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ABSTRACT: Computation of the isotopic distribution of compounds is crucial to applications iotapologue
of mass spectrometry, particularly as machine precision continues to improve. In the past
decade, several tools have been created for doing so. In this paper we present a novel algorithm
for calculating either the most abundant k isotopologue peaks of a compound or the minimal set
of isotopologue peaks which have a combined total abundance of at least p. The algorithm uses
Serang’s optimal method of selection on Cartesian products. The method is significantly faster
than the state-of-the-art on large compounds (e.g, Titin protein) and on compounds whose

elements have many isotopes (e.g., palladium alloys).

C alculating the theoretical isotopic distribution of com-
pounds is a valuable tool in mass spectrometry (MS);
however, it poses a difficult combinatorics problem because
there are exponentially many isotopologues to consider.
Computation of the theoretical isotopic distribution is useful
for targeted screening,()’13 identifying unknown metabolites,*
and in general MS workflows."*

There have been multiple methods developed in the past
decade focused on more efficiently calculating the most
abundant peaks from the isotope distribution.””®'%"> In
2019, Wang et al. compared four of the top algorithms:
ISOSPEC, ENVIPAT, ECIPEX, and their own ISOVECTOR.
They found ISOSPEC to consistently be the fastest of the four.'*
While it is possible to simply enumerate the exponentially many
peaks or possible to approximate the distribution of isotopo-
logues,"” methods like ISOSPEC compute the exact abundances
and masses of the most abundant isotopologues without
enumerating all possible isotopologues.” ISOSPEC does this
by employing a central-limit theorem-based approximation to
define outcomes that roughly account for a given total
abundance p.

ISOSPEC works by first calculating the most abundant
subisotopologues (all instances of the same element in a
compound, for example H, and O are two subisotopologues of
water) and then combining the subisotopologues to form whole
isotopologues. The isotopologues are then put into a FIFO
queue and when popped, if they exceed a threshold, it will be
appended to the output. Each isotopologue’s neighbors are
inserted into the queue. An isotopologue is a neighbor of
another if they differ by changing one isotope. Each threshold for
the FIFO queue creates a new layer of isotopologues, where the
cumulative output of all layers is € O(-) of the optimal output;
however, in practice ISOSPEC may produce significantly more
isotopologues than are necessary, requiring a final selection step.
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Once two subisotopologues have been calculated, selecting
the top k isotopologues of the compound by merging the two
subisotopologues is the same as selecting the top k terms in a
Cartesian product of two lists, X + Y, where addition is used to
add log abundances (equivalent to multiplying their frequen-
cies). There are multiple methods for selecting the top k terms in
the Cartesian product on X + Y in optimal time.>'” Serang’s
optimal method utilizes layer-ordered heaps (LOH) and is the
fastest in practice. LOHs create a continuum between unsorted
and sorted data by partitioning a list into layers. Values in layer L,
must be less than or equal to all values in subsequent layers L, j >
i, but values within layers are unordered. The sizes of the layers
grow in an asmyptotically exponential manner such that
Il
log(n)), lists can be LOHified in O(n) time. Unlike soft heaps,”
LOHs are contiguous in memory, leading to greater cache

~ a, i > 1. Where comparison-based sorting is € Q(n

performance.

The o parameter is very important in LOHs as it controls the
level of order in the LOH, this is similar to the € parameter of the
soft-heap which controls the amount of corruption. If & = 1 then
each layer has size 1 and so the LOH is completely sorted and if
a > n then the LOH will be two layers, the minimum element
then n — 1 unsorted elements. A small a is desirable because it
enforces more ordering on the LOH, the trade-off is the time to
LOHify the list is increased. In practice, @ € [1.01, 1.1] seems to
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have a good trade-off between enforcing enough ordering and a
better-than-sorting LOHify cost.

