
Mathematical Programming
https://doi.org/10.1007/s10107-020-01567-1

FULL LENGTH PAPER

Series A

Complexity of stochastic dual dynamic programming

Guanghui Lan1

Received: 22 December 2019 / Accepted: 8 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
Stochastic dual dynamic programming is a cutting plane type algorithm for multi-
stage stochastic optimization originated about 30 years ago. In spite of its popularity
in practice, there does not exist any analysis on the convergence rates of this method.
In this paper, we first establish the number of iterations, i.e., iteration complexity,
required by a basic dual dynamic programming method for solving single-scenario
multi-stage optimization problems, by introducing novel mathematical tools including
the saturation of search points. We then refine these basic tools and establish the
iteration complexity for an explorative dual dynamic programing method proposed
herein and the classic stochastic dual dynamic programming method for solving more
general multi-stage stochastic optimization problems under the standard stage-wise
independence assumption. Our results indicate that the complexity of these methods
mildly increases with the number of stages T , in fact linearly dependent on T for
discounted problems. Therefore, they are efficient for strategic decision making which
involves a large number of stages, but with a relatively small number of decision
variables in each stage.Without explicitly discretizing the state and action spaces, these
methods might also be pertinent to the related reinforcement learning and stochastic
control areas.

Mathematics Subject Classification 90C25 · 90C06 · 90C22 · 49M37 · 93A14 · 90C15

Dedicated to Professor Alexander Shapiro on the occasion of his 70th birthday for his profound
contributions to stochastic optimization.

This research was partially supported by the NSF grant 1953199 and NIFA Grant 2020-67021-31526.

B Guanghui Lan
george.lan@isye.gatech.edu

1 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01567-1&domain=pdf

G. Lan

1 Introduction

In this paper, we are interested in solving the following stochastic dynamic optimiza-
tion problem

min
x1∈X1

H1(x1, c1) + λE

[
min

x2∈X2(x1)
H2(x2, c2)

+λE
[· · · + λE[min

xT ∈XT (xT−1)
HT (xT , cT)]]

]
, (1.1)

with feasible sets Xt given by

X1 := {
x ∈ X̄1 ⊆ R

n1 : A1x1 = b1, Φ1(x1, p1) ≤ 0
}
, (1.2)

Xt (xt−1) ≡ Xt (xt−1, ξt)

:= {
x ∈ X̄t ⊆ R

nt : At x = Bt xt−1 + bt , Φt (x, pt) ≤ Qt xt−1
}
. (1.3)

Here T denotes the number of stages, Ht (·, ct) are closed convex objective functions,
X̄t ⊂ R

nt are closed convex sets,λ ∈ (0, 1]denotes the discounting factor, At : Rnt →
R
mt , Bt : Rnt−1 → R

mt , and Qt : Rnt−1 → R
pt are linear mappings, andΦt,i (·, pt) :

R
nt → R, i = 1, . . . , pt are closed convex constraint functions. Moreover, ξ1 :=

(A1, b1, B1, p1, c1) is a given deterministic vector, and ξt := (At , bt , Bt , Qt , pt , ct),
t = 2, . . . , T , are the random vectors at stage t . In particular, if Ht are affine, Xt are
polyhedral and Φt do not exist, then problem (1.1) reduces to the well-known multi-
stage stochastic linear programming problem (see, e.g., [5,28]). The incorporation
of the nonlinear (but convex) objective functions Ht and constraints Φt allows us to
model a much wider class of problems.

In spite of its wide applicability, multi-stage stochastic optimization remains highly
challenging to solve. As shown by Nemirovski and Shapiro [29] and Shapiro [26], the
number of scenarios of ξt , t = 2, . . . , T , required to solve problem (1.1) has to
increase exponentially with T . In particular, if the number of stages T = 3, the total
number of samples (a.k.a. scenarios) should be of order O(1/ε4) in general. There
exist many algorithms for solving multi-stage stochastic optimization problems (e.g.,
[11,21,24]), but quite often without guarantees provided on their rate of convergence.
More recently, Lan and Zhou [17] developed a dynamic stochastic approximation
method for multi-stage stochastic optimization by generalizing stochastic gradient
descent methods, and show that this algorithm can achieve this optimal sampling and
iteration complexity bound for solving general multi-stage stochastic optimization
problems with T = 3. The complexity of this method depends mildly on the problem
dimensions, but increases exponentially with respect to T . As a result, this type of
method is suggested for solving some operational decision-making problems, which
involve a large number of decision variables but only a small number of stages.

In practice, we often encounter strategic decision making problems which span a
long horizon and thus require a large number of stages T . In this situation, a crucial
simplification that has been explored to solve problem (1.1) more efficiently is to
assume the stage-wise independence. In other words, we make the assumption that

123

Complexity of stochastic dual dynamic programming

the random variables ξt , t = 2, . . . , T , are mutually independent of each other. Under
this assumption, we can write problem (1.1) equivalently as

minx1∈X1{H1(x1, c1) + λV2(x1)}, (1.4)

where the value factions Vt , t = 2, . . . , T , are recursively defined by

Vt (xt−1) := E[Vt (xt−1, ξt)],
Vt (xt−1, ξt) := minxt∈Xt (xt−1){Ht (xt , ct) + λVt+1(xt)}, (1.5)

and
VT+1(xT) = 0. (1.6)

Furthermore, as pointed out by Shapiro [27], one can generate a relatively small
(i.e., Nt) number of samples for each ξt and define the so-called sample average
approximation (SAA) problem by replacing the expectation in (1.5) with the average
over the generated samples (see Sect. 4 for more details).

Under the aforementioned stage-wise independence assumption, a widely-used
method for solving the SAA problem is the stochastic dual dynamic programming
(SDDP) algorithm. SDDP is an approximate cutting plane method, first presented by
Birge [4] and Pereira and Pinto [21] and later studied by Shapiro [27], Philpott et. al.
[22],Donohue andBirge [6],Hindsberger [12],Kozmík andMorton [14],Guigues [10]
and Zou et. al. [30], among many others. SDDP has been applied to solve problems
arising from many different fields such as hydro-thermal planning [9,30] and bio-
chemical process control [2]. Each iteration of this algorithm contains two phases.
In the forward phase, feasible solutions at each stage will be generated starting from
the first stage based on the cutting plane models for the value functions built in the
previous iteration. Then in the backward phase, the cutting plane models for the value
functions of each stage will be updated starting from the last stage. While the cost
per iteration of the SDDP method only linearly depends on the number of stages, it
remains unknown what is the number of iterations required by the SDDP method to
achieve a certain accurate solution of problem (1.4). Existing proofs of convergence of
SDDP are based on the assumption that the procedure passes through every possible
scenario many times [8,19,27]. Of course when the number of scenarios, although
finite, is astronomically large this is not very realistic. In addition, such analysis does
not reveal the dependence of the efficiency of SDDP on various parameters, e.g.,
number of stages, target accuracy, Lipschitz constants, and diameter of feasible sets
etc.

It is well-known that when the number of stages T = 2, SDDP reduces to the
classic Kelley’s cutting plane method [13]. As shown in Nesterov [20], the number of
iterations required byKelley’s cutting planemethod could depend exponentially on the
dimension of the problem even for a static optimization problem inevitably. Therefore,
this type ofmethod is not recommended for solving large-scale optimization problems.
However, it turns out that the global cutting plane models are critically important for
multi-stage optimization especially if the number of stages is large and one does
not know the structure of optimal policies. In these cases we need to understand the

123

G. Lan

efficiency of these cutting plane methods in order to identify not only problem classes
amenable for these techniques, but also possibly to inspire new ideas to solve these
problems more efficiently.

