the fact that the func-
tion h3(p;α, δ, ε) is increasing in δ, and therefore, for 1 >

δ ≥ 0, h3(p;α, δ, ε) ≥ h3(p;α, δ = 0, ε) = h4(p;α, ε)

• the inequality in (85) is due to the fact that the function
h4(p;α, ε) is increasing in p as shown below

∂ h4(p;α, ε)

∂p
=α(α−1)

(
eε−1

)2
p̄α−2(eε−p

)−α−1
>0

and therefore, for p ∈ (δ, 1), h4(p;α, ε) > h4(p =
δ;α, ε).

• the inequality in (88) is from the monotonicity of the
function h5(δ, α, ε) in ε. Specifically,

∂ h5(δ, α, ε)

∂ ε
= αeε

((
eε − δ

)α−1 − (1 − δ)α−1
)

≥ 0

and thus, for ε ≥ 0, h5(δ, α, ε) ≥ h5(δ, α, ε = 0) = 0.
Therefore, the objective function h2(p;α, δ, ε) in (83) is
increasing in p, and therefore, we have

e(α−1)(γ ε
α (δ)−ε) ≥ h2(p = δ;α, δ, ε) (89)

= αδ +
(
1 − δ

eε − δ

)α(
eε − αδ

)
(90)

with equality if and only if δ = 0. Thus, we have

γ ε
α (δ) ≥ ε + 1

α − 1
log

(
αδ +

(
1 − δ

eε − δ

)α(
eε − αδ

))
(91)

where the equality holds if and only if δ = 0 which leads
to γ ε

α (δ = 0) = 0. The lower bounds (82) and (91) give the
desired result. �

APPENDIX D
PROOF OF LEMMA 1

From the first part of the proof of Theorem 4, we have

εδ
α(γ )

{
≤

(
γ − 1

α−1 log
δ
ζα

)
+, if αδ ≤ 1

= (γ + log(1 − δ))+ otherwise.
(92)

Next, we obtain a closed-form upper bound on εδ
α(γ )

from the function f (α, ε, δ) in Theorem 4. To do so, let
f1(α, ε, δ) be the expression inside the logarithm in f (α, ε, δ),
i.e., f1(α, ε, δ) := (eε − αδ)( δ−1

δ−eε )
α + αδ. The second partial

derivative of f1(δ, α, ε) with respect to δ is given by

(α − 1)α
(
eε − 1

)
δ̄α (eε(1 − 2δ + eε) − αδ(eε − 1))

δ̄2(eε − δ)α(δ − eε)2
.

Therefore, for α > 1, ε ≥ 0 and δ ∈ (0, 1), the convexity of
f1(δ, α, ε) in δ is guaranteed by

δ − eε(eε + 1)

2eε + α(eε − 1)
≤ 0. (93)

Let f2(α, ε) := eε(eε+1)
2eε+α(eε−1) , and therefore, if δ − f2(α, ε) ≤ 0,

we have

γ ε
α (δ) ≥ f (α, ε, δ) = ε + 1

α − 1
log(f1(α, ε, δ)) (94)

≥ ε + 1

α − 1
log

(
f1(α, ε, δ = 0) + ∂ f1(δ = 0, α, ε)

∂ δ
δ

)

= ε + 1

α − 1
log

(
e−ε(α−1) + αδ − αδe−ε(α−1)

)
, (95)

with equality if and only if δ = 0. In the following, we prove
that δ ≤ 1

α
is a sufficient condition for δ − f2(α, ε) ≤ 0 by
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showing that f2(α, ε) > 1/α for any α > 1. Taking the first
partial derivative of f2(α, ε) with respect to ε, we have

∂ f2(α, ε)

∂ ε
= eε

(
(2 + α)e2ε − 2αe2ε − α

)
(2eε + α(eε − 1))2

(96)
{

≤ 0, 1 ≤ eε ≤ α+√
2α(α+1)
2+α

> 0, otherwise,
(97)

and therefore,

f2(α, ε) − 1

α
≥ f2

(
α, ε = log

α + √
2α(α + 1)

2 + α

)
− 1

α

= 2
(
α2 + α

(√
2α(α + 1) − 1

) − 2
)

α(2 + α)2
(98)

=:
f3(α)

α(2 + α)2
(99)

>
f3(1)

α(2 + α)2
= 0, (100)

where the inequality in (100) follows from the fact that f3(α)

is monotonically increasing in α > 1 as shown below:

df3(α)

dα
=

√
2α(1 + 2α)√
α(1 + α)

+ 2
√
2α(1 + α) + 4α − 2 > 0.

