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ABSTRACT: Nonparametric statistical tests are an integral part of scientific experiments in a diverse range of fields. When
performing such tests, it is standard to sort values; however, this requires Q(n log(n)) time to sort n values. Thus given enough data,
sorting becomes the computational bottleneck, even with very optimized implementations such as the C++ standard library routine,
std::sort. Frequently, a nonparametric statistical test is only used to partition values above and below a threshold in the sorted
ordering, where the threshold corresponds to a significant statistical result. Linear-time selection and partitioning algorithms cannot
be directly used because the selection and partitioning are performed on the transformed statistical significance values rather than on
the sorted statistics. Usually, those transformed statistical significance values (e.g, the p value when investigating the family-wise
error rate and q values when investigating the false discovery rate (FDR)) can only be computed at a threshold. Because this
threshold is unknown, this leads to sorting the data. Layer-ordered heaps, which can be constructed in O(n), only partially sort
values and thus can be used to get around the slow runtime required to fully sort. Here we introduce a layer-ordering-based method
for selection and partitioning on the transformed values (e.g, p values or q values). We demonstrate the use of this method to
partition peptides using an FDR threshold. This approach is applied to speed up Percolator, a postprocessing algorithm used in
mass-spectrometry-based proteomics to evaluate the quality of peptide-spectrum matches (PSMs), by >70% on data sets with 100
million PSMs.

KEYWORDS: sorting, false discovery rate, Percolator, peptide search, layer-ordered heap, nonparametric statistical test, partition,
algorithms, performance, tandem mass spectrometry

B INTRODUCTION score, y, is monotonic with i. Sorting n hypotheses’ test
Rank-based nonparametric statistical tests, such as the statistics x;, X, ..., %, in this manner costs Q(nlog(n)), which
Wilcoxon signed-rank test,' are common operations used means the amount of work done is always going to be greater
across scientific disciplines.”” Their widespread use is primarily than or equal to nlog(n). Once sorted, it is possible to go
due to a lack of parametrization, which is beneficial because no through every threshold and compute g efficiently. Because

underlying distribution is assumed. Hence such tests can be
applied more broadly. This is in contrast with parametric
statistical tests such as the t test,” which assumes that the data

sorting is super linear and other routines, such as building the

are normal. Special Issue: Software Tools and Resources 2021
Given x;, x,, .., x, and the identity of the test statistic’s Received: September 14, 2020
hypothesis, the test statistics of hypotheses are ordered such Published: February 2, 2021

that x; < x,... < «,. The statistical test computes a significance
value (e.g, p value or q value) of the form y, = f(x;) = g(xy, x,,
.., ;). Because hypotheses are added best first, the significance
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empirical cumulative density function, have become so
optimized, sorting may become a computational bottleneck
for performing nonparametric statistical tests, especially for
problems with large amounts of data.’

Linear-time selection® can be used to generate the k best x,,
%y, .y % in any order € O(n) time, which means the amount of
work done is always going to be less than or equal to n, within
a constant factor; however, the typical use case for testing is to
find the largest rank k such that y, y,, .., yp < 7 for some
threshold 7. Often there is no closed form for f, so it is not
possible to simply take the inverse of f and solve directly.

Percolator

Mass-spectrometry-based proteomics is currently the most
comprehensive way to analyze the proteome; however, the
technology is verbose in that it generates large amounts of
data. Consequently, data processing represents one of the
more important and time-consuming steps of a mass
spectrometry experiment.

A common way to interpret the spectra generated in an
experiment is to use search engines that match spectra
predicted from a target database of the amino acid sequences
of the analyzed proteins to the observed spectra.””'® The
results of this operation are referred to as peptide-spectrum
matches (PSMs), which have an associated score based on how
well the theoretical peptide spectra match the observed
spectra. Because the approach will match every spectrum,
regardless of whether the spectrum was the result of proteins
present in the searched sequence database, we are
subsequently left with the problem of determining which of
the PSMs were results of correctly and incorrectly formed
PSMs. This is normally done based on a score threshold for the
PSM scores, where all PSMs scoring better than the threshold
are considered correct, whereas the ones below the threshold
are considered incorrect.

