Submitted 12 October 2020
Accepted 31 March 2021
Published 6 May 2021

Corresponding author
Oliver Serang,
oliver.serang@umt.edu

Academic editor
Rahul Shah

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.501

© Copyright
2021 Serang

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Optimally selecting the top k values from
X + Y with layer-ordered heaps

Oliver Serang

Department of Computer Science, University of Montana, Missoula, Montana, United States

ABSTRACT

Selection and sorting the Cartesian sum, X + Y, are classic and important problems.
Here, a new algorithm is presented, which generates the top k values of the form
X; + Y;. The algorithm relies on layer-ordered heaps, partial orderings of
exponentially sized layers. The algorithm relies only on median-of-medians and is
simple to implement. Furthermore, it uses data structures contiguous in memory,
cache efficient, and fast in practice. The presented algorithm is demonstrated to be
theoretically optimal.

Subjects Algorithms and Analysis of Algorithms
Keywords Selection, Cartesian product, Sorting, Combinatorics

INTRODUCTION

Given two vectors of length n, X and Y, top-k on X + Y finds the k smallest values of the
form X; + Y;. Note that this problem definition is presented w.l.o.g;; X and Y need not share
the same length. Top-k is important to practical applications, such as selecting the

most abundant k isotopologue peaks from a compound (Kreitzberg et al., 2020). Top-k is €
Q(n + k), because loading the vectors is € ®(n) and returning the minimal k values is €
O(k).

Naive approach

Top-k can be solved trivially in O(n?log(n) + k) = O(n*log(n)) steps by generating
and sorting all #* values of the form X; + Y;. By using median-of-medians (Blum et al,
1973), this can be improved to O(n”) steps by generating all #> values and performing
k-selection on them.

Existing, tree-based methods for top-k
In 1982, Frederickson & Johnson introduced a method reminiscent of median-of-medians
(Blum et al., 1973); their method selects only the k th minimum value from X + Y in

O(n + min(n, k) log (L» steps (Frederickson & Johnson, 1982).

min(n,k)

Frederickson subsequently published a second algorithm, which finds the k smallest
elements from a min-heap in O(k), assuming the heap has already been built (Frederickson,
1993). Combining this method with a combinatoric heap on X + Y (described below
for the Kaplan et al. method) solves top-k in O(n + k). The tree data structure in
Frederickson’s method can be combined with a combinatoric heap to compute the k'™
smallest value from X + Y.

How to cite this article Serang O. 2021. Optimally selecting the top k values from X + Y with layer-ordered heaps. Peer] Comput. Sci. 7:
e501 DOI 10.7717/peerj-cs.501

http://dx.doi.org/10.7717/peerj-cs.501
mailto:oliver.%e2%80%94serang@%e2%80%94umt.%e2%80%94edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.501
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Kaplan et al. described an alternative method for selecting the k™ smallest value (Kaplan
et al., 2019); that method explicitly used Chazelle’s soft heaps (Chazelle, 2000). By
heapifying X and Y in linear time (i.e., guaranteeing w.l.o.g. that X; < X5;, X;11), min;;
X; +Y; = X, + Y;. Likewise, X; + Y; < Xy, + Y}, X551 + Y}, Xi + Y35, X; + Y3;41. The soft
heap is initialized to contain tuple (X; + Y3,1,1). Then, as tuple (v,i,j) is popped from
soft heap, lower-quality tuples are inserted into the soft heap. These lower-quality tuples of

(i,j) are
{{(zi,1>,<zi+ L1),(,2),(i3)), j=1 0
{(i,Zj),(i,2j+l)}, j> 1.

In the matrix X; + Y; (which is not realized), this scheme progresses in row-major order,
thereby avoiding a tuple being added multiple times.

To compute the k™ smallest value from X + Y, the best k values are popped from the soft
heap. Even though only the minimal k values are desired, “corruption” in the soft heap
means that the soft heap will not always pop the minimal value; however, as a result,
soft heaps can run faster than the 2(nlog(n)) lower bound on comparison sorting.

The free parameter & € (0,1] bounds the number of corrupt elements in the soft heap
(which may be promoted earlier in the queue than they should be) as < ¢ - ¢, where ¢ is the
number of insertions into the soft heap thus far. Thus, instead of popping k items (and
inserting their lower-quality dependents as described in Eq. (1)), the total number of pops,
p> can be found: The maximal size of the soft heap after p pops is < 3p (because each
pop removes one element and inserts < 4 elements according to Eq. (1)); therefore,

p — corruption = p — 4p- ¢, and thus p — 4p - € > k guarantees that p — corruption > k.
This leads to p = : f48, e < i. This guarantees that ®(k) values, which must include the
minimal k values, are popped. These values are post-processed to retrieve the minimal

k values via linear time one-dimensional selection (Blum et al., 1973). For constant ¢, both
pop and insertion operations to the soft heap are € O(1), and thus the overall runtime of
the algorithm is € O(n + k).

