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The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading
and causing hundreds of thousands of deaths around the world as of its first emergence in
late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures
and arises the need to allocate medical equipment and resources more efficiently. The
early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-
COVID cases, which will be helpful for health care authorities to optimize resource
allocation plans and early prevention of the disease. In this regard, a growing number
of studies are investigating the capability of deep learning for early diagnosis of COVID-19.
Computed tomography (CT) scans have shown distinctive features and higher sensitivity
compared to other diagnostic tests, in particular the current gold standard, i.e., the
Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Current deep learning-
based algorithms are mainly developed based on Convolutional Neural Networks (CNNs)
to identify COVID-19 pneumonia cases. CNNs, however, require extensive data
augmentation and large datasets to identify detailed spatial relations between image
instances. Furthermore, existing algorithms utilizing CT scans, either extend slice-level
predictions to patient-level ones using a simple thresholding mechanism or rely on a
sophisticated infection segmentation to identify the disease. In this paper, we propose a
two-stage fully automated CT-based framework for identification of COVID-19 positive
cases referred to as the “COVID-FACT”. COVID-FACT utilizes Capsule Networks, as its
main building blocks and is, therefore, capable of capturing spatial information. In
particular, to make the proposed COVID-FACT independent from sophisticated
segmentations of the area of infection, slices demonstrating infection are detected at
the first stage and the second stage is responsible for classifying patients into COVID and
non-COVID cases. COVID-FACT detects slices with infection, and identifies positive
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COVID-19 cases using an in-house CT scan dataset, containing COVID-19, community
acquired pneumonia, and normal cases. Based on our experiments, COVID-FACT
achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and
an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and
annotation, in comparison to its counterparts.
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1 INTRODUCTION

The recent outbreak of the novel coronavirus infection (COVID-
19) has sparked an unforeseeable global crisis since its emergence
in late 2019. Resulting COVID-19 pandemic is reshaping our
societies and people’s lives in many ways and caused more than
half a million deaths so far. In spite of the global enterprise to
prevent the rapid outbreak of the disease, there are still thousands
of reported cases around the world on daily bases, which raised the
concern of facing a major second wave of the pandemic. Early
diagnosis of COVID-19, therefore, is of paramount importance, to
assist health and government authorities with developing efficient
resource allocations and breaking the transmission chain.
Reverse Transcription Polymerase Chain Reaction (RT-PCR),

which is currently the gold standard in diagnosing COVID-19, is
time-consuming and prone to high false-negative rate (Fang et al.,
2020). Recently, chest Computed Tomography (CT) scans and
Chest Radiographs (CR) of COVID-19 patients, have shown
specific findings, such as bilateral and peripheral distribution
of Ground Glass Opacities (GGO) mostly in the lung lower lobes,
and patchy consolidations in some of the cases (Inui et al., 2020).
Diffuse distribution, vascular thickening, and fine reticular
opacities are other commonly observed features of COVID-19
reported in (Bai et al., 2020; Chung et al., 2020; Ng et al., 2020; Shi
et al., 2020). Although imaging studies and their results can be
obtained in a timely fashion, such features can be seen in other
viral or bacterial infections or other entities such as organizing
pneumonia, leading to misclassification even by experienced
radiologists.
With the increasing number of people in need of COVID-19

examination, health care professionals are experiencing a heavy
workload reducing their concentration to properly diagnose
COVID-19 cases and confirm the results. This arises the need
to distinguish normal cases and non-COVID infections from
COVID-19 cases in a timely fashion to put a higher focus on
COVID-19 infected cases. Using deep learning-based algorithms
to classify patients into COVID and non-COVID, health care
professionals can exclude non-COVID cases quickly in the first
step and allow for paying more attention and allocating more
medical resources to COVID-19 identified cases. It is worth
mentioning that although the RT-PCR, as a non-destructive
diagnosis test, is commonly used for COVID-19 detection, in
some countries with high number of COVID-19 cases, CT
imaging is widely used as the primary detection technique.
Therefore, there is an unmet need to develop advanced deep
learning-based solutions based on CT images to speed up the
diagnosis procedure.

1.1 Literature Review
Convolutional Neural Networks (CNNs) have been widely used
in several studies to account for the human-centered weaknesses
in detecting COVID-19. CNNs are powerful models in related
tasks and are capable of extracting distinguishing features from
CT scans and chest radiographs (Yamashita et al., 2018). In this
regard, many studies have utilized CNNs to identify COVID-19
cases from medical images. The study by (Wang and Wong,
2020), is an example of the application of CNN in COVID-19
detection, where CNN is first pre-trained on the ImageNet dataset
(Krizhevsky et al., 2017). Fine-tuning is then performed using a
CR dataset. Results show an accuracy of 93.3% in distinguishing
normal, non-COVID-19 pneumonia (viral and bacterial), and
COVID-19 infection cases (Sethy et al., 2020). have also explored
the same problemwith the difference that the CNN is followed by
a Support Vector Machine (SVM), to identify positive COVID-19
cases. Their obtained results show an overall accuracy of 95.38%,
sensitivity of 97.29% and specificity of 93.47%. Another study by
(Mahmud et al., 2020) proposed a CNN-based model utilizing
depth-wise convolutions with varying dilation rates to extract
more diversified features from chest radiographs. They used a
pre-trained model on a dataset of normal, viral, and bacterial
pneumonia patients followed by additional fine-tuned layers on a
dataset of COVID-19 and other pneumonia patients, obtaining
an overall accuracy of 90.2%, sensitivity of 89.9%, and specificity
of 89.1%.
Chest radiograph acquisition is relatively simple with less

