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Abstract

In this paper, we study a rearrangement method for solving a maximization problem associ-
ated with Poisson’s equation with Dirichlet boundary conditions. The maximization problem
is to find the forcing within a certain admissible set as to maximize the total displacement.
The rearrangement method alternatively (i) solves the Poisson equation for a given forcing
and (ii) defines a new forcing corresponding to a particular super-level-set of the solution.
Rearrangement methods are frequently used for this problem and a wide variety of similar
optimization problems due to their convergence guarantees and observed efficiency; however,
the convergence rate for rearrangement methods has not generally been established. In this
paper, for the one-dimensional problem, we establish linear convergence. We also discuss
the higher dimensional problem and provide computational evidence for linear convergence
of the rearrangement method in two dimensions.
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1 Introduction

Rearranging real-valued functions of one or more real variables is a powerful tool of
mathematical analysis and plays an important role in various applications. Examples from
mathematical analysis include the Schwarz rearrangement and Steiner symmetrization with
respect to a hyperplane, which have each been used to prove a variety of isoperimetric
inequalities [11,26]. One limitation of using rearrangement methods analytically is that the
candidate optimizer must be known, typically requiring a relatively simple geometry, e.g., a
ball in R?. In the case when a candidate optimizer is not known, rearrangement methods can
also be used computationally and have been applied to a wide variety of shape and operator
coefficient optimization problems, including

1. extremal densities for the vibration of drums [9,18] and rods and plates [6,14,22],

2. extremal environments in a dispersal population dynamics model [7,12,15],

3. extremal conductivities for two-phase conductors [8,13,19,23],

4. extremal potentials in periodic Schrodinger’s operator to maximize spectral gaps [17],
5. extremal problems for operators with other boundary conditions, e.g., Robin [16], and
6. nonlinear eigenproblems, e.g., extremal energies in quantum dots [1,20,23,24].

When rearrangement methods are used in each of these settings, it is commonly observed that
they are very efficient, converging in far fewer iterations than other optimization approaches,
including gradient-based methods. Rearrangement methods, like level-set and phase-field
methods [25], are also capable of handling topological changes in the optimizer. However, as
far as we are aware, there are no results on the convergence rate of rearrangement methods.
We consider a relatively simple, prototypical optimization problem corresponding to the
solution of the Poisson equation [3—5]. Recently a convergent rearrangement algorithm was
developed to obtain the optimal solution for this problem [21]. The main contribution of this
paper is to prove a convergence rate for this rearrangement method.

1.1 Mathematical Formulation

For a bounded domain £ ¢ R? and a given function f: 2 — R, the Poisson equation is
given by

—Au(x) = f(x), xe€f2, (la)
ux) =0, xe€9ds2. (1b)

We consider the optimization problem

r}leaﬁ J(f), where J(f) ::/;Zufdx 2)

is the total displacement. Here, the function u that appears in J(f) is assumed to solve the
Poisson Eq. (1) for the given f. The admissible class, A = A(a, B, f) is given by

A:{feLoo(.Q):aff(x)§ﬁa.e.xe.(2and|?1|/fdx:?}, A3)
2

where 0 < a < 7 < f are given constants. Since for a solution # of (1) we have 0 < u(x) <

sup f(x), see [2, Theorem 9.27], the objective is bounded above by B2|§2|. Employing
xesf2
a compactness argument and rearrangement techniques, we can infer that there exists a
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f*(x) =a+ (B —a)xp(x) € Asolving (2). Also, the solution is unique in the case that
2 is a ball in RY [3-5]. Furthermore, necessary optimality conditions require that every
solution f™ satisfies f *(x)7= o + (B — a) xp(x) for some measurable set D C §2 such that
o ([$2] — D)) + BID| = f182], i.e.,

f—a

|D| = ———12].

B—«a
Since f* takes the pointwise bounds at almost every point of the domain, it is frequently
referred to as a “bang-bang” optimizer. In the case where §2 is radial, it was proved that the
maximizer is radially non-increasing [5]. Thus, the solution is explicitly given by f*(x) =
o + (B — a)xp(x), where B denotes the ball of measure f%g|.(2|.