In this paper, we present a method of efficiently calculating the
top k isotopologues of a compound using LOHs. The method
solves the problem exactly using a purely combinatorial
approach. It does not approximate, bin or round any numbers.
This is achieved by building a balanced binary tree where
internal nodes perform online X + Y selection and where leaves
generate the most abundant subisotopologues by performing
selection on multinomials. The reported peaks will not be sorted
but will instead be layer-ordered. We also present a small C++17
implementation, NEUTRONSTAR, which is provided with a
free license.

B METHODS

Here, we present a method that computes the top k isotopologue
peaks of a given chemical formula.

Calculating all subisotopologues of a compound is equivalent
to expanding products of polynomials with each taken to a
power: (by- X" + by X + ..)%.. The b, are the isotopic
abundances that correspond to each isotopic mass f;. Each
element has one subisotopologue polynomial taken to some
power g, which reflects the number of occurrences of that
element in the compound. For example, an element with four
carbons has polynomial (0.9893-X'*° + 0.0107 X'*°®)*, These
subisotopologue polynomials are combined via Cartesian
product by multiplying the two polynomials. For example,
H,C, is (0.9893-X'2°40.0107-X'%993)*(0.999885-
X"%40,000115-X>014)3,

When expanding a polynomial such as (¢;-X + ¢,-Y)?* there will
be terms that can be merged together: (¢;-X + ¢,-Y)* = (¢,>X* +
6 XY + 0 VX + 1) = (¢,2X% + 26,60 XY + ¢,>Y?). For
larger polynomials (both in the power and number of terms)
there will be many terms that may combine. A significant speed-
up can be found if only one of these terms is calculated then
multiplied by the appropriate multinomial coefficient (2 in the
previous example).

We do not compute the full polynomial expansion, because
that would present exponentially many terms; instead, we
perform selection of the largest coefficients of the multinomials
(from the element subisotopologue polynomials taken to a
power) and of Cartesian products (from the polynomial
multiplications).

Selection on a Multinomial. Multinomial selection begins
with the mode of that subisotopologue, which is the term in the
subisotopologue expansion that has largest coefficient. Sub-
sequent outcomes are generated in descending order of
abundance using a binary max-heap, where keys are the
probabilities of each outcome for the isotopologue. When a
subisotopologue is popped from the heap, it proposes new
subisotopologues to enter the heap based on their index tuple (a
tuple that describes how many of each isotope is in the
subisotopologue). For example, C,,, begins at the mode (99,1),
which corresponds to 99 copies of >C and 1 copy of isotope "*C.

Let (x;, %5.., x,,) be a mode of our distribution where p;
represents the abundance of the isotope at index i in the tuple.
Because it is the mode, and therefore the most abundant
isotopologue, P(x;,%,..%,) = P(i; + 1,6, — 1,...) for any
indices x; and x;. Examining the probability mass function of a

j
multinomial we find that

Pl(xz +1)

for any indices x; and x;.

Furthermore, because
Py x4+ (b + 1), ..., X — (b+1),..)

P(e, %, + b, ..., x — b, )
pix,+(h+l)‘pjxj—(b+l)'(xi + b)'(x] _ b)'
(x+ (0 + D)y = (b + D) Lp™p
H(x, - b)
PG+ (0 + D)

and
pG-b _pG-0-1) gl
p};(x,. + (b +1)) p};(x,. +b) p};(x,. +2)
B (%)
- I,](xl +1) ~

we can see that P(....x; + (b + 1), — (b + 1),...) < P( o + by —
b,...) for any b < min(x,;). This means every time the ith entry
in the index tuple is increased and the jth entry is decreased, thus
moving further from the mode in I, (or Manhattan) distance,
the probability never increases.