Score thresholds are often selected based on target-decoy
analysis.'"” We can assess different statistics of the PSMs above
(and below) some threshold by analyzing the score
distribution of deliberately incorrectly formed PSMs, referred
to as decoy PSMs, stemming from matches against nonpresent
protein sequences. Most commonly, one assesses the false
discovery rate (FDR).'® Calculation of the FDR corresponds
to the g function. Given a set of sorted hypotheses and their
labels, (x;, T), (x5, D), ..., (x,, D), find the largest k such that

g((xIJ T)) (xZ) D); - (xk) T)) < T where &= M;
no. of target arguments

and the “decoy” and “target” terms correspond to the label of
the PSM’s hypothesis (e.g., whether the PSM is a target or
decoy). Hence g estimates the FDR by looking at the identities
of the hypotheses and determining the ratio of decoys to
targets. Thus the FDR is essentially a surrogate for the
percentage of incorrect discoveries found above a particular
score threshold. Note also that in this case, g only cares about
the identity of x;'s hypothesis.

Normally, the FDR calculation is not seen as very time-
consuming compared with matching spectra to peptides;
however, whereas peptide-spectrum matching scales linearly
with the number of PSMs, nominal FDR calculations are Q(n
log(n)) because they sort scores to find the threshold at which
to partition scores. Hence given a large enough set of spectra,
the FDR calculation will become the most time-consuming
step of the entire program. This is true even for the best
comparison sorting algorithms, which have been highly
optimized.
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PSM scoring has been improved by post-processing with
machine-learning algorithms. Percolator'” is one of the leading
postprocessing algorithms that integrates more features than
just the search engine score into an aggregate score. The PSMs
are then sorted by score, and all target and decoy PSMs above
a fixed FDR threshold are used as positive and negative
examples (respectively) for training a support vector machine
(SVM). The trained SVM is then used to rescore the PSMs.
This process is iteratively repeated for a user-specified number
of times; then, the final scores are produced. Hence, Percolator
is dependent on FDR calculations not just for creating a final
list of PSMs for the user but also for creating training examples
for the SVM. So the FDR calculation, and hence sorting, is also
an intrinsic part of the training procedure.

Mass spectrometry experiments produce increasingly larger
amounts of data as technology continues to advance. Much
effort has been devoted to improving the efﬁciencgr of
Percolator to ensure that it can meet these demands.”’”**
One of the optimizations relied on improving the SVM
training via CGLS, a special conjugate-gradient solver,”
whereas other optimizations rely on multithreading, which
may limit their effectiveness in environments with limited
resources.

With these sophisticated optimizations to Percolator’s
machine-learning algorithms in place, the more classic problem
of sorting limits the runtime performance of Percolator, at least
for large sets of PSMs. (See Table 1.)

Table 1. Percent of Percolator’s Overall Runtime Spent
Calculating the FDR Using Sorting”

percent of Percolator’s runtime spent
calculating the FDR

number of PSMs threads = 1 threads = 64

21028 8% 4%

406 216 38% 38%
601211 39% 41%
789 071 39% 44%
935536 40% 48%
1119 346 40% 48%
100 741 051 N/A 68%

“Machine-learning algorithms used by Percolator have become so
optimized that a significant bottleneck is sorting the PSM scores to
find the score corresponding to the desired g-value threshold. For
100 741 051 PSMs, the single-threaded Percolator did not finish in
the 12 h allowed.

Layer-Ordered Heaps

A natural approach would be to employ a faster sorting
algorithm; however, comparison sorting € Q(log(n!)) = Q(n
log(n)). Instead, a sorting algorithm with a faster runtime
constant could also be used; however, std::sort is already well
optimized and supports multithreaded CPUs. But simply
because Percolator’s g-value threshold routine reduces to
sorting does not imply that sorting is necessary.