Note that the Kaplan et al. method easily solves top-k in O(n + k) steps; this is because
computing the k™ smallest value from X + Y pops the minimal k values from the soft heap.

Layer-ordered heaps and a novel selection algorithm on X + Y

This paper uses layer-ordered heaps (LOHs) (Kreitzberg et al., 2020) to produce an optimal
selection algorithm on X + Y. LOHs are stricter than heaps but not as strict as sorting:
Heaps guarantee only that X; < X 4reni)» but do not guarantee any ordering between
one child of X;, a, and the child of the sibling of a. Sorting is stricter still, but sorting n
values cannot be done faster than log,(n!) € Q(nlog(n)). LOHs partition the array into
several layers such that the values in a layer are < to the values in subsequent layers:

X = X", x®,, ... < X** V. The size of these layers starts with |[X”)| = 1 and grows
‘X(qul)‘
x|

because all layers have size 1). By assigning values in layer u children from layer u + 1, this

exponentially such that lim = a > 1 (note that a = 1 is equivalent to sorting
Uu—oQ

can be seen as a more constrained form of the heap; however, unlike sorting, for any
constant a > 1, LOHs can be constructed € O(n) by performing iterative linear time

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 2/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

one-dimensional selection, iteratively selecting and removing the largest layer until all
layers have been partitioned. For example, 8,1,6,4,5,3,2 can be LOHified with a = 2 into
an LOH with three layers (1 < 3,2 < 8,4,6,5) by first selecting the largest 4 values on the
entire list (8,4,6,5), removing them, and then selecting the largest 2 values from the
remaining 3 values (3,2).

Although selections reminiscent of LOHs may have been used previously, formalization
of rank @ LOHs has been necessary to demonstrate that for 1 < a < 2, a combination of
LOHs and soft heaps allow generating the minimum k values from X; + X, + -+ + X,
(where each X; has length n) in o(n - m + k - m) (Kreitzberg, Lucke ¢ Serang, 2020).
Furthermore, efficiently constructing an LOH of rank a is not trivial when o < 2; after all,
o — 1 results in layers of size [X")| = |X®| = .- = 1, indicating a sorting, which implies a
runtime € Q(nlog(n)) (Pennington et al., 2020).

A python implementation of a LOH is shown in listing 1.

Contribution in this manuscript

The new, optimal algorithm for solving top-k presented here makes extensive use of LOHs.
It is simple to implement, does not rely on anything more complicated than linear time
one-dimensional selection (i.e., it does not use soft heap). Due to its simplicity and
contiguous memory access, it has a fast performance in practice.

METHODS

Algorithm

The algorithm presented is broken into phases. An illustration of these phases is provided
in Fig. 1.

Phase 0

The algorithm first LOHifies (i.e., constructs a layer order heap from) both X and Y. This is
performed by using linear time one-dimensional selection to iteratively remove the largest
remaining layer (i.e., the simplest LOH construction method, which is optimal when

a > 1).

Phase 1

Now layer products of the form
X 4 y® = Xfu) + Yl(v),Xfu) + Yz(v), e ,Xz(”) + Yl(v), ... are considered, where X and
Y™ are layers of their respective LOHs.

In phases 1-2, the algorithm initially considers only the minimum and maximum values
in each layer product: | (u,v)] = (min(X® + Y™), (u,v),0),
[(u,v)] = (max(X™ 4 Y™), (u,v), 1). It is unnecessary to compute the Cartesian
product of values to build a layer product; instead, only the minimum or maximum values
in X™ and Y are needed. Note that the final value in the tuple uses 0 to indicate that
this is the minimum value in the layer product or 1 to indicate the maximum value in the
layer product; this ensures that even layer products with homogeneous values satisfy
L(u,v)] < [(u,v)]. Scalar values can be compared to tuples: X; + Y; < [(u,v)] =
(max(X®™ + YW), (1,v),1) < X; + Y; < max(X®W + Y1),

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 3/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

58,79 12,26,40,43,14,46,20,49

[J[
.