The relationship between the L, distance from the mode and
the probability still holds when other index tuple entries have
been perturbed away from the mode. P(....x; + 1,6, — 1,...) >
P(.; + 2% — Lx, — 1...) because

pe(x)
P(., %, + 2, x—1,x — 1.) =P, x,+ 1, x =1, ) —
pk'(xz + 2)
and

(%) p-(x)
po(x+2) " polx+1)

Finally, we also have

P(, %+ 1, x =1, W) =Pl X+ 1, =L+ 1 x— 1..)
because

P(y x4+ 1, x—Lx+ 10— 1..)

(%
=Py + 1, %1, '")'IJ,%T(-;)U
and
Pk'(xl)

Since the probability never decreases as we move closer to the
mode, then wherever we are, if we head in a direction of
ascending probability, we are heading toward the mode. Once
we are at a location which can not increase in probability, we
have reached the mode. Because the distribution is discrete and
we move by the smallest possible amount (incrementing and
decrementing a pair of indices by one), we will never overshoot
the mode. The starting position for this greedy process is found
by using the modes of each the binomial marginals and
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correcting if the sum is not = n, although any starting position
will lead to a mode because there are no local maxima.

In order to populate the heap with the best possible next
subisotopologue, any subisotopologue in the heap must have all
subisotopologues between itself and the mode already in the
heap (or have been popped from the heap); this ensures that L
distance of proposed index tuples is always increasing and thus
index tuples are visited in descending order of probability. This
is accomplished by pushing all neighbors of the subisotopologue
that has been popped from the heap. These neighbors are found
as with the search for the mode: from some starting point, one
index is increased and one index is decreased, thereby holding
the sum constant; however, unlike the search for the mode, here
we must guarantee that the L, distance from the mode always
increases, and so proposed neighbors that would move closer to
the mode on any axis are discarded.

It is necessary to prevent the same neighbor from being
inserted into the heap multiple times. For example, index tuple
(30,4, 3) has neighbors (29, S, 3), (29,4,4), (31, 3,3), (31, 4,2),
(30,5,2), (and 30, 3, 4). Of these, (29, S, 3) and (30, S, 2) both
have neighbor (29,6,2) . One way to prevent these duplicates
from being reinserted into the heap is to store a set of the heap’s
contents; however, that requires additional memory and time.
Although it is asymptotically comparable to the cost of pushing
to and popping from the heap, it significantly harms perform-
ance in practice. For this reason, we use a proposal scheme that
can reach all subisotopologues in increasing IL; order from the
mode but without duplicates.

A proposal can be characterized by the two axes, i,j that are
perturbed (without loss of generality, let index i increase and
index j decrease). If two chains of neighbors, (iy, j;), (i3 j),-.- and
(i1, j1), (i, j3)y collide then multiset(iy, iy...) = multiset(i],
i3,...), multiset(jy, j,,...) = multiset(j, j3,...). Multisets are unique
when their contents are sorted, and thus chains whose i and j are
both in lexicographic order (by the index of the largest entry that
has been perturbed as i and j respectively) will visit each index
tuple only once. This proposal scheme means any index tuple
may be proposed by only one unique neighboring index tuple.
The first few proposals for the subisotopologue K; may be seen
in (Figure 1).

Now that the top isotopologues can be generated with the
most abundant (i.e, most probable) first, values can be
requested in an online manner.

— (94,|6, 0)—|—|

(93,7,0) (93,6,1) (94,5,1) (95,5,0)
! ——
(92,8,0) (92,|7,1) (92,6,2) (93,5,2) (94,X,X) (95,X,X)(96,4,0)
| | . . .
(X,X,0) (91,8,1) (91,7,2) (X,6,X) (93,X,X) : :
. | ! H H
(X,8,X) (X,7.X)

Figure 1. First few multinomial proposals for K4, The figure shows
index tuples in the multinomial and the neighbors they propose, from
top to bottom, starting with the mode (94,6,0) (94 copies of *K, 6
copies of ¥'K, and no copies of **K). Each index tuple proposes its
neighbors in lexicographical order where, if the ith index has been
incremented, it cannot propose any neighbors by incrementing an index
less than i (this is the same pattern is used for decrementing an index).
In the figure, the largest index to be incremented is in blue and the
largest to be decremented is in red. In order to move away from the
mode, any index which has been incremented may not be decremented
to create a proposed tuple, and vice versa. Note that for clarity not all
proposed indices are included.

