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Abstract—Maximal α-leakage is a tunable measure of informa-
tion leakage based on the quality of an adversary’s belief about
an arbitrary function of private data based on public data. The
parameter α determines the loss function used to measure the
quality of a belief, ranging from log-loss at α = 1 to the probability
of error at α = ∞. We review its definition and main properties,
including extensions to α < 1, robustness to side information, and
relationship to Rényi differential privacy.

I. INTRODUCTION

In many applications it is important to understand how much
information about one variable is “leaked” from another. De-
pending on how one defines the notion of information leakage,
different measures emerge. Mutual information is a classic
measure for quantifying information and often used to measure
information secrecy [1] or leakage in data publishing settings
[2], [3]. Recently, Issa et al. [4] introduced a measure, called
maximal leakage (MaxL) [4], which considers an adversary’s
probability of guessing any (possibly random) function of
the original dataset; the MaxL is the log of the ratio of the
adversary’s guessing probability with access to the released
data to the probability without it. In the context of differential
privacy (DP) [5] — along with its related measures approximate
differential privacy and Rényi differential privacy (RDP) —
have emerged as the most popular information measures.

The focus of this paper is the maximal α-leakage (MAL),
originally introduced in [6]. MAL is a leakage measure with a
tunable parameter α that ranges from 0 to ∞, thus creating a
continuum of measures that includes both mutual information
and MaxL as special cases. MAL is best understood through
the lens of an adversary’s ability to learn information about an
unknown variable. Thus, it is quantified via a loss function that
the adversary seeks to minimize. MAL is defined via a loss
function called α-loss, which is again defined via the tunable
parameter α. At α = 1, this loss function becomes the log-loss
[7]–[9], which leads to mutual information as the measure; at
α =∞, this loss function becomes the 0-1 loss, which leads to
maximal leakage as the measure. At other values of α, MAL
turns out to be related to the Sibson and Arimoto variants of
the mutual information; these two information measures can be
viewed as different ways of extending the Rényi entropy to a
“mutual information” quantity.

This material is based upon work supported by the National Science
Foundation under Grant No. CCF-1901243.

We also consider MAL in the context of side information.
An adversary’s side information, which is generally unknown
to the the data curator, can have a significant effect on the
amount of information leaked to the adversary. One of the key
advantages of DP is that it is robust to arbitrary side information
[10]. Maximal leakage has also been investigated with respect
to side information [11]. MAL has a natural “conditional” form,
wherein the side information is explicitly modeled. It can be
shown that the unconditional MAL upper bounds conditional
MAL if the side information is conditionally independent of the
released data given the original data. That is, MAL is robust
to arbitrary side information that is not used in generating
the released data from the original data. This surprising result
provides further motivation for using MAL as a robust and
tunable leakage metric.

This paper is organized as follows. Sec. II contains the
primary definitions that will be of interest, including classical
notions of Rényi information measures, as well as MAL and
its variants. Sec. III presents the most important properties of
MAL. Sec. IV provides a connection between MAL and RDP,
showing that they are equivalent in the sense that if one is
small, then the other is also small. Several proofs are given
in the appendix. The primary innovations in the present paper
beyond our prior work in [6], [12]–[14] are the extension of
MAL to α < 1, and the connection to RDP in Sec. IV.

II. DEFINITIONS

In this section we define the concepts we will be focused
on throughout the paper. Many of these concepts are defined
in terms of an order parameter α. We will often leave out a
specific expression for the quantities for α = 1 or α =∞; we
adopt the convention that any quantity is implicitly defined by
continuous extension for these values of α. We begin with the
basic concepts of Rényi entropy and divergence [15].