radiation exposure than CT scans. However, a single CR image
fails to incorporate details of infections in the lung and cannot
provide a comprehensive view for the lung infection diagnosis. CT
scan, on the other hand, is an alternative imaging modality that
incorporates the detailed structure of the lung and infected areas.
Unlike CR images, CT scans generate cross-sectional images
(slices) to create a 3D representation of the body. Consequently,
there has been a surge of interest on utilizing 2D and 3DCT images
to identify COVID-19 infection. For instance (Yang et al., 2020),
proposed a DenseNet-based model to classify manually selected
slices with COVID-19 manifestations and pulmonary parenchyma
into COVID-19 and normal classes. The underlying study
achieved an accuracy of 92% on the patient-level classification
by averaging slice-level probabilities followed by a threshold of 0.8
on the averaged values. Furthermore, the dataset used to train and
test the model does not include other types of pneumonia.
Identified Drawback 1: Such methods require manual selecting
slices demonstrating infection to feed the model, which makes the
overall process time-consuming and only partially automated. To
extract features from all CT slices (Li et al., 2020), first segmented
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the lung regions using a U-net based segmentation method
(Ronneberger et al., 2015), and then used them to fine-tune a
ResNet50 model, which was pre-trained on natural images from
the ImageNet dataset (Deng et al., 2009). Extracted features are
then combined using a max-pooling operation followed by a fully
connected layer to generate probability scores for each disease type.
Their proposedmodel achieved sensitivities of 90%, 87%, and 94%
for COVID-19, Community Acquired Pneumonia (CAP), and
non-pneumonia cases respectively. Identified Drawback 2: Such
methods combine extracted features from all slices of a patient,
with or without infection, which potentially results in lower
accuracy as there are numerous slices without evidence of
infection in a volumetric CT scan of an infected patient.
In the study by (Hu et al., 2020), segmented lungs are fed into a

multi-scale CNN-based classification model, which utilizes
intermediate CNN layers to obtain classification scores, and
aggregates scores generated by intermediate layers to make the
final prediction. Their proposed method achieves an overall
accuracy of 87.4% in the three-way classification (Zhang et al.,
2020). proposed a two-stage method consisting of a Deeplabv3-
based lung-lesion segmentation model (Chen et al., 2017)
followed by a 3D ResNet18 classification model (Hara et al.,
2017) to identify lung lesions and abnormalities and use them to
classify patients into COVID-19, community acquired
pneumonia, and normal findings. They manually annotated
chest CT scans into seven regions to train their lung
segmentation model, which is a time-consuming and
sophisticated task requiring high level of thoracic radiology
expertise to accomplish. Their proposed method achieves the
overall accuracy of 92.49% in both three-way and binary
(COVID-19 vs. others) classifications.

1.2 Problem Statement
At one hand, we aim to address the two identified drawbacks of the
aforementioned methods. More specifically, existing solutions
either require a precise annotation/labeling of lung images,
which is time-consuming and error-prone, especially when we
are facing a new and unknown type of disease such as COVID-
19, or assign the patient-level label to all the slices. On the other
hand, CNN, which is widely adopted in COVID-19 studies, suffers
from an important drawback that reduces its reliability in clinical
practice. CNNs are required to be trained on different variations of
the same object to fully capture the spatial relations and patterns. In
other words, CNNs, commonly, fail to recognize an object when it is
rotated or transformed. In practice, extensive data augmentation
and/or adoption of huge data resources are needed to compensate
for the lack of spatial interpretation. As COVID-19 is a relatively
new phenomenon, large datasets are not easily accessible, especially
due to strict privacy preserving constraints. Furthermore, most
COVID-19 cases have been reported with a specific infection
distribution in their image (Bai et al., 2020; Chung et al., 2020;
Ng et al., 2020; Shi et al., 2020), which makes capturing spatial
relations in the image highly important.

1.3 Contributions
As stated previously, structure of infection spread in the lung for
COVID-19 is not yet fully understood given its recent and abrupt

emergence. Furthermore, COVID-19 has a particular structure in
affecting the lung, therefore, picking up those spatial structures are
significantly important. Capsule Networks (CapsNets) (Hinton
et al., 2018), in contrast to CNNs, are equipped with routing by
agreement process enabling them to capture such spatial patterns.
Even without a large dataset, capsules interpret the object
instantiation parameters, besides its existence, and by reaching a
mutual agreement, higher-level objects are developed from lower-
level ones. The superiority of Capsule Networks over their
counterparts has been shown in different medial image
processing problems (Afshar et al., 2018; Afshar et al., 2019a;
Afshar et al., 2019b; Afshar et al., 2020b; Afshar et al., 2020d; Afshar
et al., 2020c). Recently, we proposed a Capsule Network-based
framework (Afshar et al., 2020a), referred to as the COVID-CAPS,
to identify COVID-19 cases from chest radiographs, which
achieved an accuracy of 98.3%, a specificity of 98.6%, and a
sensitivity of 80%. As stated previously, CT imaging is superior
for COVID-19 detection and diagnosis purposes when compared
to chest radiographs. However, as in the case of CT imaging, we are
dealing with 3D inputs and several slices per patient (compared to
one chest radiograph per patient), the learning process is
significantly more challenging. As such, accuracies of deep
models trained over CT scans cannot be directly compared with
those obtained based on chest radiographs.
Following our previous study on chest radiographs, in the

