
Fast Exact Computation of the k Most Abundant Isotope Peaks with
Layer-Ordered Heaps
Patrick Kreitzberg, Jake Pennington, Kyle Lucke, and Oliver Serang*

Cite This: Anal. Chem. 2020, 92, 10613−10619 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Computation of the isotopic distribution of compounds is crucial to applications
of mass spectrometry, particularly as machine precision continues to improve. In the past
decade, several tools have been created for doing so. In this paper we present a novel algorithm
for calculating either the most abundant k isotopologue peaks of a compound or the minimal set
of isotopologue peaks which have a combined total abundance of at least p. The algorithm uses
Serang’s optimal method of selection on Cartesian products. The method is significantly faster
than the state-of-the-art on large compounds (e.g., Titin protein) and on compounds whose
elements have many isotopes (e.g., palladium alloys).

Calculating the theoretical isotopic distribution of com-
pounds is a valuable tool in mass spectrometry (MS);

however, it poses a difficult combinatorics problem because
there are exponentially many isotopologues to consider.
Computation of the theoretical isotopic distribution is useful
for targeted screening,9,13 identifying unknown metabolites,4

and in general MS workflows.14

There have been multiple methods developed in the past
decade focused on more efficiently calculating the most
abundant peaks from the isotope distribution.3,7,8,10,15 In
2019, Wang et al. compared four of the top algorithms:
ISOSPEC, ENVIPAT, ECIPEX, and their own ISOVECTOR.
They found ISOSPEC to consistently be the fastest of the four.15

While it is possible to simply enumerate the exponentially many
peaks or possible to approximate the distribution of isotopo-
logues,10 methods like ISOSPEC compute the exact abundances
and masses of the most abundant isotopologues without
enumerating all possible isotopologues.7 ISOSPEC does this
by employing a central-limit theorem-based approximation to
define outcomes that roughly account for a given total
abundance p.
ISOSPEC works by first calculating the most abundant

subisotopologues (all instances of the same element in a
compound, for example H2 and O are two subisotopologues of
water) and then combining the subisotopologues to form whole
isotopologues. The isotopologues are then put into a FIFO
queue and when popped, if they exceed a threshold, it will be
appended to the output. Each isotopologue’s neighbors are
inserted into the queue. An isotopologue is a neighbor of
another if they differ by changing one isotope. Each threshold for
the FIFO queue creates a new layer of isotopologues, where the
cumulative output of all layers is ∈ O(·) of the optimal output;
however, in practice ISOSPEC may produce significantly more
isotopologues than are necessary, requiring a final selection step.

Once two subisotopologues have been calculated, selecting
the top k isotopologues of the compound by merging the two
subisotopologues is the same as selecting the top k terms in a
Cartesian product of two lists, X + Y, where addition is used to
add log abundances (equivalent to multiplying their frequen-
cies). There aremultiple methods for selecting the top k terms in
the Cartesian product on X + Y in optimal time.5,12 Serang’s
optimal method utilizes layer-ordered heaps (LOH) and is the
fastest in practice. LOHs create a continuum between unsorted
and sorted data by partitioning a list into layers. Values in layer Li

must be less than or equal to all values in subsequent layers Lj, j >
i, but values within layers are unordered. The sizes of the layers
grow in an asmyptotically exponential manner such that

α≈ ≫| |
| |

+ i, 1L
L
i

i

1 . Where comparison-based sorting is ∈ Ω(n

log(n)), lists can be LOHified in O(n) time. Unlike soft heaps,2

LOHs are contiguous in memory, leading to greater cache
performance.
The α parameter is very important in LOHs as it controls the

level of order in the LOH, this is similar to the ϵ parameter of the
soft-heap which controls the amount of corruption. If α = 1 then
each layer has size 1 and so the LOH is completely sorted and if
α > n then the LOH will be two layers, the minimum element
then n − 1 unsorted elements. A small α is desirable because it
enforces more ordering on the LOH, the trade-off is the time to
LOHify the list is increased. In practice, α∈ [1.01, 1.1] seems to

