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Toward Deep Generalization of Peripheral
EMG-Based Human-Robot Interfacing: A Hybrid
Explainable Solution for NeuroRobotic Systems

Paras Gulati, Qin Hu, Student Member, IEEE, and S. Farokh Atashzar

Abstract—This letter investigates the feasibility of a general-
izable solution for human-robot interfaces through peripheral
multichannel Electromyography (EMG) recording. We propose a
tangential approach in comparison to the literature to minimize
the need for (re)calibration of the system for new users. The pro-
posed algorithm decodes the signal space and detects the common
underlying global neurophysiological components, which can be
detected robustly across various users, minimizing the need for
retraining and (re)calibration. The research question is how to go
beyond techniques that detect a high number of gestures for a given
individual (which requires extensive calibration) and achieve an
algorithm that can detect a lower number of classes but without
the need for (re)calibration. The outcomes of this letter address
a challenge affecting the usability and acceptance of advanced
myoelectric prostheses. For this, the paper proposes an explainable
generalizable hybrid deep learning architecture that incorporates
CNN and LSTM. We also utilize the Grad CAM analysis to explain
and optimize the structure of the generalized model, securing
higher computational performance whiles proposing a shallower
design.

Index Terms—Electromyography, machine learning, medical
robotics, prosthetics.

1. INTRODUCTION

ERFORMANCE and efficacy of any neurorobotic sys-
P tems, including robotic prostheses and neurorehabilitation
robotic systems, depend critically on the quality of interfac-
ing with human biomechanics and, more importantly, human
neural systems. In this regard, it is known that in the context
of neurorobotic prostheses, errors in detecting the intended
gesture of an individual with the lack of a biological limb can
significantly increase the mental and physical load and results
in a high rejection rate of the technology. Another contributing
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problem to the current high rejection rate is the need for ex-
tensive calibration, which may take even a full-day of visit and
stay in a clinic. Thus, although peripheral EMG-based robotic
prosthesis has been investigated widely in the literature [1], [2],
the current commercialized examples have very limited perfor-
mance. Regarding neurorehabilitation robotic systems [3]-[6],
which have been investigated in the literature for helping with
the recovery process of neurologically-damaged patients, it is
known that a robot which does not properly respond to the
intended motion of a user will have limited performance in
terms of recovery due to reduced engagement and participation
of the user in robotic rehabilitation procedures (see our recent
literature review [3], [7]). Motivated by the above-mentioned
notes, processing of non-invasive surface electromyography
(sEMG) signals for detection of the intended gestures of ahuman
user (in particular amputees) has a long history [8], and there
is extensive research regarding the performance of classical
and more recently advanced machine learning algorithms for
addressing this need [9] [10]. An ideal human-robot interface
can detect and decode the intended motions of the user with the
high spatiotemporal resoltion, using minimum calibration and
recalibration. Conventional research on the topic of EMG-based
human-robot interfaces has been focused on extracting spectral
or temporal features from EMG signals to be used via classic
machine learning classification algorithms to detect the intended
gesture of the user for control of prostheses. More recently, deep
learning algorithms have been utilized and tested [11] on major
publicly available datasets (such as NinaPro [12]) to maximize
the accuracy of the system for a very large number of gestures
(for example 17 and more) relying on extensive user-specific
data collection for calibration and training. High accuracy has
been reported (please see our recent work on this topic [13] and
other relevant publications [14]). Thanks to the wide availability
of standard datasets during the last two years, the performance of
these systems has been improved and compared systematically,
resulting in very high accuracy of gesture detection even for a
very high number of classes (>17). Recurrent Neural Networks
(RNN) [15] and Convolution Neural Networks (CNNs) [16]
have been used in the literature for this purpose [17]. RNN
has been seen as the default choice for dealing with sequential
data and has been used extensively in EMG classification [18]
[19]. However, vanilla RNN suffers from vanishing gradient
problems. Vanishing gradient is a problem where the gradients
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do not change much in deeper layers of the network, and the Gra-
dient Descent algorithm manages to change only the gradients of
layers closer to the output layer. A better suited recurrent network
variant is the Long Short Term Memory (LSTM) network [20].
In addition to the above, CNNs are also being used in sequential
data classification, and thus, many researchers have successfully
leveraged CNNs for EMG classification [21] [22].