This paper intends to close the aforementioned gap in our understanding about
cutting plane methods for multi-stage stochastic optimization. Our main contributions
mainly exist in the following several aspects. Firstly, we start with a dual dynamic
programming (DDP) method for solving dynamic convex optimization problem with
a single scenario. This simplification allows us to build a few essential mathemat-
ical notions and tools for the analysis of cutting plane methods. More specifically,
we introduce the notion of saturated and distinguishable search points. Using this
notion, we show that each iteration of DDP will either find a new saturated and distin-
guishable search point, or compute an approximate solution for the original problem.
As a consequence, we establish the total number of iterations required by the DDP
method for solving the single-scenario problem. More specifically, we show that the
iteration complexity of DDP only mildly increases w.r.t. the number of stages T , in
fact linearly dependent on T for many problems, especially those with a discounting
factor λ < 1. The dependence of DDP on other problem parameters has also been
thoroughly studied. We also demonstrate that one can terminate DDP based on some
easily computable upper and lower bounds on the optimal value.

Secondly, motivated by the analysis of the DDP method, we propose a new explo-
rative dual dynamic programming (EDDP) for solving the SAAproblemofmulti-stage
stochastic optimization in (1.4). When solving the SAA problem, we have to choose
one out of Nt possible feasible solutions in the forward phase, and each one of them
corresponds to a random realization of ξt . In EDDP, we choose a feasible solution
in an aggressive manner by selecting the most distinguishable search point among
the saturated ones in each stage. As a result, we show that the number of iterations
required by EDDP for solving the SAA problem is the same as that of DDP for solving
the single-scenario problem. However, to implement EDDP we need to maintain the
set of saturated search points explicitly.

Thirdly, we show that the SDDP method can be viewed as a randomized version
of the EDDP algorithm by choosing the aforementioned feasible solution at each
stage t randomly from the Nt possible selections. Since this algorithm is stochastic,
we establish the expected number of iterations required by SDDP to compute an
approximate feasible policy for solving the SAA problem. In particular the iteration
complexity of SDDP is worse than that of DDP and EDDP by a factor of N̄ :=
max{N2, . . . , NT }, but still mildly increases w.r.t. T . Moreover, we show that the
probability of having large deviation from this expected iteration complexity decays
exponentially fast. In addition, we establish the convergence of the gap between a
stochastic upper bound and lower bound on the optimal value, and show how we can
possibly use these bounds to terminate the algorithm.

To the best of our knowledge, all the aforementioned complexity results, as well as
the analysis techniques, are new for cutting plane methods for multi-stage stochastic
optimization.

This paper is organized as follows. In Sect. 2, we present some preliminary results
on the basic cutting plane methods for solving static convex optimization problems.
In Sect. 3, we present the DDP method for single-scenario problems and establish its

123

Complexity of stochastic dual dynamic programming

convergence properties. Section 4 is devoted to the EDDPmethod for solving the SAA
problem formulti-stage stochastic optimization. In Sect. 5,we establish the complexity
of the SDDP method. Finally, some concluding remarks are made in Sect. 6.

2 Preliminary: Kelley’s cutting planemethods

In this section, we briefly review the basic cutting plane method and establish its
complexity bound. Consider the convex programming problem of

min
x∈X f (x), (2.1)

where X ⊆ R
n is a convex compact set and f : X → R is a sub-differentiable convex

function. Moreover, we assume that f is Lipschitz continuous s.t.

| f (x) − f (y)| ≤ M‖x − y‖,∀x, y ∈ X . (2.2)

Algorithm 1 formally describesKelley’s cutting planemethod for solving (2.1). The
essential construct in this algorithm is the cutting plane model f (x), which always
underestimates f (x) for any x ∈ X . Given the current search point xk , this method
first updates the model function f and then minimizes it to compute the new search
point xk+1. It terminates if the gap between the upper bound (ubk) and lower bound
(lbk) falls within the prescribed target accuracy ε. As a result, an ε-solution x̄ ∈ X s.t.
f (x̄) − f (x∗) ≤ ε will be found whenever the algorithm stops.

Algorithm 1 Basic cutting plane method
Input: initial points x1 and target accuracy ε.
Set f

0(x) = −∞ and ub0 = +∞.
for k = 1, 2, . . . , do

Set f
k
(x) = max{ f

k−1(x), f (xk) + 〈 f ′(xk), x − xk 〉}.
Set xk+1 ∈ Argminx∈X f (x).
Set lbk = f (xk+1) and ubk = min{ubk−1, f (xk+1)}.
if ubk − lbk ≤ ε then

terminate.
end if

end for

We establish the complexity, i.e., the number of iterations required to have a gap
lower than ε, of the cutting plane method in Proposition 1.

Proposition 1 Unless Algorithm 1 stops, we have ‖xk+1 − xi‖ ≥ ε/M for any i =
1, . . . , k. Moreover, suppose that the norm ‖ · ‖ in (2.2) is given by the l∞ norm and
X ⊂ R

n is contained in a box with side length bounded by l. Then the complexity of
the basic cutting plane method can be bounded by

(lM
ε

+ 1
)n

. (2.3)

123

G. Lan

Proof Note that f
k
(x) = maxi=1,...,k f (xi)+〈 f ′(xi), x − xi 〉 is Lipschitz continuous

with constantM .Moreover,we have f
k
(x) ≤ f (x) for any x ∈ X and f (xi) = f

k
(xi)

for any i = 1, . . . , k + 1. Hence,

f
k
(xk+1) = min

x∈X f
k
(x) ≤ min

x∈X f (x) = f ∗.

Using this observation, we have

ubk − lbk ≤ f (xi) − lbk = f
k
(xi) − lbk = f

k
(xi) − f

k
(xk+1) ≤ M‖xi − xk+1‖.

Since ubk−lbk > ε, wemust have ‖xi−xk+1‖ > ε/M . (2.3) then follows immediately
from this observation. ��

Even though the complexity bound (2.3) of the cutting plane method has not been
explicitly established before, construction of this proof was used in Ruszczyński [25].
Moreover, as pointed out in [20] the exponential dependence of such complexity bound
on the dimension n does not seem to be improvable in general. It is worth noting that
the cutting plane algorithm does not explicitly depend on the selection of the norm
even though the bound in (2.3) is obtained under the assumption that X sits inside an
l∞ box.

3 Dual dynamic programming for single-scenario problems

In this section, we focus on a dynamic version of the cutting plane method applied
to solve a class of deterministic dynamic convex optimization problems, i.e., multi-
stage optimization problems with a single scenario. This dual dynamic programming
(DDP) method, which can be viewed as SDDP with one scenario, will serve as a
starting point for studying the more general dual dynamic programming methods in
later two sections. Moreover, this method may inspire some interests in its own right.

More specifically, we consider the following dynamic convex programming

f ∗ := min
x1∈X1

{ f1(x1) := h1(x1) + λv2(x1)} , (3.1)

where the value functions vt (·), t = 2, . . . , T + 1, are defined recursively by

vt (xt−1) := min
xt∈Xt (xt−1)

{ ft (xt) := ht (xt) + λvt+1(xt)} , (3.2)

vT+1(xT) ≡ 0, (3.3)

with convex feasible sets Xt (xt−1) given by

Xt (xt−1) := {
x ∈ X̄t ⊆ R

nt : At x = Bt xt−1 + bt , φt (x) ≤ Qt xt−1
}
. (3.4)

Similarly to problem (1.1), here X̄t ⊂ R
nt are closed convex sets independent of xt−1,

λ ∈ (0, 1] denotes the discounting factor, At : Rnt → R
mt , Bt : Rnt−1 → R

mt , and

123

Complexity of stochastic dual dynamic programming

Qt : R
nt−1 → R

pt are linear mappings, and ht : X̄t → R and φt,i : X̄t → R,
i = 1, . . . , pt , are closed convex functions. Thus, we can view problem (3.1) as a
single-scenario multi-stage optimization problem in the form of (1.1), by assuming
ξt = (At , bt , Bt , Qt , pt , ct) to be deterministic, and setting ht (·) = Ht (·, ct) and
φt (·) = Φt (·, pt).