L[J
i : 2 4 587,

——Max corner sizes to
O)
exceed kis s=17
18] 58]
& = .2 B 3
U 6 9| 14

[N
>

= o =
=
£ b
ml' .
o 5

-
o
-
t

H
N
=
o
o)

——Sizes of min corner
layer products with

'm some values < T and
~ not counted by s is
,\‘ s'=16

Ol @ 13

Final max corner
|_a3 4s] 51 21 visited has value T=10

ZP'0T'6E'€EEQZ'TE TYV'IT 6°L'8°9 S'T

Figure 1 Illustration of method for selecting the k = 14 minimal values from X + Y: Phase 0: X =
{31,5,11,7,33,6,39,42,20,0,9,1,41,26,8} and Y = {12,26,40,9,14,49,8,2,20,1,46,43,4,5,7} are both
LOHified to axes in O(n) time. Note that the minimum and maximum values in a layer are placed at
the first and last positions in the layer, respectively; otherwise values within layers are themselves
unordered. Phase 1: The minimum and maximum corners of all layer products (grid) are visited together
in ascending order until the area of the layer products whose max corners are visited exceeds k (inset),
and the largest value visited is labeled as T = 10. Phase 2: The layer products whose max corners have been
visited (blue) has area s that exceeds k but has s € O(k). Likewise, the layer products whose min corners
have been visited but whose max corners have not been visited, and which therefore contain some
elements < T, have area s’ € O(k). Phase 3: Together, these layer products (red and blue) contain all values
that may be in minimal k = 14. Since there are O(k) such values, they can be selected using median-of-
medians in O(k) time. Full-size &) DOT: 10.7717/peerj-cs.528/fig-1

Binary heap H is initialized to contain tuple |(1,1)]. A set of all tuples in H is
maintained to prevent duplicates from being inserted into H (this set could be excluded by
using the Kaplan et al. proposal scheme). The algorithm proceeds by popping the
lexicographically minimum tuple from H. W.l.o.g., there is no guaranteed ordering of the
form X™ + Y < X+ D 4 Y, because it may be that max(X™ + YY) > min(x® * Y +
Y™); however, lexicographically, | (u,v)| < | (u+1,v)], [(u,v +1)], [(4,v)]; thus, the
latter tuples need be inserted into H only after |(u,v)| has been popped from H. Note that
for this reason and to break ties where layer products contain identical values, (u,v) are
included in the tuple. [(u,v)] tuples do not insert any new tuples into H when they’re
popped.

Whenever a tuple of the form [(u,v)] is popped from H, the index (u,v) is appended to
list ¢ and the size of the layer product [X® + Y| = [X®|.|Y*")| is accumulated into integer
s. This method proceeds until s > k.

Phase 2

Any remaining tuple in H of the form (max(X®) 4 Y)), («/,v'), 1) has its index (V")
appended to list g. 5" is the total number of elements in each of these (u',v') layer products
appended to g during phase 2.

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 4/16

http://dx.doi.org/10.7717/peerj-cs.528/fig-1
http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

Phase 3

The values from every element in each layer product in g are generated. A linear time one-
dimensional k-selection is performed on these values and returned.

Proof of correctness

Lemma 2.4 proves that at termination all layer products found in g must contain the
minimal k values in X + Y. Thus, by performing one-dimensional k-selection on those
values in phase 3, the minimal k values in X + Y are found.

Lemma 2.1. If [(u,v)] is popped from H, then both |(u— 1,v)] (ifu>1)and |(u,v —1)]
(if v > 1) must previously have been popped from H.

Proof. There is a chain of pops and insertions backwards from [(u,v)] to |(1,1)].

When both u, v = 1, the lemma is true.

W.lo.g. if u = 1 this chain is of the form | (1,1)[,...,[(1,2)],..., [(1,3)],..., [(u,v)],
proving the lemma for that case.

Otherwise, both u, v > 1. Because insertions into H increment either row or column,
something of the form | (a,v — 1)] with a < u must be inserted into H before inserting
[(u,v)]. [(a,v—1)| < [(u,v)], so | (a,v — 1)] must precede |(u,v)]| in the chain of
pops. If a = u, then | (u,v — 1)] is popped before | (u,v)]. If a < u, then from the insertion
of [(a,v —1)] into H, until [(u,v — 1)| is popped, H must contain something of the
form |(a',v —1)] : ~a' < u, because popping |(a’,v —1)] inserts [(a’ + 1,v—1)].
[(@',v—1)] < |(u,v)| when @’ < u; therefore, | (u,v)] cannot be popped before any
|(a',v —1)] currently in H. Because there are a finite number of these a' and they are not
revisited, before | (u, v)| is popped, | (4, v — 1) | must be popped. This same process can be
repeated with |(u —1,b)] : ~ b < v to show that |(u — 1,v)] must be popped before
| (u,v)], proving the lemma for the final case. []

Lemma 2.2 If [(u,v)] is popped from H, then both [(u — 1,v)]| (if u>1) and [(u,v — 1)]
(if v > 1) must previously have been popped from H.

Proof. Inserting [(u, v)] requires previously popping | (u, v) |. By lemma 2.1, this requires
previously popping |(u— 1,v)]| (ifu > 1) and |(u,v — 1)| (if v > 1). These pops will insert
[(u—1,v)] and [(u,v — 1)] respectively. Thus, [(u — 1,v)| and [(u,v — 1)|, which are
both < [(u,v)], are inserted before [(u,v)|, and will therefore be popped before [(u,v)].]

