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The COVID-19 pandemic has highly impacted the communities globally by reprioritizing

the means through which various societal sectors operate. Among these sectors,

healthcare providers and medical workers have been impacted prominently due to the

massive increase in demand for medical services under unprecedented circumstances.

Hence, any tool that can help the compliance with social guidelines for COVID-19 spread

prevention will have a positive impact on managing and controlling the virus outbreak

and reducing the excessive burden on the healthcare system. This perspective article

disseminates the perspectives of the authors regarding the use of novel biosensors

and intelligent algorithms embodied in wearable IoMT frameworks for tackling this

issue. We discuss how with the use of smart IoMT wearables certain biomarkers can

be tracked for detection of COVID-19 in exposed individuals. We enumerate several

machine learning algorithms which can be used to process a wide range of collected

biomarkers for detecting (a) multiple symptoms of SARS-CoV-2 infection and (b) the

dynamical likelihood of contracting the virus through interpersonal interaction. Eventually,

we enunciate how a systematic use of smart wearable IoMT devices in various social

sectors can intelligently help controlling the spread of COVID-19 in communities as they

enter the reopening phase. We explain how this framework can benefit individuals and

their medical correspondents by introducing Systems for Symptom Decoding (SSD), and

how the use of this technology can be generalized on a societal level for the control of

spread by introducing Systems for Spread Tracing (SST).

Keywords: COVID-19, IoMT, smart wearables, spread control, AI for health, smart connected health, telemedicine,
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1. INTRODUCTION

SARS-CoV-2, also known as COVID-19, is a novel coronavirus
that initiated a pandemic outbreak in December 2019. Due to
the high infection rate and relatively low mortality rate, as well
as the long incubation period, COVID-19 spread through more
than 19 countries by late-January 2020 (Adhikari et al., 2020;
Tang et al., 2020; Zhai et al., 2020). The aggressive nature of the
virus besides the limited knowledge has resulted in high pressure
on the healthcare systems (Wang C. et al., 2020). As the initial
waves of this virus is being passed in some countries (Leung
et al., 2020), many nations and states are going through phases
of reopening (Ainslie et al., 2020; Olagnier and Mogensen, 2020),
which suggests that active monitoring of symptom development
and spread should be conducted more robustly while preventive
measures are implemented in a multifaceted manner to mitigate
(if not possible to prevent) the following waves of the pandemic.
In the absence of widely-available vaccine for different variants

of the virus, and approved treatment during any pandemic,
the only available solution is to implement preventive measures
to be taken in an attempt to mitigate the virus’ damage as
much as possible until a reliable cure is found (Le et al., 2020).
As of the time of writing this paper, no approved cure for
COVID-19 has been found, and the research for finding a
solution to end this pandemic is still ongoing (Li X. et al.,
2020) with some limited access to vaccines for initial variants
of the virus. A wide range of tests has been introduced for
diagnosing infected cases such as CT Scans (Li and Xia, 2020)
and Polymerase Chain Reaction (PCR) (Li Y. et al., 2020;
Long et al., 2020). Research centers are acquiring knowledge
about the virus to understand the infection mechanism (Zheng
et al., 2020), alarming early symptoms (Sun et al., 2020), silent
symptoms (e.g., “happy hypoxemia Guo et al., 2020; Tobin
et al., 2020”), and the virus’ function in the body (Chen et al.,
2020).
Any possible solution that can facilitate faster and more

accurate preventative actions (Adhikari et al., 2020), means of
diagnosis (Wynants et al., 2020; Zhai et al., 2020), development
of predictive models (for identifying symptoms’ progress) (Liu
et al., 2020), tracing, and monitoring (Hellewell et al., 2020) is
highly beneficial and essentially needed by several policymakers
and stakeholders (Ransing et al., 2020). These activities concern
hospitalized patients, out-patients, and those who have not
been diagnosed.
This article provides the authors’ perspectives about the

functionality of smart wearable IoMT technologies for early
diagnosis of COVID-19 symptoms (including silent symptoms)
at the individual level and for tracking the interpersonal
interaction using which the spread of the virus within the society
can be modeled. We argue that the same technology can be
used beyond COVID-19 and for detection and tracking of any
infectious disease which results in respiratory symptoms. Wewill
discuss the existing techniques and technologies and will explain
the existing technical challenges to be addressed. We explain
the functionality of state-of-the-art biosensors and machine
intelligence which can be fused in the context of wearable IoMT
technology to address several “unmet needs.”

In this paper we categorize IoMT technologies as (a) Systems
for Symptom Decoding (SSD), and (b) Systems for Spread
Tracing (SST). IoMT-based SSD are those systems which assist
with early diagnosis and tracing of the symptoms at the individual
level while coupled with certain algorithms and additional
hardware, SST technology are those technologies to model not
only the individual symptoms but also the dynamics of symptom
evolution in clusters of population based on interaction models
and tracing of interpersonal interaction for better management
of the spread in a cluster and on a larger scale in society.
In this perspective article, we disseminate our perspective

about the challenges and potentials for the use of SSD
technologies to continuously and autonomously monitor the
vital signs of patients can be to alert the individual and the
care providers about any upcoming potentially-major health
anomalies so that proper medical care can be planned. We will
discuss the imperative role of machine intelligence in particular
health-related anomaly detection algorithms which can be used
to not only detect but also predict the flares of symptoms.We will
also highlight that howwith the use of SSD technologies objective
telemedicine sessions have been conducted, and how this can be
further promoted to enhance telemedicine quality and reduce the
need for in-person visits, and to avoid interpersonal contacts.
It should be noted that, continual monitoring allows for