To compute the solution to (2), a common and efficient method is referred to as a rear-

rangement method, as summarized in Algorithm 1. This method is iterative. For a given
iterate f;, the Poisson Eq. (1) is solved with right hand side given by f;. A super-level-set

of the solution u;, {u; > y;}, with volume g%g |£2], is identified and a new iterate is defined
by fiv1 = a + (B — @) X{u;>y;)» € A. The process is repeated until convergence, typically
either stationarity (in the discretized problem) or || f; — fi+1]l < & for some convergence
criterion ¢ > 0 and appropriate norm || - ||. Using the variational formulation for the Poisson
equation,

1
min 7/ |Vu|2dx—/ fudx,
ueH () 2 Ja f7)

and bathtub principle, it is not difficult to see that non-stationary iterates of the rearrangement
method increase the objective function, i.e., J(fi4+1) > J(f;) [21]. The sequence { f;} gen-
erated iteratively by the rearrangement method converges (along a subsequence) to a (local)
maximizer in the sense of LZ(£2) [21]. Thus, there is a particular sequence { f;} generated
iteratively by the rearrangement method such that f; — f* in L2(2). In this paper, we
consider the convergence rate of the rearrangement method, i.e., we address the question:
for what power y is there a constant L > 0, such that

Ifi = £ < LI fisr = £5I17

for sufficiently large i and an appropriate norm, || - ||.

Algorithm 1: The rearrangement algorithm for approximating solutions to (2).

Input: Let 2 C R4 and B > f > a > 0. Choose an initial iteration, f € A.

Output: Iterates of the rearrangement algorithm, { f; }.

Seti =0

while not converged do

1. Solve the Poisson equation. Solve the Poisson equation with right hand side given by f;:

—Au; = f; 2
u; =0 082.

2. Rearrangement Step. Set
firt =a+ (B = D Xfu=y)-

where y; > 0 is chosen so that [{#; > y;}| = 'J;%alﬂ\ and fi41 € A;

o
Seti =i+1
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The general question of the convergence rate for the rearrangement method is difficult
due to the fact that usually we do not have much information about the optimal function
f* and the associated solution to the Poisson equation u* a priori, let alone the iterates f;
and associated solutions, ;. For instance, linear convergence of the method would require
showing that there exists L € (0, 1) such that

I fit1r = f 2@y < LIS = i) 4)
for sufficiently large i. A simple calculation shows that || f; — f*||iz(m = (B —a)?|D*AD;|,
where A denotes the symmetric difference of sets, D* = {x € £ : u*(x) > y*} and

D; = {x € 2 : uj(x) > y;}. Parameters y* and y; are chosen in a way that f* and f; belong
to A. The condition in (4) is equivalent to verifying that

|D*AD; 11| < L*|D*AD;], 5)

for sufficiently large i. To establish (5) for a general domain we need detailed information
on the geometry and topology of sets D* and D;, i > 0, e.g., connectivity, convexity, or
symmetry. This, in turn, requires detailed information on the functions #* and u;,i > 0, e.g.,
monotonicity and concavity.

Algorithm 2: The rearrangement algorithm in one dimension.

Input: Let 2 = (—1,1), 8 >« > 0,and § € (0, 1). Choose an initial iteration, yg € (0, 1), and a
convergence criterion, & > 0.

Output: Linearly convergent iterates of the rearrangement algorithm, {y; }.

Seti =0

while |y; ;| — yi| > e do

if 3 = % 1= max(36 — 1, 735EE0) then
Set
B
Yirt = (B =)l =) (11)
else
Set
2 252
et =i = g B = B2~ yid(p ) @+ 58— a) (12)
| Seti=i+1
1.2 Results

In this paper, as a first step to understanding the general question of the convergence rate for
the rearrangement method, we consider the rearrangement method for the one-dimensional
Poisson equation. This is a significant simplification, since the functions #* and u;, i > 0 are
concave and the associated sets D* and D;, i > 0 are convex (hence, intervals). In this case,
as we detail below, we prove that the rearrangement method is linearly convergent.

On the one-dimensional interval, £2 = (—1, 1), the Poisson Eq. (1) is written

—u’(x) = f(x) xe(=1,1), (6a)
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u(—1) =u(l) =0. (6b)
We know that the solution to (2) is given by the symmetric function,

fx) =a+ (B —a)x-s.0- @)

for § = g%z € (0, 1). In one dimension, since —u” = f > 0, u is a concave function, so
every super-level set {x: u(x) > y}is aconvex set, i.e., an interval. Thus, the rearrangement

algorithm in one dimension gives a sequence of intervals [y; — §, y; + 8] for i € N, with
yi —~> 0.