Selection on Two Partial Isotopologues. Generating the
largest coefficients in the polynomial product is accomplished by
using Serang’s selection algorithm on X + Y.

The X + Y selection algorithm focuses on layer products (LPs)
of the lohified input lists X and Y. The lists are lohified €0(n),
avoiding the (nlog(n)) bound which would be required if they
were sorted. An LP is the Cartesian product of some layer i € X
and layer j € Y; however, the presence of an LP does not ensure
all values in the Cartesian product will be generated. All LPs are
represented as a tuple which has a value, the layer indices in X
and Y, and a boolean. There are two types of LPs: a min-corner
which has the minimum value in the Cartesian product and the
boolean FALSE (indicating it is a min-corner), and a max-
corner, which has the maximum value in the Cartesian product
and the boolean TRUE (indicating it is a max-corner).

A priority queue is utilized in order to select the minimum
number of LPs such that the generated Cartesian products of the
LPs will contain the top k values. The priority queue is initialized
with the min-corner LP of the first LP in X and Y. Once a min-
corner LP is popped from the queue, its max-corner equivalent is
inserted. The size of the Cartesian product of an LP is
accumulated when the max-corner is popped, the popping
continues until this total has reached k.

Once k is reached, among the Cartesian products of the
popped LPs (either min-corner or max-corner), there will be at
least k many values less than the value of the last max-corner LP
popped. To find the final top k values, all values in LPs which
have been popped are generated and a one-dimensional k-select
is performed. If both a min-corner and max-corner of the same
indices in X,Y are popped, only one of them has its Cartesian
product generated.

As this applies to selection on isotopologues, the inputs X and
Y will be layers of either partially built isotopologues of the
desired compound or whole subisotopologues. For example, if
calculating Au,Ca,;Ga,oPd,4 there will be a selection where one
list is Au, and the other is Ca,, and a different selection where
one list is Au,Ca,, and the other is Ga;(Pd.

We do not wish to generate all possible combinations of Au,
and Ca,, in order to do the selection on Au,Ca;y + Ga;oPdy.
This is solved by performing “online” generation of the inputs
into the selection Au,Ca,, + Ga,(Pd. In order for an X + Y
selection to remain online, once the selection is done, the heap
must not be modified. On the next selection the heap starts
popping from where it stopped in the last selection, then some
care must be taken in order to not admit overlapping values
between selections. Since the layers requested by the parents
grow exponentially in size, the work done by each selection node
will be dominated by the last selection. Note that in Serang’s
manuscript, lemma 7 states that s, the total area of all min-
corner LPs visited as postprocessing for this round of selection,
will have s’ € O(n + k); in fact, this can be improved to s’ € O(k)
because the contribution by an LP with either of u,v = 1 is limited
by the previous layer along that axis.

Selecting Most Abundant Isotopologues from a
Compound. The method described above is able to efficiently
get the top k combinations of two subisotopologues; however,
for compounds of more than two elements, this method alone is
not sufficient. In order to combine all subisotopologues, a
balanced binary tree of two different kinds of nodes is formed.
The leaves of the tree are all multinomial subisotopologue
generators while all internal nodes are X + Y selection nodes
(Figure 2). Axes X and Y of each internal node are extended
when necessary by requesting another layer from the relevant

https://dx.doi.org/10.1021/acs.analchem.0c01670
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AuCa10GaigPd7e

(AupCa10)+(Ga10Pd76)

AU2 Calo Galo Pd76

Figure 2. Illustration of the balanced binary tree for palladium alloy
PGC, Au,Ca;yGa;,Pd;4 The leaves are subisotopologue generators of
Au,, Ca,y, Gayg, and Pde. All nodes above the leaves combine their
child compounds using the modified pairwise selection from Serang’s
method. The tree’s root generates isotopologues of Au,Ca;,Ga;oPdy,
and every other node generates isotopologues for some smaller
constituent compound.