Despite the high performance of the deep neural network,
the main concern is the need for significant calibration and the
sensitivity to changes and minimum generalizability for EMG
classification. It means that for every new user, there is a need for
an extended calibration, which sometime may take more than a
day. However, the neurophysiological nature of EMG is quite
variable, which will restrict the usability of such an approach.
To address the mentioned concern, in this letter, we propose
a different vision regarding the use of deep neural networks
for decoding human intention through the processing of the
multichannel electromyography data. Here we propose to train
on the system with a lower number of gestures (for example,
four frequently used gestures during activities of daily living);
however, challenge the system to detect the gestures correctly
across subjects. This will have an imperative application in
human-robot interfacing as it addresses a major need for cal-
ibration.

In this letter, to achieve the proposed goal, besides the men-
tioned training methodology, we utilize a hybrid approach com-
bining LSTM and Dilated-CNN. The model showed a powerful
performance for generalization in this work. We use causal CNN
to maintain causality and avoid the information leakage from the
future to the past. Moreover, we use dilated kernels [23] with
the 1-Dimensional CNN layers to capture generalizable features
over a broader temporal range taking into account long- and
short-term histories. We first evaluate the performance of the
system to address the classical problem of gesture detection in a
user-specific manner for a high number of classes, and then we
will conduct a comprehensive generalizability analysis.

It should be noted that deep learning methods are convention-
ally treated as a black-box system. Using such an approach, we
can only see the input and output of the deep learning model but
hardly comprehend why the neural network reached a partic-
ular decision. It is imperative to know what the distinguishing
patterns in the data are based on which the neural network is
able to identify the bases of its decision making. In this work,
we use the GradCAM analysis [24] method to investigate how
the activations in various layers of the network are contributing
toward the decision by extracting certain neurophysiological
features. We will use the results of the analysis to optimize the
network and remove the layers which do not contribute to the
generalizable module. We will show that through GradCAM
analysis, we can detect the least contributing layers, optimizing
the design and size of the network, maximizing practicality, and
preserving the performance in terms of gesture prediction.

II. DATABASE

NinaPro data set has been used during the last five years as the
benchmark for evaluating the functionality of various machine
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learning algorithms applied to EMG-based human-machine in-
terfaces. The benefit of using a systematically collected dataset
is that it allows for an accurate and valid comparative study of
various machine intelligence approaches for the human-robot
interfacing. Without such a benchmarking approach, various
factors, including the collection device and the condition, could
affect the reported outcomes. We mainly focused on the second
sub-database of the NinaPro database (DB2) [12], which has 17
hand movements. The hand gestures are depicted in Fig. 1.

A. Data Acquisition Process

The data consists of 40 intact subjects (28 males, 12 females;
34 right-handed, six left-handed; age 29.9 £ 3.9 years). The
subjects were asked to hold the hand gesture for 5 seconds,
followed by arest of 3 seconds. This process is repeated six times
for each hand movement, and the EMG signals were recorded
from 12 Delsys Trigno electrodes. Due to delay in the subject’s
reaction time, the data at the end of the 5-second window may
misrepresent the actual muscle movement. In order to counter
this, the EMG signals are refined by relabelling the EMG signals.
The electrodes were strategically placed around the forearm of
the subjects. Eight electrodes were wrapped around the radio-
humeral joints, two around the biceps and triceps, and further
two around the flexor and extensor digitorum superficialis. The
EMG signals were sampled at 2 kHz frequency with a baseline
noise of fewer than 750mv RMS. These signals were filtered with
Hampel Filter to remove 50 Hz powerline interference [12].

B. Data Preprocessing

We used minimal preprocessing of EMG signals to maintain
the information content of the signal. The data is first normal-
ized by using Z-score normalization with zero mean and unit
standard deviation. The normalized data is then further rectified
to transform the negative values to their absolute values. Signals
are then windowed, and labels are assigned to each window.
There is a trade-off between the length of the window for
processing of the signals and predicting the intended gesture and
the accuracy of the model. The longer the signal length, the more
information is available to the model to make the prediction, but
this would result in a prolonged delay in the system. The practical
constraint about the agility of the system requires limiting the
window length. Based on the literature, window of 300 ms [25]
is considered to be acceptable for peripheral human machine
intelligence, with 10 ms of stride to generate the training and
test samples. No extra lowpass filtering is applied. As suggested
in [12], for the first part of the work (before generalization) we
used repetitions 1,3,4 and 6 for training purposes and repetitions
2 and 5 for testing.