Lemma 2.3 All tuples will be visited in ascending order as they are popped from H.

Proof. Let | (u,v) | be popped from H and let |(a,b)| < [(u,v)]. Either wlo.g.a<u, b
< v, or wlo.g a < u, b>v. In the former case, |(a, b)]| will be popped before | (u,v)]| by
applying induction to lemma 2.1.

In the latter case, lemma 2.1 says that |(a,v)| is popped before | (u,v)].

(a,v)] < [(a,v+1)] < [(a,v+1)| <--- < [(a,b)] < [(u,v)], meaning that

Vr e v, b, [(a,r)] < |(u,v)]. After [(a,v)] is inserted (necessarily before it is popped), at
least one such |(a, r)| must be in H until |(a, b) | is popped. Thus, all such |(a,r) | will be
popped before | (u,v)].

Ordering on popping with [(a,b)]| < [(u,v)] is shown in the same manner: For
[(u,v)] to be in H, | (u,v)| must have previously been popped. As above, whenever

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 5/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

[(u,v)] is in H, then |(a,v)] must have been popped, inserting | (a,v + 1) | into H.
Each |(a,r)] popped inserts

|(a,r+1)],soatleast one |(a,r)|,r € [v, b] must also be in H until | (a, b) | is popped.
These |(a,7)] < [(a,b)] < [(a,b)] < [(u,v)], and so [(a, b)] will be popped before
[(u,v)].

Identical reasoning also shows that | (a, b)] will pop before [(u,v)] if
[(a,5)] < [(w,7)] or if [(a,b)] < |(,7)].

Thus, all tuples are popped in ascending order. []

Lemma 2.4 At the end of phase 2, the layer products whose indices are found in q contain the
minimal k values.

Proof. Let (u,v) be the layer product that first makes s> k. There are at least k
values of X + Y that are < max(X® + Y()); this means that t = (select(X + Y, k))
< max(X® + Y("). The quality of the elements in layer products in q at the end of phase
1 can only be improved by trading some value for a smaller value, and thus require a
new value <max(X* + Y).

By lemma 2.3, tuples will be popped from H in ascending order; therefore, any layer
product (u/,v) containing values < max(X™ + Y")) must have had | (/,v')| popped
before [(u,v)]. If [(¢,)] was also popped, then this layer product is already included in
q and cannot improve it. Thus the only layers that need be considered further have had
|(¢/,v') | popped but not [(u',v")] popped; these can be found by looking for all [(u/,')]
that have been inserted into H but not yet popped.

Phase 2 appends to g all such remaining layer products of interest. Thus, at the end of
phase 2, g contains all layer products that will be represented in the k-selection of X + Y. []

A python implementation of this method is shown in listing 2.

Runtime
Theorem 2.8 proves that the total runtime is € O(n + k).

Lemma 2.5 Let (u',v') be a layer product appended to q during phase 2. Either u' = 1, v' = 1,
or (' — L,v' — 1) was already appended to q in phase 1.

Proof. Let u'>1 and v">1. By lemma 2.3, minimum and maximum layer products are
popped in ascending order. By the layer ordering property of X and Y, max(X®*~1)
< min(X™)) and max(Y" V) < min(Y™). Thus, [(«/ —1,v —1)] < [(«,+')] and
so [(#/ — 1,v — 1)] must be popped before |(«/,v')]. []

Lemma 2.6 s, the number of elements in all layer products appended to q in phase 1, is €
O(k).

Proof. (u,v) is the layer product whose inclusion during phase 1 in g achieves s > k;
therefore, s — [X 4 Y(")| < k. This happens when [(u,v)] is popped from H.

Ifk = 1, popping [(1,1)] ends phase 1 with s = 1 € O(k).

If k > 1, then at least one layer index is >1: u > 1 or v> 1. W.Lo.g., let u > 1. By lemma 2.1,
popping [(u, v)] from H requires previously popping [(u — 1,v)]. |X® + Y| = |x®)] .
YW = a- [XED] YW = - | X#Y 4 Y| (where = indicates asymptotic behavior);
therefore, |X™ + Y|e O(X™ =V + Y)). |X™~ Y 4+ Y™ is already counted in s — | X* +

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 6/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

YY) < k, and so XD + Y| < kand |X* + Y)e O(k). s < k + |X® + Y™)| € O(k)
and hence s € O(k). []

Lemma 2.7 s/, the total number of elements in all layer products appended to q in phase 2, €
O(k).