Definition 1: Given a discrete distribution PX , the Rényi
entropy of order α ∈ (0, 1) ∪ (1,∞) is defined as

Hα(PX) ,
1

1− α
log
∑
x

PX(x)α. (1)

Definition 2: Let PX , QX be two discrete distributions over
X . The Rényi divergence between PX and QX of order α ∈
(0, 1) ∪ (1,∞) is defined as

Dα(PX‖QX) ,
1

α− 1
log
∑
x

PX(x)αQX(x)1−α. (2)
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There are a number of ways to generalize Shannon’s mutual
information in a manner analogous to Rényi’s generalizations of
entropy and divergence [16]. Arimoto’s approach [17] is based
on the following conditional version of Rényi entropy.

Definition 3: Given a joint distribution PXY , the Arimoto
conditional entropy of X given Y of order α ∈ (0, 1)∪ (1,∞)
is defined as

Hα(X|Y ) ,
α

1− α
log
∑
y

PY (y)

(∑
x

PX|Y (x|y)α
) 1
α

. (3)

Now we may define the Arimoto mutual information. The
following also contains a definition for an Arimoto conditional
mutual information, which is less common, but a natural
definition nonetheless.

Definition 4: Given a joint distribution PXY , the Arimoto
mutual information of order α ∈ (0, 1) ∪ (1,∞) is defined as

IA
α(X;Y ) , Hα(X)−Hα(X|Y ). (4)

Given a joint distribution PXY Z , the Arimoto conditional
mutual information is defined as

IA
α(X;Y |Z) , Hα(X|Z)−Hα(X|Y, Z). (5)

An alternative mutual information quantity, found by Sibson
[18], is defined as follows.

Definition 5: Given a joint distribution PXY , the Sibson
mutual information of order α ∈ (0, 1) ∪ (1,∞) is defined
as

IS
α(X;Y ) , inf

QY
Dα(PXY ‖PX ×QY ), (6)

=
α

α− 1
log
∑
y

(∑
x

PX(x)PY |X(y|x)α
) 1
α

(7)

where the infimum in (6) is over all QY over the same space
as PY .

Next, we review the definition of maximal leakage [4], which
has the same basic flavor as its generalization MAL.

Definition 6: Given a joint distribution PXY , the maximal
leakage from X to Y is

LMaxL(X → Y ) , sup
U−X−Y

log

max
PÛ|Y

P(Û = U)

max
PÛ

P(Û = U)
(8)

where the supremum is over all random variables U with finite
support satisfying the Markov chain condition. In the numer-
ator, Û is distributed according to the conditional distribution
PÛ |Y , whereas in the denominator, Û is distributed according
to the unconditional distribution PÛ .

The intuition behind the definition for MaxL is that X
represents the original dataset, whereas Y represents disclosed
data that is available to an adversary. The variable U represents
an arbitrary (possibly random) function of X that the adversary
is interested in learning. The numerator is the best probability
of the adversary correctly guessing U based on Y , whereas the

denominator is the best probability of the adversary correctly
guessing U without Y . Thus, the ratio of these quantities
characterizes the usefulness of Y toward learning U . Taking
a supremum over all possible functions U yields the most an
adversary could learn about some aspect of X .

MAL generalizes MaxL by taking into account that an
adversary’s ability to learn U is not limited to its probability
of correctly guessing U . In particular, an adversary’s ability to
learn a variable U based on information Y can be characterized
via a loss function in the following manner. Given a loss
function `(p) for p ∈ [0, 1], we assume that the adversary finds
the random estimator PÛ |Y that minimizes

E
[
`(PÛ |Y (U |Y ))

]
. (9)

One can think of PÛ |Y (u|y) as the adversary’s belief that
U = u given its knowledge that Y = y. The loss function
characterizes its cost for having imperfect information about u.
Note that the optimal belief PÛ |Y depends on the loss function
itself. MAL is based on the so-called α-loss function, which is
defined as follows.