LOH generator (either X or Y). This makes an invariant that the
inputs to and output from each node are LOHs. In this manner,
only LOHs are made at internal nodes and sorting is not
performed in those nodes. Likewise, the LOHs guarantees the
exponential growth necessary for the online k-selection on X + Y
mentioned in the paragraph above.

The final top k peaks are taken from the root by generating
layers until their total number of elements is > k. A one-
dimensional selection is used to narrow that result to exactly k in
linear time." If, instead of the top k peaks, the user requests the
minimal set of isotopologue peaks which have a combined total
abundance of at least p, the layers stop being produced once
their combined abundance reaches p. Then, the final layer is
sorted and only those which are needed to pass p are returned in
the result.

Time Analysis. If the leaves are removed from the tree, then
the tree has the same time complexity as the FastSoftTree
algorithm presented by Kreitzberg et al.” The difference in the
algorithms is that this algorithm uses LOHs where FastSoftTree
uses soft-heaps.” LOHs and soft-heaps have the same theoretical
runtime for selection, but in practice LOHs are significantly
faster due to the data being contiguous in memory.

The subisotopologue generators form tensors that have the
same dimensionality as the number of isotopes of the element.
Thus, the subgenerators themselves have the same time
complexity as the SortTensor method used in Kreitzberg et al.,
and therefore are € O(n,m, + k.m.> + k, log(k.n,)), where n, is
the number of element e in the compound, m, is the number of
isotopes of e, and k, is the number of subisotopologues
generated. For small k the algorithm is leaf heavy, and for
large enough k most of the work done will be in the interior
nodes and so the tree becomes dominated by the X + Y
selections.

B RESULTS

Here, we compare NEUTRONSTAR versus ISOSPEC. The C+
+ interface for ISOSPEC was compiled with flags set so that only
the masses and log-probabilities are generated, specifically an
instance of TotalProbFixedEnvelope was created with flags
(true, false, true, true, false). Both ISOSPEC and NEUTRON-
STAR were compiled with g++ -O3 -march = native -mtune =
native -std = c++17. The executables ran on a computer with
dual AMD Epycs 7351 and 256GB of RAM. All runtimes used o

= 1.01 which is good for both the k and the p method; however, if
only the k method is used, @ = 1.0S is typically faster in practice.

Time. ISOSPEC generates a superset of the needed
isotopologues and then performs one-dimensional selection to
retrieve the most abundant. The isotopologues ISOSPEC
generates are chosen as a function of p, the cumulative
abundance threshold. NEUTRONSTAR ran with both
parameters as input, p, and the corresponding k recorded from
running ISOSPEC with p. The k parameter is a faster method for
NEUTRONSTAR because the p parameter requires keeping
track of the accumulated abundance of all previous isotopo-
logues produced.

Both ISOSPEC and NEUTRONSTAR generate more peaks
than are necessary and then do some form of selection to remove
the extra peaks; however, ISOSPEC tends to generate many
more extra peaks than NEUTRONSTAR. For example, on the
averaginell molecule Cy459,H3879:Ng788073865208) With p = 0.9
the trimmed number of peaks was 51633, but ISOSPEC
generated 73415, an additional 42.19% while NEUTRON-
STAR generated 51 776, an additional 0.2769%. For p = 0.999
ISOSPEC, generated an extra 38.46% of peaks while
NEUTRONSTAR generated an extra 4.695%. The large
difference in extraneous peaks being generated plays a large
role in the runtime disparities.