Received: April 18, 2020
Accepted: July 14, 2020
Published: July 14, 2020

Articlepubs.acs.org/ac

© 2020 American Chemical Society
10613

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d

vi
a

U
N

IV
 O

F
M

O
N

TA
N

A
 o

n
M

ay
 2

9,
 2

02
1

at
 0

4:
29

:0
9

(U
TC

).
Se

e
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+Kreitzberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jake+Pennington"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kyle+Lucke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oliver+Serang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.0c01670&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=&ref=pdf
https://pubs.acs.org/toc/ancham/92/15?ref=pdf
https://pubs.acs.org/toc/ancham/92/15?ref=pdf
https://pubs.acs.org/toc/ancham/92/15?ref=pdf
https://pubs.acs.org/toc/ancham/92/15?ref=pdf
pubs.acs.org/ac?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf
https://pubs.acs.org/ac?ref=pdf
https://pubs.acs.org/ac?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

have a good trade-off between enforcing enough ordering and a
better-than-sorting LOHify cost.
In this paper, we present amethod of efficiently calculating the

top k isotopologues of a compound using LOHs. The method
solves the problem exactly using a purely combinatorial
approach. It does not approximate, bin or round any numbers.
This is achieved by building a balanced binary tree where
internal nodes perform online X + Y selection and where leaves
generate the most abundant subisotopologues by performing
selection on multinomials. The reported peaks will not be sorted
but will instead be layer-ordered. We also present a small C++17
implementation, NEUTRONSTAR, which is provided with a
free license.

■ METHODS

Here, we present amethod that computes the top k isotopologue
peaks of a given chemical formula.
Calculating all subisotopologues of a compound is equivalent

to expanding products of polynomials with each taken to a
power: (b1·X

β1 + b2·X
β2 + ...)q1.... The bi are the isotopic

abundances that correspond to each isotopic mass βi. Each
element has one subisotopologue polynomial taken to some
power qj, which reflects the number of occurrences of that
element in the compound. For example, an element with four
carbons has polynomial (0.9893·X12.0 + 0.0107 X13.003)4. These
subisotopologue polynomials are combined via Cartesian
product by multiplying the two polynomials. For example,
H3C4 is (0 .9893 ·X 12 . 0+0 .0107 ·X 13 . 0 0 3)4(0 .999885 ·
X1.008+0.000115·X2.014)3.
When expanding a polynomial such as (c1·X + c2·Y)

2 there will
be terms that can be merged together: (c1·X + c2·Y)

2 = (c1
2·X2 +

c1c2·X·Y + c2c1·Y·X + c2
2·Y2) = (c1

2·X2 + 2c1c2·X·Y + c2
2·Y2). For

larger polynomials (both in the power and number of terms)
there will be many terms that may combine. A significant speed-
up can be found if only one of these terms is calculated then
multiplied by the appropriate multinomial coefficient (2 in the
previous example).
We do not compute the full polynomial expansion, because

that would present exponentially many terms; instead, we
perform selection of the largest coefficients of the multinomials
(from the element subisotopologue polynomials taken to a
power) and of Cartesian products (from the polynomial
multiplications).
Selection on a Multinomial.Multinomial selection begins

with the mode of that subisotopologue, which is the term in the
subisotopologue expansion that has largest coefficient. Sub-
sequent outcomes are generated in descending order of
abundance using a binary max-heap, where keys are the
probabilities of each outcome for the isotopologue. When a
subisotopologue is popped from the heap, it proposes new
subisotopologues to enter the heap based on their index tuple (a
tuple that describes how many of each isotope is in the
subisotopologue). For example, C100 begins at the mode (99,1),
which corresponds to 99 copies of 12C and 1 copy of isotope 13C.
Let (x1, x2,..., xm) be a mode of our distribution where pi

represents the abundance of the isotope at index i in the tuple.
Because it is the mode, and therefore the most abundant
isotopologue, P(x1,x2,...,xm) ≥ P(...,xi + 1,xj − 1,...) for any
indices xi and xj. Examining the probability mass function of a
multinomial we find that

·
· +

≤
p x

p x

()

(1)
1i j

j i

for any indices xi and xj.
Furthermore, because

+ + − +
+ −

=
· · + !· − !

+ + !· − + !· ·

=
· −

· + +

+ + − +

+ −

P x b x b

P x b x b

p p x b x b

x b x b p p

p x b

p x b

(..., (1), ..., (1), ...)

(..., , ..., , ...)

() ()

((1)) ((1))

()

((1))

i j

i j

i
x b

j
x b

i j

i j i
x b

j
x b

i j

j i

(1) (1)i j

i j

and

· −
· + +

≤
· − −

· +
≤ ≤

· −
· +

≤
·

· +
≤

p x b

p x b

p x b

p x b

p x

p x

p x

p x

()

((1))

((1))

()
...

(1)

(2)

()

(1)
1

i j

j i

i j

j i

i j

j i

i j

j i

we can see that P(...,xi + (b + 1),xj− (b + 1),...)≤ P(...,xi + b,xj−
b,...) for any b ≤ min(xi,xj). This means every time the ith entry
in the index tuple is increased and the jth entry is decreased, thus
moving further from the mode in 1 (or Manhattan) distance,
the probability never increases.
The relationship between the 1 distance from the mode and

the probability still holds when other index tuple entries have
been perturbed away from the mode. P(...,xi + 1,xj − 1,...) ≥
P(...,xi + 2,xj − 1,xk − 1...) because

+ − − = + − ·
·

· +
P x x x P x x

p x

p x
(..., 2, 1, 1 ...) (..., 1, 1, ...)