III. MODEL ARCHITECTURE

The model architecture has two stages: the LSTM stage and
the CNN stage. In the LSTM stage, four LSTM layers are stacked
together, each having 128 hidden parameters. Since the length of
the input signal is of shape (600, 12), there are 600 LSTM units
in each layer, as shown in Fig. 2. The last layer of LSTM outputs
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Fig.2. Model Architecture.

a vector of shape (None, 128), which is then reshaped to (None,
128, 1) before feeding it to the CNN stage. There are 7 CNN
blocks in the CNN stage. Every CNN block has three layers:
Convolution Layer, Batch Normalization Layer, and PReLU
layer. In this letter, we also added a dilation mechanism to the
CNN part of the design. This is to enhance the memory of the
CNN and allow for having heterogeneous access not only to
short term temporal dependencies in the signal but also to long
term dependencies. However, a dilation rate higher than eight
is not used since a higher dilation rate will skip a high number
of neurons and may cause loss of useful information. The last
CNN block is followed by a classifier that consists of three fully
connected layers, each having 64, 32, and 17 units, respectively.
The first two layers have “tanh’ activation function, and the last
layer has “so ftmax” activation function, which produces the
probabilities for each class. The classifier block is represented
in Fig. 2. Using this approach, as explained in Section III,
the average classification accuracy of 81.96% is achieved with
averaged precision of 82.47% and sensitivity of 81.94%. The
confusion matrix is shown in Fig 9. Also, the precision, recall,
and F1 score are given in Table L.

We conduct a comparative study to evaluate the performance
of the proposed hybrid method with a conventional CNN with
a comparable number of trainable parameters of ~1.4 M (for
the Hybrid model we had ~1.1 M parameters). The networks

TABLE I
RESULTS FOR USER-SPECIFIC GESTURE CLASSIFICATION

Methods Accuracy Precision Recall F1 Score
Hybrid 0.82 0.82 0.82 0.82
CNN 0.77 0.79 0.77 0.77
SVM 0.23 0.24 0.22 0.22

consists of two CNN blocks, each having one convolutional
layer, one batch norm, one PReLU. There is a MaxPool layer
between two CNN blocks with filter size of 2x2. Convolutional
layer in the first block has 32 filters with the dimensions of
15x5; and the second CNN block has 64 filters each having size
of 15x4.

The 2D data was given to the CNN as the input by considering
time and channels as the two dimensions. The CNN (as a con-
ventional Deepnet method) significantly underperforms the pro-
posed hybrid method by having an average accuracy of 77.30%,
the precision of 78.80%, sensitivity of 77.38% over 17 gestures.
A SVM model is also compared with the hybrid model, respec-
tively achieving an average performance of 23.14%, 23.63%,
22.43%, and 22.33% in terms of accuracy, precision, recall, and
F1-score. This shows the superior performance of the proposed
hybrid approach.
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Fig. 3. Confusion matrix for 17 gestures.

IV. GENERALIZATION

Although there is existing research on the use of various deep
learning algorithms, almost all existing approaches require a
large number of repetition of each user as the models are trained
to be user-specific, and the conventional goal was to detect a large
number of classes for each user separately. This letter proposes
to detect a lower number of classes but generalize it for all
users so that machine intelligence is forced to learn the common
underlying mechanism of the targeted gestures relaxing the need
for calibration. If this goal is achieved, a major problem in the
practical uses of neurorobots is addressed. Thus this letter, for the
first time, aims to solve the generalized problem. We will later
discuss the explainability of Al In this work, we selected four
gestures: wrist supination (axis: little finger), wrist pronation
(axis: little finger), wrist flexion, and wrist extension.

A. Repetition-Based Generalization

First, we consider a compounded training dataset based on
EMG data from all subjects for the selected gestures to create
a sizable training and test data sets and training the machine
intelligence in such a way that can generalize the repetition
(in the next subsection we generalize based on subjects). The
repetitions 1,3,4,6 from all subjects compounded were used for
training the network, and the repetition 2 and 5 were used for
testing the model accuracy. The architecture in Fig. 2 is then
trained on the training data that constitutes EMG Data of from
40 subjects. The model achieved an accuracy of 79.33% on
test data for the four selected gestures, while showing averaged
specificity of 93.07% and averaged sensitivity of 80%. The
confusion matrix for this task is given in Fig. 4. The performance
of our proposed model is compared with CNN and SVM in
Table II.
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TABLE I
RESULTS FOR REPETITION-BASED GENERALIZATION
Methods Accuracy Precision Recall F1 Score
Hybrid 0.79 0.78 0.80 0.79
CNN 0.70 0.71 0.70 0.70
SVM 0.47 0.48 0.44 0.44

This result show that the proposed hybrid machine intelli-
gence algorithm is able to generalize the learned behavior across
all subjects and detect the very fine common underlying neuro-
physiological behavior which represents the targeted gestures
and relax the need for calibration to some considerable extent.
This is for the first time that such a result is achieved. This result
is extended in the next subsection using the second method of
generalization.