(101)

Therefore, from the inequality in (95), we have that for δ ≤
1/α,

εδ
α(γ ) ≤ 1

α − 1
log

(
e(α−1)γ − 1

αδ
+ 1

)
(102)

and equality holds if and only if γ = 0, i.e.,
εδ
α(γ = 0) = 0. �

APPENDIX E
DERIVATION OF REMARK 1

Note that it can be verified that γ − 1
α−1 log

δ
ζα

< 0 for
δ > ζαe(α−1)γ . Combined with αδ ≤ 1, we therefore have
εδ
α(γ ) = 0 for δ ∈ [ζαe(α−1)γ , 1

α
]. To have a valid non-empty

interval, we must have the condition ζαe(α−1)γ < 1
α

that is
simplified to 1−e−γ ≤ 1

α
. A similar holds for the case αδ > 1:

we have γ + log(1− δ) < 0 if δ > 1−e−γ . Hence, εδ
α(γ ) = 0

if δ > max{1 − e−γ , 1/α}.

APPENDIX F
PROOF OF LEMMA 2

Recall that for the T-fold composition of Gaussian mecha-
nism with variance σ 2, we have γ (α) = αρT where ρ = 1/σ 2.
From Lemma 1, we have that for αδ ≥ 1 and 0 < δ < 1,

εδ
α(ραT) = (ραT + log(1 − δ))+ (103)

and therefore,

εδ(ρ, T) = inf
α>1

εδ
α(ραT) (104)

≤ inf
α≥ 1

δ

(ραT + log(1 − δ))+ (105)

=
(

ρT

δ
+ log(1 − δ)

)
+
. (106)

In addition, from Lemma 1, we have that for 0 < αδ < 1,

εδ
α(αρT) ≤ min

{(
αρT − 1

α − 1
log

δ

ζα

)
+
,

× 1

α − 1
log

(
(α − 1)χ(αρT)

αδ
+ 1

)}
,

where χ(αρT) = eρα(α−1)T−1
α−1 , and therefore,

εδ(ρ, T) = inf
α>1

εδ
α(ραT)

≤ inf
1<α< 1

δ

min

{(
αρT − 1

α − 1
log

δ

ζα

)
+
,

1

α − 1
log

(
1 + eρα(α−1)T − 1

αδ

)}
.

(107)

Combining the two inequalities in (106) and (107), we
obtain the upper bound of εδ(ρ, T) in Lemma 2. �

APPENDIX G
PROOF OF THEOREM 5

Lemma 2 illustrates that the T-fold adaptive homogeneous
composition of the Gaussian mechanism with variance σ 2 is
(ε, δ)-DP where

ε = inf
1<α≤ 1

δ

αT

2σ 2
− 1

α − 1
log

δ

ζα

. (108)

Assuming that 2 log δ−1

ε
≤ 1

δ
, or equivalently ε ≥ 2δ log δ−1,

we can plug α = 2 log δ−1

ε
in the above expression to derive

the following lower bound for σ 2

(
ε−2 log 1

δ

)
T log 1

δ

ε2
(

ε− log 1
δ
+−ε+2 log 1

δ

ε
log

(
−ε+2 log 1

δ

2 log 1
δ

)
− log

(
2 log 1

δ

ε

))

(109)

=2T log 1
δ

ε2
+T

ε
−
2T

(
log

(
2 log 1

δ

)
+1− log ε

)
ε2

+ T

2ε2 log 1
δ

×
[
4 log2 A+(8−6ε) logA+2ε2−5ε+4

]
+O

(
1

log2 1
δ

)

(110)

=2T

ε2
log

1

δ
+T

ε
−2T

ε2

(
log

(
2 log δ−1

)
+1− log ε

)

+ O

(
log2

(
log δ−1

)
log δ−1

)
. (111)

where
• the expression in (110) is the Taylor expansion of (109)

at δ = 0 and A := log 1
δ2

ε
,

• in (110) as δ → 0, we have log δ−1 → ∞, therefore,
for any fixed finite ε and T , the fourth term is of order
O(

log2(log δ−1)

log δ−1 ) and dominates O( 1
log2 δ−1 ).