()

(2)i j k i j
i k

k i

and

·
· +

≤
·

· +
≤

p x

p x

p x

p x

()

(2)

()

(1)
1i k

k i

i k

k i

Finally, we also have

+ − ≥ + − + −P x x P x x x x(..., 1, 1, ...) (..., 1, 1, 1, 1 ...)i j i j k

because

+ − + −

= + − ·
·

· +

P x x x x

P x x
p x

p x

(..., 1, 1, 1, 1 ...)

(..., 1, 1, ...)
()

(1)

i j k

i j
k

k

and

·
· +

≤
p x

p x

()

(1)
1k

k

Since the probability never decreases as we move closer to the
mode, then wherever we are, if we head in a direction of
ascending probability, we are heading toward the mode. Once
we are at a location which can not increase in probability, we
have reached the mode. Because the distribution is discrete and
we move by the smallest possible amount (incrementing and
decrementing a pair of indices by one), we will never overshoot
the mode. The starting position for this greedy process is found
by using the modes of each the binomial marginals and

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

10614

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf

correcting if the sum is not = n, although any starting position
will lead to a mode because there are no local maxima.
In order to populate the heap with the best possible next

subisotopologue, any subisotopologue in the heap must have all
subisotopologues between itself and the mode already in the
heap (or have been popped from the heap); this ensures that 1
distance of proposed index tuples is always increasing and thus
index tuples are visited in descending order of probability. This
is accomplished by pushing all neighbors of the subisotopologue
that has been popped from the heap. These neighbors are found
as with the search for the mode: from some starting point, one
index is increased and one index is decreased, thereby holding
the sum constant; however, unlike the search for the mode, here
we must guarantee that the 1 distance from the mode always
increases, and so proposed neighbors that would move closer to
the mode on any axis are discarded.
It is necessary to prevent the same neighbor from being

inserted into the heap multiple times. For example, index tuple
(30, 4, 3) has neighbors (29, 5, 3), (29, 4, 4), (31, 3, 3), (31, 4,2),
(30, 5, 2), (and 30, 3, 4). Of these, (29, 5, 3) and (30, 5, 2) both
have neighbor (29,6,2) . One way to prevent these duplicates
from being reinserted into the heap is to store a set of the heap’s
contents; however, that requires additional memory and time.
Although it is asymptotically comparable to the cost of pushing
to and popping from the heap, it significantly harms perform-
ance in practice. For this reason, we use a proposal scheme that
can reach all subisotopologues in increasing 1 order from the
mode but without duplicates.
A proposal can be characterized by the two axes, i,j that are

perturbed (without loss of generality, let index i increase and
index j decrease). If two chains of neighbors, (i1, j1), (i2, j2),... and
(i1′, j1′), (i2′, j2′),..., collide then multiset(i1, i2,...) = multiset(i1′,
i2′,...), multiset(j1, j2,...) = multiset(j1′, j2′,...). Multisets are unique
when their contents are sorted, and thus chains whose i and j are
both in lexicographic order (by the index of the largest entry that
has been perturbed as i and j respectively) will visit each index
tuple only once. This proposal scheme means any index tuple
may be proposed by only one unique neighboring index tuple.
The first few proposals for the subisotopologue K3 may be seen
in (Figure 1).
Now that the top isotopologues can be generated with the

most abundant (i.e., most probable) first, values can be
requested in an online manner.

Selection on Two Partial Isotopologues. Generating the
largest coefficients in the polynomial product is accomplished by
using Serang’s selection algorithm on X + Y.
TheX + Y selection algorithm focuses on layer products (LPs)

of the lohified input lists X and Y. The lists are lohified ∈O(n),
avoiding theΩ(n log(n)) bound which would be required if they
were sorted. An LP is the Cartesian product of some layer i ∈ X
and layer j ∈ Y; however, the presence of an LP does not ensure
all values in the Cartesian product will be generated. All LPs are
represented as a tuple which has a value, the layer indices in X
and Y, and a boolean. There are two types of LPs: a min-corner
which has the minimum value in the Cartesian product and the
boolean FALSE (indicating it is a min-corner), and a max-
corner, which has the maximum value in the Cartesian product
and the boolean TRUE (indicating it is a max-corner).
A priority queue is utilized in order to select the minimum

number of LPs such that the generated Cartesian products of the
LPs will contain the top k values. The priority queue is initialized
with the min-corner LP of the first LP in X and Y. Once a min-
corner LP is popped from the queue, its max-corner equivalent is
inserted. The size of the Cartesian product of an LP is
accumulated when the max-corner is popped, the popping
continues until this total has reached k.
Once k is reached, among the Cartesian products of the

popped LPs (either min-corner or max-corner), there will be at
least kmany values less than the value of the last max-corner LP
popped. To find the final top k values, all values in LPs which
have been popped are generated and a one-dimensional k-select
is performed. If both a min-corner and max-corner of the same
indices in X,Y are popped, only one of them has its Cartesian
product generated.
As this applies to selection on isotopologues, the inputs X and