The map y; — yi+1 = g(y;) is described by finding the appropriate super-level-set of
the solution u(x) to (6), which is a new interval, [y;+1 — 8, yi+1 + 8]. The rearrangement
algorithm is summarized in Algorithm 2.

Theorem 1 Consider the rearrangement method on the one-dimensional interval, 2 =
(—1, 1), for the optimization problem in (2) with parameters § > o > 0 and § € (0, 1). The

iterates are monotonic and converge linearly with constant L = (1 — % (1—29), i.e., there

exists an integer iy > 0 such that
[it1l = Llyil, Vi > ip.

A Proof of Theorem 1, relying the Banach fixed-point theorem, is given in Sect. 2. In
Fig. 1, the first few iterations of u; (x) for a choice of parameters yo = 0.8, ¢ = 1, 8 = 2,
and § = 0.2 are shown. Denote the one-dimensional objective function by j: [0, 1] — R,

1
Jj) :Z/lu(x;y)f(x;y) dx.

In Fig. 2, we plot i versus |y;| and |j(y;) — j*| with logarithmic (base 10) scale used for
the vertical axis. It only takes 35 iterations to reach the machine accuracy and a linear
convergence is observed. Furthermore, the iterates lie on a line with slope L = 0.4, as
expected theoretically. In Figs. 3 and 4, we demonstrate that it is possible to take many
steps to reach the machine accuracy if the ratio g is high and § is small. This is predicted
theoretically as L ~ 1. We show this case by choosing yp = 0.8, « = 1, 8 = 100, and
8 = 0.01. This gives L = 0.9801 and it takes 1625 iterations to reach machine accuracy.

We can explicitly evaluate

1

y—48
j(y)za/ ur(x; ) dx+ﬂ/ ur(x; y) dx+af us(xiy)dx  (8a)
-1 y—4é y+8

=" =288 —a) (@ +8(B—a)y% (8b)

y+4

where
o . 2 2 2 2 2 2 2
J :](0):501 —gaé(é —3)(,3—oz)+§6 B-20)(pB —a).

Corollary 2 The objective function values j(yx) converge linearly to the optimal value j* =
j(0) with rate L2, where L is the same constant as in Theorem 1, i.e.,

1 k1) — 71 < L2 k) — j*1.
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Fig.1 A plot of u(x) for the initial f and the first three iterations of the rearrangement method with yg = 0.8,
o =1,B =2,and § = 0.2. On the x-axis, the points y; — § and y; + § are indicated

10° 10°
10 _ 10°%
slope=0.4 ~ slope=0.16
— [
B —
o 3
1 0.1 0 = 10—1 0
1071° 107
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
iteration iteration
(a) (b)

Fig.2 A plot of a the number of iteration i versus |y; | and b i versus |j(y;) — j*| with logarithmic (base 10)
scale used for the vertical axis for the first 35 iterations of the rearrangement method with yg = 0.8, « = 1,
B =2, and § = 0.2. Linear convergence is observed in both figures

A Proof of Corollary 2 is given in Sect. 2.

In Sect. 3 we give a more detailed discussion and some numerical evidence of linear
convergence in higher dimensions. We show in Theorem 3 that in the case where £2 is
a d-dimensional ball, B(0, 1), and the initial condition, fj, is radial, the rearrangement
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Fig.3 A plot of u(x) for the initial f and at 100, 200, and 1600 iterations of the rearrangement method with
yo=0.8, ¢ =1, 8 =100, and § = 0.01. On the x-axis, the points y; — § and y; + 8 are indicated

method converges to the optimal solution in just one iteration. In a variety of two-dimensional
numerical experiments, we demonstrate linear convergence of the rearrangement method.
We conclude in Sect. 4 with a discussion.