detecting infrequent flares of symptoms which may not be
feasible based on infrequent discrete visits (Joyia et al., 2017;
Khan et al., 2020). This is a major benefit of IoMT technologies
which can significantly help with the fight against a pandemic,
if low-cost, and highly-accessible wearable IoMT can be made
available. This will not only help with a faster and more
efficient assessment of the symptoms, but it also will help to
distribute the healthcare resources optimally based on data
collected from the affected patients. To further motivate more
investment and investigation in this field it should be noted that
SSD systems can also significantly help to monitor individuals
before the infection and promote early diagnosis, planning, and
management under remote access. This will be possible due to
the available infrastructures for a smart and connected healthcare
model which should be further enhanced to prepare the system
for future waves of the pandemic and future pandemics.
The authors would like to emphasize their opinion that the

use of IoMT devices can be extended to a higher level, for
example, for clusters of patients in clinics or in small and
then larger societies. This will be challenging but will allow
monitoring not only the symptoms of individuals but also the
spread of the symptoms. This concept has already been evaluated
using smartphones in some couturiers (such as South Korea,
India, Iceland) and some states in the United States (such as
Utah), using GPS data of smartphones to monitor COVID-19
spread. However, GPS is not precise enough to gauge short
distances, especially for in-door interactions. Thus, other forms
of technologies such as Bluetooth Low-Energy (BLE) have been
suggested (for example, by Google and Apple) on smartphones.
Based on the literature review conducted in this paper

(explained later), despite the benefit of existing systems, such
as BLE, the current technology has major limitations, among
which we can highlight sensitivity to dynamic motions of
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the two carriers, sensitivity to a dynamic environment, the
difficulty of calibration and need for re-calibration in a cluttered
environment, and sensitivity to angle of arrival and location of
the sender and receiver. This highlights a list of challenges that
should be investigated for the higher performance of wearable
IoMT on a large scale. Addressing these challenges, IoMT-based
SST can implement preventive measures such as social distancing
guidelines (SDG) based on the gathered multimodal information
about (a) the symptoms evolution in a cluster of population
and (b) interpersonal interaction in the clusters, especially in
crowded indoor environments. Examples are medical facilities
(such as dialysis clinics and neurorehabilitation clinics) and non-
medical facilities, such as nursing homes, senior homes, drug
rehabilitation facilities. On a larger scale, SST technology can
enable medical providers to have a broader symptommonitoring
over the society (and clusters of the population) in terms of
the pandemic spread, and thereby manage the distribution of
hospitalizations and medical supplies. It can be mentioned that
the extended surveillance that SST technology grants can help
policymakers to detect and react to the main causes of the spread
by enacting more accurate laws to fight against the spread. SST
technologies also raise awareness among the people about the
dangerous areas of the city in regard to COVID-19 spread.
In this perspective article, we will also disseminate our opinion

that both SST and SSD technologies can be embodied as a
personal smart wearable device to help process the related
bio-signals for diagnosis, tracking, and prevention. However,
this would require significant optimization of electronics and
investigation of means of reducing the cost to maximize
accessibility and wide-use of such technology among the society
regardless of the economic strength. This is a challenge to be
addressed since most of the existing wearable systems either
rely on connection with smartphones or have a very high cost,
challenging the usability and feasibility of widely-used in societies
with a low economy. In addition, despite all exciting benefits, data
security, and reliability of data transmission can raise concerns
and should be investigated thoroughly (Zhang Z. K. et al., 2014;
Dorri et al., 2017; Khan and Salah, 2018; Noor andHassan, 2019).
This article aims to initiate an in-depth conversation between

different sectors, including researchers, technology designers,
providers, hospitals, and policymakers to not only examine ways
that can be implemented rapidly to adopt the existing technology
and improve the health care system’s diagnostic and preventative
power using IoMTs but also to examine the challenges, and
future directions of such technology in particular when the
use is scaled-up to a societal level in order to fight possible
future waves of COVID-19 pandemic and future pandemics.
The authors would like to acknowledge that this article is
written as a “perspective article type” to provide the opinion
of the authors on the specific topic of the paper, i.e., the
potentials of IoMT for COVID-19 response. Our intention in
writing this article is to initiate discussions between researchers,
policymakers, and stakeholders to further investigate the use of
IoMT solutions for empowering the healthcare systems under
the severe restrictions imposed by COVID-19 and considering
the unfortunate current and future waves of this pandemic and
future pandemics.

2. INTERNET OF (MEDICAL) THINGS IN
THE ERA OF COVID19

IoMT has exponentially become more popular during the past
decade due to the benefits for creating smart environments
that can autonomously function to provide various services
(Bélissent, 2010; Sundmaeker et al., 2010; Gubbi et al., 2013).
IoMT wearable devices have been increasingly used for medical
purposes, such as monitoring health of elderly (Liang and Yuan,
2016), physical activity monitoring (Wang and Tang, 2020), and
orthopedic care (Singh et al., 2020). However, most of the pre-
COVID-19 uses of IoMT devices were for small-scale application
and in many cases when the cost and scalability were not
an issue. Given the large-scale challenges caused by COVID-
19 pandemic, autonomous services, and remote conduction of
service (telepresence) have become of higher importance, in
particular in the context of telemedicine (Singh et al., 2020)
calling for large-scale use of affordable and accessible technology
which can be used in remote areas and in regions with limited
economic power. Several governmental funding agencies are now
supporting research proposals across the world for designing
low-cost scalable IoMT devices to enhance the health care system
during the fight with COVID-19. Examples are funded NSF
RAPID grants (Atashzar and Wang, 2020; Rogers, 2020), in
addition to numerous calls for proposals, such as NRC (2020).
This shows the imperative unmet need for having very low
cost and effective IoMT devices for telemedicine which requires
addressing a wide range of technical challenges including the
accuracy, wearability, ease-of-use (specially for aged population)
in unstructured dynamic environments and withminimum to no
re-calibration needs. For this there is a need for discussing the
building block of an IoMT framework in the context of COVID-
19. IoMT frameworks are composed of two cores, namely,
hardware and middleware (Gubbi et al., 2013).