Proof. Each layer product appended to g in phase 2 has had | («/,v') | popped in phase 1.
By lemma 2.5, either u' = 1 or v/ = 1 or [(¢/ — 1,v/ — 1)] must have been popped before
L))

First consider when u’ > 1 and v' > 1. Each (#,v') matches exactly one layer product (1’ —
1,v' = 1). Because [(#' —1,v' — 1)]| must have been popped before |(«/,v')], then
[(u' —1,v —1)] was also popped during phase 1. s, the count of all elements whose
layer products were inserted into g in phase 1, includes [X®*~1) + Y("~1| but does not
include X + Y™ (the latter is appended to q during phase 2). By exponential growth
of layers in X and Y, [X®) + Y)| x o2 - |X®~1 4+ Y("-V| These |[X* =V + Y = 1)
values were included in s during phase 1, and thus the total number of elements in all such
(u' — 1v' — 1) layer products is < s. Thus the sum of sizes of all layer products (u',v") with
u' > 1and v > 1 that are appended to g during phase 2 is asymptotically < o’ s.

When either 4’ = 1 or v/ = 1, the number of elements in all layer products must be € O
(n): 3, |X®) + YO 437 1X®) + Y| < 265 however, it is possible to show that
contributions where ' = 1 or v' = 1 are € O(k):

W.lo.g. for u'>1, [(«/,1)] is inserted into H only when | (#/-1,1)] is popped.

Thus at most one [(v/,1)] can exist in H at any time. Furthermore, popping | (#/,1)]
from H requires previously popping [(#/-1,1)] from H: layer ordering on X implies max
(X~) < min (X*’) and |Y(l)| =1 implies min(YY) = max(Y"), and so (W —1,1)] =
(max(X® =D + YW (v —1,1),1) < | («/,1)] = (min(X®) 4+ YD), (/,1),0). Thus
[(4/-1,1)] has been popped from H and counted in s. By the exponential growth of layers,
the contribution of all such u’' > 1, v' = 1 will be < « - 5, and so the contributions of u’ > 1,
V=1oru' =1,vV>1wilbe=<2a-s.

When u' = ' = 1, the layer product contains 1 element.

Therefore, s, the total number of elements found in layer products appended to g
during phase 2, has s’ < (a? 4 2a) - s + 1. By lemma 2.6, s € O(k), and thus s'e O(k). []

Theorem 2.8 The total runtime of the algorithm is € O(n + k).

Proof. For any constant @ > 1, LOHification of X and Y runs in linear time, and so phase
0 runs € O(n).

The total number of layers in each LOH is = log,(n); therefore, the total number of
layer products is = log’,(n). In the worst-case scenario, the heap insertions and pops
(and corresponding set insertions and removals) will sort = 2 logza(n) elements, because
each layer product may be inserted as both || or [-|; the worst-case runtime via
comparison sort will be € O(log’,(n) log(log?(n))) C o(n). The operations to maintain a
set of indices in the heap have the same runtime per operation as those inserting/removing
to a binary heap, and so can be amortized out. Thus, the runtimes of phases 1-2 are
amortized out by the O(n) runtime of phase 0.

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 7/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Average runtimes (in seconds) on random uniform integer X and Y with |X| = |Y| = n.
The layer-ordered heap implementation used a = 2 and resulted in s + s'/k = 3.637 on average. Indi-
vidual and total runtimes are rounded to three significant figures.

Naive Kaplan et al. Layer-ordered heap
n’log(n) + k soft heap (total = phase 0 + phases 1-3)
n = 1,000, k = 250 0.939 0.0511 0.00892 = 0.00693 + 0.002
n = 1,000, k = 500 0.952 0.099 0.0102 = 0.00648 + 0.00374
n = 1,000, k = 1,000 0.973 0.201 0.014 = 0.00764 + 0.00639
n = 1,000, k = 2,000 0.953 0.426 0.0212 = 0.00652 + 0.0146
n = 1,000, k = 4,000 0.950 0.922 0.0278 = 0.00713 + 0.0206
n = 2,000, k = 500 4.31 0.104 0.0194 = 0.0160 + 0.00342
n = 2,000, k = 1,000 4.11 0.203 0.0211 = 0.0139 + 0.00728
n = 2,000, k = 2,000 4.17 0.432 0.0254 = 0.0140 + 0.0114
n = 2,000, k = 4,000 4.16 0.916 0.0427 = 0.0147 + 0.0280
n = 2,000, k = 8,000 4.13 2.03 0.0761 = 0.0143 + 0.0617
n = 4,000, k = 1,000 17.2 0.207 0.0507 = 0.0459 + 0.00488
n = 4,000, k = 2,000 17.2 0.422 0.409 = 0.0268 + 0.0141
n = 4,000, k = 4,000 17.1 0.907 0.0481 = 0.0277 + 0.0205
n = 4,000, k = 8,000 17.3 1.98 0.0907 = 0.0278 + 0.0629
n = 4,000, k = 16,000 17.3 4.16 0.133 = 0.0305 + 0.103

Lemma 2.6 shows that s€ O(k). Likewise, lemma 2.7 shows that s'e O(k). The number of
elements in all layer products in g during phase 3 is s + s’ O(k). Thus, the number of
elements on which the one-dimensional selection is performed will be € O(k). Using a
linear time one-dimensional selection algorithm, the runtime of the k-selection in phase 3
is € O(k).