Note again that g does not care about order. Hence only a
partial ordering may be needed. For example, the partitioning
X1y X9y X3 < X4y X5y Xg... is equal in quality to the partition x,, x;,
x5 < Xg X4 Xs.. because g cardinally operates by counting
arguments, and so the order of arguments is unimportant.
Layer-ordered heaps”* (LOHs) can be used to circumvent the
slow runtime of sorting or the repeated use of linear-time
selection. Because f is known to be monotonic with x, simply

https://dx.doi.org/10.1021/acs.jproteome.0c00711
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find the first «; that crosses a given threshold and keep all y; less
than that. This is similar to divide and conquer on median but
will perform much better in practice due to the fact that LOHs
are contiguous in memory.

An LOH is a list partitioned into layers, where a layer’s
elements are guaranteed to be ordered with respect to layers
that follow. (Here we will use a strict ordering using the >
operator, meaning every value in a layer is strictly greater than
the values of subsequent layers.) Note that elements within
layers are unordered. An LOH also has the property that
asymptotically, the ratio of the sizes of layers is @,”> meaning
that for @ > 1, the layers grow exponentially.

The parameter @ can be chosen arbitrarily but should be
chosen to be >1. If  is small, then we are closer to sorting the
list. (In fact, if @ = 1, then it is equivalent to sorting.) Similarly,
if a is too large, then the layer that contains the desired f(x;)
may be unnecessarily large, which will require many recursions
to precisely locate the desired f(x;). Other than avoiding
sorting, the choice of a is otherwise a practical matter that is
essentially balancing the runtime constant for data movement
against the runtime constant for performing comparisons.

Because ordering between layers is strict, it is possible that a
layer cannot be subdivided because the layer contains too
many duplicate values, unless this limits the fragmentation of a
layer. For a constant @, a list can be lohified (i.e., partitioned
into an LOH) in linear time. An example of LOHs with
varying a values can be seen in Figure 1. LOHs have been used

(2) [39/81]40/67|42]27|74[2158]71]46[22]91]
() [21]22]27|39]40(42/46]58]67|71|74/81/91]
(©) [21]27 22[39 40[42 58 46 67|71 81 74 91|
(d) [21]27 22/39 42 40 46(58 74 71 81 67 91|

Figure 1. Illustration showing the difference between sorting and
layer ordering. The same numbers are shown in (a) random order,
(b) sorted order (which is also an LOH with @ = 1), (c) an LOH with
a = 1.5, and (d) an LOH with a = 2.

in optimal selection on the Cartesian product of two lists*® and

in the fastest known selection on the Cartesian-product of
. 24 .

many lists.”" This approach was recently used to produce

NeutronStar,”” the world’s fastest publicly available exact

isotope calculator upon release (April 2020).

Quick Lohify

In addition to the traditional LOH, there is also the Quick-
LOH. These are constructed by partitioning the list on random
elements. In this way, Quick-LOH does not explicitly require
an o parameter. Whatever random pivot value is chosen, the
elements greater than or equal to the pivot form a contiguous
layer to the right of it, whereas the method recurses on the
values less than the pivot. This continues until the problem size
€ 0O(1), at which point the list is sorted in constant time.
Whereas the worst possible case for constructing a Quick-LOH
€ O(n?), the expected construction time is € O(n).”> Thus
Quick-LOH behaves similarly to a standard LOH and runs in
the same linear time. Unlike a standard LOH, Quick-LOH
does not produce an ordering with a constant expected a. E[a]
of a Quick-LOH € ©(log(n)),”> which means the amount of
work done is always going to be roughly equal to log(n), within
a constant factor. Whereas the theoretical behavior of the
Quick-LOH is not guaranteed to be as good as a traditional
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LOH, it is simépler to implement (as it does not require linear-
time selection”) and often faster in practice. For these reasons,
Quick-LOH is the data structure that we chose to use in
Percolator.