Y will be layers of either partially built isotopologues of the
desired compound or whole subisotopologues. For example, if
calculating Au2Ca10Ga10Pd76 there will be a selection where one
list is Au2 and the other is Ca10 and a different selection where
one list is Au2Ca10 and the other is Ga10Pd76.
We do not wish to generate all possible combinations of Au2

and Ca10 in order to do the selection on Au2Ca10 + Ga10Pd76.
This is solved by performing “online” generation of the inputs
into the selection Au2Ca10 + Ga10Pd76. In order for an X + Y
selection to remain online, once the selection is done, the heap
must not be modified. On the next selection the heap starts
popping from where it stopped in the last selection, then some
care must be taken in order to not admit overlapping values
between selections. Since the layers requested by the parents
grow exponentially in size, the work done by each selection node
will be dominated by the last selection. Note that in Serang’s
manuscript, lemma 7 states that s′, the total area of all min-
corner LPs visited as postprocessing for this round of selection,
will have s′∈O(n + k); in fact, this can be improved to s′∈O(k)
because the contribution by an LPwith either of u,v = 1 is limited
by the previous layer along that axis.

Selecting Most Abundant Isotopologues from a
Compound. The method described above is able to efficiently
get the top k combinations of two subisotopologues; however,
for compounds of more than two elements, this method alone is
not sufficient. In order to combine all subisotopologues, a
balanced binary tree of two different kinds of nodes is formed.
The leaves of the tree are all multinomial subisotopologue
generators while all internal nodes are X + Y selection nodes
(Figure 2). Axes X and Y of each internal node are extended
when necessary by requesting another layer from the relevant

Figure 1. First few multinomial proposals for K100. The figure shows
index tuples in the multinomial and the neighbors they propose, from
top to bottom, starting with the mode (94,6,0) (94 copies of 39K, 6
copies of 41K, and no copies of 40K). Each index tuple proposes its
neighbors in lexicographical order where, if the ith index has been
incremented, it cannot propose any neighbors by incrementing an index
less than i (this is the same pattern is used for decrementing an index).
In the figure, the largest index to be incremented is in blue and the
largest to be decremented is in red. In order to move away from the
mode, any index which has been incremented may not be decremented
to create a proposed tuple, and vice versa. Note that for clarity not all
proposed indices are included.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

10615

https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig1&ref=pdf
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf

LOH generator (either X or Y). This makes an invariant that the
inputs to and output from each node are LOHs. In this manner,
only LOHs are made at internal nodes and sorting is not
performed in those nodes. Likewise, the LOHs guarantees the
exponential growth necessary for the online k-selection on X + Y
mentioned in the paragraph above.
The final top k peaks are taken from the root by generating

layers until their total number of elements is ≥ k. A one-
dimensional selection is used to narrow that result to exactly k in
linear time.1 If, instead of the top k peaks, the user requests the
minimal set of isotopologue peaks which have a combined total
abundance of at least p, the layers stop being produced once
their combined abundance reaches p. Then, the final layer is
sorted and only those which are needed to pass p are returned in
the result.
Time Analysis. If the leaves are removed from the tree, then

the tree has the same time complexity as the FastSoftTree
algorithm presented by Kreitzberg et al.6 The difference in the
algorithms is that this algorithm uses LOHs where FastSoftTree
uses soft-heaps.2 LOHs and soft-heaps have the same theoretical
runtime for selection, but in practice LOHs are significantly
faster due to the data being contiguous in memory.
The subisotopologue generators form tensors that have the

same dimensionality as the number of isotopes of the element.
Thus, the subgenerators themselves have the same time
complexity as the SortTensor method used in Kreitzberg et al.,
and therefore are ∈ O(ne·me + ke·me

2 + ke log(ke·ne)), where ne is
the number of element e in the compound, me is the number of
isotopes of e, and ke is the number of subisotopologues
generated. For small k the algorithm is leaf heavy, and for
large enough k most of the work done will be in the interior
nodes and so the tree becomes dominated by the X + Y
selections.