The total runtime of all phases € O(n + k + k + k) = O(n + k). []

RESULTS

Runtimes of the naive O(nzlog(n) + k) method (chosen for reference because it is the
easiest method to implement and because of the fast runtime constant on python’s built-in
sorting routine), the soft heap-based method from Kaplan et al.,, and the LOH-based
method in this paper are shown in Table 1. The proposed approach achieves a >295x
speedup over the naive approach and >18x speedup over the soft heap approach. LOHs are
more lightweight than soft heaps, including contiguous memory access patterns and far
fewer pointer dereferences than soft heaps.

DISCUSSION

The algorithm can be thought of as “zooming out” as it pans through the layer products,
thereby passing the value threshold at which the k™ best value X; + Y; occurs. It is
somewhat reminiscent of skip lists (Pugh, 1990); however, where a skip list begins
coarse and progressively refines the search, this approach begins finely and becomes
progressively coarser. The notion of retrieving the best k values while “overshooting” the
target by as little as possible results in some values that may be considered but which will

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 8/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

not survive the final one-dimensional selection in phase 3. This is reminiscent of
“corruption” in Chazelle’s soft heaps. Like soft heaps, this method eschews sorting in order
to prevent a runtime € Q(nlog(n)) or € w(k log(k)). But unlike soft heaps, LOHs can be
constructed easily using only an implementation of median-of-medians (or any other
linear time one-dimensional selection algorithm).

Phase 3 is the only part of the algorithm in which k appears in the runtime formula.
This is significant because the layer products in g at the end of phase 2 could be returned in
their compressed form (i.e., as the two layers to be combined). The total runtime of
phases 0-2 is € O(n). It may be possible to recursively perform X + Y selection on layer
products X + Y to compute layer products constituting exactly the k values in the
solution, still in factored Cartesian layer product form. Similarly, it may be possible to
perform the one-dimensional selection without fully inflating every layer product into its
constituent elements. For some applications, a compressed form may be acceptable,
thereby making it plausible to remove the requirement that the runtime be € w(k).

As noted in theorem 2.8, even fully sorting all of the minimum and maximum layer
products would be € o(n); sorting in this manner may be preferred in practice, because it
simplifies the implementation (Listing 3) at the cost of incurring greater runtime in
practice when k < n?. Furthermore, listing 3 is unsuitable for online processing
(i.e., where X and Y are extended on the fly or where several subsequent selections are
performed), whereas listing 2 could be adapted to those uses.

Phase 0 (which performs LOHification) is the slowest part of the presented python
implementation; it would benefit from having a practically faster implementation to
perform LOHify.

The fast practical performance is partially due to the algorithm’s simplicity and partially
due to the contiguous nature of LOHs. Online data structures like soft heap are less
easily suited to contiguous access, because they support efficient removal and therefore
move pointers to memory rather than moving the contents of the memory.

The choice of a affects performance through the cost of LOHifying and the amount
by which the number of generated values overshoots the k minimum values wanted:
when a = 1, LOHify effectively sorts X and Y, but generates few extra values; a > 1,
LOHify has a linear runtime, but generates more extra values, which need to be removed
by the final k-selection.

CONCLUSION

LOHs can be constructed in linear time and used to produce a theoretically

optimal algorithm for selecting the minimal k values from X + Y. The new optimal
algorithm presented here is faster in practice than the existing soft heap-based optimal
algorithm.

APPENDIX

Python code
Listing 1. LayerOrderedHeap.py: A class for LOHifying, retrieving layers, and the
minimum and maximum value in a layer.

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 9/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

https://stackoverflow.com/questions/10806303/python-implementation-of-median-of-

medians-algorithm
def median_of medians_select(L, j): # returns j-th smallest value:
if len(L) < 10:
L.sort()
return L[j]
S=1]
IIndex = 0
while lIndex+5 < len(L)-1:
S.append(L[lIndex:lIndex+5])
IIndex += 5
S.append(L[lIndex:])
Meds = []
for subList in S:
Meds.append(median_of_medians_select(subList, int((len(subList)-1)/2)))
med = median_of_medians_select(Meds, int((len(Meds)-1)/2))
Ll =]
L2 =]
L3 =]
foriin L:
if i < med:
L1.append(i)
elif i > med:
L3.append(i)
else:
L2.append(i)
if j < len(L1):
return median_of_medians_select(L1, j)
elif j < len(L2) + len(L1):
return L2[0]
else:
return median_of_medians_select(L3, j-len(L1)-len(L2))

def partition(array, left_n):
n = len(array)

right n =n - left_n

median_of_medians_select argument is index, not size:
max_value_in_left = median_of _medians_select(array, left_n-1)

left = []