2.1. Hardware
Hardware includes all the sensors that monitor biomarkers and
symptoms. To choose the best sensors for tracking symptoms
of COVID-19, first, we should have an in-depth insight into the
symptoms of COVID-19 infection. Then we should choose the
most appropriate sensors for tracking the symptoms, considering
the cost for large scale deployment, need for calibration, re-
calibration, and the ease of use in the context of a wearable system
for the society.
Current identified symptoms of COVID-19 are

predominantly fever (Huang et al., 2020; Roser et al., 2020;
Wang D. et al., 2020), dry cough (Chen et al., 2020; Huang et al.,
2020; Roser et al., 2020; Wang D. et al., 2020), fatigue (Huang
et al., 2020; Roser et al., 2020; Wang D. et al., 2020), a drop of
SpO2 with minimum signs (happy hypoxemia) (Guo et al., 2020;
Tobin et al., 2020), and other symptoms that are less frequent,
though can be more serious, e.g., shortness of breath (Chen et al.,
2020; Roser et al., 2020), headache (Chen et al., 2020; Huang
et al., 2020; Roser et al., 2020; Wang D. et al., 2020), and muscle
pain (Chen et al., 2020; Roser et al., 2020).
Since COVID-19 is still known to be a respiratory disease,

achieving information about blood oxygen saturation level is
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essential. It should be highlighted that happy hypoxemia is an
unconventional situation because of which patients who have
critical oxygen saturation do not feel unwell for a long period of
time during which the infection gets worse, while patients do not
show serious symptoms resulting in delayed delivery of care. This
shows the importance of detecting such a condition as early as
possible. Pulse oximeter sensors measure pulse rate and the level
of oxygen saturation in reduced hemoglobin (Hb), based on the
light absorption characteristic (Vandecasteele et al., 2017).
Challenges for using Spo2 is the sensitivity of such sensor

to the contact quality and possibility blockage issues (such as
due to body hair) affecting the reflective light, also sensitivity
to movements. Thus choosing the best number of sensors (to
conduct redundant recording) and the best location on the body
are imperative topics to be investigated when designing the
wearable for a large scale. One solution is to use the multichannel
recording to reduce the chance of blockage and increase the
signal to noise ratio by fusing the recording. However, this would
increase the cost, size, and computational load. A comprehensive
analysis is needed to test various locations on the body, which
can provide a robust recording. The most successful wearable
systems in the market are smartwatches. However, due to the
complexity of the physiology at the wrist, recording SPo2 has
been a major challenge for smartwatch companies. A limited
number of very recent smartwatches in the marker offer SPo2
recording; however, they require a very steady posture for
a prolonged duration, which will be a challenge for patients
or elderly users. Also, these systems are not able to provide
continual recording, limiting the chance of picking up the
dynamic changes.
Another challenge of existing IoMT devices is the need for

being paired with a smartphone. This significantly increases the
cost and reduces accessibility, especially for remote areas and
for areas with a low economy. Thus there is an unmet need for
having an IoMT device that can not only accurately measure
the symptoms but also be independent of any edge device and
can operate as a stand-alone technology with minimum cost.
As mentioned before, some grant agencies are calling for new
proposals to generate stand-alone IoMT devices under 50$. Of
course, the accuracy cannot be sacrificed, especially since the
recordings are very sensitive. For example, a SPo2 of 91 out of
100 may require immediate attention, and this cannot be within
the range of error of the hardware.
In addition to Spo2, respiratory rate (RR) can be achieved

by various means, such as advanced processing of ECG (Shen
et al., 2017) or through the use of an array of piezoresistive films
placed non-invasively around an individual’s chest to sense the
frequency of the chest motion (Loriga et al., 2006; Pacelli et al.,
2006a,b; Witt et al., 2011; Fiedler et al., 2012; Atalay et al., 2014;
Subbe and Kinsella, 2018). The challenge with measuring RR is
the very low-frequency content, which makes it computationally
difficult to estimate based on bioelectrical recording such as ECG.
There are also specific challenges with any bioelectric recording,
as explained below. Using pressure belts can provide a measure
of RR, but it would challenge the wearability and usability of the
system and makes it difficult for large-scale uses. The topic of
calculating RR is an accelerated field of research, andmore recent

efforts are focused on using other modalities (such as optical
PPG) to extract RR.
Body temperature is the most important information for

COVID-19 (Roser et al., 2020). In order tomeasure this modality,
contact sensors and IR sensors have been used. IR-based
temperature sensors provide better performance in rejecting
the ambient noise and less sensitivity to contact conditions
(Stavem et al., 1997; Liang and Yuan, 2016) when compared with
contact sensors (Sibinski et al., 2010), thus it is suggested for
smart wearables.
For detecting functionality of cardiovascular system besides

symptoms of fatigue, muscle soreness, stress, and heart rate (and
possibly RR), bioelectrical signals (such as EEG, EMG, and ECG)
can be used as information rich markers (Gazendam and Hof,
2007; Jap et al., 2009; Craven et al., 2014; Rechy-Ramirez and
Hu, 2015; Acharya et al., 2018; Xia et al., 2018). Bioelectrical
recording however may face challenges such as being affected
by the electromagnetic noise of the household devices, or
changes in electrical impedance and connectivity stemming
from sweating and other physiological causes. Substitutional
sensing modalities have been used in wearable IoMT devices.
For monitoring heart rate, PPG may replace ECG while relaxing
the dependency to electrical contact, and for monitoring muscle
activities, mechanomyography, or force-myography may replace
EMG (Castillo et al., 2020). Besides sensors, communication, and
power electronics are other modules of hardware in a wearable
IoMT, the complexity of which depends on the bandwidth needed
and power consumption.
From a communication standpoint, in wearable IoMT