Definition 7: Given a probability p ∈ [0, 1] and a parameter
α > 0, the α-loss is given by

`α(p) ,


α
α−1 (1− p

α−1
α ), α ∈ (0, 1) ∪ (1,∞),

log 1
p , α = 1,

1− p, α =∞.
(10)

It is easy to see that `α(p) is continuous in α. Note also that
at α = 1, the α-loss is equivalent to the log-loss.

Prior to defining the MAL, we present a related metric called
the α-leakage, defined as follows.

Definition 8: Given a joint distribution PX,Y , the α-leakage
from X to Y for α ∈ (0, 1) ∪ (1,∞) is defined as

Lα(X → Y ),
α

α− 1
log

α

α− 1
− min
PX̂|Y

E
[
`α(PX̂|Y (X|Y ))

]
α

α− 1
−min

PX̂

E
[
`α(PX̂(X))

] .

(11)
Note that the definition of α-leakage has a similar structure

to that of MaxL, except it does not have a supremum over U .
That is, it is concerned with an adversary that is specifically
interested only in X , rather than a function of X . In addition,
the numerator and denominator characterize the adversary’s
ability to learn X with or without Y via the expected α-loss.

We now define MAL, which is simply the α-leakage maxi-
mized over all possible functions of X .

Definition 9: Given a joint distribution PX,Y the maximal
α-leakage from X to Y for α > 0 is given by

Lmax
α (X → Y ) , sup

U→X→Y
Lα(U → Y )

where the supremum is over all random variables U satisfying
the Markov chain.
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It is not hard to see that MAL for α =∞ is precisely MaxL.
In the following section, we will present several results illustrat-
ing that MAL can be effectively computed given a distribution
on PXY , as well as several of its important properties.

To account for side information, we now define conditional
versions of both α-leakage and MAL. The conditional α-
leakage is defined by conditioning on the side information
variable in both the numerator and denominator.

Definition 10: Given a joint distribution PX,Y,Z , the condi-
tional α-leakage for α ∈ (0, 1)∪ (1,∞) from X to Y given Z
is defined as

Lα(X → Y |Z)

,
α

α− 1
log

α

α− 1
− min
PX̂|Y,Z

E
[
`α(PX̂|Y,Z(X|Y,Z))

]
α

α− 1
− min
PX̂|Z

E
[
`α(PX̂|Z(X|Z))

] .

(12)

Finally, the conditional maximal α-leakage is defined by
taking a supremum over functions U of X .

Definition 11: Given a joint distribution PX,Y,Z , for α > 0
the conditional maximal α-leakage from X to Y given Z is
defined as

Lmax
α (X → Y |Z) , sup

U−(X,Z)−Y
Lα(U → Y |Z). (13)

Note that the Markov chain condition allows U to be a
(random) function of both the original dataset X as well as
the side information Z. In other words, the quantity of interest
to the adversary U may be related to its side information in an
arbitrary manner, the dependence between U and (X,Z) must
be independent of that between Y and (X,Z).

III. PROPERTIES OF MAXIMAL α-LEAKAGE

We first review several properties of the leakage measures
that have to do with simplifying them. That is, as given in the
definitions it is not clear that these measures are computable.
In fact, they are, and can be written as simple functions of the
Arimoto or Sibson mutual informations. The following lemma,
the proof of which requires a fairly simple calculation given in
Appendix A, is our first tool in simplifying these measures.

Lemma 1: Given a distribution PX , the minimal expected
α-loss for an estimator X̂ of X is

min
PX̂

E
[
`α(PX̂(X))

]
=


α
α−1

(
1− exp

{
1−α
α Hα(X)

})
, α ∈ (0, 1) ∪ (1,∞),

H(X), α = 1,

1− exp(−H∞(X)), α =∞.
(14)

This lemma allows us to rewrite the numerator and de-
nominator in the definition of the α-leakage. From there, we
can show that the α-leakage is precisely the Arimoto mutual
information.

Theorem 2: For any α > 0, the α-leakage from X to Y
simplifies to

Lα(X → Y ) = IAα (X;Y ). (15)

Similarly, the conditional α-leakage is equal to the condi-
tional Arimoto mutual information.