■ RESULTS
Here, we compare NEUTRONSTAR versus ISOSPEC. The C+
+ interface for ISOSPECwas compiled with flags set so that only
the masses and log-probabilities are generated, specifically an
instance of TotalProbFixedEnvelope was created with flags
(true, false, true, true, false). Both ISOSPEC and NEUTRON-
STAR were compiled with g++ -O3 -march = native -mtune =
native -std = c++17. The executables ran on a computer with
dual AMD Epycs 7351 and 256GB of RAM. All runtimes used α

= 1.01 which is good for both the k and the pmethod; however, if
only the kmethod is used, α = 1.05 is typically faster in practice.

Time. ISOSPEC generates a superset of the needed
isotopologues and then performs one-dimensional selection to
retrieve the most abundant. The isotopologues ISOSPEC
generates are chosen as a function of p, the cumulative
abundance threshold. NEUTRONSTAR ran with both
parameters as input, p, and the corresponding k recorded from
running ISOSPECwith p. The k parameter is a faster method for
NEUTRONSTAR because the p parameter requires keeping
track of the accumulated abundance of all previous isotopo-
logues produced.
Both ISOSPEC and NEUTRONSTAR generate more peaks

than are necessary and then do some form of selection to remove
the extra peaks; however, ISOSPEC tends to generate many
more extra peaks than NEUTRONSTAR. For example, on the
averagine11 molecule C24692H38792N6788O7386S208, with p = 0.9
the trimmed number of peaks was 51 633, but ISOSPEC
generated 73 415, an additional 42.19% while NEUTRON-
STAR generated 51 776, an additional 0.2769%. For p = 0.999
ISOSPEC, generated an extra 38.46% of peaks while
NEUTRONSTAR generated an extra 4.695%. The large
difference in extraneous peaks being generated plays a large
role in the runtime disparities.

Space. The memmory usage of both programs was gained
under the same setup as the runtimes, except we do not bother
producing output for NEUTRONSTAR using the two separate
parameters since they will produce the same number of layers
(and thus overall values) in either case. VALGRIND, specifically
the callgrind tool, was used to track the memory usage
throughout each programs execution.

Generated Spectra. Figure 3 depicts the most abundant
100 000 peaks of palladium alloy PGC, Au2Ca10Ga10Pd76; at a

high resolution, these peaks are subtly staggered from one
another. This would be seen by a high mass accuracy
spectrometer.

Influence of α on Runtime. Table 3 shows the influence of
α on runtime.

Figure 2. Illustration of the balanced binary tree for palladium alloy
PGC, Au2Ca10Ga10Pd76. The leaves are subisotopologue generators of
Au2, Ca10, Ga10, and Pd76. All nodes above the leaves combine their
child compounds using the modified pairwise selection from Serang’s
method. The tree’s root generates isotopologues of Au2Ca10Ga10Pd76,
and every other node generates isotopologues for some smaller
constituent compound.

Figure 3. Theoretical spectra of the top 100 000 peaks of palladium
alloy PGC, Au2Ca10Ga10Pd76. The top isotopologue peaks were
generated by NEUTRONSTAR using α = 1.01. NEUTRONSTAR
took 0.0210772 s to generate the peaks and they cover a cumulative
probability of 0.408561.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

10616

https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?fig=fig3&ref=pdf
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf

■ DISCUSSION

As seen in Table 1, for all tested compounds, NEUTRONSTAR
is faster than ISOSPEC. For organic compounds of moderate
size (and therefore similar compounds whose elements have a
small amount of isotopes), NEUTRONSTAR and ISOSPEC are
of similar speed for smaller p; as p grows, NEUTRONSTAR
starts to be consistently faster. On large organic molecules, such
as Titin protein, NEUTRONSTAR gives a significant speed
advantage over ISOSPEC of between 1.25543× and 9.51267×.
For compounds whose elements have significantly more
i so topes (e .g . , the two compounds , Xe 5 0 , and
Sn20Xe20Nd20Dy20) NEUTRONSTAR shows a significant
advantage over ISOSPEC. The most drastic result is the
difference in runtimes for the compound Sn20Xe20Nd20Dy20,
where ISOSPEC segfaults (on a machine with 256GB) and
NEUTRONSTAR takes just 0.00028 s with p = 1 × 10−11. This

is most likely due to ISOSPEC generating far too many peaks
before the final trimming. If this is the case, then it would have
had to produce more than 5 000 000 000 peaks (since Titin
produced that many on the same machine) in order to select
down to the proper five. This molecule highlights the stark
differences between the two algorithms when it comes to
handling molecules whose elements have many isotopes
something that will become increasingly important for large
compounds because, given enough copies of one element and
sufficient resolution of machine, even trace isotopes may appear.
It may be possible to gain a further advantage by tuning α

according the compound and number of peaks requested (Table
3) or even using heterogeneous α throughout the tree.
Furthermore, where ISOSPEC requires the use of the Gaußian
approximation, NEUTRONSTAR is a purely combinatorial
approach. Efficient selection on X1 + X2 + ... + Xm, may be useful