2 Proof of Theorem 1, Linear Convergence in One Dimension
We consider a function f of the form
f@) =a+ (B —a)xy—sy+s]-
We can explicitly solve (6) as follows. We make the ansatz
up(x) = —%xz +cx+c, xel[-1,y—-34];

ur(x) = —gxz +c3x+cq, x€ly—968,y+968]

o
uz(x) = —Exz +csx +cs, x€ly+56, 1]
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Fig.4 A plot of a the number of iteration i versus |y; | and b i versus |j(y;) — j*| with logarithmic (base 10)
scale used for the vertical axis for the first 1625 iterations of the rearrangement method with yg = 0.8, ¢ = 1,
B =100, and § = 0.01. Linear convergence is observed in both figures

Clearly this ansatz satisfies (6a) on each subinterval. We find constants {c; }1.6:1 so that u(x) is
continuously differentiable at x = y — § and y + § (4 conditions) and satisfies the boundary
conditions (6b) at x = %1 (2 conditions). The constants are given by

cr=8B—-a)(l -y,

Cz=%+5(ﬂ—a)(1—y),

3= (f—a) =¥y,

- ( NE ﬁ Lz
64_2+5_“(_2_2>’
cs=—0B—-—a)(1+Yy),
=2 458 —a)(1+y).

2

The solution to the Poisson equation is then given by

u1<x)=(1+x>[%(1—x>+6<ﬂ—a><1—y)], xe[-1,y—8l;
P powa—s LTS P [y — 8,y +8;
ua(x) = =527 + (B =)L = O)yx + 5 + (B a>< 5 7), xely—8,y+3l;

o
w3 = (1= [FA+0+8B -0 1 +0)]. xeb+s1.
The rearrangement step is then to find the unique point x = y; 4 satisfying:
u(it1 —8) = u(yi+1 +9). ©))

We will refer to this mapping as y; +— y;+1 = g(y;). We identify four cases based on the
interval: [—1,y — 8], [y — &,y + &1, or [y + 8, 1] in which the two points y;+; — § and
Yi+1 + & in (9) are located:
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Case Equation Comment

1 up i1 —8) = ug (yiy1 +9) Yigl < yi — 28

2 u1(i+1 —8) = u2(yj+1 +9) g is a contraction mapping on [0, ¢]
3 u(¥i+1 —8) =u3(yi41 +9) symmetry argument

4 uz(yi+1 —8) = u3(yiy1 +9) symmetry argument

Claim 1 Case 3 or Case 4 occurs if and only if y; < 0.

For Case 3 or Case 4 to hold, we would require that u>(y — §) < ua(y + §). But a short
computation shows that this is equivalent to y; < 0.

Claim 2 Case 1 occurs only if y; > A := max{38 — 1, %}.

First, for Case 1 to occur, we need the interval of length 24 to be contained in the interval
[—1, y; — 8], which gives that y; > 3§ — 1. Second, for Case 1 to occur, i.e., for there
to exist a yj+1 € [—1,y; — 28] satisfying u1(yi4+1 — 6) = u1(yi+1 + &), we need that
u1(y;i —368) > uy(y; — §). This condition is equivalent to

S+ B)

> — 10
Yy (10
These two conditions together give y; > A.
Claim 3 In Case 1, we have that
)
Yitl = &(ﬂ —a)(I —y). 1D

and satisfies y;+1 € [0, y; — 26].
The solution y; 1 is obtained by solving u(yi+1 — ) = u1(yi+1 + ). From (11), we
immediately have that y; 11 > 0. We now use (10) and (11) to compute

) 1)
Vi — Vil = (H—*(ﬂ —05)> yi——(B—a)
o o

) S(a + B) §
= <1+a(ﬂ_a)>m—&(ﬂ—a)

=26.

Claim 4 We cannot stay in Case 1 for more than [127—5)‘1 iterations. At the first iteration in
which Case 1 doesn’t hold, we are in Case 2.

Case 1 only occurs if y; > A and we have that y; < yp —2k§ < 1 —2ké§. Afterk = (12;5)‘
iterations, we have y; < A. Since Case 3 and Case 4 only occur when y; < 0 (see Claim 1),
we conclude that the first iteration for which Case 1 doesn’t hold, we are in Case 2.

Claim 5 In Case 2, the solution, y; 1, is given by

2
Vitl =Yi — 57— [ﬂ5 - \/ﬁ252 —yid(B—a) (a+68(8— Ol))} (12)
B—a

and satisfies y; 1 € [0, y;].