Theorem 3: For any α > 0, the conditional α-leakage from
X to Y given Z simplifies to

Lα(X → Y |Z) = IAα (X;Y |Z). (16)

Thm. 3 is proved in Appendix B; note that Thm. 2 is a
special case. Simplifying MAL and conditional MAL requires
a significantly more complicated argument which precisely
characterizes the optimal U . The resulting expressions are as
follows. Appendix C contains the proof for the conditional
version; again the unconditional version is a special case.

Theorem 4: For α > 0, the maximal α-leakage simplifies to

Lmax
α (X → Y )

=

 sup
PX̃�PX

IS
α(X̃;Y ) = sup

PX̃�PX
IA
α(X̃;Y ), α 6= 1,

I(X;Y ), α = 1.
(17)

where PX̃ � PX means that PX̃ is absolutely continuous with
respect to PX ; i.e., the support of PX̃ is contained within that
of PX .

Theorem 5: For α > 0, conditional maximal α-leakage
simplifies to

Lmax
α (X → Y |Z)

=


sup

z∈supp(Z)

sup
PX̃|Z=z

�PX|Z=z

IS
α(X̃;Y |Z = z), α 6= 1,

I(X;Y |Z), α = 1

(18)

where supp(Z) indicates the support of Z, and IS
α(X̃;Y |Z =

z) is the Sibson mutual information for the distribution
PX̃,Y |Z=z .

The following theorem gives some other properties of MAL.
Most of these are derived from properties of the Sibson mutual
information.

Theorem 6: For α > 0, maximal α-leakage
1. is quasi-convex in PY |X ;
2. is monotonically non-decreasing in α for α 6= 1;
3. satisfies data processing inequalities: let random variables

X,Y, Z form a Markov chain, i.e., X − Y − Z, then

Lmax
α (X → Z) ≤ Lmax

α (X → Y ) (19a)
Lmax
α (X → Z) ≤ Lmax

α (Y → Z). (19b)

4. satisfies

Lmax
α (X → Y ) ≥ 0 (20)

with equality if and only if X is independent of Y , and

Lmax
α (X → Y ) ≤

{
log |X | α 6= 1

H(PX) α = 1
(21)
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with equality if X is a deterministic function of Y .
Consider two disclosed versions Y1 and Y2 of X . The

following theorem upper bounds the maximal α-leakage to an
adversary who has access to both Y1 and Y2 simultaneously.
This composition result allows composing multiple releases
under a total leakage constraint.

Theorem 7: If X,Y1, Y2 satisfies the Markov chain Y1−X−
Y2, then

Lmax
α (X → Y1, Y2) ≤ Lmax

α (X → Y1) + Lmax
α (X → Y2).

(22)

The following theorem shows that in many scenarios of
interest, the conditional MAL is upper bounded by MAL. This
suggests that limiting the unconditional MAL also limits the
amount an adversary can learn about the private data X , even
if the adversary has access to side information, the details of
which are completely unknown to the data curator.

Theorem 8: If the Markov chain Z −X − Y holds, then

Lmax
α (X → Y |Z) ≤ Lmax

α (X → Y ). (23)

IV. RELATIONSHIP BETWEEN MAXIMAL α-LEAKAGE AND
RÉNYI DIFFERENTIAL PRIVACY

The maximal α-leakage depends on the statistics of the
underlying dataset, and therefore, is regarded as a context-aware
metric. On the contrary, differential privacy (DP) quantifies the
worst case information leakage; as such, it is a context-free
metric which is independent of the statistical information of
data. Several variants of DP have been proposed for the sake
of preserving utility, including Rényi differential privacy (RDP)
[19]. RDP is superficially similar to MAL in that they both
make use of variations of Rényi’s information measures, but
are in many ways different metrics. Even so, we show in this
section that the two measures are equivalent in the sense of
capturing the same collection of mechanisms which provide a
specified level of privacy protection. This result implies that
MAL can reach out to context-free metrics, and therefore,
extends the scope of information leakage measures that can
be linked to MAL.