present study, we take one step forward and propose a fully
automated two-stage Capsule Network-based framework,
referred to as the COVID-FACT, to identify COVID-19
patients using chest CT images. Based on our in-house
dataset, COVID-FACT achieves an accuracy of 90.82%,
sensitivity of 94.55%, specificity of 86.04%, and Area Under
the Curve (AUC) of 0.98. We developed two variants of the
COVID-FACT, one of which is fed with the whole chest CT
image, while the other one utilizes the segmented lung area as the
input. In the latter case, instead of using an original chest CT
image, first a segmentation model (Hofmanninger et al., 2020) is
applied to extract the lung region, which is then provided as input
to the COVID-FACT. This will be further clarified in Section 3.
Experimental results show that the model coupled with lung
segmentation achieves the same overall accuracy compared to the
other COVID-FACT variation working with original images.
However, using the segmented lung regions increases the
sensitivity and AUC from 92.72% and 0.95 to 94.55% and
0.98, respectively, while slightly decreasing the specificity from
88.37% to 86.04%.
COVID-FACT benefits from a two-stage design, which is of

paramount importance in COVID-19 detection using CT scans,
as a CT examination is typically associated with hundreds of slices
that cannot be analyzed at once. At the first stage, the proposed
COVID-FACT detects slices demonstrating infection in a 3D
volumetric CT scan to be analyzed and classified at the next stage.
At the second stage, candidate slices detected at the previous stage
are classified into COVID and non-COVID (community
acquired pneumonia and normal) cases and a voting
mechanism is applied to generate the classification scores in
the patient level. COVID-FACT’s two-stage architecture has
the advantage of being trained by even weakly labeled dataset,

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 5989323

Heidarian et al. COVID-FACT



as errors at the first stage can be compensated at the second stage.
As a result, COVID-FACT does not require any infection
annotation or a very precise slice labeling, which is a valuable
asset due to the limited knowledge and experience on the novel
COVID-19 disease. In fact, manual annotation is completely
removed from the COVID-FACT. The only information
required from the radiologists to train the first stage is the
slices containing evidence of infection. In other words,
COVID-FACT is not dependent on the manual delineation of
specific infected regions in the slices, which is a complicated and
time-consuming task compared to only identifying slices with the
evidence of infection. This issue is more critical in the case of a
novel disease such as COVID-19, which requires comprehensive
research to identify the disease manifestations. It is worth noting
that the pre-trained lung segmentation model used as the pre-
processing step in our study is related to the well-studied lung
segmentation task, which is totally different from the infection
segmentation. As a final note, we would like to mention that the
radiologist’s input is not required in the test phase of the COVID-
FACT and the trained framework is fully automated.
The reminder of the paper is organized as follows: Section 2

describes the dataset and imaging protocol used in this study.
Section 3 presents a brief description of Capsule Networks and
explains the proposed COVID-FACT in details. Experimental
results and model evaluation are presented in Section 4. Finally,
Section 5 concludes the work.

2 MATERIALS AND EQUIPMENT

In this section, we will explain the in-house dataset used in this
study, along with the associated imaging protocol.

2.1 Dataset
The dataset used in this study, referred to as the “COVID-CT-
MD” Afshar et al. (2021), contains volumetric chest CT scans of
171 patients positive for COVID-19 infection, 60 patients with
Community Acquired Pneumonia (CAP), and 76 normal patients
acquired from April 2018 to May 2020. The average age of
patients is 50 ± 16 including 183 men and 124 women. This
dataset and the related annotations are publicly available through
Figshare at https://figshare.com/s/c20215f3d42c98f09ad0.
Diagnosis of COVID-19 infection is based on positive real-time

reverse transcription polymerase chain reaction (rRT-PCR) test
results, clinical parameters, and CT scan manifestations by a
thoracic radiologist, with 20 years of experience in thoracic
imaging. CAP and normal cases were included from another
study and the diagnosis was confirmed using clinical parameters,
and CT scans. A subset of 55 COVID-19, and 25 community
acquired pneumonia cases were analyzed by the radiologist to
identify and label slices with evidence of infection as shown in
Figure 1. This labeling process focuses more on distinctive
manifestations rather than slices with minimal findings. The
labeled subset of the data contains 4, 962 number of slices
demonstrating infection and 18, 447 number of slices without
infection. The data is then used to train and validate the first
stage of our proposed COVID-FACT model to extract slices

demonstrating infection from volumetric CT scans to be used in
the second classification stage.We have randomly divided this subset
into three separate components for training, validation, and testing.
60% of the labeled data is used for training, 10% for validation, and
30% for the test. The unlabeled subset is also randomly divided with
the same proportion and used along with the labeled data to develop
the second stage of the COVID-FACT model and evaluate the
overall method. The data leakage between the train and test sets has
been prevented. In other words, all slices related to a patient are
included either in the train or the test dataset. This research work is
performed based on the policy certification number 30013394 of
Ethical acceptability for secondary use of medical data approved by
Concordia University. Furthermore, informed consent is obtained
from all the patients. Finally, the dataset is complied with the
DICOM supplement 142 (Clinical Trial De-identification Profiles)
DICOM Standards Committee, Working Group 18 Clinical Trials
(2011), indicating that all CT studies are de-identified by either
removing or obfuscating the patient and center-related information
such as names, UIDs, dates, times, and comments based on the
directions specified in DICOM Standards Committee, Working
Group 18 Clinical Trials (2011).

2.2 Imaging Protocol
All CT examinations have been acquired using a single CT
scanner with the same acquisition setting and technical
parameters, which are presented in Table 1, where kVP
(kiloVoltage Peak) and Exposure Time affect the radiation
exposure dose, while Slice Thickness and Reconstruction

FIGURE 1 | (A,B): Infected and non-infected sample slices in a COVID-
19 case; (C,D): Infected and non-infected sample slices in a non-COVID
Pneumonia case.
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Matrix represent the axial resolution and output size of the
images, respectively Raman et al. (2013). Next, we describe the
proposed COVID-FACT framework followed by the
experimental results.