Table 1. Runtimes of ISOSPEC and NEUTRONSTAR for Six Compounds, All with α = 1.01a

compound p k ISOSPEC NEUTRONSTAR(k) NEUTRONSTAR(p)

Averagine 0.1 698 668 0.191634 0.0337640 0.0422050
0.3 3 958 459 0.391008 0.143400 0.168099
0.5 11 442 227 2.65370 0.374090 0.434118
0.7 30 264 581 2.58011 0.943990 1.10575
0.9 110 437 547 18.7317 3.38632 3.89124
0.99 541 404 815 31.4017 14.1528 17.8143
0.999 1 524 764 796 80.6248 40.6456 55.2786

Ostalloy 0.1 6 719 141 9.21131 0.154020 0.184007
0.3 65 366 950 11.8971 1.33645 1.56795
0.5 279 712 408 8.52057 5.54898 6.45966
0.7 1 084 729 667 153.463 21.7491 25.1355
0.9 6 502 472 315 Segfaulted 171.363 195.902

palladium 0.1 9134 0.255972 0.00396640 0.00289220
alloy Pgc 0.3 52 855 0.253937 0.0114332 0.0115626

0.5 162 857 1.470858 0.0234636 0.0230856
0.7 473 917 1.478908 0.0433196 0.0451654
0.9 2 074 266 4.250200 0.139940 0.140854
0.99 13 466 926 8.929702 0.638875 0.675590
0.999 47 409 787 16.13902 1.69085 2.06479

Xe50 0.1 2510 0.799876 0.00353960 0.00324580
0.3 12 909 0.800633 0.0117036 0.0138288
0.5 35 243 0.801047 0.0298446 0.0292678
0.7 91 046 8.40066 0.0707594 0.0670961
0.9 332 449 8.38711 0.234639 0.237602
0.99 1 564 230 35.9428 1.15119 1.17131
0.999 4 208 537 104.811 3.15043 3.55441

Sn20Xe20Nd20Dy20 1e-12 1 0.000365 0.000179800 0.000204799
1 × 10−11 5 Segfaulted 0.000208200 0.000280400
1 × 10−10 50 0.000302600 0.000345199
1 × 10−9 554 0.000841600 0.00102380
1 × 10−8 6156 0.00344500 0.00338180
1 × 10−7 72 222 0.0114870 0.0124566
1 × 10−6 961 382 0.0470376 0.0486468
1 × 10−5 13 415 245 0.338715 0.374403
1 × 10−4 221 970 398 4.68355 5.47419

Titin 0.1 461 921 393 138.025 14.5096 15.9033
0.2 1 345 272 073 141.805 40.9665 45.0096
0.3 2 776 599 465 190.003 97.0903 116.240
0.4 5 027 827 340 207.433 165.237 193.948

aThere are two runtimes for NEUTRONSTAR, one using the p parameter and one using the k parameter. The first compound is averagine with n
= 5000, C24692H38792N6788O7386S208. The second is Ostalloy, Bi50Cd12Pb25Sn12, also known as Lipowit’z metal. The third is palladium alloy PGC,
Au2Ca10Ga10Pd76, a dental amalgam. The fourth is just 50 copies of xenon. The fifth is the molecule Sn20Xe20Nd20Dy20 and the sixth is Titin
protein, C169719H270466N45688O52238S911, the largest protein in the human body. Both algorithms ran out of memory on Titin with p = 0.5.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

10617

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf

for other optimization problems, such as special cases of integer
linear programs and set-cover problems (which can be applied to
protein inference).

The memory efficiency of NEUTRONSTAR compared to
ISOSPEC, as seen in Table 2, is likely due to the different
proposal schemes. ISOSPEC will propose all neighbors of the
popped isotopologues if they are not in the set that will form a
tensor with dimension equal to the number of subisotopologues.
In NEUTRONSTAR this space is drastically reduced due to
using only pairwise selection.
Since both algorithms solve the problem exactly, we see a

significant agreement in both mass, typically 15 significant
figures, and log-abundance, typically to 10 significant figures.
The difference between the log-abundance is likely from
ISOSPEC using Stirling approximation or their calculation of
log-abundance from scratch whereas NEUTRONSTAR calcu-
lates the log-abundance at each node in the tree.
Currently, NEUTRONSTAR is not configured to report the

isotopic makeup of the resulting isotopologues. This could be
achieved by keeping track of the index tuple as an isotopologue is
created while climbing up the binary tree; however, this would
result in a performance reduction and remove one of the more
novel aspects of this algorithm.
While NEUTRONSTAR can accept p as a parameter, using k

is desirable because the number of peaks generated according to
p is difficult to estimate (e.g., for the compound C27H35N6O8P1