For repetition-based generalization as can be interpreted from
TableII, the average performance of the proposed hybrid method
is as follows: precision of 78.25%, recall of 80%, and F1 score
of 79%. The model achieved an accuracy of 79.3%. To compare
with conventional methods we analyzed the performance of
(a) an SVM model and (b) a CNN model. For the SVM we
extracted 192 features from each sliding window of 300 ms with
a step of 10 ms, including 48 temporal features and 144 spectral
features. The temporal features include, four moments (mean,
variance, skewness, and kurtosis) and the spectral features in-
cludes the same four moments for power spectrum density of the
signal on the following frequency bands 0.5-12 Hz, 12-35 Hz,
35+Hz (for each processing window of 300 ms). Then, Principal
Component Analysis (PCA) has been conducted to reduce the
feature dimensionality to 18 features that represent 95% of the
information from the original 192 features, given by the analysis
of Proportion of Variation (PoV). For the CNN, we utilized the
same model architecture as mentioned in the second paragraph
of Section III. The average performance scores for SVM are
as follows: accuracy of 46.95%, precision of 48.26%, recall of
44.14% and F1-score 44.29%. When compared with the results
of the proposed hybrid method given above, it can be seen that
the SVM results in a poor performance in terms of generalization
showing the complexity of the problem. The CNN achieved
the following average performance scores: accuracy of 70.26%,
precision of 70.75%, recall of 70%, and Fl-score of 69.5%.
As can be seen the proposed hybrid method outperforms the
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TABLE III
RESULTS FOR SUBJECT-BASED GENERALIZATION

Methods Accuracy Precision Recall F1 Score
Hybrid 0.77 0.77 0.77 0.76
CNN 0.71 0.71 0.70 0.70
SVM 0.32 0.29 0.29 0.27

conventional CNN when both are trained using the proposed
repetition-based generalization methodology.

B. Subject-Based Generalization

In the previous subsection, we showed the performance when
data from all subjects were combined in one pool to give the
network a holistic view about the underlying common neural
drive for the selected four gestures of all subjects. As a more
rigorous type of generalization, named here as the subject-based
generalization, we split the test and train subjects and completely
isolate their repetitions to challenge the network towards zero
calibration for unseen subjects. The total of 40 subjects was
split into 26 of train and 14 of test subjects (maintaining a split
similar to repetition-based generalization ~ 3:1). No overlap
exists between the train and test subsets. The model was able to
achieve an accuracy of 77.17%. Average precision, recall and
F1 score achieved are of 77%, 77%, and 76% respectively.

This result shows that thanks to the power of deep learning,
instead of generating finely tuned models for detecting a high
number of gestures for one subject, we can produce a generaliz-
able model that can robustly detect a limited number of gestures
but without having any observation/calibration-data from the
new subject. This shed light on a new direction in human-
machine interfacing, when generalizability (which allows for
a smoother transfer to real-life application) is valued more than
the number of classes (which cannot be realized in real-life).
We compare the performance of our hybrid Deepnet technique
with CNN and SVM. The results are added in the Table III. As
can be seen in the table, the proposed approach outperforms
CNN and the SVM. The Table III shows that basically SVM
failed to solve this type of generalization, while the proposed
hybrid approach secured a high precision, accuracy, recall and
F1 score. It should be emphasized that main result here is
to illustrate that generalizability can be achieved using deep
learning techniques, which opens new doors for the future of
calibration-free neurorobotics.

V. GRADCAM ANALYSIS

In this letter, to optimize the structure of the network and ex-
plain the performance, GradCAM algorithm is used. GradCAM
is a method that visually explains how the model reached the
decision for a particular class. It is often used in various computer
vision applications to visualize the intermediate layers and how
the neurons respond to certain inputs [24]. In this letter, we
used the GradCAM method to 1) demystify the attention of the
proposed model to various parts of the signal 2) detect the parts
of the network which contribute the most to the classification (the
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Fig.5. GradCAM analysis performed on model with seven CNN blocks. Each
row represent a CNN block and each column represent a different layer in the
block. First layer represents convolution layer, second layer represents Batch
Normalization, and third layer represents the PReLU layer.

focus of the model varies among CNN layers and is unique in
different hand motions, revealing the unseen neurophysiological
activity), and 3) use the knowledge to reduce the size of the
network and the number of trainable parameters and to reduce
the complexity of the deepnet. In the optimization step one CNN
block which shows minimum contribution through GradCAM
analysis was removed, reducing the size of the model and train-
able parameters by 20% making the network shallower while
having almost no effect on the performance. The spectrogram
analysis is added only to better visualize the mentioned features
and highlights the behavior of the network in the context of the
GradCAM.