Throughout this section, we denoteXt the effective feasible region of each period t
defined recursively by

Xt :=
{
X1, t = 1,

∪x∈Xt−1Xt (x), t ≥ 2.
(3.5)

Observe that Xt is not necessarily convex and its convex hull is denoted by Conv(Xt).
Moreover, letting Aff(Xt) be the affine hull ofXt and Bt (ε) := {y ∈ Aff(Xt) : ‖y‖ ≤
ε}, we use

Xt (ε) := Xt + Bt (ε)

to denote Xt together with its surrounding neighborhood.
In order to develop a cutting plane algorithm for solving problem (3.1), we need to

make a few assumptions and discuss a few quantities that characterize the problem.

Assumption 1 For any t ≥ 1, there exists Dt ≥ 0 s.t.

‖xt − x ′
t‖ ≤ Dt , ∀xt , x ′

t ∈ Xt , ∀t ≥ 1. (3.6)

The quantity Dt provides a bound on the “diameter” of the effective feasible region
Xt . Clearly, Assumption 1 holds if the convex sets X̄t are compact, since by definition
we have Xt ⊆ Conv(Xt) ⊆ X̄t , ∀t ≥ 1.

Assumption 2 For any t ≥ 1, there exists ε̄t ∈ (0,+∞) s.t.

ht (x) < +∞, ∀x ∈ Xt (ε̄t) and rint(Xt+1(x)) �= ∅, ∀x ∈ Xt (ε̄t), (3.7)

where rint(·) denotes the relative interior of a convex set.

Assumption 2 describes certain regularity conditions of problem (3.1). Specifically,
the two conditions in (3.7) imply that ht and vt+1 are finitely valued in Xt (εt). The
second relation in (3.7) also implies the Slater condition of the feasible sets in (3.4)
and thus the existence of optimal dual solutions to define the cutting plane models
for problem (3.1). Here the relative interior is required due to the nonlinearity of
the constraint functions in (3.4) and we can replace rint(Xt+1(x)) with Xt+1(x) if
the latter is polyhedral. Conditions of these types have been referred to as extended
relatively complete recourse, which is less stringent than imposing complete recourse
with ε̄ = +∞ in the second relation in (3.7) (see [8]).

In view of Assumption 2, the objective functions ft , as given by the summation
of ht and λvt+1, must be finitely valued in Xt (ε̄t). In addition, by Assumptions 1 the
set Xt is bounded. Hence the convex functions ft must be Lipschitz continuous over
Xt (see, e.g., Section 2.2.4 of [15]). We explicitly state the Lipschitz constants of ft
below since they will be used in the convergence analysis our algorithm.

123

G. Lan

Assumption 3 For any t ≥ 1, there exists Mt ≥ 0 s.t.

| ft (xt) − ft (x
′
t)| ≤ Mt‖xt − x ′

t‖, ∀xt , x ′
t ∈ Xt . (3.8)

We are now ready to describe a dual dynamic programming method for solving
problem (3.1) (seeAlgorithm2). For notational convenience,we assume that X1(xk0) ≡
X1 for any iteration k ≥ 1.

Algorithm 2 Dual dynamic programming (DDP) for single-scenario problems

1: Set v0t (x) = −∞, t = 2, . . . , T , v0T+1 = 0, and ub0t = +∞, t = 1, . . . , T .
2: for k = 1, 2, . . . , do
3: for t = 1, 2, . . . , T do � Forward phase.

xkt ∈ Argmin
{
f k−1
t

(x) := ht (x) + λvk−1
t+1 (x) : x ∈ Xt (x

k
t−1)

}
. (3.9)

4: end for
5: Set ubk1 = min{ubk−1

1 ,
∑T

t=1 λt−1ht (xkt)}.
6:
7: Set vkT+1 = 0. � Backward phase.
8: for t = T , T − 1, . . . , 2 do

ṽkt (xkt−1) = min
{
f k
t
(x) := ht (x) + λvkt+1(x) : x ∈ Xt (x

k
t−1)

}
. (3.10)

(ṽkt)′(xkt−1) = [Bt , Qt]ykt ,where ykt is the optimal dual multiplier of (3.10).

vkt (x) = max
{
vk−1
t (x), ṽkt (xkt−1) + 〈(ṽkt)′(xkt−1), x − xkt−1〉

}
. (3.11)

9: end for
10: end for

We now make a few observations about the above DDP method. Firstly, in the for-
ward phase our goal is to compute a new policy (xk1 , x

k
2 , . . . , x

k
T) sequentially starting

from xk1 for the first stage. In this phase we utilize the cutting plane model vk−1
t+1 (·) as a

surrogate for the value function vt+1(·) in order to approximate the objective function
ft (·) at stage t , because we do not have a convenient expression for the value function
vt+1(·). Since (xk1 , x

k
2 , . . . , x

k
T) is a feasible policy by definition,

∑T
t=1 λt−1ht (xkt)

gives us an upper bound on the optimal value f ∗ of problem (3.1), and accordingly,
ubk1 gives us the value associated with the best policy we found so far.

Secondly, given the newgeneratedpolicy (xk1 , x
k
2 , . . . , x

k
T), our goal in the backward

phase is to update the cutting plane models vk−1
t (·) to vkt (·), in order to provide

a possibly tighter approximation of vt (·). More specifically, by Assumption 2, the
feasible region of Xt (xkt−1)of the subproblem in (3.10) has a nonempty relative interior.
Hence the function value ṽkt (x

k
t−1) and the associated vector [Bt , Qt]ykt are well-

defined, and they define a supporting hyperplane for the approximate value function
ṽkt (·) defined in (3.10) (after replacing xkt−1 with any x ∈ Xt−1(ε̄t−1)). Using all these
supporting hyperplanes of ṽkt that have been generated so far, we define a cutting plane

123

Complexity of stochastic dual dynamic programming

model vkt : Rnt → R, which underestimates the original value function vt (·) as shown
in the following result.

Lemma 1 For any k ≥ 1,

vk−1
t (x) ≤ vkt (x) ≤ ṽkt (x) ≤ vt (x),∀x ∈ Xt−1(ε̄t−1), t = 2, . . . , T , (3.12)

f k−1
t

(x) ≤ f k
t
(x) ≤ ft (x),∀x ∈ Xt (ε̄t), t = 1, . . . , T . (3.13)

Proof First observe that the inequalities in (3.13) follow directly from (3.12) by using
the facts that ft (x) = ht (x) + λvt+1(x) and f k

t
(x) = ht (x) + λvkt+1(x) due to the

definitions of ft and f k
t
in (3.2) and (3.9), respectively. Moreover, the first relation

vk−1
t (x) ≤ vkt (x) follows directly from (3.11).
Second, we observe that the functions ṽkt and vt are well-defined over Xt−1(ε̄t−1)

due to Assumption 2 and will show that the remaining inequalities in (3.12), i.e.,
vkt (x) ≤ ṽkt (x) ≤ vt (x),∀x ∈ Xt−1(ε̄t−1), hold by using induction backwards for
t = T , . . . , 1 at any iteration k. Let us first consider t = T . Note that vkT+1 = 0
and thus by comparing the definitions of vT (x) and ṽkT (x) in (3.2) and (3.10), we
have ṽkT (x) = vT (x). Moreover, by definition ṽkT (xkT−1) + 〈(ṽkT)′(xkT−1), x − xkT−1〉
is a supporting hyperplane of ṽkT (x) at xkT−1. Combining these observations with the
definition of vkT (x), we have

vkT (x) ≤ ṽkT (xkT−1) + 〈(ṽkT)′(xkT−1), x − xkT−1〉 ≤ ṽkT (x) = vT (x). (3.14)