RDP is based on the notion of adjacency, wherein two
datasets are adjacent if they differ only in exactly one element
[19]. To properly compare against MAL, which is defined
without a notion of adjacent datasets, we extend RDP to the
local privacy context [20] and formally define local Rényi
differential privacy (LRDP) as follows.

Definition 12: Given a mechanism PY |X , the local Rényi
differential privacy of order α > 0 is given by

LLRDP
α (X → Y ) , sup

x,x′∈X
Dα(PY |X=x‖PY |X=x′). (24)

where PY |X=x and PY |X=x′ are the two conditional probabil-
ities of Y given X = x and X = x′, respectively.

An alternative manner of defining LRDP, more in line with
DP conventions, is to state that a mechanism PY |X satisfies
(α, γ)-LRDP if LLRDP

α (X → Y ) ≤ γ. Here, we find it more

useful to define the measure as in (24), as it can be more easily
compared to MAL.

We present the connection of privacy captured by MAL
and LRDP in the following theorem, which is proved in
Appendix D.

Theorem 9: For any mechanism PY |X and any α > 0,

Lmax
α (X → Y ) ≤ LLRDP

α (X → Y ). (25)

Let τ = minx,y PY |X(y|x). For any α > 1,

LLRDP
α (X → Y ) ≤ log

(
1 +

1

τ

√
2Lmax

α (X → Y )

log e

)
. (26)

Note that the result in Theorem 9 is tight for perfect privacy,
i.e., Lmax

α (X → Y ) = 0 iff LLRDP
α (X → Y ) = 0.

From Thm. 9, we conclude that LRDP and MAL are equiva-
lent in the sense that a mechanism has small MAL if and only
if it has small LRDP.

APPENDIX A
PROOF OF LEMMA 1

For α ∈ (0, 1)∪(1,∞), the minimal expected α-loss is given
by

min
PX̂

E
[
`α(PX̂(X))

]
(27)

= min
PX̂

α

α− 1

(
1−

∑
x

PX(x)PX̂(x)
α−1
α

)
. (28)

Note that for α > 1, PX̂(x)
α−1
α is a concave function of PX̂ ,

meaning the overall function in (28) is convex. For α < 1,
PX̂(x)

α−1
α is a convex function of PX̂ , but since α

α−1 is
negative, the overall function is again convex. Either way, the
minimization in (28) amounts to a convex optimization problem
subject to the constraint that PX̂ is in the simplex. Incorporating
the constraint that

∑
x PX̂(x) = 1, the Lagrangian is given by

L(PX̂ , ν) ,
α

α− 1

(
1−

∑
x

PX(x)PX̂(x)
α−1
α

)

+ ν

(∑
x

PX̂(x)− 1

)
(29)

where ν is a Lagrange multiplier. Thus, the KKT condition is

0 =
∂

∂PX̂(x)
L(PX̂ , ν) = −PX(x)PX̂(x)−

1
α + ν. (30)

Solving for PX̂ , and finding the correct value of ν to put PX̂
in the simplex, we find that the optimal PX̂ is

PX̂(x) =
PX(x)α∑
x′ PX(x′)α

. (31)

Plugging this into the objective function, we find

min
PX̂

E
[
`α(PX̂(X))

]
=

α

α− 1

1−(∑
x

PX(x)α

) 1
α

 (32)
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=
α

α− 1

[
1− exp

{
1− α
α

Hα(X)

}]
.