Table 2. Memory Usage of ISOSPEC and NEUTRONSTAR (with α = 1.05) on Five Compoundsa

compound p k ISOSPEC NEUTRONSTAR

Averagine 0.1 698 668 479.8 KiB 39.976 KiB
0.3 3 958 459 479.8 KiB 83.7279 KiB
0.5 11 442 227 3.17 MiB 206.233 KiB
0.7 30 264 581 3.17 MiB 507.072 KiB
0.9 110 437 548 12.4 MiB 3.48 MiB
0.99 541 404 826 49.2 MiB 8.56 MiB
0.999 1 364 841 014 82.0 MiB 21.4 MiB

Ostalloy 0.1 6 719 141 12.4 MiB 124.364 KiB
0.3 65 366 950 12.4 MiB 1.06 MiB
0.5 279 712 408 12.4 MiB 4.46 MiB
0.7 1 084 729 667 82.0 MiB 5.35 MiB
0.9 6 502 472 315 Segfautled 102.38 MiB

Palladium 0.1 9134 9.7 MiB 941.2 KiB
alloy PGC 0.3 52 855 9.7 MiB 4.2 MiB

0.5 162 857 63.5 MiB 11.2 MiB
0.7 473 917 63.5 MiB 29.5 MiB
0.9 2 074 266 419.7 MiB 105.6 MiB
0.99 13 466 926 831.8 MiB 552.0 MiB
0.999 47 409 787 3.1 GiB 1.7 GiB

Xe50 0.1 2510 30.7 MiB 1.4 MiB
0.3 12 909 30.7 MiB 5.4 MiB
0.5 35 243 30.7 MiB 21.6 MiB
0.7 91 046 166.0 MiB 43.3 MiB
0.9 332 449 166.0 MiB 86.9 MiB
0.99 1 564 230 480.0 MiB 352.3 MiB

Sn20Xe20Nd20Dy20 1 × 10−12 1 95.93 KiB 15.94 KiB
1 × 10−11 5 Segfaulted 15.94 KiB
1 × 10−10 50 15.94 KiB
1 × 10−9 554 16.07 KiB
1 × 10−8 6156 16.40 KiB
1 × 10−7 72 222 18.82 KiB
1 × 10−6 961 382 47.11 KiB
1 × 10−5 13 415 245 436.6 KiB
1 × 10−4 221 970 398 6.965 MiB

aMemory usage for first five compounds from Table 1. VALGRIND, the program used to acquire the memory usage, was, for reasons unknown,
unable to run on Titin protein.

Table 3. Relationship between α and the runtime for α ∈
[1,2] on compound Au2Ca10Ga10Pd76 with k = 100 000a

compound α Time(s)

Au2Ca10Ga10Pd76 1.0 0.0546169
1.10 0.0218086
1.20 0.0259033
1.30 0.0348981
1.40 0.037129
1.50 0.0457096
1.60 0.0528224
1.70 0.10543
1.80 0.103198
1.90 0.0810971
2.00 0.0977637

aThe time reported is the average over 10 iterations and all times
reported are only from NEUTRONSTAR. If α = 1 then sizes of the
layers in the LOHs do not increase and so a layer-ordering with α = 1
is the same as sorting. The runtime is at its worst when the α = 1.8
and best when α = 1.1.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

10618

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf

where p = 0.999 999 999 999 9 gives only 669 of the possible
317 520 peaks).
In the future, it may be possible to use LOHs inside the

subisotopologue generators similar to the X + Y selection nodes.
This could be a considerable speed-up because it avoids the
Ω(nlog(n)) bounds created by sorting the subisotopologues.

■ CONCLUSION
NEUTRONSTAR is a fast and accurate algorithm for
calculating the top k abundance isotopologue peaks. NEU-
TRONSTAR relies on the layer-ordered heap data structure to
perform optimal select on two partial isotopologues. Multiple
pairwise selections combined in a binary tree allow the
NEUTRONSTAR to perform efficient selection to produce
full isotopologues.
Compared to the current state-of-the-art algorithms, it is

significantly faster, growing better as the compounds grow in
size. For compounds whose element have many isotopes,
NEUTRONSTAR is by far the best option: it finds the
collection of peaks on the compound Sn20Xe20Nd20Dy20 in less
than 0.0003 s using less than 16 KiB of memory, while ISOSPEC
exceeded the 256 GB of RAM limit.