Now assume that vkt (x) ≤ ṽkt (x) ≤ vt (x) for some 0 ≤ t ≤ T . Using the induction
hypothesis of vkt (x) ≤ vt (x) in the the definitions of vt−1(x) and ṽkt−1(x) in (3.2) and
(3.10), we conclude that ṽkt−1(x) ≤ vt−1(x). Moreover, by definition (ṽkt−1)

′(xkt−2) is
a subgradient of ṽkt−1(·) at xkt−2. Combining these relations, we conclude

vkt−1(x) = ṽkt−1(x
k
t−2) + 〈(ṽkt−1)

′(xkt−2), x − xkt−2〉 ≤ ṽkt−1(x) ≤ vt−1(x). (3.15)

��
In order to establish the complexity of Algorithm 2, we need to show that the

approximation functions f k
t
(·) are Lipschitz continuous on Xt .

Lemma 2 For any t ≥ 1, there exists Mt ≥ 0 s.t.

| f k
t
(xt) − f k

t
(x ′

t)| ≤ Mt‖xt − x ′
t‖, ∀xt , x ′

t ∈ Xt ∀ k ≥ 1. (3.16)

Proof Note that by Assumption 2, for any x ∈ Xt (ε̄), the feasible region of Xt+1(x)
has a nonempty relative interior, hence for any i = 1, . . . , k, the function values
ṽit+1(x

i
t) and the associated vectors [Bt+1, Qt+1]yit+1 are well-defined. Therefore, the

piecewise linear function vkt+1(x) given by

vkt+1(x) = max
i=1,...,k

ṽit+1(x
i
t) + 〈[Bt+1, Qt+1]yit+1, x − xit 〉

123

G. Lan

is well-defined and sub-differentiable. This observation, in view of the convexity of
ht and Assumption 2, then implies that f k

t
(x) = ht (x) + λvkt (x) is sub-differentiable

on Xt . We now provide a bound for the subgradients (f kt)′ on Xt . Note that for any
x ∈ Xt (ε̄) and x0 ∈ Xt , we have

〈(f k
t
)′(x0), x − x0〉 ≤ f k

t
(x) − f k

t
(x0) ≤ f (x) − f 1

t
(x0), (3.17)

where the last inequality follows from (3.13). Letting ‖·‖∗ := max‖x‖≤1〈·, x〉 denotes
the conjugate norm of ‖ · ‖ and setting x = x0 + ε̄(f k

t
)′(x0)/‖(f kt)′(x0)‖∗, we have

ε̄‖(f k
t
)′(x0)‖∗ ≤ f (x) − f 1

t
(x0) ≤ max

x∈X (ε̄)
f (x) − min

x∈X
f 1
t
(x),

which implies that

‖(f k
t
)′(x0)‖∗ ≤ 1

ε̄
[max
x∈Xt (ε̄)

f (x) − min
x∈Xt

f 1
t
(x)],∀x0 ∈ Xt .

The result in (3.16) then follows directly from the above inequality, the boundedness
of Xt and hence X (ε̄), and the fact that

| f k
t
(xt) − f k

t
(x ′

t)| ≤ max{‖(f k
t
)′(xt)‖∗, ‖(f kt)′(x ′

t)‖∗}‖xt − x ′
t‖

due to the convexity of f
t
and the Cauchy Schwarz inequality. ��

We now add some discussions about the Lipschitz continuity of f k
t
obtained in

Lemma 2. Firstly, it might be interesting to establish some relationship between the
Lipschitz constantsMt andMt for f kt and ft , respectively.Under certain circumstances
we can provide such a relationship. In particular, let us suppose that

f k
t
(x0) ≤ ft (x0) ≤ f k

t
(x0) + ε̄. (3.18)

It then follows from the above assumption and (3.17) that

〈(f k
t
)′(x0), x − x0〉 ≤ f (x) − f (x0) + ε̄.

Setting x = x0 + ε̄ f ′(x0)/‖ f ′(x0)‖∗, we conclude

ε̄‖(f k
t
)′(x0)‖∗ ≤ f (x) − f (x0) + ε̄ ≤ M‖x − x0‖ + ε̄ ≤ ε̄M + ε̄,

which implies that

‖ f ′(x0)‖∗ ≤ Mt + 1 and Mt ≤ Mt + 1. (3.19)

Note however that the above relationship does not necessarily hold for a situationmore
general than (3.18).

123

Complexity of stochastic dual dynamic programming

Secondly, while it is relatively easy to understand how the discounting factor λ

impacts the Lipschitz constants Mt for the objective functions ft over different stages,
its impact on the Lipschitz constants Mt for the approximation functions f k

t
is more

complicated since we do not know how the Lagrange multipliers ykt changes w.r.t.
λ. On the other hand, the discounting factor does play a role in compensating the
approximation errors accumulated over different stages for the DDP method. Since
we cannot quantify precisely such a compensation by simply scaling the Lipschitz
constants Mt and Mt , we decide to incorporate explicitly the discounting factor λ into
our problem formulation, as well as the analysis of our algorithms. We will see that
to incorporate λ just makes some calculations, but not the major development of the
analysis, more complicated. One can certainly assume that λ = 1 in order to see the
basic idea of our convergence analysis.

In order to establish the complexity of DDP, we need to introduce an important
notion as follows.

Definition 1 We say that a search point xkt gets εt -saturated at iteration k if

vt+1(x
k
t) − vkt+1(x

k
t) ≤ εt . (3.20)

In view of the above definition and (3.12), for any εt -saturated point xkt we must
have

vkt+1(x
k
t) ≤ vt+1(x

k
t) ≤ vkt+1(x

k
t) + εt . (3.21)

In other words, vkt+1 will be a tight approximation of vt+1 at xkt with error bounded

by εt . By (3.12), we also have vkt+1(x
k
t) ≤ vk

′
t+1(x

k
t) for any k′ ≥ k, and hence

vt+1(x
k
t) − vk

′
t+1(x

k
t) ≤ vt+1(x

k
t) − vkt+1(x

k
t) ≤ εt .

This implies that once apoint xkt becomes εt -saturated at the k-th iteration, the functions
vk

′
t+1 will also be a tight approximation of vt+1 at xkt with error bounded by εt for any

iteration k′ ≥ k.
Below we describe some basic properties about the saturation of the search points.

Lemma 3 Any searchpoint xkT−1 generated for the (T−1)-th stagemust be0-saturated
for any k ≥ 1.

Proof Note that by (3.12), we have vkT (xkT−1) ≤ v(xkT−1). Moreover, by (3.11),

vkT (xkT−1) ≥ ṽkT (xkT−1) = v(xkT−1)

where the last equality follows from the fact that vkT+1 = 0 and the definitions of
vT (x) and ṽkT (x) in (3.2) and (3.10). Therefore we must have vkT (xkT−1) = v(xkT−1),
which, in view of (3.20), implies that xkT−1 is 0-saturated. ��

123

G. Lan

We now state a crucial observation for DDP that relates the saturation of search
points across two consecutive stages. More specifically, the following result shows
that if one search point x j

t at stage t has been εt -saturated at iteration j , and a new
search point generated at a later iteration k is close to x j

t , then a search point in the
previous stage t − 1 will get εt−1-saturated with an appropriately chosen value for
εt−1.