Although usually only the last CNN layer is utilized in the
literature about GradCAM, since the last layer has the most
abstract and high-level information, we visualized all the layers
toinvestigate the learning process. We utilized GradCAM for the
generalized model and visualized all CNN, Batch Normalization
and PReLU layers. The visualization results are shown in Fig. 5.

The GradCAM analysis in Fig. 5 shows seven rows corre-
sponding to seven CNN blocks and three columns for three
layers in each block. The first column is the Convolution layer,
the second column is the Batch Normalization layer, and the
last column is the PReLU layer. In the literature the rectified
convolution layer that is considered since it is closest to the
output for the GradCAM analysis. Thus, the most important
plot of Fig. 5 is the last column and last row.

Through a simple visual inspection, it can be seen that the
the last CNN block (last three layers) is not contributing much
to the decision making. This can be observed since the four
targeted gestures are not distinguishable based on the result in
the last row. Thus it can be concluded that these layers are
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Fig.6. GradCAM analysis performed on optimized model. Each row represent
a CNN block and each column represent a different layer in the block. First layer
represents convolution layer, second layer represents Batch Normalization, and
third layer represents the PReLU layer.

not adding value to the classification model of the intended
geature while increasing the number of trainable parameters
of the model and complexity of the model. In order to make
the model less complex and reduce the number of trainable
parameters, enhancing the practicality of the proposed solution,
based on the above-mentioned analysis, we removed the last
CNN block and trained the model again for generalization. The
average accuracy and specificity and sensitivity of the model
after optimization are 79.40%, 93.07%, 78.75%, respectively.
The confusion matrix of the new model also can be seen in Fig. 9.
Comparing the aforementioned results with that of the previous
model, which had one more layer of convolution, it can be
observed that the model, as predicted, has preserved the quality
of performance in terms of accuracy, sensitivity, and specificity,
highlighting the importance of the propose GradCAM analysis
which led to optimizing the network. The new model, although
securing a similar level of accuracy, has about 20% less trainable
parameters and trained much faster as compared to the previous
model, which is an imperative factor for real-life applications.
Also, a smaller model generally requires less number of data for
training. Thus, the GradCAM analysis resulted in designing a
new hybrid approach with high accuracy and lower complexity.

The GradCAM analysis of each layer from the optimized
model is shown in Fig. 6. When compared with Fig. 5, we
observe that there are much abstract information and corre-
sponding temporal activity in each layer as the model tried to
predict a particular class. Also, the classes are more distinguish-
able in last CNN block, supporting the use of the optimized
model. This can be seen by investigating the last row of Fig. 6,
which is the most important part of this figure as it shows the
last rectified convolution feature maps for GradCAM analysis,
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Fig.7.  Spectrogram of EMG Gestures. Each row represents a different gesture
and each column represents spectrogram of a particular EMG channel. First to
twelfth columns represents EMG channel 1 to 12 respectively.

Fig. 8. Spectrogram of GradCAM signals. Each row represents a different
gesture and each column represents spectrogram of a particular CNN layer.
First to fourth columns represents CNN layer 12, 15, 18, and 21 respectively.

which contains most of the information about the discriminative
power of the model. As can be seen in the last row of Fig. 8, the
four classes are even visually separable, clarifying the strength
of the proposed model to detect the corresponding gesture
for a wide range of users generalizing the use of EMG-based
interfacing.

VI. SPECTROGRAM ANALYSIS AND NEURAL CODE
USING GRADCAM ANALYSIS

To further shed light on the performance of the proposed
hybrid generalizable optimized network, we investigated the
top 10 subjects (in terms of accuracy) to analyze the frequency
spectrum of the EMG signals for each gesture. We used Ham-
ming windows of size 32 with an overlapping of 28 (87.5%
overlapping) to calculate the spectrogram of each gesture. The
results are shown in Fig. 7.

