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ABSTRACT

Deep neural networks (DNNs) provide powerful tools to identify
and track features of interest, and have recently come into use for
eye-tracking. Here, we test the ability of a DNN to predict keypoints
localizing the eyelid and pupil under the types of challenging image
variability that occur in mobile eye-tracking. We simulate varying
degrees of perturbation for five common sources of image varia-
tion in mobile eye-tracking: rotations, blur, exposure, reflection,
and compression artifacts. To compare the relative performance
decrease across domains in a common space of image variation,
we used features derived from a DNN (ResNet50) to compute the
distance of each perturbed video from the videos used to train our
DNN. We found that increasing cosine distance from the training
distribution was associated with monotonic decreases in model
performance in all domains. These results suggest ways to optimize
the selection of diverse images for model training.
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1 INTRODUCTION

Video-based eye-tracking methods have evolved from classical
methods which tracked the corneal reflection [Carmichael and
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Dearborn 1947; Cornsweet 1958] to recent methods using deep
neural networks (DNNs) that use the full anatomical shape of the
eye for gaze estimation [Chaudhary et al. 2019; Kothari et al. 2020a].
DNNs have been successful in dealing with noisy data, but the
robustness of DNN solutions to pupil estimation under different
sources of image perturbation encountered during eye-tracking
have not yet been well characterized.

Part of the reason for this is that many commonly used data
sets have been collected under constrained circumstances, e.g. in a
few types of indoor environments, in order to assure high-quality
data. Such data is useful for testing multiple models on the same
videos but cannot help to determine the robustness of DNN al-
gorithms under more challenging circumstances such as outdoor
freely moving mobile eye-tracking. Generalization is a well-known
problem for DNNs. A DNN trained on a certain dataset may not
perform well on new held-out data. The ability of a DNN to gener-
alize may depend upon the choice of the DNN architecture or the
data used to train the DNN. Selecting training data is a notoriously
difficult problem. It is very difficult to sample the long tails of data
in the wild [Salakhutdinov et al. 2011; Van Horn and Perona 2017].
Among all possible rare events to sample, it is difficult to know a
priori whether the inclusion of particular data will improve model
performance.

A crucial step in making DNNs increasingly robust is to charac-
terize the sources of image variation that cause them to fail. Under-
standing failure cases can lead to insights about how to improve
model performance, e.g., by strategically expanding the training set.
Here, we study the degree to which different image perturbations
cause a deep neural network (in our case DeepLabCut [Mathis et al.
2018]) to fail. We further define a method to characterize the per-
formance of our DNN model on these image perturbations based
on their distance from the training distribution. This opens up the
possibility of predicting model performance on new data points.

2 METHODS

For this study, we used eye videos from 13 participants from the
Gaze in Wild (GiW) dataset [Kothari et al. 2020b] that used a head-
mounted pupil labs eye tracker [Kassner et al. 2014] to track the
gaze position of participants while they performed different tasks
indoors.


https://doi.org/10.1145/3450341.3458491
https://doi.org/10.1145/3450341.3458491

ETRA °21 Adjunct, May 25-27, 2021, Virtual Event, Germany

2.1 Adding perturbations to eye videos

One of our goals was to investigate potential failure cases for our
eye-tracking neural network model under the types of challeng-
ing conditions encountered outdoors and in datasets with many
participants. For example, variable lighting conditions, individual
differences in eye anatomy, and hardware and software choices all
affect eye tracking data.

We evaluated our DNN model on eye videos with increasing ex-
posure, reflection, defocus blur, eye rotation, and JPEG compression.
These perturbations were added artificially using image processing
to eye videos from two participants from the GiW dataset. We se-
lected these two participants (one train and one test participant)
because they had the smallest difference in DNN model performance
between them. This minimizes the effects of individual differences
on model performance across the test and train participant. For
each participant, we created four videos with uniformly increasing
levels of perturbation (Figure 1A) and then tested the performance
of our neural network model on these videos.