devices, near field connection (NFC) (Neefs et al., 2010;
Opperman and Hancke, 2011; Timalsina et al., 2012; Duregger
et al., 2015), Bluetooth connection (Lee et al., 2007; Dementyev
et al., 2013), and WiFi (Lee et al., 2007; Curone et al., 2010;
Kim et al., 2015) are used based on their data transfer rate,
range of communication capability, power consumption, and
availability. Some of these communication modalities are also
used for localization, as explained later. It should be added that
the communication module of wearable systems has been seen as
a potential solution for addressing the contact tracing problem.
For example, there is a wide range of studies on the use of
Bluetooth low energy. Later in this document, we provide our
perspectives on the benefits and challenges of the use of such a
solution for detecting interpersonal contact between the wearers.
Thus, it can be mentioned that despite a wide range

of available sensing technologies, particular investigations are
needed to minimize the cost while maximizing the accuracy and
wearability. In the above, a range of challenges with existing
technologies is provided, which shows the roadmap that can be
taken to realize a scalable solution.

2.2. Middleware
Middleware administrates storing the information and
evaluating the collected data to extract meaningful features
that can be assessed on the fly to (a) provide biofeedback to the
user (Sundmaeker et al., 2010), and (b) provide information from
a cluster of users for analysis by medical workers, policymakers,
and other public sectors, which helps to monitor the effects of
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healthcare and guidelines at the societal level. There are different
architectures of IoMT middleware that are utilized based on the
expected functionality of the framework. These architectures
can be categorized mainly as service-based (Papazoglou and
Georgakopoulos, 2003), cloud-based (Ngu et al., 2016), and
actor-based (Soldatos et al., 2015) modules. As a part of
middleware, diagnostic IoMT technologies can be equipped
with means of artificial intelligence to predict health-related
anomalies. In the rest of this article, we provide our perspective
on this important topic as well.

2.2.1. Security and Privacy
Privacy is a significant concern andmust be addressed before any
potential large-scale use of IoMT devices for contact tracing and
symptom tracking.Without a systematic solutionwhich provides
a very high degree of protection on patient’s data, IoMT devices
can only be used up to a limited scale, such as for in a hospital uses
or for clusters of the high-risk population in a closed space (such
as nursing homes to track symptom evolution in the population),
or as part of telemedicine and individual uses. These are examples
of limited scale uses for which the important matter of privacy
and security can be addressed using existing infrastructures. For
any large-scale use of the device, a serious concern that needs to
be addressed is the matter of large scale security and privacy of
the information. Relevant important discussions can be found in
Subashini and Kavitha (2011), Zhang Z. K. et al. (2014), Dorri
et al. (2017), Gatouillat et al. (2018), Khan and Salah (2018),
Hatzivasilis et al. (2019), Noor and Hassan (2019), and Kagita
et al. (2020).
The authors also believe that one additional issue related

to this topic is the reliability of data storage and data
transmission and accessibility of the medical sector to such
data. Since internet-based architectures that handle personal
information can be a subject of different attacks, there is an
imperative need for utilizing security algorithms. Examples can
be found in the literature focusing on the maintenance of
the safety of such systems (Sicari et al., 2015). In addition to
compromising information confidentiality, large-scale uses of
IoMT architectures can increase the susceptibility to malicious
cyber-physical attacks that are aiming to hinder the processing
of the data and causing failures, false-positive alarms, and false-
negative reports (Khan and Salah, 2018). These attacks can range
from low-level (Xu et al., 2005) to intermediate-level (Zhang K.
et al., 2014) and high-level (Conzon et al., 2012). For addressing
this issue, there is a need for implementing defense mechanisms.
Several defense techniques have been proposed in the literature
for each type of attack, which should be investigated before a
large-scale IoMT can be deployed (Xiao et al., 2009; Bhattasali
and Chaki, 2011; Khan and Salah, 2018).

3. IoMT WEARABLE TECHNOLOGIES

Due to the potential benefit of IoMT devices, there have been
an accelerated range of recent efforts that envision the use for
fighting against COVID-19 spread and future pandemics. These
aim at the conduction of early diagnosis, tracking the spread, and
monitoring the infected and susceptible individuals (Atashzar

and Wang, 2020; Dong et al., 2020; Garg, 2020; Roser et al., 2020;
Sohrabi et al., 2020; Wu and McGoogan, 2020). The trend (Ng
et al., 2020) is motivated with the imperative need to prevent the
spread of the COVID-19 on different societal levels. In order to
discuss various functionality of IoMT wearable technologies, in
this prespective article, authors have categorized IoMT wearables
into SSD and SST.

