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ABSTRACT
Pupil tracking in a bright outdoor environment is challenging due
to low eye image quality and reduced pupil size in response to
bright light. In this study we present research to develop robust
outdoor pupil tracking without the need for shading the eyes. We
first investigate the effect of camera post-processing settings in
order to find values that enhance image quality for the purpose
of pupil tracking under direct, oblique and overcast sunlight illu-
minations. We then tested the performance of the state-of-the-art
pupil tracking techniques under these extreme real-world outdoor
lighting conditions. Our results suggest that a key goal should be
maintaining the contrast between iris and pupil to support accurate
estimation of pupil position regardless of the overall eye image
quality.
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1 INTRODUCTION
Portable eye-tracking systems provide the opportunity to investi-
gate different aspects of human behavior ranging from low-level
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reflexes to high-level social behaviors. While most portable eye-
trackers are designed for use in laboratories with controlled light-
ing condition, there has been a growing interest in data collection
outside the laboratory. However, mobile eye-tracking in outdoor
environments is challenging and often leads to lower-quality data
due to two main reasons [Evans et al. 2012].

First, mobile eye-tracking methods rely on video oculography
(VOG) to track the movements of the eye. This requires high quality
images of the eyes with robust eye features such as the pupil. To
this end, infrared (IR) light is typically used to illuminate the eyes,
and for pupil-corneal-reflection-based gaze estimation, it allows
tracking reflection(s) of IR light-emitting diodes (LEDs) across the
cornea (1st Purkinje image) [Evans et al. 2012; Holmqvist et al.
2011]. The outdoor environment has an abundance of IR light that
can flood the eye camera during daytime hours, leading to a drastic
reduction in the eye image quality. Furthermore, environmental
reflections of IR light can lead to additional Purkinje images on the
eye, causing tracking to break down even when image quality is
otherwise acceptable.

Second, eye-tracking in outdoor environments is challenging
due to the pupillary response to light [Evans et al. 2012]. For model-
based gaze estimation, robust pupil detection results in a better
3D model of the eye [Kassner et al. 2014]. In indoor environments,
the pupils are often dilated, allowing the image segmentation tech-
niques to perform well. In contrast, pupils exposed to light levels
common during daylight hours constrict to a very small size. This
constriction subsequently causes the image segmentation pipeline
to break down, compromising overall gaze-tracking performance
[Evans et al. 2012]. Furthermore, subjects tend to squint in out-
door lighting, causing the lower eyelid and eyelashes to partially
or fully occlude the pupil causing an additional challenge for the
eye tracking pipeline [Evans et al. 2012].

In response to some of these problems an IR blocking shade is
attached or worn over the eye-tracker by the participant [Evans
et al. 2012; Hausamann et al. 2020; Matthis et al. 2018; Valsecchi
et al. 2020]. While suitable under certain conditions, the presence
of shades may cause unnatural oculomotor or cephalomotor behav-
iors. For example, a subject may incline their head in order to look
at an object below a shade placed over the eye-tracker. This might
also cause unnatural eye movements that might not be present
for instance when walking outdoors without sunglasses. Here we
explore an alternative approach: optimizing the image acquisition
pipeline for outdoor environments. This presents a viable solution
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without imposing possible demand characteristics on participants.
We seek to optimize this pipeline from two perspectives. First, we re-
port results of systematic tests to determine recommended camera
settings for a variety of lighting conditions. We collected outdoor
eye-tracking data across a range of camera parameters afforded
by our eye tracker (Pupil Core, [Kassner et al. 2014]). Second, we
characterize and report performance of three state-of-the-art pupil-
tracking techniques under these conditions. These include Pupil
Labs [Kassner et al. 2014], RITnet [Chaudhary et al. 2019], and
DeepVOG [Yiu et al. 2019]. The last two are both deep neural net-
work models for eye image segmentation. We then assess pupil
tracking performance during an 8-minute outdoor walking session
under various combinations of shade, oblique and direct sunlight.

2 RECOMMENDED CAMERA SETTINGS
BASED ON PUPIL ESTIMATION ERROR

We investigate the parameters of a typical USB video device class
(UVC) eye camera used in most eye tracking systems and report
recommended ranges for the camera settings especially for outdoor
conditions. Eye tracking data was collected under different light-
ing conditions including extreme cases for generating shadow and
reflection artifacts. Specifically, informed by preliminary study, we
recorded data under four different lighting conditions: indoors as a
reference, outdoors in the shade, outdoors facing the sun directly,
and outdoors facing the sun at an oblique angle. During each light-
ing condition, the standing participant fixated at five points on a
target while every 80 ms an eye image (from left eye) was captured
and stored along with its camera settings. In order to include differ-
ent eye positions in the analysis, participants fixated at five points
(four corners and the center of a checkerboard pattern) while the
eye images were recorded for each camera setting. During a pilot
study we found that gamma, brightness, and sharpness are the most
important camera settings affecting the eye image quality. There-
fore for each condition we considered four values for gamma, four
values for brightness and three values for sharpness as shown in Fig.
1. Furthermore, we set the following fixed parameters: exposure
mode = Auto, Contrast = 65, Gain = 0.

We use the residual ellipse fit error to the pupil region as the
performance metric. Pupil segmentation was performed using RIT-
net which is reported to be robust to different illumination, eye
shapes, rotation and scaling [Chaudhary et al. 2019]. We report
the mean residual error for the ellipse fit to the pupil region in
units of pixel. This metric serves as a proxy measure of eye image
quality for each camera setting shown in Fig. 2. A successful pupil
detection algorithm, typically provides a sub-pixel accuracy for the
position of the pupil. For instance, As shown in Fig. 2 residual error
remains below 0.3 pixels for the direct sunlight condition, when
𝑔𝑎𝑚𝑚𝑎 = 130, 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 0 and 𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 = 3.