(33)

APPENDIX B
PROOF OF THEOREM 3

Assume α ∈ (0, 1) ∪ (1,∞). Lemma 1 applies for an
unconditional distribution PX , but we can apply it to evaluate
the denominator of the definition of conditional α-leakage in
(12), where there is a conditional estimator PX̂|Z , as follows:

min
PX̂|Z

E
[
`α(PX̂|Z(X|Z))

]
(34)

= min
PX̂|Z

∑
z

PZ(z)E
[
`α(PX̂|Z(X|Z))

∣∣∣Z = z
]

(35)

=
∑
z

PZ(z) min
PX̂|Z=z

E
[
`α(PX̂|Z(X|Z))

∣∣∣Z = z
]

(36)

=
∑
z

PZ(z)
α

α− 1

(
1− exp

{
1− α
α

Hα(X|Z = z)

})
(37)

=
α

α− 1

1−
∑
z

PZ(z)

(∑
x

PX|Z(x|z)α
) 1
α

 (38)

=
α

α− 1

(
1− exp

{
1− α
α

Hα(X|Z)
})

. (39)

Similarly, the expression in the numerator of (12) is given by

min
PX̂|Y,Z

E
[
`α(PX̂|Y,Z(X|Y,Z))

]
=

α

α− 1

(
1− exp

{
1− α
α

Hα(X|Y, Z)
})

. (40)

Therefore

Lα(X → Y |Z) = α

α− 1
log

exp
{

1−α
α Hα(X|Y,Z)

}
exp

{
1−α
α Hα(X|Z)

} (41)

= Hα(X|Z)−Hα(X|Y,Z) (42)

= IAα (X;Y |Z). (43)

APPENDIX C
PROOF OF THEOREM 5

Let α ∈ (0, 1) ∪ (1,∞). The case of α = 1 is relatively
simple and is addressed in [14]. From Thm. 3, we have

Lmax
α (X → Y |Z) = sup

U−(X,Z)−Y
IA
α(U ;Y |Z). (44)

Given any U satisfying U − (X,Z)−Y , we may upper bound

IA
α(U ;Y |Z)

=
α

α− 1
log

∑
y,z

(∑
u
PU,Y,Z(u, y, z)

α

) 1
α

∑
z

(∑
u
PU,Z(u, z)α

) 1
α

(45)

≤ sup
z∈supp(Z)

IA
α(U ;Y |Z = z) (46)

≤ sup
z∈supp(Z)

sup
PX̃|Ũ :PX̃|Ũ�PX|Z=z

sup
PŨ

IA
α(Ũ ;Y |Z = z) (47)

= sup
z∈supp(Z)

sup
PX̃|Ũ :PX̃|Ũ�PX|Z=z

sup
PŨ

IS
α(Ũ ;Y |Z = z) (48)

≤ sup
z∈supp(Z)

sup
PX̃�PX|Z=z

IS
α(X̃;Y |Z = z) (49)

where
• (46) follows from the fact that for nonnegative ai, bi,∑

i ai∑
i bi
≤ maxi

ai
bi
,

• (48) follows because Arimoto and Sibson MIs have the
same supremum over the input distribution,

• (49) follows from the facts that Sibson MI satisfies the
data processing inequality, and Ũ − X̃ − Y |Z = z forms
a Markov chain.

We now lower bound Lmax
α (X;Y |Z) by constructing a specific

U satisfying U − (X,Z)−Y . We will define a variable U with
alphabet consisting of disjoint subsets Ux,z for each x, z. Let
nx,z = |Ux,z| to be determined later. Define

PU |X,Z(u|x, z) =

{
1

nx,z
, u ∈ Ux,z,

0, otherwise.
(50)

With some hindsight, we define random variables Z̃, X̃ with
joint distribution given by

PZ̃(z) ∼

(∑
x

n1−αx,z PX,Z(x, z)
α

)1/α

, (51)

PX̃|Z̃(x|z) ∼ n
1−α
x,z PX,Z(x, z)