Space. The memmory usage of both programs was gained
under the same setup as the runtimes, except we do not bother
producing output for NEUTRONSTAR using the two separate
parameters since they will produce the same number of layers
(and thus overall values) in either case. VALGRIND, specifically
the callgrind tool, was used to track the memory usage
throughout each programs execution.

Generated Spectra. Figure 3 depicts the most abundant
100 000 peaks of palladium alloy PGC, Au,Ca,(Ga, Pd;; at a

25 le-5

2.0 A

Probability
[
w0

Iy
o
|

0.5 A

Ll im

9540 9550 9560 9570 9580 9590 9600 9610 9620
Mass

Figure 3. Theoretical spectra of the top 100 000 peaks of palladium
alloy PGC, Au,Ca;;Ga;gPd,s. The top isotopologue peaks were
generated by NEUTRONSTAR using a = 1.01. NEUTRONSTAR
took 0.0210772 s to generate the peaks and they cover a cumulative
probability of 0.408561.

high resolution, these peaks are subtly staggered from one
another. This would be seen by a high mass accuracy
spectrometer.

Influence of @ on Runtime. Table 3 shows the influence of
« on runtime.
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Table 1. Runtimes of ISOSPEC and NEUTRONSTAR for Six Compounds, All with & = 1.01¢

compound P k
Averagine 0.1 698 668
0.3 3958459
0.5 11442227
0.7 30264 581
0.9 110 437 547
0.99 541404 815
0.999 1524 764796
Ostalloy 0.1 6719 141
0.3 65366950
0.5 279712 408
0.7 1084 729 667
0.9 6502472315
palladium 0.1 9134
alloy Pgc 0.3 52855
0.5 162 857
0.7 473917
0.9 2074266
0.99 13 466 926
0.999 47 409 787
Xeg, 0.1 2510
0.3 12 909
0.5 35243
0.7 91046
0.9 332449
0.99 1564230
0.999 4208 537
Sn,Xe,oNdyo Dy, le-12 1
1x 1074 5
1x 1071 50
1x107° 554
1x1078 6156
1x 1077 72222
1x107¢ 961 382
1x107° 13 415245
1x107* 221970 398
Titin 0.1 461921393
02 1345272073
0.3 2776 599 465
0.4 5027 827 340

ISOSPEC NEUTRONSTAR(k) NEUTRONSTAR(p)
0.191634 0.0337640 0.0422050
0.391008 0.143400 0.168099
2.65370 0.374090 0.434118
2.58011 0.943990 1.10575
18.7317 3.38632 3.89124
31.4017 14.1528 17.8143
80.6248 40.6456 55.2786
9.21131 0.154020 0.184007
11.8971 1.33645 1.56795
8.52057 5.54898 6.45966
153.463 21.7491 25.1355
Segfaulted 171.363 195.902
0.255972 0.00396640 0.00289220
0.253937 0.0114332 0.0115626
1.470858 0.0234636 0.0230856
1.478908 0.0433196 0.0451654
4.250200 0.139940 0.140854
8.929702 0.638875 0.675590
16.13902 1.69085 2.06479
0.799876 0.00353960 0.00324580
0.800633 0.0117036 0.0138288
0.801047 0.0298446 0.0292678
8.40066 0.0707594 0.0670961
8.38711 0.234639 0.237602
35.9428 1.15119 1.17131
104.811 3.15043 3.55441
0.000365 0.000179800 0.000204799
Segfaulted 0.000208200 0.000280400
0.000302600 0.000345199
0.000841600 0.00102380
0.00344500 0.00338180
0.0114870 0.0124566
0.0470376 0.0486468
0.338715 0.374403
4.68355 5.47419
138.025 14.5096 15.9033
141.80S 40.9665 45.0096
190.003 97.0903 116.240
207.433 165.237 193.948

“There are two runtimes for NEUTRONSTAR, one using the p parameter and one using the k parameter. The first compound is averagine with n
= 5000, Cy4600H3570:N6733073865208- The second is Ostalloy, Big,Cd;,Pb,sSn,,, also known as Lipowit’z metal. The third is palladium alloy PGC,

Au,Ca;;GagPdy4 a dental amalgam. The fourth is just 50 copies of xenon. The fifth is the molecule Sn,,Xe,,Nd,;Dy,, and the sixth is Titin
protein, Cj49719H370466N456380 522385011, the largest protein in the human body. Both algorithms ran out of memory on Titin with p = 0.5.