The solution, y; 41, is obtained by solving the equation u{(y;+1 —8) = u2(yi+1 +6). The
following argument shows that the solution is real since the quantity in the square root is
positive. In Case 2, we have either

@ Springer



6 Page100f18 Journal of Scientific Computing (2021) 86:6

S+ B)

yl<m or yl<38_1'
Ify < %, we then have that
2
25 — 3B —a) @+ 8B —a) > 262 — — P (5 0y (@188 - )
a+8(B—a)
=a28® > 0,

so the quantity in the square root is positive.
Now suppose that 0 < y; < 3§ — 1, so that § > % We also know that y; < 1 — 4. We
estimate the lower bound of the term in the square root

B28% — yi8(B— ) (@ +38( — ) > B26% —8(1 = 8)(B —a) (@ + (B — @)
=(B— )8 +ad’>3p —20) —ad(B — )

> (B —a)s8 +a%8(3,6 —2a) —ad(B —a)
az
=B -a)s + =59>0,

so the quantity in the square root is positive.

Inspecting (12), since the term in the square root is in the interval (0, 84), the term in
square brackets is in the interval (0, 1). This shows that y; ;1 < y;.

We now show that y;; > 0. This is equivalent to showing that

u(—=38) < u(d).
There are two conditions that must be independently checked:

ur(=8) =ui1(8), if28 <yi; (13a)
ur(=8) =uz(9), ify; <24. (13b)

To check the condition in (13a), we compute
w1 (=8) —u1(8) = =28*(B —a)(1 = y;) <0,

which verifies (13a).
To check the condition in (13b), we compute

u(=8) —w(®) = (B — o)y (5 — 281 -9)).
Ifé < %, we use y; < 26 and compute
u(=8) —u2(8) < (B—a)yi 6§ —28(1 —98)) = = (B —a)yid (1 —28) <0.
If§ > %, we use y; < 1 — § and compute
1-6 1
u(=8) —uz(8) < (B—a)yi (T —26(1 — 5)) = _E(ﬂ —a)yid(1—=48)4s—1) <0.

These two conditions verify (13), so yj+1 > 0.
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Claim 6 In Case 2, the mapping defining the iterates in (12) is a contraction map with constant
L= (l - g) (1 — 8) on the interval [0, ¢], where

B
4838(1 — 8)
= 14
? (@+8(B—a)B+ (B—a)l —8))? (14
2 PSS
_ B%8 (1_ (@ +38(B—a)) > (14b)
B-—a)(a+8(f—a) B+ (B—a)l—8))?
From (12), we have y; 1 = g(y;) where
2
g =y — [ﬂa—/ﬁ262—y8<ﬂ—a> (a+8(ﬁ—a))]- (15)
B—«

We will show that g is a contraction mapping on [0, ¢].

We compute the derivatives:

, §(a+8(8—a))
g =1- (16)
VB2E = y8(B — ) (@ + 8(B — @)

and

p 82(B —a) (@ +38(B—a))?
gy =—2

(17)
2 (8262 — y8(B — ) (a + 8(8 — @)))

3"
2

We observe that g”(y) < Oforall y € [0, 1], which implies that g’(y) is decreasing on [0, 1].
Computing g’(0) = W = L € (0, 1), we conclude that

gdy)<L<1, Vyelo,1].

We next show that g’(y) > —L for all y € [0, ¢]. From the expression for ¢ in (14a),
we immediately have that ¢ > 0. To see that the two expressions in (14a) and (14b) are the
same, we simply compute

B+ B —a)(1—8)"—(@+8(B—a)? =48 —a)l —9).
Using the expression for ¢ in (14b), we compute, for y € [0, ¢],
§(a+ (B —a)d)

/ —1—
N e T CE )
~ 5 (o + (B — )8)

VB2 —$8(B — ) (@ + (B — @)d)
BB -5
B
= —L.

Claim 7 In Case 2, if y; > ¢, the iterates satisfy

4B5(1 — 6
Vi — Yit1 = P ) > 0,

T+ (B —a)(1-9)
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Using (12) and (14b), we have that

Vi = Yitl =

IS

[/38 — B8 = yis(B— ) @+ (B - a)&}

=

[\

e [ﬁa — B8 — 38— ) (@ + (B —ooa)]

_ 28 (1— (@+ (B —a)d) )
B+B-a)1-8)/)

Computing
B+ B-a)l—=38)—(a+ (B —a)) =2(8 —a)l —9),

we have
4B88(1 —6)
Vi = Yi+1 = > 0,

T A+ B -l =9)

as desired.