3.1. Systems for Symptom Decoding
Technologies, which are called Systems for Symptom Decoding
(SSD) in this paper, are designed for diagnosis, monitoring,
analyzing the evolution of signs of infection at an individual level.
Upon achieving the biomarkers via the hardware in an SSD, the
information can be sent to the (cloud-based) middleware to be
processed using various AI-based anomaly detection algorithms,
which aremachine learningmodules that process the distribution
of multidimensional data and detect health-related anomalies.
The authors would like to highlight that based on

conventional machine-learning-based anomaly detection
approaches, subtle multidimensional changes in the well-being of
an individual can be tracked to inform themedical correspondent
about the malevolent alterations in the biomarkers, to promote
early diagnosis of COVID-19 infection, fighting the prolonged
incubation period of COVID-19 (Zhai et al., 2020).
In terms of the type of algorithm for detecting infection-

related health anomalies, gray box and black box artificial
intelligence models can be used (see examples in the literature;
Khan and Khan, 2012), some of which rely on probabilistic
distributions of the data, and some rely on underlying labeled
patterns in the healthy data to bemodeled. Based on probabilistic
algorithms, the likelihood of infection for an individual can
be calculated. In this regard, we can highlight two main
subcategories for health-related anomaly detection, which can be
used in IoMT wearable for COVID-19, namely (a) clustering-
based techniques, (b) classification-based techniques.
In this regard, the K-means clustering approach (Tan et al.,

2016), K-medoids approach (Garg et al., 2020), and Expectation-
Maximization-based clustering approaches such as mixture
models (Bublitz et al., 2017; Qi et al., 2018) are among the
candidates for clustering techniques. These machine learning
modules try to detect the underlying clusters ofmultidimensional
data and predict an anomaly if the new data does not show a high
probability of belonging to one of the clusters.
In addition, the Fuzzy logic approach (Hamamoto et al., 2018),

genetic algorithm (Chen et al., 2018), naïve Bayes networks
(Zhen et al., 2017), neural networks (Amarasinghe et al., 2018;
Chalapathy and Chawla, 2019), and support vector machines
(Erfani et al., 2016) are among classification algorithms used for
anomaly detection, which can be used for detecting COVID-19
anomalies in the symptom space of patients.
The authors’ perspective about the context of detecting the

health anomalies of COVID-19 based on multidimensional data
collected by wearables is as follows. Despite the great success
and advancements in the field, the anomaly detection algorithms
suffer from several issues which are pronounced for COVID-
19, including (a) the sensitivity of the accuracy to the amount
of available labeled data (this is concerning in the context of
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COVID-19 since the data is limited due to the novelty of the
virus and limited knowledge and consistent data collection), (b)
variation in the normal behavior of the data and the definition
of normal behavior (which is questionable due to the very
different and unpredictable behavior of the virus for different
individuals), (c) noise in data (which is a challenge for any
wearable and in-home technologies), (d) similarity between
advanced anomalies and normal data (which is a problem due
to heterogeneity of symptoms of COVID-19). Some of the
aforementioned concerns are rooted in existing issues of health-
related and more information in this regard can be found in
Papazoglou and Georgakopoulos (2003), Xu et al. (2005), Xiao
et al. (2009), Bhattasali and Chaki (2011), Conzon et al. (2012),
Zhang K. et al. (2014), Agrawal and Agrawal (2015), Rechy-
Ramirez and Hu (2015), Sicari et al. (2015), Soldatos et al. (2015),
Ngu et al. (2016), and Khan and Salah (2018).
Our perspective about the near future of AI-based diagnostic

techniques for COVID-19 and other infectious disease is
that the SSD technologies can be augmented by algorithms
which can facilitate prediction-in-time (beyond monitoring)
the “evolution” of symptom biosignals. This can significantly
augment the versatility of the system. In this regard, machine
learning algorithms that can predict a possible near future
adverse event over a given prediction horizon can be significantly
beneficial as it would allow for early diagnosis and planning.
The longer the prediction horizon, the more complex yet more
beneficial the algorithms will be. This is a challenging task;
however, the authors believe that it can be realized in the
near future using state of the art neural network architectures,
specifically LSTM or GRU (which are two modern formats of
recurrent neural networks for processing time series). However,
these models are supervised techniques and require heavy data
collection. A new variant of neural network architecture that
can help with addressing this issue is shallow neural networks.
Thus, the authors believe that a combination of a shallow
neural network and a recurrent neural network architecture can
provide the needed temporal resolution in terms of the prediction
horizon for diagnosing infection for COVID-19 symptoms. The
use of shallow architectures reduces the need for heavy data
collection, and the use of advanced modules such as GRU, which
is designed to be more efficient, allows for underlying modeling
patterns of symptom evolution that can be decoded for early
prediction of infection progress.
Thus, it can be summarized that thanks to the advances

in the last decade on neural network architectures, the next
generation of wearable IoMT devices can be augmented with
cloud computation allowing for accessing strong machine
intelligence for early detection and possibly prediction (with
a tunable horizon) for health-related anomalies. However, this
requires widespread and fast access to cloud computation
infrastructure. There exists a rich literature for detecting
general health anomalies to be adopted in COVID-19 IoMT
wearables; however, there exist several challenges that should
be investigated, as discussed in the above. This would call for
investment and investigation to empower wearable technologies
of tomorrow with means of predictive diagnosis intelligence.
This can significantly enhance the protocols and diagnostic

workflow. For example, results of the anomaly assessment can
be forwarded to the medical correspondent to accordingly
schedule hospitalization and online visits or suggest guidelines
to the possibly infected person. Figure 1 shows the overall
concept of SSD.