3 METHODS

The COVID-FACT framework is developed to automatically
distinguish COVID-19 cases from other types of pneumonia
and normal cases using volumetric chest CT scans. It utilizes a
lung segmentation model at a pre-processing step to segment
lung regions and pass them as the input to the two-stage Capsule
Network-based classifier. The first stage of the COVID-FACT
extracts slices demonstrating infection in a CT scan, while the
second stage uses the detected slices in first stage to classify
patients into COVID-19 and non-COVID cases. Finally, the
Gradient-weighted Class Activation Mapping (Grad-CAM)
localization approach (Selvaraju et al., 2017) is incorporated
into the model to highlight important components of a chest
CT scan, that contribute the most to the final decision.
In this section, different components of the proposed COVID-

FACT are explained. First, Capsule Network, which is the main
building block of our proposed approach, is briefly introduced.
Then the lung segmentation method is described, followed by the
details related to the first and second stages of the COVID-FACT
architecture. Finally, the Grad-CAM localization mapping
approach is presented.

3.1 Capsule Networks
A Capsule Network (CapsNet) is an alternative architecture for
CNNs with the advantage of capturing hierarchical and spatial
relations between image instances. Each Capsule layer utilizes
several capsules to determine existence probability and pose of
image instances using an instantiation vector. The length of the
vector represents the existence probability and the orientation
determines the pose. Each Capsule i consists of a set of neurons,
which collectively create the instantiation vector ui for the
associated instance. Capsules in lower layers try to predict the
output of Capsules in higher levels using a trainable weight matrix
W ij as follows �uj|i �W ijui, (1)

where �uj|i is the predicted output of Capsule j in the next layer by
the Capsule i in the lower layer. The association between the
prediction �uj|i and the actual output of Capsule j, denoted by vj, is
determined by taking the inner product of �uj|i and vj. The higher
the inner product, the more contribution of the lower level
capsules to the higher level one. The contribution of Capsule i

to the output of the Capsule j in the next layer is determined by a
coupling coefficient cij, trained over a course of few iterations
known as the “Routing by Agreement” given by

aij � vj . �uj|i, (2)

bij � bij + aij, (3)

cij �
exp�bij��k exp(bik), (4)

sj ��
i

cij�uj|i, (5)

and

vj �
����sj����2
1 + ����sj����2 sj����sj����, (6)

where aij is referred to as the agreement coefficient between the
prediction and actual output, and bij denotes the log prior of the
coupling coefficient cij. Vector sj denotes the Capsule output
before applying the squashing function. As the length of output
vectors represents probabilities, the ultimate output of Capsule j
(vj) is obtained by squashing sj between 0 and 1 using the
squashing function defined in Eq. 6. In order to update weight
matrixW ij through a backward training process, the loss function
is calculated for each Capsule k as follows

lk � Tkmax(0,m+ − ||vk||)2 + λ(1 − Tk)max (0, ||vk|| −m−)2,
(7)

where Tk is 1 when the class k is present and 0 otherwise.m+,m−,
and λ are hyper parameters of the model and are originally set to
0.9, 0.1, and 0.5, respectively. The overall loss is the summation of
all losses calculated for all Capsules.

3.2 Proposed COVID-FACT
The overall architecture of the COVID-FACT is illustrated in
Figure 2, which consists of a lung segmentation model at the
beginning followed by two Capsule Network-based models and
an average voting mechanism coupled with a thresholding
approach to generate patient-level classification results. The
three components of the COVID-FACT are as follows:

• Lung Segmentation: The input of the COVID-FACT is the
segmented lung regions identified by a U-net based
segmentation model (Hofmanninger et al., 2020), referred
to as the “U-net (R231CovidWeb)”, which has been initially
trained on a large and diverse dataset including multiple
pulmonary diseases, and fine-tuned on a small dataset of
COVID-19 images. The Input of the U-net (R231CovidWeb)
model is a single slice with the size of 512 × 512. The output is
the lung tissues, which will be normalized between 0 and 1 to

TABLE 1 | Imaging device and settings used to acquire the in-house dataset.

Scanner manufacturer and
model

Slice
thickness (mm)

Image
type

kVP
(kV)

Exposure
time (ms)

Reconstruction
matrix

Window
center

Window
width

SIEMENS, SOMATOM scope 2 Axial 110 600 512 × 512 (50,−600) (350,1200)
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generalize the features and help the model to perform more
effectively. Following the literature (Hu et al., 2020; Zhang
et al., 2020), we down-sampled the output from 512 × 512 to
256 × 256 size to reduce the complexity and memory
allocation without losing any significant information. Slices
with no detected lung regions are removed and the remaining
are fed into the first stage of the COVID-FACT model.
• COVID-FACT’s Stage One: The first stage of the COVID-
FACT, shown in Figure 3 is responsible to identify slices
demonstrating infection (by COVID-19 or other types of
pneumonia). Using this stage, we discard slices without
infection and focus only on the ones with infection.
Intuitively speaking, this process is similar in nature to the
way that radiologists analyze a CT scan. When radiologists
review a CT scan containing numerous consecutive cross-
sectional slices of the body, they identify the slices with an
abnormality in the first step, and analyze the abnormal ones to
diagnose the disease in the next step. Existing CT-based deep
learning processing methods either use all slices as a 3D input
to a classifier, or classify individual slices and transform slice-
level predictions to the patient-level ones using a threshold on
the entire slices (Rahimzadeh et al., 2021). Determining a
threshold on the number or percentage of slices demonstrating
infection over the entire slices is not precise, as most
pulmonary infections have different stages with involvement
of different lung regions (Yu et al., 2020). Furthermore, a CT

scan may contain different number of slices depending on the
acquisition setting, which makes it impossible to find such a
threshold. In most methods passing all slices as a 3D input to
the model, the input size is fixed and the model is trained to
assign higher scores to slices demonstrating infection.
However, the performance of such models will be reduced
when testing on a dataset other than the dataset on which they
are originally trained (Zhang et al., 2020).