■ AUTHOR INFORMATION
Corresponding Author
Oliver Serang − Department of Computer Science, University of
Montana, Missoula, Montana, United States; orcid.org/
0000-0003-1245-7051; Email: Oliver.Serang@
umontana.edu

Authors
Patrick Kreitzberg − Department of Mathematics, University of
Montana, Missoula, Montana, United States

Jake Pennington − Department of Mathematics, University of
Montana, Missoula, Montana, United States

Kyle Lucke − Department of Computer Science, University of
Montana, Missoula, Montana, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.0c01670

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by Grant No. 1845465 from the
National Science Foundation. The NEUTRONSTAR algo-
rithm, implemented in C++17, can be found freely at https://
bitbucket.org/orserang/neutronstar/.

■ REFERENCES
(1) Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E.
Journal of Computer and System Sciences 1973, 7 (4), 448−461.
(2) Chazelle, B. J. Assoc. Comput. Mach. 2000, 47 (6), 1012−1027.
(3) Ipsen, A. Anal. Chem. 2014, 86 (11), 5316−5322.
(4) Ji, H.; Xu, Y.; Lu, H.; Zhang, Z. Anal. Chem. 2019, 91 (9), 5629−
5637.
(5) Kaplan, H.; Kozma, L.; Zamir, O.; Zwick, U. Symposium on
Simplicity in Algorithms 2019, 5-1−5-21.
(6) Kreitzberg, P.; Lucke, K.; Serang, O. Selection on X1 + X2 + ···+Xm
with layer-ordered heaps. 2019, not yet submitted.
(7) Łacki, M. K.; Startek, M.ł; Valkenborg, D.; Gambin, A.Anal. Chem.
2017, 89 (6), 3272−3277.
(8) Loos, M.; Gerber, C.; Corona, F.; Hollender, J.; Singer, H. Anal.
Chem. 2015, 87 (11), 5738−5744.

(9) Ruff, M.; Mueller, M.; Loos, M.; Singer, H. P.Water Res. 2015, 87,
145−154.
(10) Sadygov, R. G. J. Proteome Res. 2018, 17 (1), 751−758.
(11) Senko, M. W.; Beu, S. C.; McLaffertycor, F. W. J. Am. Soc. Mass
Spectrom. 1995, 6, 229.
(12) Serang, O. Optimal selection on X + Y simplified with layer-
ordered heaps. 2020.
(13) Singer, H. P.; Wössner, A. E.;McArdell, C. S.; Fenner, K. Environ.
Sci. Technol. 2016, 50 (13), 6698−6707.
(14) Sturm, M.; Bertsch, A.; Gropl, C.; Hildebrandt, A.; Hussong, R.;
Lange, E.; Pfeifer, N.; Schulz-Trieglaff, O.; Zerck, A.; Reinert, K.;
Kohlbacher, O.; et al. BMC Bioinf. 2008, 9 (1), 163.
(15) Wang, Z.; Chen, X.; Ren, J.; Hu, G. Int. J. Mass Spectrom. 2019,
443, 70−76.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c01670
Anal. Chem. 2020, 92, 10613−10619

10619

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oliver+Serang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1245-7051
http://orcid.org/0000-0003-1245-7051
mailto:Oliver.Serang@umontana.edu
mailto:Oliver.Serang@umontana.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+Kreitzberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jake+Pennington"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kyle+Lucke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01670?ref=pdf
https://bitbucket.org/orserang/neutronstar/
https://bitbucket.org/orserang/neutronstar/
https://dx.doi.org/10.1016/S0022-0000(73)80033-9
https://dx.doi.org/10.1145/355541.355554
https://dx.doi.org/10.1021/ac500108n
https://dx.doi.org/10.1021/acs.analchem.8b05405
https://dx.doi.org/10.1021/acs.analchem.8b05405
https://dx.doi.org/10.1021/acs.analchem.6b01459
https://dx.doi.org/10.1021/acs.analchem.6b01459
https://dx.doi.org/10.1021/acs.analchem.5b00941
https://dx.doi.org/10.1021/acs.analchem.5b00941
https://dx.doi.org/10.1016/j.watres.2015.09.017
https://dx.doi.org/10.1016/j.watres.2015.09.017
https://dx.doi.org/10.1021/acs.jproteome.7b00807
https://dx.doi.org/10.1016/1044-0305(95)00017-8
https://dx.doi.org/10.1016/1044-0305(95)00017-8
https://dx.doi.org/10.1021/acs.est.5b03332
https://dx.doi.org/10.1021/acs.est.5b03332
https://dx.doi.org/10.1186/1471-2105-9-163
https://dx.doi.org/10.1016/j.ijms.2019.05.012
https://dx.doi.org/10.1016/j.ijms.2019.05.012
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c01670?ref=pdf