3.2. Systems for Spread Tracing
In this paper, we categorize SST as technologies that will take the
analyzed information from multiple SSD systems to monitor the
aggregation of information from a cluster of users to assess the
current status of the spread of COVID-19 and suggest guidelines
for the communities (including users and non-users of SSDs) to
help avoid the contraction of the COVID-19 especially for high-
risk populations and plan for minimizing the risk of infections
for non-affected groups.
The authors would like to highlight that SST can be identified

as the more general IoMT surveillance system for a population
cluster as it evaluates bothmedical biomarkers (those collected by
SSD) and non-medical information regarding the interpersonal
interaction between individuals. As an example, our perspective
is that in an in-patient non-COVID clinic in a hospital
where there are clusters of patients, clinicians, and visitors,
deployment of an SST technology (such as smart tags) can allow
for monitoring the evolution of symptoms among the under
surveillance population to minimize the risk of confrontation
and detecting early spread and hotspots of infection. This will be
imperative for (a) controlling the spread, (b) isolating the non-
infected individuals, and (c) planning for implementation of a
more efficient SDG.
It is of high importance to track and backtrace the path that

led to an infection, to monitor the early or recovered cases,
and to collect data for future analyses. This requires significant
human resources, clinical resources, and time which are all in
shortage currently in healthcare systems (Boulos and Geraghty,
2020; Dong et al., 2020; Emanuel et al., 2020; Fauci et al., 2020;
Menni et al., 2020). Here, “tracking” is defined as gathering
information about (a) the history of an individual’s locations, (b)
people that the individual has visited, and (c) tracking back to
the infection source. The authors would like to highlight that
currently, still in many couturiers (not all), this process has been
done by subjective surveys, which are very costly, non-objective,
time-consuming, and not necessarily accurate as in many cases,
an individual in the chain of interaction may have mild or happy
symptoms (which exist but are not felt as mentioned before). This
shows the importance of objective tracking of the trace of the
virus by (a) collecting multidimensional symptom markers and
(b) history of interaction, and (c) compliance to the SDG. This
topic is discussed in detail in section 3.2, and the authors have
introduced recent efforts by industries such as Google and Apple
and some governments to use advanced technologies such as GPS
and BLE to promote objective contact tracking using smartphone
technologies. This highlights the ongoing accelerated effort,
which further supports the use of wearable IoMT technologies
(equipped with contact tracking technologies) for COVID-19.
It should be noted that the benefit of augmenting sensorized

wearable technologies with biomarker and contact tracking
features is that the technology is able to not only track the location
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FIGURE 1 | Functionality of SSD.

but also concurrently the symptoms of the user to generate a
better model of infection spread in society and to better protect
the wearer and the visitors to the hotspots and estimate the
infection severity in various regions.
However, we should highlight that there is a wide range of

technical bottlenecks. Among the existing challenges, we would
light to highlight (a) localization accuracy and resolution in
a dynamic, unstructured, and cluttered environment and (b)
the security and privacy of the wearers. Regarding outdoor
localization, it can be mentioned that although GPS accuracy
may not be at the ideal level to detect interpersonal interaction,
it is sufficient for detecting whether an individual has been in a
crowded or infected hotspot zone or if a region is showing flares
of symptoms. It can also be used to detect whether an individual
has been following SDG. The use of such an advanced approach
allows for the generation of density heatmaps of the cluster of
crowds and that of symptoms and analysis of the interaction
between the two clusters.
Regarding indoor localization, however, the state of the art

techniques are designed based on the use of Bluetooth Low
Energy (BLE) (Ng et al., 2020; Sadowski et al., 2020; Spachos
and Plataniotis, 2020a,b), Ultra High-Frequency RFID (Li et al.,
2019), WiFi (Wang et al., 2017), and hybrid systems (Guo
et al., 2019; Monica and Bergenti, 2019). Our perspective is
that using these technologies; a wearable IoMT device can be
equipped with cloud-based signal triangulation techniques and
advanced filtering, data fusion, and estimation approaches (such
as Kalman-based sensor fusion and machine learning techniques)
to locate the wearer with respect to the known locations of signal
transmitters installed in an indoor infrastructure. The technical
challenges are (a) accuracy needed for detecting interpersonal
interactions, (b) high sensitivity to dynamical movements
within the unstructured under-surveillance environment and
movement artifacts from the wearers, (c) the cost of the

systematic infrastructure needed for signal triangulation, and (d)
patient privacy.
The authors would like to highlight that with the use of SST,

it can be inferred if an under-surveillance society is following the
preventive guidelines and how the symptom activity is spreading
among the population. In addition, we believe that optimizing
the effort to treat hotspots detected by wearable systems can help
the policymakers to reevaluate the regulations based on the real-
time status of symptom spread. Thus it can be mentioned that
SST can help the sectors in charge to smartly alter the intensity
of the public regulations for controlling the COVID-19 spread to
manage the spatiotemporal aspect of the reopening process while
ascertaining the public compliance with preventive guidelines.
The authors’ opinion is that the use of wearable technologies can
help to better predict upcoming waves in various zones and to
objectively plan for sourcing medical supplies to avoid urgent
shortages. As an additional feature, symptom activities in various
clusters can be shared on a common platform with the society
to let commuters avoid facing hotspots with a higher risk of
infection. Figure 2 shows a schematic view of SST’s functionality.
The authors would like to highlight that the topic of

contact tracing using advanced proximity sensing, such as using
Bluetooth low energy (BLE) technology, is an active field of
research and recently is more accelerated due to the benefit of
tracking and backtracing contacts between individuals with a
positive history of COVID-19 infection and other users of the
technology. The use of BLE is motivated due to the availability
of it in smartphones and because of the functionality for
indoor locations to track interpersonal contacts. In this regard,
it should be noted that some governments are suggesting the
use of this technology for current waves of the pandemic. As
mentioned in Servick (2020) (the following quoted text is taken
from Servick, 2020); currently, “GPS data from phones can
identify potential hot spots and indicate who has been exposed.
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FIGURE 2 | Functionality of SST.