B DISCUSSION

As seen in Table 1, for all tested compounds, NEUTRONSTAR
is faster than ISOSPEC. For organic compounds of moderate
size (and therefore similar compounds whose elements have a
small amount of isotopes), NEUTRONSTAR and ISOSPEC are
of similar speed for smaller p; as p grows, NEUTRONSTAR
starts to be consistently faster. On large organic molecules, such
as Titin protein, NEUTRONSTAR gives a significant speed
advantage over ISOSPEC of between 1.25543X and 9.51267X.
For compounds whose elements have significantly more
isotopes (e.g., the two compounds, Xes, and
Sn,Xe,oNd,Dy,y) NEUTRONSTAR shows a significant
advantage over ISOSPEC. The most drastic result is the
difference in runtimes for the compound Sn,,Xe,(Nd,,Dy,,
where ISOSPEC segfaults (on a machine with 256GB) and
NEUTRONSTAR takes just 0.00028 s with p = 1 X 107'". This

is most likely due to ISOSPEC generating far too many peaks
before the final trimming. If this is the case, then it would have
had to produce more than 5000000 000 peaks (since Titin
produced that many on the same machine) in order to select
down to the proper five. This molecule highlights the stark
differences between the two algorithms when it comes to
handling molecules whose elements have many isotopes
something that will become increasingly important for large
compounds because, given enough copies of one element and
sufficient resolution of machine, even trace isotopes may appear.

It may be possible to gain a further advantage by tuning o
according the compound and number of peaks requested (Table
3) or even using heterogeneous a throughout the tree.
Furthermore, where ISOSPEC requires the use of the Gauflian
approximation, NEUTRONSTAR is a purely combinatorial
approach. Efficient selection on X + X, + ... + X,,, may be useful
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Table 2. Memory Usage of ISOSPEC and NEUTRONSTAR (with @ = 1.05) on Five Compounds”

compound p k ISOSPEC NEUTRONSTAR
Averagine 0.1 698 668 479.8 KiB 39.976 KiB
0.3 3958459 479.8 KiB 83.7279 KiB
0.5 11442227 3.17 MiB 206.233 KiB
0.7 30264 581 3.17 MiB 507.072 KiB
0.9 110437 548 12.4 MiB 3.48 MiB
0.99 541 404 826 49.2 MiB 8.56 MiB
0.999 1364841014 82.0 MiB 21.4 MiB
Ostalloy 0.1 6719 141 12.4 MiB 124.364 KiB
0.3 65366 950 12.4 MiB 1.06 MiB
0.5 279 712 408 12.4 MiB 4.46 MiB
0.7 1084 729 667 82.0 MiB 5.35 MiB
0.9 6502472 315 Segfautled 102.38 MiB
Palladium 0.1 9134 9.7 MiB 941.2 KiB
alloy PGC 0.3 52855 9.7 MiB 4.2 MiB
0.5 162 857 63.5 MiB 11.2 MiB
0.7 473917 63.5 MiB 29.5 MiB
0.9 2074266 419.7 MiB 105.6 MiB
0.99 13 466 926 831.8 MiB 552.0 MiB
0.999 47 409 787 3.1 GiB 1.7 GiB
Xesy 0.1 2510 30.7 MiB 1.4 MiB
0.3 12 909 30.7 MiB 5.4 MiB
0.5 35243 30.7 MiB 21.6 MiB
0.7 91 046 166.0 MiB 43.3 MiB
0.9 332449 166.0 MiB 86.9 MiB
0.99 1564230 480.0 MiB 352.3 MiB
SnyXeyoNd,Dyso 1x107" 1 95.93 KiB 15.94 KiB
1x 107" S Segfaulted 15.94 KiB
1x 1071 50 15.94 KiB
1x107° 554 16.07 KiB
1x1078 6156 16.40 KiB
1x 1077 72222 18.82 KiB
1x10°¢ 961 382 47.11 KiB
1x107° 13415245 436.6 KiB
1x107* 221970 398 6.965 MiB