Proposition 2 Suppose that the search point xkt generated at the k-th iteration is close

enough to x j
t generated in a previous iteration 1 ≤ j < k, i.e.,

‖xkt − x j
t ‖ ≤ δt (3.22)

for some δt ∈ [0,+∞). Also assume that the search point x j
t is εt -saturated, i.e.,

vt+1(x
j
t) − v

j
t+1(x

j
t) ≤ εt . (3.23)

Then we have

ft (x
k
t) − f k−1

t
(xkt) = λ[vt+1(x

k
t) − vk−1

t+1 (xkt)]
≤ εt−1 := (Mt + Mt)δt + λεt . (3.24)

In addition, for any t ≥ 2, we have

vt (x
k
t−1) − vkt (x

k
t−1) ≤ εt−1 (3.25)

and hence the search point xkt−1 will get εt−1-saturated at iteration k.

Proof By the definitions of ft and f k−1
t

in (3.2) and (3.9) , we have

ft (x) − f k−1
t

(x) = λ[vt+1(x) − vk−1
t+1 (x)],∀x ∈ Xt (x

k
t−1)

and hence first identity in (3.24) holds. It follows from the definition of xkt in (3.9) and
the first relation in (3.13) that

ft (x
k
t) − min

x∈Xt (xkt−1)

f k−1
t

(x) = ft (x
k
t) − f k−1

t
(xkt)

≤ ft (x
k
t) − f j

t
(xkt). (3.26)

Now by (3.8) and (3.16), we have

| ft (xkt) − ft (x
j
t)‖ ≤ Mt‖xkt − x j

t ‖ and | f j
t
(xkt) − f j

t
(x j

t)| ≤ Mt‖xkt − x j
t ‖.

In addition, by (3.23) and the definition ft and f j
t
, we have

ft (x
j
t) − f j

t
(x j

t) = λ[vt+1(x
j
t) − v

j
t+1(x

j
t)] ≤ λεt .

123

Complexity of stochastic dual dynamic programming

Combining the previous observations and (3.22), we have

ft (x
k
t) − f k−1

t
(xkt) ≤ [ft (xkt) − ft (x

j
t)] + [ft (x j

t) − f j
t
(x j

t)] + [f j
t
(x j

t) − f j
t
(xkt)]

≤ (Mt + Mt)‖xkt − x j
t ‖ + λεt

≤ (Mt + Mt)δt + λεt = εt−1, (3.27)

where the last equality follows from the definition of εt−1 in (3.24). Thus we have
shown the inequality in (3.24).

We will now show that the search point xt−1
k in the preceding stage t − 1 must also

be εt−1-saturated at iteration k. Note that xkt is a feasible solution for the t-th stage
problem and hence that the function value ft (xkt) must be greater than the optimal
value vt (xkt−1). Using this observation, we have

vt (x
k
t−1) − vkt (x

k
t−1) ≤ ft (x

k
t) − vkt (x

k
t−1). (3.28)

Moreover, using the definitions of ṽkt (x
k
t−1) and vkt (x

k
t−1) in (3.10) and (3.11), the

relations in (3.12) and the fact that vkt+1(x) ≥ vk−1
t+1 (x) due to (3.13), we have

vkt (x
k
t−1) = max{vk−1

t (xkt−1), ṽ
k
t (x

k
t−1)}

= ṽkt (x
k
t−1)

= min
{
f k
t
(x) : x ∈ Xt (x

k
t−1)

}

≥ min
{
f k−1
t

(x) : x ∈ Xt (x
k
t−1)

}

= f k−1
t

(xkt), (3.29)

where the last identity follows from the definition of xkt in (3.9). Putting together (3.28)
and (3.29), we have

vt (x
k
t−1) − vkt (x

k
t−1) ≤ ft (x

k
t) − f k−1

t
(xkt)

≤ εt−1, (3.30)

where the last inequality follows from (3.27). The above inequality then implies that
xkt−1 gets εt−1-saturated at the k-th iteration. ��

Observe that the functions ft (·) are not directly computable since they depend on
the exact value functions vt+1(·). The following result relates the notion of saturation
to the gap between a computable upper bound

∑T
t=1 λt−1ht (xkt) and the lower bound

f k−1
1

(xk1) on the optimal value f ∗, under the assumption that the concluding inequality

(3.24) obtained in Proposition 2 holds for all the stages, i.e., λ[vt+1(xkt)−vk−1
t+1 (xkt)] ≤

εt−1, ∀t = 1, . . . , T .

123

G. Lan

Lemma 4 Suppose that at some iteration k ≥ 1, we have

λ[vt+1(x
k
t) − vk−1

t+1 (xkt)] ≤ εt−1, (3.31)

for any t = 1, . . . , T . Then we have

T∑
t=1

λt−1ht (xkt) − f k−1
1

(xk1) ≤
T∑
t=1

λt−1εt−1. (3.32)

Proof By the definition of f k−1
1

(xk1) in (3.9), we have

f k−1
1

(xk1) = h1(x
k
1) + λvk−1

2 (xk1),

which together with our assumption in (3.31) imply that

h1(x
k
1) + λvk−1

2 (xk1) − f k−1
1

(xk1) = λ[vk−1
2 (xk1) − vk−1

2 (xk1)] ≤ ε0. (3.33)

Moreover, it follows from (3.9) and (3.13) that

ht (x
k
t) + λvk−1

t+1 (xkt) = min
{
f k−1
t

(x) : x ∈ Xt (x
k
t−1)

}

≤ min
{
f (x) : x ∈ Xt (x

k
t−1)

}
= vt (x

k
t−1),

which, in view of our assumption

λ[vt+1(x
k
t) − vk−1

t+1 (xkt)] ≤ εt−1,

then implies that
ht (x

k
t) + λvt+1(x

k
t) ≤ vt (x

k
t−1) + εt−1 (3.34)

for any t = 2, . . . , T .Multiplyingλt−1 to both side of the above inequalities, summing
them up with the inequalities in (3.33), and using the fact that vT+1(xkT) = 0, we have

T∑
t=1

λt−1ht (xkt) − f k−1
1

(xk1) ≤
T∑
t=1

λt−1εt−1.

��
In the sequel, we use Sk−1

t to denote the set of εt -saturated search points at stage t
that have been generated by the algorithm before the k-th iteration. Using these sets,
we now define the notion of distinguishable search points as follows.

Definition 2 We say that a search point xkt at stage t is δt -distinguishable if

gkt (x
k
t) > δt , (3.35)

123

Complexity of stochastic dual dynamic programming

where gkt (x) denotes the distance between x to the set Sk−1
t given by

gkt (x) =
{
mins∈Sk−1

t
‖s − x‖, t < T ,

0, o.w.

Belowwe show that each iteration of theDDPmethodwill either find an ε0-solution
of problem (3.1), or find a new εt -saturated and δt -distinguishable search point at some
stage t by properly specifying δt and εt for t = 0, . . . , T − 1.

Proposition 3 Assume that δt ∈ [0,+∞) for t = 1, . . . , T are given. Also let us
denote

εt :=
⎧⎨
⎩
0, t = T − 1,
T−2∑
τ=t

[(Mτ+1 + Mτ+1)δτ+1λ
τ−t], t ≤ T − 2.

(3.36)

Then, every iteration k of the DDP method will either generate a δt -distinguishable
and εt -saturated search point xkt at some stage t = 1, . . . , T , or find a feasible policy
(xk1 , . . . , x

k
T) of problem (3.1) such that

f1(xk1) − f ∗ ≤ ε0, (3.37)
T∑
t=1

λt−1ht (xkt) − f k−1
1

(xk1) ≤
T∑
t=1

λt−1εt−1. (3.38)

Proof First note that the definition of εt is computed according to the recursion εt−1 =
(Mt + Mt)δt + λεt (see (3.24)) and the assumption that εT−1 = 0. Next, observe that
exactly one of the following T cases will happen at the k-th iteration of the DDP
method.