Government programs in South Korea, India, Iceland, and U.S.
states, including North Dakota and Utah, are using phone
location data to monitor COVID-19 spread. But GPS technology
is not precise enough to gauge short distances between two
phones to determine which encounters are most risky.” This is
the motivation for using other platforms such as BLE to detect
interpersonal interaction. Please see more details in Ng et al.
(2020), Servick (2020), and Zastrow (2020) for an explanation
of the use of BLE technology on smartphone applications for
tracking COVID-19 infection and some recent efforts such as
those by Google and Apple for releasing an application for
doing this. Also please see Wang et al. (2017), Guo et al.
(2019), Li et al. (2019), Monica and Bergenti (2019), Mackey
et al. (2020), Sadowski et al. (2020), Spachos and Plataniotis
(2020a), and Spachos and Plataniotis (2020b) for more details on
technologies that can be used for indoor tracking. However, there
is a wide range of challenges to be addressed for the use of such
technology. The challenges are mainly related to the achievable
accuracy of such a technique for an unstructured, cluttered,
and dynamic environment. Also, the need for calibration, the
sensitivity to angle of arrival, and the location of the sensor,
and the motion of the wearer further challenge the use of such
a system. The current efforts are toward (a) developing new
machine intelligence algorithms to further enhance the accuracy
of the system, (b) fusion with other modalities while keeping the
cost low to enhance the resolution.
The authors believe that the wearable technologies of

tomorrow will be able to estimate social distancing without
reliance on communication with smartphones to minimize the
cost and maximize accessibility while providing the needed
accuracy and resolution. This calls for an extensive investigation
and investment related to the field of IoMT wearables and can
significantly reform the future of the modern healthcare system
through more objective telemedicine.
It should be noted that a situation that can potentially

challenge this technology is the large-scale acceptability of the
society for the use of the proposed approach. The high-scale

use can be affected by the resistance of different groups for
the adoption of this technology and the lack of compliance.
These are open challenges facing large-scale use of any new
technology, which may initially limit the feasibility at the
societal level. A gradual adoption may be suggested starting
from smaller populations such as people in nursing homes and
those with co-morbidities, then scaling it to higher volumes.
The aforementioned challenges call for an active discussion
with and involvement of social scientists and policymakers,
who can help to investigate the underlying reasons for the
potential rejection of large-scale uses, and thus implement
the needed training and deliver accurate information to allow
for a higher volume of use and higher compliance at the
societal level.

4. CONCLUSION

In this paper, the authors disseminate their perspective on the
use, functionality, and challenges ofWearable IoMT technologies
coupled with artificial intelligence for changing the picture of
telehealth during a global pandemic in which remoteness, cost,
accessibility, efficacy, and versatility are crucial to managing
the infection symptoms at the individual level, in clusters of
high-risk populations, and ultimately in society. The authors
believe that to deploy this technology and benefit from its
multifaceted objective features, and several sectors should be
informed and agree on terms of operation. This perspective
article aims at providing insight on various aspects of wearable
IoMT, elucidating existing advances and challenges while
highlighting the potential benefit for managing the future waves
of COVID-19 pandemic and future pandemics. We emphasize
how this technology can help to conduct early diagnosis at
individual levels and how it can help with optimizing the
governmental regulations based on the interaction between
high-risk population clusters and symptom spread. This article
aims at increasing the awareness of the society, governments,
medical correspondents, and industries about this new smart
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way of surveillance of infection and spread to act accordingly by
enacting regulatory laws, providing medical supports, optimizing
plans for testing and hospitalization, and monitoring the
compliance. There are several technical and technological
challenges to be addressed, listed in this paper, calling for
extensive investigation and investment on the topic of IoMT
Wearable Technologies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SM, YW, and SA collaborated on the conceptualization of
this perspective article, conducting the literature review and
demographic study, analyzing the existing technologies, and
writing and editing the paper. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the National Science Foundation
of the USA, grant number: 2031594, under the NSF COVID-19
Research program.

REFERENCES

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H. (2018).
Deep convolutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278.
doi: 10.1016/j.compbiomed.2017.09.017

Adhikari, S. P.,Meng, S.,Wu, Y.-J., Mao, Y.-P., Ye, R.-X.,Wang, Q.-Z., et al. (2020).
Epidemiology, causes, clinical manifestation and diagnosis, prevention and
control of coronavirus disease (COVID-19) during the early outbreak period: a
scoping review. Infect. Dis. Pov. 9, 1–12. doi: 10.1186/s40249-020-00646-x

Agrawal, S., and Agrawal, J. (2015). Survey on anomaly detection
using data mining techniques. Proc. Comput. Sci. 60, 708–713.
doi: 10.1016/j.procs.2015.08.220

Ainslie, K. E., Walters, C. E., Fu, H., Bhatia, S., Wang, H., Xi, X., et al.
(2020). Evidence of initial success for china exiting COVID-19 social
distancing policy after achieving containment. Wellcome Open Res. 5, 1–14.
doi: 10.12688/wellcomeopenres.15843.2

Amarasinghe, K., Kenney, K., and Manic, M. (2018). “Toward explainable deep
neural network based anomaly detection,” in 2018 11th International
Conference on Human System Interaction (HSI) (Gdansk), 311–317.
doi: 10.1109/HSI.2018.8430788

Atalay, O., Kennon, W. R., and Demirok, E. (2014). Weft-knitted strain sensor for
monitoring respiratory rate and its electro-mechanical modeling. IEEE Sens. J.
15, 110–122. doi: 10.1109/JSEN.2014.2339739

Atashzar, S. F., andWang, Y. (2020). NSF Rapid: SCH: Smart Wearable COVID19
Biotracker Necklace: Remote Assessment and Monitoring of Symptoms for Early

Diagnosis, Continual Monitoring, and Prediction of Adverse Event. Alexandria,
VI: US National Science Foundation. Available online at: https://www.nsf.gov/
awardsearch/showAward?AWD_ID=2031594&HistoricalAwards=false

Bélissent, J. (2010). Getting Clever About Smart Cities: New Opportunities Require
New Business Models. (Cambridge, MA), 244–277.