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501

10/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

right = []
for i in range(n):
if array[i] < max_value_in_left:
left.append(arrayl[i])
elif array[i] > max_value_in_left:
right.append(array/[i])
num_at_threshold_in_left = left_n - len(left)
left.extend([max_value_in_left]*num_at_threshold_in_left)
num_at_threshold_in_right = right_n - len(right)
right.extend([max_value_in_left]*num_at_threshold_in_right)
return left, right

def layer_order_heapify_alpha_eq_2(array):
n = len(array)

ifn==0:
return []
ifn==1:

return array
new_layer_size = 1
layer_sizes = []
remaining n =n
while remaining n > 0:
if remaining n >= new_layer_size:
layer_sizes.append(new_layer_size)
else:
layer_sizes.append(remaining n)
remaining_n -= new_layer_size
new_layer_size *= 2
result = []
for ils in enumerate(layer_sizes[::-1]):
small_vals,large vals = partition(array, len(array) - Is)
array = small_vals
result.append(large_vals)
return result[::-1]

class LayerOrderedHeap:
def __init_ (self, array):
self._layers = layer_order_heapify_alpha_eq_2(array)
self._min_in_layers = [min(layer) for layer in self._layers]
self._max_in_layers = [max(layer) for layer in self._layers]
#self._verify()

def __len__ (self):

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 11/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

return len(self._layers)

def _verify(self):
for i in range(len(self)-1):
assert(self.max(i) <= self. min(i+1))

def __ getitem__(self, layer_num):
return self._layers[layer_num]

def min(self, layer_num):
assert(layer_num < len(self))
return self._min_in_layers[layer_num]

def max(self, layer_num):
assert(layer_num < len(self))
return self._max_in_layers[layer_num]

def _ str_ (self):
return str(self._layers)

Listing 2. CartesianSumSelection.py: A class for efficiently performing selection on
X + Yin O(n + k) steps.

from LayerOrderedHeap import *

import heapq

class CartesianSumSelection:
def _min_tuple(self,i,j):
True for min corner, False for max corner
return (self._loh_a.min(i) + self._loh_b.min(j), (i,j), False)

def _max_tuple(self,i,j):
True for min corner, False for max corner
return (self._loh_a.max(i) + self._loh_b.max(j), (i,j), True)

def _in_bounds(self,i,j):
return i < len(self._loh_a) and j < len(self._loh_b)

def _insert_min_if in_bounds(self,i,j):

if not self._in_bounds(i,j):
return

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 12/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

if (i,j,False) not in self._hull_set:
heapq.heappush(self._hull_heap, self._min_tuple(i,j))
self._hull_set.add((i,j,False))

def _insert_max_if in_bounds(self,i,j):
if not self._in_bounds(i,j):
return

if (i,j,True) not in self._hull_set:
heapq.heappush(self._hull_heap, self._max_tuple(i,j))
self._hull set.add((i,j,True))

def __init (self, array_a, array_b):
self._loh_a = LayerOrderedHeap(array_a)
self._loh_b = LayerOrderedHeap(array_b)
self._hull_heap = [self._min_tuple(0,0)]
False for min:
self._hull_set = { (0,0,False) }

self._num_elements_popped = 0
self._layer_products_considered = []

self._full_cartesian_product_size = len(array_a) * len(array_b)

def _pop_next_layer_product(self):
result = heapg.heappop(self._hull_heap)
val, (i,j), is_max = result
self._hull_set.remove((i,j,is_max))

if not is_max:
when min corner is popped, push their own max and neighboring mins
self._insert_min_if in_bounds(i+1,j)
self._insert_min_if in_bounds(i,j+1)
self._insert_max_if in_bounds(i,j)
else:
when max corner is popped, do not push
self._num_elements_popped += len(self._loh_a[i]) * len(self._loh_b[j])

self._layer_products_considered.append((i,j))

return result
def select(self, k):
assert(k <= self._full_cartesian_product_size)

while self._num_elements_popped < k:

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 13/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

self._pop_next_layer_product()

also consider all layer products still in hull
for val, (i,j), is_max in self._hull heap:
if is_max:
self._num_elements_popped += len(self._loh_a[i]) * len(self._loh_b[j])
self._layer_products_considered.append((i,j))

generate: values in layer products

Note: this is not always necessary, and could lead to a potentially large speedup.
candidates = [val_a+val_b for i,j in self._layer_products_considered for val_a in
self._loh_al[i] for val_b in self._loh_b[j]]

print('Ratio of total popped candidates to k: {}'.format(len(candidates) / k))
k_small_vals, large_vals = partition(candidates, k)

return k_small_vals

Listing 3. SimplifiedCartesianSumSelection.py: A simplified implementation of
Listing 2. This implementation is slower when k < n’; however, it has the same asymptotic
runtime for any »n and k: ©(n + k).