As aresult, Fig. 7 shows the spectrogram analysis of all the 12
channels for each of the four gestures. There are four rows and
12 columns. Each row represents a different gesture and each
column represents one of the 12 channels of EMG inputs. This
figure shows that most of the EMG signals have frequency com-
ponents lying between 0-200 Hz range (consistent with the liter-
ature). However, as can be seen in the figure, there are no clear,
distinguishable behavioral differences in the spectrogram of the
EMG signals showing the complexity of the task. In the next
step, we utilized the output of GradCAM analysis in the format
of processed signals (as shown in Fig. 6). Here we calculate the
corresponding spectrogram of the output activity of each layer of
the network, and the results are given in Fig 8. Fig. 8 shows the
spectrogram analysis of GradCAM signals (output of GradCAM
analysis) of the last four convolution layers for all gestures. There
are four rows, each representing a different gesture, and four
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Fig. 9. Confusion matrix (Generalized Model) after optimization.

columns, each representing a different CNN layer. First column
represent the spectrogram of GradCAM signals obtained for
CNN layer 12. Similarly the second, third and fourth column
represents the spectrogram of GradCAM signals obtained for
CNN layer 15, 18, and 21 respectively. The results show that the
network was able to process the spectrotemporal information
and generate a distinguishable neural code for each gesture
which can be even visually separated as can be seen in the last
column of Fig.10 which explains the functionality of the neural
network and the resulting assigned code by the proposed network
to each layer. The aforementioned code indeed corresponds to
the underlying neurophysiological activity, which is detected
using the proposed approach allowing for generalizability of
intention detection, minimizing the need for recalibration, which
is an unmet need in the area of neurorobotics.

VII. DISCUSSION AND LIMITATIONS

In this letter, for the first time, we explore the generalizability
of subject-wise hand gesture classification, and we propose to
train a novel hybrid machine learning approach on the gen-
eralized problems in which the number of gesture classes is
reduced, but the need for re-calibration for new and unseen
users is dropped. This is done in contrast to the classical ap-
proaches, which solve a large number of gestures but under
highly controlled conditions and only for one specific subject
in one session.

In this work, we selected the dataset that includes 40 able-
bodied subjects with different biomechanics to consider vari-
ability in terms of neurophysiology. However, it should be noted
that this population does not reflect the biomechanics of people
with the lack of a biological limb; since the biomechanics
would be affected by the amputation surgery, and this can be
a possible source of uncertainties. At the same time, as part
of the amputation, the length of the muscle will be fixed by
suturing them to the bones. It is worth noting that, the variation
of the muscle length in able-bodied users is one of the major
challenges as it results in a time variable volume conductor
effect, which could significantly affect the signal linearity and
stochastic behavior for able-bodied users. Analyzing the afore-
mentioned opposing variables requires separate data collection
and study. In this regard, to translate the results into practical
applications, there is a need to conduct data collection from
amputees and evaluate the performance of the proposed method
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on the corresponding dataset. This forms part of our future work.
Besides training on data collected from amputees, in the future
work, we will conduct research to discover more potential of
the proposed hybrid approach and the training methodology
by considering the higher number of gestures, different types
(such as grasp and various mix of wrist and fingers motions),
different combinations of gestures, and data collected from
day-to-day variability to enhance the robustness and versatility
of the generalized method.

VIII. CONCLUSION

In this letter, a hybrid LSTM-CNN model was proposed.
The architecture was initially validated for detecting 17 classes
of gestures in a user-specific manner (when trained over per-
sonalized data). The model secured an accuracy of 81.96%.
As the next step, the model was generalized for relaxing the
user-specificity of the algorithm, maximizing the practical uses
for neurorobotics. Data of 4 gestures from all 40 subjects
were combined into a single training data set. The generalized
model achieved an accuracy of 77% for four gestures of unseen
users. The GradCAM analysis was used to analyze the activity
in each layer of the CNN block. Thus, the last CNN layer
showed minimum contribution towards the decision-making.
After removing the last CNN block to optimize the architecture
using a shallower design, the model preserved the accuracy,
specificity, and sensitivity. GradCAM helped in reducing the
trainable parameters by 20%, thus bringing down the training
time and memory consumption. The spectrogram plots for the
GradCAM’s output showed that the proposed network was able
to transform the raw EMG activity into distinguishable neural
codes accessing underlying neurophysiological activity based on
which the network was able to generalize the intention classifi-
cation problem for 40 users minimizing the need for calibration
and addressing an unmet need in the area of neurorobotics.
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