α (52)

where ∼ indicates that the distribution is proportional to the
RHS expression. Note that for any α 6= 1, there exists choices
for nx,z that make PX̃,Z̃ to be any distribution with the same
support as PX,Z . For U as constructed above, we can evaluate
the conditional Arimoto mutual information as

exp

{
α− 1

α
IA
α(U ;Y |Z)

}
(53)

=

∑
y,z (

∑
u PU,Y,Z(u, y, z)

α)
1
α∑

z (
∑
u PU,Z(u, z)

α)
1
α

(54)

=

∑
y,z

(∑
x n

1−α
x,z PX,Y,Z(x, y, z)

α
) 1
α∑

z

(∑
x n

1−α
x,z PX,Z(x, z)α

) 1
α

(55)

=
∑
z

PZ̃(z)
∑
y

(∑
x n

1−α
x,z PX,Y,Z(x, y, z)

α∑
x n

1−α
x,z PX,Z(x, z)α

) 1
α

(56)

=
∑
z

PZ̃(z)
∑
y

(∑
x

PX̃|Z̃(x|z)PY |X,Z(y|x, z)
α

) 1
α

(57)

=
∑
z

PZ̃(z) exp

{
α− 1

α
ISα (X̃;Y |Z̃ = z)

}
. (58)
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We may maximize over the choice PX̃,Z̃ (implicitly choosing
nx,z) to lower bound the conditional MAL by

Lmax
α (X → Y |Z) (59)

≥ sup
PX̃,Z̃
�PX,Z

α
α−1 log

∑
z PZ̃(z) exp

{
α−1
α ISα (X̃;Y |Z̃ = z)

}
(60)

= sup
z∈supp(Z)

sup
PX̃|Z=z

�PX|Z=z

ISα (X̃;Y |Z = z). (61)

APPENDIX D
PROOF OF THEOREM 9

We will make use of the following lemma, which bounds the
Rényi divergence in terms of total variational distance.

Lemma 10: ([21, (1), (6)]) Let P and Q be two arbitrary
probability distributions of the random variable X . For α > 1,

1

2
|P −Q|2TV log e ≤ Dα(P‖Q), (62)

Dα(P‖Q) ≤ log

(
1 +

|P −Q|TV

2minxQ(x)

)
(63)

where |P −Q|TV =
∑
x |P (x)−Q(x)| is the total variational

distance.
Given a mechanism PY |X , we may upper bound the MAL

by LRDP as follows:

Lmax
α (X → Y ) = sup

PX̃

inf
QY

Dα(PX̃Y ‖PX̃ ×QY ) (64)

≤ inf
QY

max
x

Dα(PY |X=x‖QY ) (65)

≤ max
x,x′

Dα(PY |X=x‖PY |X=x′) (66)

= LLRDP
α (X → Y ) (67)

where (64) follows from Thm. 4 and the definition of Sibson
mutual information in (6).

We now prove the bound in the opposite direction. For any
mechanism PY |X , we have

LLRDP
α (X → Y ) (68)
= max

x′,x
Dα(PY |X=x‖PY |X=x′) (69)

≤ max
x′,x

log

(
1 +
|PY |X=x − PY |X=x′ |TV

2minx,y P (y|x)

)
(70)

≤ inf
QY

max
x′,x

log

(
1 +
|PY |X=x −QY |TV + |QY − PY |X=x′ |TV

2τ

)
(71)

≤ inf
QY

max
x

log

(
1 +
|PY |X=x −QY |TV

τ

)
(72)

≤ inf
QY

max
x

log

1 +
1

τ

√
2Dα(PY |X=x‖QY )

log e

 (73)

= log

(
1 +

1

τ

√
2 infQY maxxDα(PY |X=x‖QY )

log e

)
(74)

= log

(
1 +

1

τ

√
2Lmax

α (X → Y )

log e

)
(75)

where
• (70) follows by applying (63),
• (71) is due to the triangle inequality for total variation,
• (73) follows by applying (62),
• (75) follows from the equivalent form of MAL in Thm. 4.
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