Case 1: gkt (x
k
t) ≤ δt , ∀1 ≤ t ≤ T − 1;

Case t , t = 2, . . . , T − 1: gki (x
k
i) ≤ δi , ∀t ≤ i ≤ T − 1, and gkt−1(x

k
t−1) > δt−1;

Case T : gkT−1(x
k
T−1) > δT−1.

We start with the first case. In this case, we have gkt (x
k
t) ≤ δt , ∀1 ≤ t ≤ T − 1.

Hence, xkt must be close to an existing εt -saturated point x
jt
t for some jt ≤ k − 1 s.t.

‖xkt − x jt
t ‖ ≤ δt , ∀1 ≤ t ≤ T − 1. (3.39)

It then follows from the above relation (with t = 1), (3.24), and the fact f ∗ ≥ f k−1
1

(xk1)
that

f1(x
k
1) − f ∗ ≤ f1(x

k
1) − f k−1

1
(xk1) = λ[v2(xk1) − vk−1

2 (xk1)] ≤ ε0. (3.40)

Moreover, we conclude from (3.24) and (3.39) that

λ[vt+1(x
k
t) − vk−1

t+1 (xkt)] ≤ εt−1,∀1 ≤ t ≤ T − 1. (3.41)

123

G. Lan

Hence, the assumptions in Lemma 4 hold and the result in (3.38) immediately follows.
We now examine the t-th case for any 2 ≤ t ≤ T − 2. In these cases, we

have gkt−1(x
k
t−1) > δt−1 and thus xkt−1 is δt−1-distinguishable. In addition, we have

gkt (x
k
t) ≤ δt . As a result, xkt must be close to an existing εt -saturated point x jt

t with
jt ≤ k−1. This observation, in view of (3.25), then implies that vt (xkt−1)−vkt (x

k
t−1) ≤

εt−1. Hence xkt−1 is both δt−1-distinguishable and εt−1-saturated.
For the T -th case, we have gkT−1(x

k
T−1) > δT−1 and hence xkT−1 is δt -

distinguishable. Also by Lemma 3, xkT−1 will get 0-saturated. Therefore, xkT−1 is
δT−1-distinguishable and εT−1-saturated (with εT−1 = 0).

Combining all these cases together, we conclude that everyDDP iterationwill either
generate a δt -distinguishable and εt -saturated search point at some stage t = 1, . . . , T ,
or find a feasible policy of problem (3.1) satisfying (3.37) and (3.38). ��

It is worth noting that each DDP iteration can possibly generate more than one
δt -distinguishable and εt -saturated points. For example, for the t-case in the the above
proof of Proposition 3, we pointed out that xkt−1 is δt−1-distinguishable and εt−1-
saturated. Some other search point xki with i ≤ t−2 in the preceding stages might also
become δi -distinguishable and εi -saturated even though there are no such guarantees.

We are now ready to establish the complexity of the DDP method. For the sake
of simplicity, we will fix the norm ‖ · ‖ to be an l∞ norm to define the distances and
Lipschitz constants at each stage t . It should be noted, however, that the DDP method
itself does not really depend on the selection of norms. The l∞ norm is chosen because
it will help us to count the number of search points needed in each stage to guarantee
the convergence of the algorithm.

Theorem 1 Suppose that the norm used to define the bound on Dt in (3.6) is the l∞
norm. Also assume that δt ∈ [0,+∞) are given and that εt are defined in (3.36). Then
the number of iterations performed by the DDP method to find a solution satisfying
(3.37) and (3.38) can be bounded by

T−1∑
t=1

(
Dt
δt

+ 1
)nt + 1. (3.42)

In particular, If nt ≤ n, Dt ≤ D,max{Mt , Mt } ≤ M and δt = ε for all t = 1, . . . , T ,
then the DDP method will find a feasible policy (xk1 , . . . , x

k
T) of problem (3.1) s.t.

f1(x
k
1) − f ∗ ≤ 2M min

{
1

1−λ
, T − 1

}
ε, (3.43)

T∑
t=1

λt−1ht (xkt) − f k−1
1

(xk1) ≤ 2M min
{

1
(1−λ)2

,
T (T−1)

2

}
ε (3.44)

within at most
(T − 1)

(D
ε

+ 1
)n + 1 (3.45)

iterations.

123

Complexity of stochastic dual dynamic programming

Proof Let us count the total number of possible search points for saturation before a
solution satisfying (3.37) and (3.38) is found. Using (3.35) and the assumption the
effective feasible region for each stage t is inside a box with side length Dt (c.f., (3.6)),
we can see that the number of possible δt -distingushable search points for saturation
at each stage is given by

Nt :=
(
Dt
δt

+ 1
)nt

.

This observation together with Proposition 3 then imply that the total number of
iterations performed by DDP will be bounded by

∑T−1
t=1 Nt + 1 and hence by (3.42).

Now suppose that nt ≤ n, Dt ≤ D, max{Mt , Mt } ≤ M and δt = ε for all
t = 1, . . . , T . We first provide a bound on εt defined in (3.36). For 0 ≤ t ≤ T − 2,
we have

εt =
T−2∑
τ=t

λτ−t [(Mτ+1 + Mτ+1)δτ+1]

= 2M
T−2∑
τ=t

λτ−tε

≤ 2M min
{
1−λT−t−1

1−λ
, T − t − 1

}
ε

≤ 2M min
{

1
1−λ

, T − t − 1
}

ε, (3.46)

and as a result,

T∑
t=1

λt−1εt−1 =
T∑
t=1

λt−1εt−1 =
T−2∑
t=0

λtεt

≤ 2M
T−2∑
t=0

[
λt min

{
1

1−λ
, T − t − 1

}]
ε

≤ 2M
T−2∑
t=0

min
{

λt

1−λ
, T − t − 1

}
ε

≤ 2M min
{

1
(1−λ)2

,
T (T−1)

2

}
ε. (3.47)

Using these bounds in (3.37) and (3.38), we obtain relations (3.43) and (3.44). More-
over, the iteration complexity bound in (3.45) follows directly from (3.42). ��

We now add some remarks about the results obtained in Theorem 1.
Firstly, similar to the basic cutting plane method, the bound in (3.42) has an expo-

nential dependence on nt . However, since the algorithm itself does not require us
to explicitly discretize the decision variables in R

nt , the complexity bound actually
depends on the dimension of the affine space spanned by effective feasible region Xt

defined in (3.5), which can be smaller than the nominal dimension nt .
Secondly, it is interesting to examine the dependence of the complexity bound

in (3.45) on the number of stages T . In particular, if the discounting factor λ < 1,

123

G. Lan

the number of iterations required to find an ε-solution of problem (3.1), i.e., a point
x̄1 s.t. f1(x̄1) − f ∗ ≤ ε only linearly depends on T . When the discounting factor
λ = 1, we can see that T also appears in the termination criterions (3.43) and (3.44).
As a result, the number of iterations required to find an ε-solution of problem(3.1)
will depend on T n . The discounting factor provides a mechanism to compensate the
errors accumulated from approximating the value function vt+1 by vkt+1 starting from
t = T − 1 to t = 1.

Thirdly, while the termination criterion in (3.43) cannot be verified since the func-
tion value f1 and f ∗ are not easily computable, the gap between the upper and lower
bound in the l.h.s. of (3.44) can be computed as we run the algorithm. It should be
noted that the dependence on T for these two criterions are slightly different especially
when the discounting factor λ = 1 (see the r.h.s. of (3.43) and (3.44)).