It is worth mentioning that this choice of α has already
appeared in literature, see [43, Discussion after Thm 35]. �
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APPENDIX H
PROOF OF PROPOSITION 1

Recall that Md and Md′ are the output distributions of
mechanism M when running on two neighboring datasets
d and d′, respectively. For notational simplicity, let P and
Q denote Md and Md′ , respectively and also β(τ) denote
βdd′
M(τ ). We wish to prove a more general result than

Proposition 1: For any convex real-valued function f with
f (1) = 0, we show

Df (P‖Q) =
∫ 1

0
|β ′(τ )|f

(
1

|β ′(τ )|
)
dτ, (112)

where β ′(τ ) := d
dτ β(τ ). For a given λ ≥ 0, define

τλ := P

(
dP

dQ
≤ λ

)
=

∫
1
{
dP

dQ
≤ λ

}
dP, (113)

where, as before, 1{·} denotes the indicator function. Then,
since τ 	→ β(τ) specifies the optimal tradeoff between type I
and type II error probabilities of testing P against Q, we have
from Neyman-Pearson lemma that

β(τλ) = Q

(
dP

dQ
> λ

)
. (114)

Before we begin the proof of (112), we need the following
fact that will be needed later.

Fact: We have
d

dλ
τλ = −λ

d

dλ
β(τλ). (115)

We prove this fact as follows:

τ̄λ − λβ(τλ) = 1 −
∫ [

dP

dQ
1
{
dP

dQ
≤ λ

}
+ λ1

{
dP

dQ
> λ

}]
dQ

(116)

= 1 −
∫

min

{
dP

dQ
, λ

}
dQ (117)

= 1 −
∫ 1

0
P

[
dQ

dP
≥ t

λ

]
dt (118)

= λ

∫ ∞

λ

1

t2
P

[
dP

dQ
> t

]
dt (119)

where equality in (118) comes from the formula that E[U] =∫
Pr(U ≥ t)dt for any non-negative random variable U. We

can hence write
1 − τλ − λβ(τλ)

λ
=

∫ ∞

λ

1

t2
P

[
dP

dQ
> t

]
dt. (120)

Taking a derivative, with respect to λ, of both sides of this
identity, we obtain the desired result (115). It is worth not-
ing that if we consider Eλ-divergence for any non-negative λ

(rather than λ ≥ 1), then the left-hand side of (116) is in fact
equal to Eλ(P‖Q), because it can be easily verified that

Eλ(P‖Q) = sup
A⊂X

P(A) − λQ(A) = τ̄λ − λβ(τλ).

Hence, (119) gives an equivalent formula for Eλ-divergence
for λ ≥ 0.

Proof of (112): We have

Df (P‖Q) =
∫

f

(
dP

dQ

)
dQ

dP
dP =

∫ ∞

0
f (t)

1

t
dτt (121)

= −
∫ ∞

0
f

(
− dτt/dt

dβ(τt)/dt

)
dβ(τt)/dt

dτt/dt
dτt (122)

= −
∫ 1

0
f

(
− 1

β ′(τ )

)
β ′(τ )dτ (123)

where the equality in (122) follows from (115). The desired
result follows by noticing that τ 	→ β(τ) is decreasing and
hence β ′(τ ) ≤ 0 implying that −β ′(τ ) = |β ′(τ )|.
Plugging f (t) = tα−1

α−1 for some α > 1 into (112), we obtain

χα(P‖Q) = 1

α − 1

[
−β(0) +

∫ 1

0

∣∣β ′(τ )
∣∣1−αdτ

]
, (124)

implying

Dα(P‖Q) = 1

α − 1
log

(
1 − β(0) +

∫ 1

0

(∣∣β ′(τ )
∣∣)1−αdτ

)
.
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