While not completely sorted, a layer ordering gives us
enough information to efficiently calculate the minimum or
maximum score threshold at which a particular FDR occurs.
Here we describe how to significantly decrease the runtime of
Percolator’s training procedure by using LOHs to partition the
PSMs about an FDR threshold.

B METHODS

Percolator calculates the FDR by first sorting the scores and
then counting the total number of scores seen before the last
time the FDR raises above a given threshold, 7. The ordering
between the scores that are below the threshold does not
matter; it is only the number of scores that are below the
threshold that matters. This means the scores do not have to
be fully sorted; however, it is not known in advance where to
partition the list. Here we describe how LOHs may be used to
partition the scores about 7 without having to resort to sorting
(Figure 2).

21]27 22[39 42 40 41[58 74 71 81 67 91 50 46

46[58 50[81 67 71 74]91]

Figure 2. Illustration showing how to partition a list of decoys and
targets about an FDR threshold using LOHs. Scores associated with a
decoy PSM are shown in red, whereas scores associated with a target
PSM are shown in blue. If the given FDR threshold falls between the
pessimistic and optimistic FDR values for a layer, then the layer is
recursed on. This continues until the score that partitions the PSMs
about the FDR threshold is found. Notice that the scores become
asymptotically more sorted about the FDR threshold while circum-
venting the need to sort any other part of the list.

Calculating the FDR Using Layer-Ordered Heaps

To calculate the FDR, the list of scores must first be lohified. If
the list was sorted, then one could proceed score-by-score to
calculate the FDR, but for a lohified list one, must proceed
layer-by-layer. Percolator uses three different procedures to
estimate the FDR: target-decoy competition,”*® separate
target-decoy searches,'” and the mix-max procedure.”” Here
we will show how to calculate the FDR for a target-decoy
competition procedure; however, the same idea can be applied
to the other two schemes in a similar manner.

FDR Calculation
=0 D;

i
-7

FDR(layer i) =
(1)

The FDR calculation used in the lohified version can be seen
in eq 1 where D; and T; are the total number of decoy and
target PSMs in layer j, respectively.

First, a linear pass must be made to count the total number
of decoys and targets, so that the exact FDR at the beginning
of a layer may be calculated. Then, the layers are traversed,
starting with the low scoring layers (which will also be the
largest layers) and moving toward the high scoring layers.

https://dx.doi.org/10.1021/acs.jproteome.0c00711
J. Proteome Res. 2021, 20, 1849—-1854
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Figure 3. Runtimes for Percolator when calculating the FDR using sorting versus using layer-ordered heaps. (a,c) Overall runtimes of Percolator.
(b,d) Percentage of the overall runtime spent calculating the FDR. The smallest data set was created by selecting PSMs from mass spectrometry
samples on a standard 18 protein mixture. There were six different larger data sets created by selecting PSMs from mass spectrometry samples on
31 human tissue types. The samples range in size from 21 028 to 100 741 051 PSMs. On all data sets but the largest (a,)b), reported times and
percentages were averaged over 10 iterations, and each method was implemented using 1 thread and using 64 threads. On the largest data set (c,d),
reported times and percentages were averaged over three iterations due to the decreased variability in results and a roughly 80-fold increase in the
runtime. The single threaded implementations did not finish in the 12 h allowed. Error bars are included to indicate the minimum and maximum

run times observed.

For each layer, the most pessimistic and the most optimistic
FDRs are calculated. The pessimistic FDR assumes that all
decoys in the layer are seen before any targets, and the
optimistic FDR assumes the opposite. Because the FDR is
known at the start of the layer, these bounds are exact. If 7 falls
between the bounds of the layer, then the layer is recursed
upon. Ties are handled during the lohification of the list by
being put into the same layer.