from LayerOrderedHeap import *

class SimplifiedCartesianSumSelection:

def _min_tuple(self,i,j):
True for min corner, False for max corner
return (self._loh_a.min(i) + self._loh_b.min(j), (i,j), False)

def _max_tuple(self,i,):
True for min corner, False for max corner
return (self._loh_a.max(i) + self._loh_b.max(j), (i,j), True)

def __init (self, array_a, array_b):
self._loh_a = LayerOrderedHeap(array_a)
self._loh_b = LayerOrderedHeap(array_b)

self._full_cartesian_product_size = len(array_a) * len(array_b)

self._sorted_corners = sorted([self._min_tuple(i,j) for i in range(len(self._loh_a)) for
j in range(len(self._loh_b))] + [self._max_tuple(i,j) for i in range(len(self._loh_a)) for
j in range(len(self._loh_b))])

def select(self, k):
assert(k <= self._full_cartesian_product_size)

candidates = []

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 14/16

http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

index_in_sorted = 0
num_elements_with_max_corner_popped = 0
while num_elements_with_max_corner_popped < k:
val, (i,j), is_max = self._sorted_corners[index_in_sorted]
new_candidates = [v_a+v_b for v_a in self._loh_al[i] for v_b in self._loh_b[j]]
if is_max:
num_elements_with_max_corner_popped += len(new_candidates)
else:
Min corners will be popped before corresponding max corner;
this gets a superset of what is needed (just as in phase 2)
candidates.extend(new_candidates)
index_in_sorted += 1

print('Ratio of total popped candidates to k: {}'.format(len(candidates) / k))
k_small vals, large_vals = partition(candidates, k)
return k_small_vals

ACKNOWLEDGEMENTS

Thanks to Patrick Kreitzberg, Kyle Lucke, and Jake Pennington for fruitful discussions and
kindness.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by NSF CAREER grant 1845465. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
NSF CAREER: 1845465.

Competing Interests
The author declares that he has no competing interests.

Author Contributions

e Oliver Serang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at figshare: Serang (2021): Selection on X+Y: python source.
figshare. Software. https://doi.org/10.6084/m9.figshare.13708564.v1.

Serang (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.501 15/16

https://doi.org/10.6084/m9.figshare.13708564.v1
http://dx.doi.org/10.7717/peerj-cs.501
https://peerj.com/computer-science/

PeerJ Computer Science

REFERENCES

Blum M, Floyd RW, Pratt VR, Rivest RL, Tarjan RE. 1973. Time bounds for selection. Journal of
Computer and System Sciences 7(4):448-461 DOI 10.1016/50022-0000(73)80033-9.

Chazelle B. 2000. The soft heap: an approximate priority queue with optimal error rate. Journal of
the ACM 47(6):1012-1027 DOI 10.1145/355541.355554.

Frederickson GN. 1993. An optimal algorithm for selection in a min-heap. Information and
Computation 104(2):197-214 DOI 10.1006/inc0.1993.1030.

Frederickson GN, Johnson DB. 1982. The complexity of selection and ranking in X + Y and
matrices with sorted columns. Journal of Computer and System Sciences 24(2):197-208
DOI 10.1016/0022-0000(82)90048-4.

Kaplan H, Kozma L, Zamir O, Zwick U. 2019. Selection from heaps, row-sorted matrices and X +
Y using soft heaps. In: Symposium on Simplicity in Algorithms. 5:1-5:21.

Kreitzberg P, Lucke K, Serang O. 2020. Selection on X1 + X2 + --- + Xm with layer-ordered heaps.
Peer] Computer Science 7:e483 DOI 10.7717/peerj-cs.483.

Kreitzberg P, Pennington J, Lucke K, Serang O. 2020. Fast exact computation of the k most
abundant isotope peaks with layer-ordered heaps. Analytical Chemistry 92(15):10613-10619
DOI 10.1021/acs.analchem.0c01670.

Pennington J, Kreitzberg P, Lucke K, Serang O. 2020. Optimal construction of a layer-ordered
heap. Available at http://arxiv.org/abs/2007.13356.

Pugh W. 1990. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM
33(6):668-676 DOI 10.1145/78973.78977.

Serang (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.501 16/16

http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1145/355541.355554
http://dx.doi.org/10.1006/inco.1993.1030
http://dx.doi.org/10.1016/0022-0000(82)90048-4
http://dx.doi.org/10.7717/peerj-cs.483
http://dx.doi.org/10.1021/acs.analchem.0c01670
http://arxiv.org/abs/2007.13356
http://dx.doi.org/10.1145/78973.78977
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.501

	Optimally selecting the top k values from X + Y with layer-ordered heaps
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Appendix
	flink7
	References