2.1.1 Exposure. To simulate the effect of an increase in exposure
and decrease in the contrast between the pupil/eyelashes and other
regions in the eye video in bright sunlight, we added four steps of
luminance increments (each 35 units) to all pixels in each frame.
After each increment, pixel values were clipped to a maximum of
255.

2.1.2  Rotation. To simulate the effect of different camera angles
and facial anatomy across participants, we rotated the eye videos
in four five-degree increments followed by scaling and cropping
to ensure uniform frame size. This rotation resulted in the eye
going partially out of the frame for the 15 and 20-degree rotation
conditions.

2.1.3  Reflection. Corneal reflection and shadows on the eye present
a challenge while recording eye videos outdoors. We used the
method presented in [Eivazi et al. 2019] to add reflections and
shadows to the eye images. We modified the blending factor for
images superimposed on the eye video in four steps. For every
frame, we randomly selected the reflected image from the Driving
Events Camera Dataset [Rebecq et al. 5555] which contains videos
from dashboard cameras of cars driving through highways and
cityscapes.

2.14  JPEG artifacts. Compressed video formats are desirable when
storing eye videos as they take up less space. Thus, we tested the
robustness of our DNN to compression artifacts by altering the
video frames with JPEG compression. We varied the JPEG quality
parameter (which varies from 100 to 0, denoting best to worst
quality) from 32 to 8 in four steps of 8.

2.1.5 Defocus Blur. Finally, to mimic the defocus blur from a cam-
era we used the imgaug image augmentation library [Jung et al.
2020] and iteratively increased the severity parameter from 1 to 4
to create an incremental loss of focus in the eye videos.

2.2 DeepLabCut for pupil and eyelid detection

For detecting the pupil position and the eyelid shape, we used
DeepLabCut (DLC) [Mathis et al. 2018; Nath* et al. 2019], a mark-
erless pose estimation library. DLC uses a convolutional neural
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network based on ResNet50 architecture [He et al. 2016], which has
been pre-trained on the ImageNet dataset [Deng et al. 2009]. DLC
uses k-means in pixel space for each eye video to select 40 distinct
frames from each participant for hand labeling. Our DLC model
was trained using 240 frames (40 frames from each of 6 participants)
which were hand-labeled with the 48 key points: 32 localizing the
eyelids, and 16 encircling the pupil. The trained DLC model uses
eye video frames as its input and outputs the coordinates of the 48
keypoint locations (Figure 1A) along with the likelihood for each
of these key points. The likelihood, which varies from 0 to 1, is a
metric of how confident the model is about its prediction for the
given keypoint and is generally correlated with annotation error.

2.3 Distance from training distribution

Neural Net feature spaces have become a popular choice for fea-
ture extraction. For example, the Alexnet feature space has been
used successfully as a space for representing and classifying im-
ages [Kiros et al. 2014; Krizhevsky et al. 2012; Ponce et al. 2019;
Venugopalan et al. 2015]. Since DLC is based on the ResNet50 ar-
chitecture, we used the ResNet50 feature space. To map an eye
video frame into ResNet50 space, we ran it through a ResNet50
neural network pre-trained on ImageNet and looked at the output
of the final convolutional layer before the fully connected layers.
This gives us a 100,352-dimensional feature vector for each frame,
which is considered the representation of the frame in ResNet50
space. To calculate the distance of new eye video frames from the
training distribution, first, we mapped all the 240 training images
into the ResNet50 space, took the mean of these 240 vectors, and
then calculated the cosine distance of the new frames to this mean
training distribution vector.

3 RESULTS AND DISCUSSION

To validate that DLC captures pupils accurately, we estimated the
pixel error between the DLC model’s predicted keypoints and
human-labeled keypoints in 160 test frames from 4 participants
that were not part of the training set. The root mean squared error
(RMSE) between DLC and the human labels was 10.78 pixels. For
context, the RMSE for the same frames between two human label-
ers was 12.91 pixels, suggesting that DLCs accuracy lies within the
variance of human labelers.