“Memory usage for first five compounds from Table 1. VALGRIND, the program used to acquire the memory usage, was, for reasons unknown,

unable to run on Titin protein.

Table 3. Relationship between « and the runtime for @ €
[1,2] on compound Au,Ca,;Ga,oPd,¢ with k = 100 000”

compound a Time(s)
Au,CayoGaygPdyg 1.0 0.0546169
1.10 0.0218086
1.20 0.0259033
1.30 0.0348981
1.40 0.037129
1.50 0.0457096
1.60 0.0528224
1.70 0.10543
1.80 0.103198
1.90 0.0810971
2.00 0.0977637

“The time reported is the average over 10 iterations and all times
reported are only from NEUTRONSTAR. If @ = 1 then sizes of the
layers in the LOHs do not increase and so a layer-ordering with o = 1
is the same as sorting. The runtime is at its worst when the a = 1.8
and best when a = 1.1.

for other optimization problems, such as special cases of integer
linear programs and set-cover problems (which can be applied to
protein inference).
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The memory efficiency of NEUTRONSTAR compared to
ISOSPEC, as seen in Table 2, is likely due to the different
proposal schemes. ISOSPEC will propose all neighbors of the
popped isotopologues if they are not in the set that will form a
tensor with dimension equal to the number of subisotopologues.
In NEUTRONSTAR this space is drastically reduced due to
using only pairwise selection.

Since both algorithms solve the problem exactly, we see a
significant agreement in both mass, typically 15 significant
figures, and log-abundance, typically to 10 significant figures.
The difference between the log-abundance is likely from
ISOSPEC using Stirling approximation or their calculation of
log-abundance from scratch whereas NEUTRONSTAR calcu-
lates the log-abundance at each node in the tree.

Currently, NEUTRONSTAR is not configured to report the
isotopic makeup of the resulting isotopologues. This could be
achieved by keeping track of the index tuple as an isotopologue is
created while climbing up the binary tree; however, this would
result in a performance reduction and remove one of the more
novel aspects of this algorithm.

While NEUTRONSTAR can accept p as a parameter, using k
is desirable because the number of peaks generated according to
p is difficult to estimate (e.g., for the compound C,;H3sNOgP;

https://dx.doi.org/10.1021/acs.analchem.0c01670
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where p = 0.999 999 999 999 9 gives only 669 of the possible
317 520 peaks).

In the future, it may be possible to use LOHs inside the
subisotopologue generators similar to the X + Y selection nodes.
This could be a considerable speed-up because it avoids the

Q(nlog(n)) bounds created by sorting the subisotopologues.

B CONCLUSION

NEUTRONSTAR is a fast and accurate algorithm for
calculating the top k abundance isotopologue peaks. NEU-
TRONSTAR relies on the layer-ordered heap data structure to
perform optimal select on two partial isotopologues. Multiple
pairwise selections combined in a binary tree allow the
NEUTRONSTAR to perform efficient selection to produce
full isotopologues.

Compared to the current state-of-the-art algorithms, it is
significantly faster, growing better as the compounds grow in
size. For compounds whose element have many isotopes,
NEUTRONSTAR is by far the best option: it finds the
collection of peaks on the compound Sn,;Xe,(Nd, Dy, in less
than 0.0003 s using less than 16 KiB of memory, while ISOSPEC
exceeded the 256 GB of RAM limit.
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