The model used in stage one of the proposed COVID-FACT is
adapted from the COVID-CAPSmodel presented in our previous
work (Afshar et al., 2020a), which was developed to identify
COVID cases from chest radiographs. The first stage consists of
four convolutional layers and three capsule layers. The first and
second layers are convolutional ones followed by a batch-
normalization. Similarly, the third and fourth layers are
convolutional ones followed by a max-pooling layer. The
fourth layer, referred to as the primary Capsule layer, is
reshaped to form the desired primary capsules. Afterwards,
three capsule layers perform sequential routing processes.
Finally, the last Capsule layer represents two classes of infected
and non-infected slices. The input of stage one is set of CT slices
corresponding to a patient, and the output is slices of the
volumetric CT scan demonstrating infection. The output of
stage one may vary in size for each patient due to different
areas of lung involvement and phase of infection.

FIGURE 2 | The two-stage architecture of the proposed COVID-FACT.

FIGURE 3 | Architecture of the COVID-FACT at stage one.
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In order to cope with our imbalanced training dataset, we
modified the loss function, so that a higher penalty rate is given to
the false positive (infected slices) cases. The loss function is
modified as follows

loss � N+

N+ + N− × loss
− + N−

N+ + N− × loss
+, (8)

where N+ is the number of positive samples, N− is the number of
negative samples, loss+ denotes the loss associated with positive
samples, and loss− denotes the loss associated with negative
samples.

• COVID-FACT’s Stage Two: As mentioned earlier, we need to
apply classificationmethods on a subset of slices demonstrating
infection rather than on the entire slices in a CT scan. It is
worth noting that, lung segmentation (i.e., extracting lung
tissues) is performed in one of the variants of the COVID-
FACT as a pre-processing step. The first stage of the COVID-
FACT, on the other hand, is tasked with this specific issue of
extracting slices demonstrating infections.

The second stage of the COVID-FACT takes candidate slices
of a patient detected in stage one as the input, and classifies them
into one of COVID-19 or non-COVID (including normal and
pneumonia) classes, i.e., we consider a binary classification
problem. Stage two is a stack of four convolutional and two
capsule layers shown in Figure 4. The output of the last capsule
indicates classification probabilities in the slice-level. An average
voting function is applied to the classification probabilities, in
order to aggregate slice-level values and find the patient-level
predictions as follows

P� pk ∈ c� � 1Lk �Lki�1 P �ski ∈ c�, (9)

whereP(pk ∈ c) refers to the probability that patient k belongs to the
target class c (e.g., COVID-19), Lk is the total number of slices
detected in stage one for patient k, and P(ski ∈ c) refers to the
probability that the ith slice detected for patient k belongs to the

target class c. It is worth noting that while, initially, the COVID-
FACT performs slice-level classification in its second stage, the
output is patient-level classification (through its voting
mechanism), which is on par with other works that COVID-
FACT is compared with. As a final note to our discussion, we
would like to add that, corona virus infection is, typically, distributed
across the lung volume as such manifests itself in several CT slices.
Therefore, having a single slice identified as COVID-19 infection can
not necessarily lead to a positive COVID-19 detection.
Similar to stage one, the loss function modification in Eq. 8 is

used in the training phase of Stage two. The default cut-off
probability of 0.5 is chosen in Stage two to distinguish
COVID-19 and non-COVID cases. However, it is worth
mentioning that the main concern in the clinical practice is to
have a high sensitivity in identifying COVID-19 positive patients,
even if the specificity is not very high. As such, the classification
cut-off probability can be modified by physicians using the ROC
curve shown in Figure 5 in order to provide a desired balance
between the sensitivity and the specificity (e.g., having a high
sensitivity while the specificity is also satisfying). In other words,
physicians can decide howmuch certainty is required to consider a
CT scan as a COVID-19 positive case. By choosing a cut-off value
higher than 0.5, we can exclude those community acquired
pneumonia cases that contain highly overlapped features with
COVID-19 cases. On the other hand, by selecting a lower cut-
off value, we will allow more cases to be identified as a COVID-
19 case.
To further improve the ability of the proposed COVID-FACT

model to distinguish COVID-19 and non-COVID cases and
attenuate effects of errors in the first stage, we classify all
patients with less than 3% of slices demonstrating infection in
the entire volume as a non-COVID case. These cases are more
likely normal cases without any slices with infection. The few slices
with infection identified for these cases might be due to the model
error in the first stage, non-infectious abnormalities such as
pulmonary fibrosis, or motion artifacts in the original images,
which will be covered by this threshold. Based on (Yu et al.,
2020), it can be interpreted that 4% lung involvement is the

FIGURE 4 | Architecture of the COVID-FACT at stage two.
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minimum percentage for COVID-19 positive cases. In addition, the
minimum percentage of slices demonstrating infection detected by
the radiologist in our dataset is 7%, and therefore 3% would be a
safe threshold to prevent mis-classifying infected cases as normal.
As a final note, it is worth mentioning that the role of Stage 1 is

critical to achieving a fully automated framework, which does not
require any input from the radiologists, especially when an early and
fast diagnosis is desired. However, the COVID-FACT framework is
completely flexible and Stage 1 can be skipped if the slices
demonstrating infections have already been identified by the
radiologists, meaning that the normal cases are already identified
in this case and Stage 2merely separates COVID-19 and CAP cases.