Completing the proof

Without loss of generality, we may assume that yg > 0. By Claims 1, 3, and 5, we can assume
that y;+1 € [0, y;]foralli > 0 and that only Cases 1 and 2 are possible. By Claim 4, we have
that we cannot stay in Case 1 for more than a finite number of iterations, after which we are in
Case 2. By Claim 5, once the iterates are in Case 2, they remain in Case 2. By Claim 7, after
a finite number of iterations, we obtain y; € [0, ¢]. By Claim 6, g is a contractive map on
[0, ¢1, so by the Banach fixed-point theorem, we obtain linear convergence. This completes
the Proof of Theorem 1. ]

Proof of Corollary 2 Using (8), we compute

JOeD) =1 _ 1 =28 - @+8B - yipl _ Il _
1j () — j*] | —28(B —a) (@ +8(B — @) y?| Iv71

as desired. ]

3 Convergence in Higher Dimensions

In arbitrary dimension d, we can prove the following convergence result for the radially
symmetric case.

Theorem 3 Consider the case where 2 is a d-dimensional ball, B(0, 1), and the initial
condition, fy, is radial, i.e., in polar coordinates, fo = fo(r). The rearrangement method
converges to the optimal solution in just one iteration.

Proof 1In this case, the solution, u, to the Poisson Eq. (1) is radial, satisfying

1 , 1 ro
e (F0) = o) = W) == [ ooy ds <0,

Since the solution is radially decreasing, all super-level-sets are balls centered at the origin.
In particular, the first iteration of the rearrangement method will be the optimal solution. O
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Fig.5 The functions f; and uy are shown for k = 0, 1, 2, 11 in the first and second row, respectively. The log
plots of || fx — fr+1ll. | fx — f*Il, |Jk — Jk11, and |Jy — J*| versus k are shown in the third row

However, as discussed in the introduction, in the case where £2 is not a ball, we consider
a proof of the convergence rate for (2) in higher-dimensions to be a difficult problem. In the
remainder of this section, we provide some numerical evidence for linear convergence in two
dimensions. The results of these computational experiments are reported in Figs. 5, 6, 7, 8,
and 9. In the following numerical simulations, we use L, norm to measure the successive
difference f; — fr+1 and the error f — f*. The algorithm is terminated when the successive
difference in f is zero, i.e., fx = fik+1. The mesh size and the number of iterations for each
simulation is reported. Except for the experiment associated with Fig. 7, we choose o = 1
and 8 = 2.

In Fig. 5, we show the results of a computational experiment on a disk £2 = {(x, y): x>+
y? < 1} with |D| = 7. Since we proved that the radial initial f only requires one iteration to
reach the maximum, we choose a non-radial initial f in order to demonstrate linear conver-
gence. The calculation is done on a triangular mesh with 2, 097, 152 elements and f; and uy
are shown for k = 0, 1, 2, 11. The theoretical optimal value of J* ~ 0.828904036113266
was derived in [16]. The function fj converges to the exact solution f* = x, 1 (r)+1 which
is a radially non-increasing function. We see that the log plots of || fr — fi+1ll, I fx — f*1l,
|Jx — Jk+1l, and | Jx — J*| versus k demonstrate first order convergence. The error || fr — f*||
saturates at the level of 10~ ~ 107> and the error ||Jy — J*| saturates at the level of
107 ~ 107 due to the expected numerical error coming from the finite element discretiza-
tion. This error can be reduced when a finer mesh is used. This phenomenon is observed in
the following simulations as well and will not be further discussed.