Bhattasali, T., and Chaki, R. (2011). “A survey of recent intrusion detection
systems for wireless sensor network,” in International Conference

on Network Security and Applications (Chennai: Springer), 268–280.
doi: 10.1007/978-3-642-22540-6_27

Boulos, M. N. K., and Geraghty, E. M. (2020). Geographical tracking
and mapping of coronavirus disease COVID-19/severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events
around the world: how 21st century GIS technologies are supporting the
global fight against outbreaks and epidemics. Int. J. Health Geogr. 19:8.
doi: 10.1186/s12942-020-00202-8

Bublitz, C. F., Ribeiro-Teixeira, A. C., Pianoschi, T. A., Rochol, J., and Both, C.
B. (2017). “Unsupervised segmentation and classification of snoring events
for mobile health,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference (Singapore), 1–6. doi: 10.1109/GLOCOM.2017.8255031

Castillo, C. S. M., Atashzar, S. F., and Vaidyanathan, R. (2020). “3D-
mechanomyography: accessing deeper muscle information non-invasively for
human-machine interfacing,” in 2020 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics (AIM) (Boston, MA), 1458–1463.
doi: 10.1109/AIM43001.2020.9159036

Chalapathy, R., and Chawla, S. (2019). Deep learning for anomaly detection: a
survey. arXiv preprint arXiv:1901.03407.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020).
Epidemiological and clinical characteristics of 99 cases of 2019 novel
coronavirus pneumonia in Wuhan, china: a descriptive study. Lancet 395,
507–513. doi: 10.1016/S0140-6736(20)30211-7

Chen, S., Wen, P., Zhao, S., Huang, D., Wu, M., and Zhang, Y. (2018).
“A data fusion-based methodology of constructing health indicators for
anomaly detection and prognostics,” in 2018 International Conference on
Sensing, Diagnostics, Prognostics, and Control (SDPC) (Xi’an), 570–576.
doi: 10.1109/SDPC.2018.8664723

Conzon, D., Bolognesi, T., Brizzi, P., Lotito, A., Tomasi, R., and Spirito,
M. A. (2012). “The virtus middleware: an XMPP based architecture
for secure IOT communications,” in 2012 21st International Conference
on Computer Communications and Networks (ICCCN) (Munich), 1–6.
doi: 10.1109/ICCCN.2012.6289309

Craven, D., McGinley, B., Kilmartin, L., Glavin, M., and Jones, E.
(2014). Compressed sensing for bioelectric signals: a review. IEEE
J. Biomed. Health Inform. 19, 529–540. doi: 10.1109/JBHI.2014.23
27194

Curone, D., Secco, E. L., Tognetti, A., Loriga, G., Dudnik, G., Risatti, M.,
et al. (2010). Smart garments for emergency operators: the proetex project.
IEEE Transactions on Information Technology in Biomed 14, 694-701.
doi: 10.1109/TITB.2010.2045003

Dementyev, A., Hodges, S., Taylor, S., and Smith, J. (2013). “Power consumption
analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic sleep
scenario,” in 2013 IEEE International Wireless Symposium (IWS) (Beijing), 1–4.
doi: 10.1109/IEEE-IWS.2013.6616827

Dong, E., Du, H., and Gardner, L. (2020). An interactive web-based
dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534.
doi: 10.1016/S1473-3099(20)30120-1

Dorri, A., Kanhere, S. S., Jurdak, R., and Gauravaram, P. (2017). “Blockchain
for IOT security and privacy: The case study of a smart home,” in
2017 IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops) (Kona, HI), 618–623.
doi: 10.1109/PERCOMW.2017.7917634

Duregger, K., Hayn, D., Morak, J., Ladenstein, R., and Schreier, G. (2015). “An
mHealth system for toxicity monitoring of paediatric oncological patients
using near field communication technology,” in 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

(Milan), 6848–6851. doi: 10.1109/EMBC.2015.7319966
Emanuel, E. J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A., et al.
(2020). Fair allocation of scarce medical resources in the time of Covid-19. N.
Engl. J. Med. 382, 2049–2055. doi: 10.1056/NEJMsb2005114

Erfani, S. M., Rajasegarar, S., Karunasekera, S., and Leckie, C. (2016).
High-dimensional and large-scale anomaly detection using a linear

Frontiers in Robotics and AI | www.frontiersin.org 9 April 2021 | Volume 8 | Article 610653



Mehrdad et al. IoMT and Wearables for COVID-19

one-class SVM with deep learning. Pattern Recogn. 58, 121–134.
doi: 10.1016/j.patcog.2016.03.028

Fauci, A. S., Lane, H. C., and Redfield, R. R. (2020). Covid-19-navigating the
uncharted. N. Engl. J. Med. 382, 1268–1269. doi: 10.1056/NEJMe2002387

Fiedler, P., Biller, S., Griebel, S., and Haueisen, J. (2012). “Impedance
pneumography using textile electrodes,” in 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (San Diego,
CA), 1606–1609. doi: 10.1109/EMBC.2012.6346252

Garg, S. (2020). Hospitalization Rates and Characteristics of Patients Hospitalized
With Laboratory-Confirmed Coronavirus Disease 2019-COVID-Net, 14 States,

March 1-30, 2020. MMWR. Morbidity and Mortality Weekly Report, 69.
Centers for Disease Control and Prevention.

Garg, S., Kaur, K., Batra, S., Kaddoum, G., Kumar, N., and Boukerche,
A. (2020). A multi-stage anomaly detection scheme for augmenting the
security in iot-enabled applications. Fut. Gener. Comput. Syst. 104, 105–118.
doi: 10.1016/j.future.2019.09.038

Gatouillat, A., Badr, Y., Massot, B., and Sejdić, E. (2018). Internet of medical
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