We evaluated DLC performance on each perturbed video by mea-
suring the change in likelihood with an increase in the perturbation
intensity for each domain (Figure 1B). As expected, keypoint anno-
tation confidence drops with an increase in perturbation intensity.
We attempted to scale the amount of perturbation in each domain
to a range likely to be seen in real data. However, it would be useful
to have a single metric for “image change” to investigate the relative
drop in model performance between perturbations.

To this end, we investigated the use of ResNet50 feature space
as a representation of image similarity to the training distribu-
tion to explain model performance across perturbations.Figure 1C
shows the DLC likelihood as a function of cosine distance from
the training distribution across perturbations in ResNet50 feature
space. We calculated the correlation and the rate of change (ROC),
the average slope, between the likelihood and the cosine distance.
The correlation tells us how good a metric the distance from the
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Figure 1: Frames illustrating perturbed eye videos and the keypoint annotation performance of our neural network model.
Note the increasing number of missing keypoints as the intensity of the perturbations increases from left to right. (B) Mean
model likelihood as a function of increasing perturbation intensity for each domain. (C) Likelihood as a function of cosine
distance of the perturbed video from the training distribution mean in ResNet50 feature space. The likelihood drops mono-
tonically with an increase in distance from the mean of the training distribution.

training distribution is in explaining model performance. The slope
gives us the drop in likelihood per unit distance: the more neg-
ative the slope the more detrimental is the effect of the pertur-
bation on model performance. Across all domains, the likelihood
drops monotonically with an increase in distance from the train-
ing distribution (r = —0.4). We see that even a small increase in
rotation(r = —0.37,ROC = —22.5), exposure(r = —0.53, ROC =
—16.6) or blur(r = —0.22, ROC = —10.65) results in a large increase
in the distance from the training distribution. This suggests that
our model may not be robust to these perturbations as evident from
the larger drop in likelihood with an increase in distance. On the
other hand, we see that the videos with even the strongest per-
turbation intensity for compression(r = —0.16, ROC = —3.5) and
reflection(r = —0.03, ROC = —3.4) domains are relatively nearer to
the training distribution. Our model is correspondingly robust to
these perturbations.

Ideally, the drop in likelihood with distance should be predictable
using a single function for all perturbations. The differences be-
tween the slopes and correlations in Figure 1C suggest that we
have not yet found an ideal generic image space for such a function.
However, these correlations and slopes can be used as a reasonable
approximation of model performance decline. Our approach is a
step in the direction to find a feature space which explains model

performance as a function of image variability from the training
distribution. Also, image spaces are very high dimensional. Thus, a
single metric (e.g. distance from the training distribution) which
is linearly correlated with a decrease in model likelihood may not
exist.

In addition to the ResNet50 feature space we evaluated Euclidean
and cosine distance in pixel space to calculate distance from the
training distribution. The performance drop due to blur (r = 0.08),
compression (r = 0.15), and reflection (r = 0.04) was not reliably
related to an increase in distance from the training distribution in
pixel space. This suggests that using k-means in ResNet50 feature
space (instead of pixel space) to uniformly sample training data
may be more effective in maximizing the variance of the dataset.
This would reduce any redundancy in the training dataset by in-
cluding only those frames which add new information based on
the distance metric. This is important when a DNN is trained on a
limited number of frames and labeling new frames is costly.

Our work also suggests productive directions for training data
augmentation: addition of variation in exposure, rotation, and de-
focus blur to the training data seems more likely to improve model
performance than addition of reflection and JPEG artifacts.The cur-
rent study guides the training regime that one would use in order
to retrain a single model to generalize across conditions.



ETRA °21 Adjunct, May 25-27, 2021, Virtual Event, Germany

Another possible use of a metric for distance from the training
set is as a data quality filter. Currently, the correlation between
distance from the training set and model likelihood is too low to
be used as a frame-by-frame quality metric. However, computing
distance from a training set could be useful to determine whether a
whole new data session is likely to be problematic.

Each neural network is different and is trained on a different
dataset, thus each of them is differently susceptible to these per-
turbations. We plan to further investigate if these methods are
applicable for other neural networks. We are also looking into Ma-
halanobis distance and mutual information as alternate distance
metrics between the training dataset and image perturbations.
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