Figure 6 shows the results of a computational experiment on a unit square domain, 2,
with |D| = 0.25. The calculation is done on a triangular mesh with 1, 048, 576 elements.
The set D is initialized as the strip, D = {(x, y) € £2: x > 0.75}, and converges to a circular
like shape in the middle of the unit square. As the exact solution is not available for this case,
we show the log plots of || fx — fk+1]| and |Jx — Jx+1] versus k only, where we observe first
order convergence.
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plots of || fx — fik+1ll and |Jx — Ji1| versus k are shown in the third row
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Fig.7 The functions fj and uy are shown for k = 0, 1, 2, 27 in the first and second row, respectively. The log
plots of || fx — fik+1ll and |Jx — Jx1| versus k are shown in the third row

Figure 7 shows the results of a numerical experiment that is the same as the previous
one, except now, B = 100. When § — « is larger, we expect that it takes more iterations
to achieve the maximizer. Instead of 11 iterations need for convergence in Fig. 6, this high-
contrast simulation requires 27 iterations to reach the maximizer. Again we observe linear
convergence, but the constant of convergence is larger. Similar behavior is observed for
high-contrast simulations for other domains £2 below, but we we omit the report of those
calculations for brevity.
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Fig.8 The functions fj and uy are shown for k = 0, 1, 2, 13 in the first and second row, respectively. The log
plots of || fx — fik+1ll and |Jx — Ji1| versus k are shown in the third row

In Fig. 8, we report numerical results on a cross-shaped domain which is Steiner symmetric
with respect to x- and y-axis and |D| = 0.25|£2|. The calculation is done on a triangular
mesh with 671, 744 elements. We initialize the simulation with D = {(x, y) € £2: x > 1}.
The maximizer has D* form a star-shaped domain and the function u reaches it maximum
at (0, 0) which is the intersection point of x- and y-axis. It is noteworthy that the optimal
domains obtained from the rearrangement algorithm in Figs. 5, 6, 7, and 8 inherit Steiner
symmetry of §2 as it has been proved in [10].

Figure 9 shows the results of a numerical experiment on an annulus with the inner radius
0.5 and the outer radius 1. In this simulation, |D| = 0.5]£2|. The calculation is done on a
triangular mesh with 2, 752, 512 elements. Even if the initial D is simply-connected, it evolves
to a domain which is not simply-connected in one iteration and then gradually converges to
the optimal shape, which is an annulus. Linear convergence is observed both in log plots of
Il fk — fe+1ll and | Jx — Ji41] versus k.

Figure 10 shows the results of a numerical experiment on a L-shaped domain with a
triangular mesh with 2, 621, 440 elements. In this simulation, |D| = 0.5|£2|. We observe
linear convergence in both log plots of || fx — fk+1ll and |Jx — Jr41| versus k on a domain
without any symmetry.

4 Discussion

In this paper, we have studied a rearrangement method for the problem of maximizing the
total displacement in Poisson’s equation over forcings within an admissible class. In this
paper, for the one-dimensional problem, we establish linear convergence; see Theorem 1 and
Corollary 2. The proof, given in Sect. 1, relies on an explicit solution to the Poisson equation
on an interval for forcings of the form f(x) = « + Bxp, for a subinterval D. In Sect. 3,
we provide computational evidence for linear convergence of the rearrangement method for
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Fig. 10 The functions f; and uy are shown for k = 0, 1, 2, 20 in the first and second row, respectively. The
log plots of || fx — fk+1ll and [Jx — Ji41| versus k are shown in the third row

various two dimensional domains. Here, our method of proof does not extend since an explicit
solution is unavailable.

There are a variety of extensions and future directions of this work. We have numerically
observed linear convergence in two dimensions. It remains to prove linear convergence, and
also to establish the dependence of the constant in the linear convergence on (i) the shape

of the domain £2, (ii) the ratio of volumes, “%, and (iii) the admissible class constants, «,

,and f. Numerical results suggest that the constant is decreasing in DI 2nd increasing in
22 g1 15 g
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B — «, as in one dimension. It might be possible to prove a partial result in the low contrast
regime (B ~ «); see [21] for such results in another context.

One important direction would be to develop computational methods that are superlinear.

However, it is not straightforward to apply Anderson’s and Steffensen’s acceleration schemes
as the solution updates are not admissible.

In the introduction, we list several other problems in which rearrangement methods can

be applied. It would be interesting to study the rate of convergence in these problems as
well. One simple geometric example, and the only other example we are aware of where a
convergence rate can be established, is for the Steiner symmetrization for triangles [11, p.50].
Here, the ratio of the triangle’s height to base length, x,,, can be shown to satisfy the iterative
equation

4x,

Xn+l = 1+4X%

V3

Itisn’t difficult to show that x, — 5> at a linear rate.
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