4 Explorative dual dynamic programming

In this section, we generalize the DDP method for solving the multi-stage stochastic
optimization problems which have potentially an exponential number of scenarios. As
discussed in Sect. 1, we assume that we can sample from the probability distribution
Pt of the random vector ξt , t = 2, . . . , T . A sample average approximation (SAA)
of the original problem (1.1) is constructed by replacing the true distribution of ξt =
(At , bt , Bt , Qt , pt , ct)with the empirical distribution PNt based on a random sample

ξ̃ti = (Ãti , b̃ti , B̃ti , Q̃ti , p̃ti , c̃ti), i = 1, . . . , Nt

from the distribution Pt of size Nt . Consequently the probability distribution P2 ×
· · · × PT of the random process ξ2, . . . , ξT is replaced by PN2 × · · · × PNT . Under
the stage-wise independence assumption of Pt and hence PNT , it has been shown in
[27] that under mild regularity assumptions we can approximate problem (1.4) by the
SAA problem defined as

F∗ := minx1∈X1{F11(x1) := H1(x1, c1) + λV2(x1)}, (4.1)

where the value factions Vt , t = 2, . . . , T , are recursively defined by

Vt (xt−1) := 1
Nt

Nt∑
i=1

νti (xt−1),

νti (xt−1) := minxt∈Xt (xt−1,ξ̃ti)
{Fti (xt) := Ht (xt , c̃ti) + λVt+1(xt)},

(4.2)

and
VT+1(xT) = 0. (4.3)

We will focus on how to solve the SAA problem in (4.1). The essential difference
between this problem and the single-scenario problem in (3.1) is that each stage t
involves Nt (rather than one) subproblems. As a consequence, when determining the
search point xkt at each stage t in the forward phase, we need to choose one out of Nt

123

Complexity of stochastic dual dynamic programming

feasible solutions and each one of them corresponds to a realization ξ̃ti of the random
variables. In this section, we will present a deterministic dual dynamic programming
method which chooses the feasible solution in the forward phase in an aggressive
manner, while in next section, we will discuss a stochastic approach in which the
feasible solution in the forward phase will be chosen randomly. As we will see, the
former approach will exhibit better iteration complexity while the latter one is easier
to implement. We start with the deterministic approach also because the analysis for
the latter stochastic method is built on the one for the deterministic approach.

Let Xti be the effective feasible region for the i-th subproblem in stage t , and X̄t

be the effective feasible region all the subproblems in stage t , respectively, given by

Xti :=
{
X1, t = 1,

∪x∈X̄t−1
Xt (x, ξ̃ti), t ≥ 2,

and

X̄t :=
{
X1, t = 1,

∪i=1,...,NtXti , t ≥ 2.

Observe that X̄t is not necessarily convex. Moreover, letting Aff(X̄t) be the affine hull
of X̄t and Bt (ε) := {y ∈ Aff(X̄t) : ‖y‖ ≤ ε}, we use

X̄t (ε) := X̄t + Bt (ε)

to denote X̄t together with its small surrounding neighborhood.
We make the following assumptions throughout this section.

Assumption 4 For any t ≥ 1, there exists Dt ≥ 0 s.t.

‖xt − x ′
t‖ ≤ Dt , ∀xt , x ′

t ∈ X̄t , ∀t ≥ 1. (4.4)

With a little abuse of notation, we still use Dt as in the previous section to bound
the “diameter” of the effective feasible region X̄t . Clearly, Assumption 4 holds if the
convex sets X̄t are compact, since by definition we have X̄t ⊆ Conv(X̄t) ⊆ X̄t , ∀t ≥
1.

Assumption 5 For any t ≥ 1, there exists ε̄t ∈ (0,+∞) s.t.

Ht (x, c̃ti) < +∞, ∀x ∈ X̄t (ε̄t),∀i = 1, . . . , Nt , (4.5)

rint
(
Xt+1(x, ξ̃(t+1)i)

)
�= ∅, ∀x ∈ X̄t (ε̄t),∀i = 1, . . . , Nt+1, (4.6)

where rint(·) denotes the relative interior of a convex set.

Assumption 5 describes certain regularity conditions of problem (4.1). Specifically,
the conditions in (4.5) and (4.6) imply that Ht (x, c̃ti) and Vt+1 are finitely valued in

123

G. Lan

a small neighborhood of Xti . The second relation in (3.7) also implies the Slater
condition of the feasible sets in (4.2) and thus the existence of optimal dual solutions
to define the cutting plane models for problem (4.1). Here the relative interior is
required due to the nonlinearity of the constraint functions in (4.2) and we can replace

rint
(
Xt+1(x, ξ̃(t+1)i)

)
with Xt+1(x, ξ̃(t+1)i) if the latter is polyhedral.

In view of Assumption 5, the objective functions Fti must be Lipschitz continuous
overXti (ε̄t). We explicitly state the Lipschitz constants of Fti below since they will be
used in the convergence analysis our algorithms. For the sake of notation convenience,
we still use Mt to denote the Lipschitz constants for Fti .

Assumption 6 For any t ≥ 1 and i = 1, . . . , Nt , there exists Mt ≥ 0 s.t.

|Fti (xt) − Fti (x
′
t)| ≤ Mt‖xt − x ′

t‖, ∀xt , x ′
t ∈ Xti . (4.7)

We now formally state the explorative dual dynamic programming (EDDP) method
as shown in Algorithm 3. A distinctive feature of EDDP is that it maintains a set of
saturated search points Skt for each stage t . Similar to Definition 1, we say that a search
point xkt generated by the EDDP method is εt -saturated at iteration k if

Vt+1(x
k
t) − V k

t+1(x
k
t) ≤ εt . (4.14)

Moreover, similar to Definition 2, we say an εt -saturated search point xkt at stage t is
δt -distinguishable if

‖xkt − x j
t ‖ > δt

for all other εt -saturated search points x
j
t that have been generated for stage t so far by

the algorithm. Equivalently, an εt -saturated search point xkt is δt -distinguishable if

gkt (x
k
t) > δt . (4.15)

Here gkt (x
k
t) (c.f., (4.9)) denotes the distance between xkt to the set Sk−1

t , i.e., the set
of currently saturated search points in stage t . Similar to the DDP method, saturation
is defined for two given related sequences {εt } and {δt }. More precisely, the proposed
algorithm takes {δt } as an initial argument and ends with {εt } (derived from {δt })
saturated points.

In the forward phase ofEDDP, for each stage t ,we solve Nt subproblems as shown in
(4.8) to compute the search points x̃ kti , i = 1, . . . , Nt . For each x̃ kti , we further compute
the quantity gkt (x̃

k
ti) in (4.9), i.e., the distance between x̃

k
ti and the set S

k−1
t of currently

saturated search points in stage t . Then we will choose from x̃ kti , i = 1, . . . , Nt , the
one with the largest value of gkt (x̃

k
ti) as x

k
t , i.e., g

k
t (x

k
t) = maxi=1,...,Nt g

k
t (x̃

k
ti). We

can break the ties arbitrarily (or randomly to be consistent with the algorithm in the
next section). The search point xkt is deemed to be saturated if gkt (x

k
t) is small enough,

therefore so is the case for x̃ kti for all i . As a consequence, the point x
k
t−1 must also be

saturated and can be added to Skt−1. We call the sequence (xk1 , . . . , x
k
T) a forward path

123

Complexity of stochastic dual dynamic programming

Algorithm 3 Explorative dual dynamic programming (EDDP)

1: Set V 0
t (x) = −∞, t = 2, . . . , T , V k

T+1(x) = 0, k ≥ 1, and S0t = ∅, t = 1, . . . , T .
2: for k = 1, 2, . . . , do
3: for t = 1, . . . , T do � Forward phase.
4: for i = 1, 2, . . . , Nt do

x̃kti ∈ Argminx∈Xt (xkt−1,ξ̃ti)

{
Fk−1
ti (x) := Ht (x, c̃t i) + λV k−1

t+1 (x)
}

. (4.8)

gkt (x̃kti) =
{
min

s∈Sk−1
t

‖s − x̃kti‖, t < T ,

0, o.w.
(4.9)

5: end for
6: Choose xkt from {x̃kti } such that gkt (xkt) = max

i=1,...,Nt
gkt (x̃kti).