• Grad-CAM: Using the Grad-CAM approach, we can visually
verify the relation between the model’s prediction and the
features extracted by the intermediate convolutional layers,
which ultimately leads to a higher level of interpretability of
the model. Grad-CAM’s outcome is a weighted average of the
feature maps of a convolutional layer, followed by a Rectified
Linear Unit (ReLU) activation function, i.e.,

LcGrad−CAM � RelU�
k

αck A
k, (10)

where LcGrad−CAM refers to the Grad-CAM’s output for the target
class c; αck is the importance weight for the feature map k and the
target class c, and; Ak refers to the feature map k of a
convolutional layer. The weights αck are obtained based on the
gradients of the probability score of the target class with respect to
an intermediate convolutional layer followed by a global average
pooling function as follows

αck �
1
Z
�
i

�
j

zyc

zAkij
, (11)

where yc is the prediction value (probability) for target class c, and
Z refers to the total number of feature maps in the
convolutional layer.

4 EXPERIMENTAL RESULTS

The proposed COVID-FACT is tested on the in-house dataset
described earlier in Section 2. The testing set contains
53 COVID-19 and 43 non-COVID cases (including 19
community acquired pneumonia and 24 normal cases). We
used the Adam optimizer with the initial learning rate of
1e − 4, batch size of 16, and 100 epochs. The model with the
minimum loss value on the validation set was selected to evaluate
the performance of the model on the test set. The proposed
COVID-FACT method achieved an accuracy of 90.82%,
sensitivity of 94.55%, specificity of 86.04%, and AUC of 0.97.
The obtained ROC curve is shown in Figure 5. The training and
validation loss curves are also illustrated in Figure 6.
In a second experiment, we trained our model using the complete

CT imageswithout segmenting the lung regions. The obtainedmodel
reached an accuracy of 90.82%, sensitivity of 92.72%, specificity of
88.37%, andAUCof 0.95. The correspondingROCcurve is shown in
Figure 5. This experiment indicates that segmenting lung regions in
the first step will increase the sensitivity and AUC from 92.72% and
0.95 to 90.82% and 0.98 respectively, while slightly decreases the
specificity from 88.37% to 86.04%. Although the numerical results
show a slight improvement achieved by segmenting the lung regions,
further investigating the sources of errors demonstrates the
superiority of using segmented lung regions over the original CT
scans. In the COVID-FACT model using lung segmented regions,
none of COVID-19 and community acquired pneumonia cases have
been mis-classified as a normal case by the 3% thresholding after the
first stage, and 95.84% (23/24) of normal cases have been identified
correctly using this threshold, while for the model without the lung
segmentation, there is one mis-classification of a COVID-19 case by
the 3% thresholding, and 91.66% (22/24) of normal cases were
identified correctly using this threshold.
Furthermore, we compared performance of the Capsule

Network-based framework of COVID-FACT with a CNN-
based alternative to demonstrate the effectiveness of Capsule
Networks and their superiority over CNN in terms of number
of trainable parameters and accuracy. In other words, the CNN-
based alternative model has the same front-end (convolutional
layers) as that of COVID-FACT in both stages. However, the
Capsule layers are replaced by fully connected layers including
128 neurons for intermediate layers and two neurons for the last
layer at each stage. The last fully connected layer in each stage is
followed by a sigmoid activation function and the remaining
modifications and hyper-parameters are kept the same as used in
COVID-FACT. The CNN-based COVID-FACT achieved an
accuracy of 71.43%, sensitivity of 81.82%, and specificity of
58.14%. The COVID-FACT performance, and number of
trainable parameters for examined models are presented in
Table 2. It is worth noting that in designing the CNN-based
COVID-FACT described above, the complexity and structure
have been kept similar to its capsule-based version. The goal is to
evaluate and illustrate potential advantages of capsule network
design over its CNN-based counterpart. Alternative models using
CNN architecture and fully connected layers such as the
DenseNet model (Yang et al., 2020), however, consist of
several convolutional layers and a high degree of complexity,

FIGURE 5 | ROC curve of the proposed COVID-FACT.
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as such it is expected from such complex models to outperform
the CNN-based COVID-FACT.
As mentioned earlier, the ROC curve provides physicians with a

precious tool to modify the sensitivity/specificity balance based on
their preference by changing the classification cut-off probability. To
elaborate this point, we changed the default cut-off probability from
0.5 to 0.75 and reached an accuracy of 91.83%, a sensitivity of 90.91%,
and a specificity of 93.02%. Further increasing the cut-off probability
to 0.8 results in the same accuracy of 91.83%, a lower sensitivity of
89.01%, and a higher specificity of 95.34%. On the other hand,
decreasing the cut-off probability from 0.5 to 0.35 will increase the
accuracy and the sensitivity to 91.83% and 98.18% respectively, while
slightly decreases the specificity to 83.72%. The performance of the
COVID-FACT for different values of cut-off probability are presented
in Table 3.
While performance of the COVID-FACT is evaluated by its

final decision made in the second stage, the first stage plays a
crucial role in the overall accuracy of the model. As such,
performance of the COVID-FACT in the first stage is also
reported in Table 4. As shown in Table 4, ∼ 91% of the slices
demonstrating infection are identified correctly by the COVID-
FACT at the first stage, while there are some mis-classified slices
that will be passed to the next stage as the infectious slices. It is also
evident that the CNN-based model cannot properly identify
infectious slices, which in turn led to the low performance of
the second stage. It is worth mentioning that stage one is only
responsible to detect candidate slices, while stage two classifies the
slices intoCOVID and non-COVID categories. The second stage is
followed by an aggregationmechanism, which takes all the slices of
a patient into account and consequently decreases the impact of
mis-classified slices at the first stage. We have also investigated the
performance of the model when the commonly used focal loss
function (Lin et al., 2017) is utilized to train the model. The