Our recommendations for these settings, based on the boxplot
graphs in Fig. 2, give the lowest median error value with the dis-
tribution of error values most tightly clustered around it and the
minimum number of outliers. The results show for different light-
ing conditions, different ranges of camera settings can provide the
lowest pupil tracking error. For instance, the shade condition is
challenging due to similar pupil and iris intensities (see supplemen-
tal figure 1-4) hence a mid-range gamma value 130 < 𝑔𝑎𝑚𝑚𝑎 < 160

Figure 1: Sample eye images captured under direct sunlight
and different camera settings for gamma and brightness.
Each 4x4 sub-panel shows the eye images for a fixed sharp-
ness value. Right panel: Pupil fit residual error for each set-
ting and lighting condition (please zoom in for better view-
ing).

would stretch the pixel intensities enough to detect the pupil cor-
rectly. Whereas in oblique condition the default (minimum) value
for gamma and large reduction in intensity−60 < 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 < −40
is required to darken the eye image for pupil detection.

Figure 2: Pupil fit residual error for each setting and lighting
condition (please zoom in for better viewing)

3 PUPIL CONFIDENCE ACROSS DIFFERENT
ILLUMINATIONS & MODELS

After fine tuning the eye camera parameters for outdoor eye track-
ing, these settings (𝑔𝑎𝑚𝑚𝑎 = 110, 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = −30, 𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 = 3)
were used to stress-test the state-of-the-art pupil tracking pipelines.
Pupil Labs [Kassner et al. 2014] uses an image processing technique
that finds the location of the pupil as a disc on the surface of the eye
sphere, in order to solve for the 3D position of the eye. Although
this method is widely used, here we show that performance is sig-
nificantly impaired for low contrast outdoor eye images. RITnet and
DeepVOG, however, use deep neural network (DNN) models and
they are more robust to image illumination changes since the image
artifacts are usually included in their training sets [Chaudhary et al.
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Figure 3: Top panel: confidence values in detecting the pupil
or iris for an outdoorwalking session: Pupil Labs (red), Deep-
VOG (blue), and RITnet (green). Note that for DeepVOG the
confidence value is w.r.t detected iris and not the pupil. The
distribution of confidence values for all four outdoor ses-
sions is shown in the inset. Bottom panels (a) input eye im-
age, (b) pupil detected by DeepVOG (note the iris ismistaken
for the pupil due to poor contrast), (c) DeepVOG activation
map, (d) RITnet output pupil and iris contour along with el-
lipse fits shown in color and (e) RITnet segmented eye re-
gions (please zoom in for better viewing)

2019; Yiu et al. 2019]. It is important to note that no re-training was
performed on the deepNets.

Gaze tracking data from four subjects were recorded while walk-
ing outdoors for about 10 minutes including calibration and val-
idation at the beginning and at the end. We made sure that the
subjects walked under shade, direct and oblique sunlight in order
to evaluate eye image quality under realistic conditions. As shown
in Fig. 3 top panel, Pupil Labs fails significantly in detecting the
pupil and the DeepVOG model takes the iris as pupil for the entire
duration. RITnet, however, performs better for the most part. Visual
inspection of the segmented videos suggests that RITnet loses track
of the pupil under extreme conditions. Pupil Labs method reports
the detected pupil confidence value using a technique similar to
the one explained above. However, neither RITnet and DeepVOG
report the estimated pupil confidence values. In order to provide
a fair comparison, we calculated the confidence values for both
RITnet and DeepVOG models by Z-normalizing the residual error
from ellipse fit to the detected pupil contour [Shanker et al. 1996].
Fig. 3 shows an example of the detected pupil contour and ellipse
fit (which in the case of DeepVOG is the iris) for the two deepNets
for one participant.

4 CONCLUSION
In this study, the space of eye camera post-processing parameters
was explored in order to identify settings that improve the eye
image quality for the purpose of outdoor eye tracking. Our results

suggest that selection of parameters that are tailored to specific
lighting conditions can preserve the eye image quality and extend
the tolerance of current pupil tracking techniques. The deep net-
works showed strong tolerance for the change in the eye shape
due to squinting that was reported in previous studies [Evans et al.
2012]. However, our findings suggest that the most critical factors
seems to be the contrast between the pupil and the iris and bright
reflections of the world on the iris. We could not identify a single
set of parameters that works best across all illuminations, because
different illuminations cause different artifacts on the eye image.
For instance, the eye images under direct and oblique conditions,
are visually significantly different (see supplemental figures 3 and
4), because of the difference in light source incident angle. There-
fore, direct condition would require a large reduction of brightness
and the oblique condition requires a large gamma to stretch the
intensity difference between pupil and iris. Our results suggest the
need for a technique that dynamically adapts the camera settings
based on the instantaneous iris-pupil contrast in the eye image.
One could use an anatomically aware technique that applies dif-
ferent image enhancement algorithm to different parts of the eye
image. For instance, darkening the skin and eyelids while contrast-
stretching the area including iris and pupil. Finally, these results
suggest that retraining the existing deep networks using the image
dataset presented in this study could further contribute to robust
outdoor pupil tracking. This means that the deep networks will
learn the similar relationship between eye parts but under extreme
lighting conditions. We also note that the use of post-processing
settings causes a slight decrease in frame rate, i.e. from 120 fps to
117 fps in our case.
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