The recursion on a layer applies the same algorithm to the
layer as it did the entire list with one exception: It must pass
the cumulative number of decoys and targets in all layers
whose scores are higher than the current one so that the FDR
calculations in the recursions may also be exact. The algorithm
stops recursing on a layer if 7 no longer lies between the
pessimistic and the optimistic FDRs or the layer size is small
enough to be sorted in constant time. Because the layer is now
sorted and the FDR at the beginning of the layer is known, the
result is exact.
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There are three special cases when investigating a layer that
allow the layer to be immediately discarded or the correct
score to be returned without any recursions. If the layer is all
targets, then the FDR can only decrease over the layer, so it
may be skipped. If the layer is all decoys, then the FDR at the
end of the layer can be calculated directly from eq 1. The third
special case is the entire layer has the same score, in which case
the exact FDR at the end of the layer is able to be calculated
without any recursions.

Bl RESULTS

All experiments were run on a workstation equipped with 256
GB of RAM and two AMD EPYC 7351 processors with a total
of 64 threads running Ubuntu 18.04.4 LTS.

Runtime
Substituting the LOH method for calculating the FDR has

resulted in a significant speed-up over the conventional sorting
method in both single-threaded and multithreaded environ-

https://dx.doi.org/10.1021/acs.jproteome.0c00711
J. Proteome Res. 2021, 20, 1849—-1854
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ments. The smaller data set was obtained by taking 21 028
PSMs from the ISB standard 18 protein mixture, a mixture of
18 proteins from various organisms.’’ The six larger data sets
were obtained by taking between 406211 and 100741 051
PSMs from a data set that is made from 19 433 acquisitions on
31 human tissue types.”’ The runtimes for Percolator with the
two separate methods of calculating the FDR are shown in the
left column of Figure 3, where we see a speed-up of up to 36
and 70% for the single- and multithreaded versions,
respectively. The time spent in the FDR calculating routine
as a percentage of the overall runtime of Percolator is shown in
the right column of Figure 3. The average percent of time
spent calculating the FDR decreases from 40 to 19% for the
single-threaded and from 48 to 30% for the multithreaded.
Note that the times for the largest data set were averaged over
three iterations due to the decreased variability in results. The
single-threaded implementation did not finish.

B DISCUSSION

In this Article, we describe how to use an LOH to partition a
list of scores about a given FDR threshold. We also
demonstrate the practical performance of this routine over
sorting by modifying the shotgun proteomics postprocessing
software package Percolator to use our new routine.

Percolator is an important and commonly used postprocess-
ing step for shotgun proteomics. The machine-learning
algorithms used in Percolator have been optimized for speed,
but this makes sorting the scores a performance bottleneck,
which we have shown to be alleviated by the use of LOHs. It is
also important to note that there are two different processing
steps within Percolator that require an FDR calculation. The
first step uses the FDR to partition the PSMs about that
threshold for subsequent SVM training. The second step uses
the FDR to calculate q values for the final list of PSMs. In this
Article, we demonstrated how Percolator’s processing step can
be sped up by modifying the first subroutine; however, we have
not been able to speed up the second step. One potential
future improvement to Percolator is to optimize the g-value
calculation of the second step by using, for example,
approximate sorting.

The speedup to the FDR calculation is very robust; however,
is it important to note that the overall speedup will depend on
what portion of the total runtime is spent in the FDR
calculation. With very old hardware, it is conceivable that the
SVM training in Percolator may put more stress on the
hardware (e.g., due to a significant number of nonsequential
random access operations while training the SVM, which could
overwhelm a very small CPU cache).

The significant decrease in runtime may be attributed to
three main benefits of using LOHs. First, a list may be lohified
in linear time as opposed to the Q(nlog(n)) time required
with sorting. Second, if we find the FDR cutoft in layer L, then
we will never look at layers L, ;; beyond the initial
lohification of the list. Third, it is unlikely that we will recurse
on layers L;,;  to find the exact cutoff, meaning that we will
likely only need a single linear pass to count the decoys and
targets in the layer.

Because FDR calculations and the subsequent subset
selection based on FDR thresholds are not domain-specific
problems unique to Percolator, this algorithm could be used in
many different parts of the data-processing pipeline for mass-
spectrometry-based proteomics as well as any other types of
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expression analysis of biopolymers or small molecules. Hence,
our algorithm is widely applicable.
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