COVID-FACT framework trained by the focal loss function
(c � 2, α � 0.25) achieved the same patient-level performance
compared to our proposed model while the performance of the
first stage was lower with the accuracy of 92.79%, sensitivity of
87.69%, and the specificity of 97.03%. The lower sensitivity in the
first stage shows benefits of using the modified loss function as the
role of the first stage in the pipeline is to detect slices with the
evidence of infection to be analyzed in the second stage. As such,
the model, which is trained using our modified loss function has
been selected as the final model due to its higher accuracy and
sensitivity in detecting slices demonstrating infection.
As another experiment, performance of stage two is evaluated

without applying the first stage to provide a better comparison of
the models used in the second stage. More specifically, the stage
two model is trained based on the infectious slices identified by
the radiologist and evaluated on the labeled test set including
17 COVID-19 and 8 CAP cases. The numbers of correctly
predicted cases in this experiment are presented in Table 5.
The experimental results obtained by the COVID-FACT
framework using the lung segmentation achieved quite a
similar performance compared to the case in which the model
was trained based on the outputs of stage one. This result further
demonstrates that the Capsule Network and the aggregation
mechanism used in stage two can cope with errors in the
previous stage and achieve desirable performance. It is worth

FIGURE 6 | Training and Validation loss curves obtained for the COVID-FACT stage one and stage two.

TABLE 2 | Results obtained from COVID-FACT and the alternative CNN-based model.

Method Accuracy Sensitivity Specificity AUC Trainable parameters

COVID-FACT with lung segmentation 90.82 94.55 86.04% 0.98 406,880
COVID-FACT without lung segmentation 90.82 92.72% 88.37 0.95 406,880
CNN-based COVID-FACT 71.43% 81.82% 58.14% 0.67 365,806,660

TABLE 3 | Performance of COVID-FACT for different values of cut-off probability.

Cut-off probability 0.35 0.5 0.6 0.7 0.75 0.8

Accuracy (%) 91.83 90.82 91.83 90.82 91.83 91.83
Sensitivity (%) 98.18 94.55 92.73 90.91 90.91 89.01
Specificity (%) 83.72 86.04 90.70 90.70 93.02 95.34
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mentioning that this experiment was performed using only the
labeled dataset, which consequently provided a smaller dataset to
train the model.
The localization maps generated by the Grad-CAM method

are illustrated in Figure 7 for the second and fourth
convolutional layers in the first stage of the COVID-FACT. It
is evident in Figure 7 that the COVID-FACTmodel is looking at
the right infectious areas of the lung to make the final decision.
Due to the inherent structure of the Capsule layers, which
represent image instances separately, their outputs cannot be
superimposed over the input image. Consequently, in this study,
the Grad-CAM localization maps are presented only for
convolutional layers.

4.1 K-Fold Cross-Validation
We have evaluated the performance of the COVID-FACT and
its variants based on the 5-fold cross-validation (Stone, 1974) to
provide more objective assessments. In this experiment, the
COVID-FACT achieves the accuracy of 87.61 ± 2.00%, the
sensitivity of 88.30 ± 3.22%, and specificity of 86.75 ± 1.91%.
Using the same 5-fold cross-validation technique, the COVID-
FACT without using the segmented lung areas achieves the
accuracy of 87.31 ± 3.37%, sensitivity of 88.32 ± 5.00%, and
specificity of 86.03 ± 3.18%. Finally, the CNN-based COVID-
FACT achieves the accuracy of 64.49 ± 1.61%, sensitivity of
79.58 ± 6.61%, and specificity of 46.67 ± 8.48%. The results
confirm the superiority of the COVID-FACT using the
segmented lung areas over its variants as was demonstrated
in the previous experiments based on randomly selected test
dataset. Moreover, similar to the previous experiments,
modifying the cut-off probability is beneficial in the cross-
validation case to adjust the capability of the model to focus
on COVID or non-COVID cases depending on radiologists’
priorities. More specifically, in the aforementioned 5-fold cross-
validation, decreasing the cut-off probability to 0.35 increases
the sensitivity to 92.97 ± 2.96% while the overall accuracy
remains the same. Increasing the cut-off probability to 0.6,
on the other hand, increases the specificity to 91.16 ± 3.73%
and provides the same accuracy similar to the previous case.

5 DISCUSSION

In this study, we proposed a fully automated Capsule Network-
based framework, referred to as the COVID-FACT, to diagnose
COVID-19 disease based on chest CT scans. The proposed
framework consists of two stages, each of which containing
several layers of convolutional and Capsule layers. COVID-
FACT is augmented with a thresholding method to classify
CT scans with zero or very few slices demonstrating infection
as non-COVID patients, and an average voting mechanism
coupled with a thresholding approach is embedded to extend
slice-level classification into patient-level ones. Experimental
results indicate that the COVID-FACT achieves a satisfactory
performance, in particular a high sensitivity with far less trainable
parameters, supervision requirements, and annotations
compared to its counterparts.
We further investigated mis-classified cases to determine

the limitations and possible improvements. Table 6 shows
the number of the mis-classified cases for each type of the
input disease (COVID-19, CAP, normal) obtained at stage two,
as well as the number of normal cases that were not identified
correctly by the 3% threshold after the first stage. The low rate of
errors obtained by the 3% threshold in the first stage
demonstrates the capability of COVID-FACT to identify
normal cases in the first stage, which is very helpful for
physicians and radiologists to exclude normal cases at the
very beginning of their study.
As in the case of highly contagious diseases such as COVID-

19, the False-Negative-Rate (FNR) is of utmost importance, we
have further analyzed such errors to explore the possible sources
of the mis-classification. As shown in Table 6 there are 3/55
COVID-19 cases that are mis-classified by the COVID-FACT
framework. We found that one mis-classified COVID-19 case
contains unifocal infection manifestation with consolidation
predominance rather than GGO, which are more common in
CAP cases rather than COVID-19 ones. One other case of error
was identified as an incomplete CT scan with missing slices,
which has consequently made the correct identification difficult
for the framework. In addition, we have reviewed the
aforementioned errors in the case of image quality and lung
segmentation as other potential causes of the error. The
assessment results showed that the image qualities are
adequate and the segmentation model performed well without
removing or cropping the infection manifestations. Therefore,
some errors are likely to be caused by the similarities between the
infection patterns in CAP andCOVID-19 cases. It is worth noting
that decreasing the cut-off probability from 0.5 to 0.35, as shown
in Table 3, will result in the correct classification of the two false-
negative cases, which contain similar characteristics to other

TABLE 4 | The performance of stage one in diagnosis of slices demonstrating infection.

Method (stage one) Accuracy (%) Sensitivity (%) Specificity (%) AUC

COVID-FACT with lung segmentation 93.14 90.75 94.01% 0.96
COVID-FACT without lung segmentation 92.78% 87.59% 94.36 0.96
CNN-based COVID-FACT 79.74% 33.00% 91.28% 0.64

TABLE 5 | Correctly predicted cases using only stage two without applying the
first stage.

Model COVID-19 CAP

Stage 2 with lung segmentation 94.1% (16/17) 87.5% (7/8)
Stage 2 without lung segmentation 88.2%(15/17) 62.5%(5/8)
Stage 2 CNN-based 82.4%(14/17) 25%(2/8)
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infections. This can be considered as a remedy, when FNR is of
the main concern.
We also identified that errors in stage one are mainly caused by

non-infectious abnormalities such as pulmonary fibrosis and
artifacts. In this regard, we have further explored slices with
the evidence of artifact where no infectionmanifestation presents.
In some cases, the motion artifact or the artifacts caused by the
presence of metallic components inside the body have generated
some components in the image that were mis-classified as
infectious slices. Figure 8 illustrates 4 samples of such slices in
which images A) and B) belong to a mis-classified normal case
while images C) and D) are related to two CAP cases, where
classified correctly in the second stage. It is worth mentioning
that, the number of such slices is negligible especially when they
appear in cases that have multiple infectious slices (caused by
CAP or COVID-19). In those cases, the influence of such slices
with the evidence of artifact will be diminished by the second
stage and the following aggregation mechanism. Motion artifact
reduction algorithms can be investigated as a future work to cope
with undesired impacts of the artifacts on the final result. It is
worth mentioning that during the labeling process accomplished
by the radiologist to detect slices demonstrating infection, we

noticed that in some cases the abnormalities are barely visible
with the standard visualization setting (window center and
window width). Those abnormalities have been detected by
changing the image contrast (by adjusting the window center
and width) manually by the radiologist. This limitation will arise
the need to research on the optimal contrast and window level use
in future studies. As another limitation, we can point to the
retrospective study used in the data collection part of this
research. Although the provided dataset is acquired with the
utmost caution and inspection, a retrospective data collection
might add inappropriate cases to the study at hand. The potential
improvement to address this limitation could be the collaboration
of more radiologists in analyzing and labeling the data to assess if
the interobserver agreement is satisfying or not.
As a side note to our discussion, we would like to mention that

while both CT and CR can decrease the false negative rate at the
admission and discharge times, the CR is less sensitive, and less
specific compared to CT. Some studies such as Reference (Wong
et al., 2020) report that CR often shows no lung infection in
COVID-19 patients at early stages resulting in a low sensitivity of
69% for diagnosis of COVID-19. Therefore, chest CT has a key
role for diagnosis of COVID-19 in the early stages of the infection
and also to set up a prognosis. Furthermore, a single CR image
fails to incorporate details of infections in the lung and cannot
provide a comprehensive view for the lung infection diagnosis.
Unlike CR images, CT scans generate cross-sectional images
(slices) and create a 3D representation of the body (i.e., each
patient is associated with several 2D slices). As a result, CT images
can show detailed structure of the lung and infected areas.
Consequently, CT is considered as the preferred modality for
grading and evaluation of imaging manifestations for COVID-19
diagnosis. It is worth adding that as CT scans are 3D images, as

FIGURE 7 | Localization heatmaps for the second and forth convolutional layers of the first stage obtained by the Grad-CAM for two slices.

TABLE 6 | The number of the mis-classified cases for each type of the input
disease and the number of cases that were not identified correctly by. the 3%
threshold.

Input Errors (thresholding) Errors (stage two)

COVID-19 0/55 3/55
CAP 0/19 5/19
Normal 1/24 1/24
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opposed to 2D chest radiographs, they are more difficult to be
processed using ML and DL techniques, as the currently available
resources cannot efficiently process the whole volume at once. As
such, slice-level and thresholding techniques are utilized to cope
with such limitations, leading to a reduced performance
compared to the models working with CR (e.g., the COVID-
CAPS (Afshar et al., 2020d), which deals with 2D chest
radiographs). The focus of our ongoing research is to further
enhance performance of CT-based COVID-19 diagnosis models
to fill the gap between the radiologists’ performance and that of
volumetric-based DL techniques.
As a final note, unlike our previous work on the chest

radiographs (Afshar et al., 2020a), where we used a more
imbalanced public dataset, the dataset used in this study
contains a substantial number of COVID-19 confirmed cases
making our results more reliable. Upon receiving more data from
medical centers and collaborators, we will continue to further
modify and validate the COVID-FACT by incorporating new
datasets.
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