7: end for

8: if gk1(xk1) ≤ δ0 then Terminate.

9: for t = T , T − 1, . . . , 2 do � Backward phase.
10: if gkt (xkt) ≤ δt then
11: Set Skt−1 = Sk−1

t−1 ∪ {xkt−1}.
12: end if
13: for i = 1, . . . , Nt do

ν̃kti (x
k
t−1) = min

x∈Xt (xkt−1,ξ̃ti)

{
Fk
ti (x) := Ht (x, c̃t i) + λV k

t+1(x)
}

. (4.10)

(ν̃kti)
′(xkt−1) = [B̃ti , Q̃ti]ykti ,where ykti is the optimal

dual multipliers of (4.10). (4.11)

14: end for
15:

Ṽ k
t = 1

Nt

∑Nt
j=1 ν̃kt j (x

k
t−1), (Ṽ

k
t)′ = 1

Nt

∑Nt
j=1(ν̃

k
t j)

′(xkt−1). (4.12)

V k
t (x) = max

{
V k−1
t (x), Ṽ k

t + 〈(Ṽ k
t)′, x − xkt−1〉

}
. (4.13)

16: end for
17: end for

at iteration k, since it is the trajectory generated in the forward phase for one particular
scenario of the data process ξ̃ti . In view of the above discussion, the EDDP method
always chooses the most “distinguishable” forward path to encourage exploration in
an aggressive manner (see Line 6 of Algorithm 3). This also explains the origin of the
name EDDP.

The backward phase of EDDP is similar to the DDP in Algorithm 2 with the
following differences. First, we need to update the set Skt for the saturated search
points. Second, the computation of the cutting plane model also requires the solutions
of Nt subproblems in (4.10).

The following result is similar to Lemma 1 for the DDP method.

123

G. Lan

Lemma 5 For any k ≥ 1,

V k−1
t (x) ≤ V k

t (x) ≤ 1
Nt

Nt∑
j=1

ν̃kt j (x) ≤ Vt (x),∀x ∈ X̄t−1(ε̄t−1), t = 2, . . . , T ,

(4.16)

Fk−1
ti (x) ≤ Fk

ti (x) ≤ Fti (x),∀x ∈ X̄t (ε̄t), t = 1, . . . , T , i = 1, . . . , Nt . (4.17)

Proof The proof is similar to that of Lemma 1. The major difference exists in that
(3.15) will be replaced by

V k
t−1(x) = 1

Nt−1

Nt−1∑
j=1

[
ν̃1(t−1) j (x

k
t−2) + 〈(ν̃k(t−1) j)

′(xkt−2), x − xkt−2〉
]

≤ 1
Nt−1

Nt−1∑
j=1

ν̃k(t−1) j (x) ≤ 1
Nt−1

Nt−1∑
j=1

νk(t−1) j (x)

= Vt−1(x),

and hence we skip the details. ��
In order to establish the complexity of the EDDP Algorithm, we need to show that

the approximation functions Fk
ti (·) are Lipschitz continuous on Xti . For convenience,

we still use Mt to denote the Lipschitz constants for Fk
ti . We skip its proof since it is

similar to that of Lemma 2 after replacing Assumption 2 with Assumption 5.

Lemma 6 For any t ≥ 1 and i = 1, . . . , Nt , there exists Mt ≥ 0 s.t.

|Fk
ti (xt) − Fk

ti (x
′
t)| ≤ Mt‖xt − x ′

t‖, ∀xt , x ′
t ∈ X̄t (ε̄t) ∀ k ≥ 1. (4.18)

Below we describe some basic properties about the saturation of search points.

Lemma 7 Any search point xkT−1 generated for the (T − 1)-th stage in EDDP must
be 0-saturated for any k ≥ 1.

Proof Note that by (4.16), we have V k
T (xkT−1) ≤ V (xkT−1). Moreover, by (4.13),

V k
T (xkT−1) ≥ 1

NT

Nt∑
j=1

[
ν̃kt j (x

k
t−1) + 〈(ν̃kt j)′(xkt−1), ξ̃t j), x

k
T−1 − xkt−1〉

]

= 1
NT

Nt∑
j=1

ν̃kt j (x
k
t−1) = 1

NT

Nt∑
j=1

νt j (xkt−1)

= V (xkT−1)

where the second-to-last equality follows from the fact that vkT+1 = 0 and the defini-
tions of νT j (x) and ν̃kT j (x) in (4.2) and (4.10). Therefore we must have V k

T (xkT−1) =
V (xkT−1), which, in view of (4.14), implies that xkT is 0-saturated. ��

123

Complexity of stochastic dual dynamic programming

We now generalize the result in Proposition 2 for the DDP method to relate the
saturation of search points across two consecutive stages in the EDDP method.

Proposition 4 Assume that δt ∈ [0,+∞) for t = 1, . . . , T are given and that εt are
defined recursively according to (3.24) for some given εT−1 > 0. Also let gkt (·) be
defined in (4.9) and assume that xkt is chosen such that

gkt (x
k
t) = max

i=1,...,Nt
gkt (x̃

k
ti).

(a) If gkt (x
k
t) ≤ δt , t = 2, . . . , T − 1, then we have

Fti (x̃
k
ti) − Fk−1

ti (x̃ kti) = λ[Vt+1(x̃
k
ti) − V k−1

t+1 (x̃ kti)] ≤ εt−1. (4.19)

Moreover, for any T ≥ 2, we have

Vt (x
k
t−1) − V k

t (x
k
t−1) ≤ εt−1. (4.20)

where εt−1 is defined (3.24).
(b) Skt , t = 1, . . . , T − 1, contains all the εt -saturated search points at stage t gener-

ated by the algorithm up to the k-th iteration.

Proof We prove the results by induction. First note that by (4.9) we have gkT (xkT) = 0.
Moreover, by Lemma 7, any search point xkT−1 will be 0-saturated and hence part a)
holds with εT−1 = 0 for t = T − 1. Moreover, in view of Line 11 of Algorithm 3 and
the fact gkT (xkT) = 0, SkT−1 contains all the 0-saturated search point obtained for stage
T − 1 and hence part b) holds for t = T − 1.

Now assume that gkt (x
k
t) ≤ δt for the t-th stage for some t ≤ T − 1. In view of this

assumption and the definition of xkt , we have

gkt (x̃
k
ti) = min

s∈Sk−1
t

‖s − x̃ kti‖ ≤ δt

for any i = 1, . . . , Nt . Note that we must have Sk−1
t �= ∅ since otherwise gkt (x̃

k
ti) =

+∞. Hence, there exists x ji
t ∈ Sk−1

t for some ji < k − 1 such that

‖x ji
t − x̃ kti‖ ≤ δt , (4.21)

Vt+1(x
ji
t) − V ji

t+1(x
ji
t) ≤ εt , (4.22)

for any t = 1, . . . , Nt .
Observe that by the definition fo xkti in (4.8) and the first relation in (4.17), we have

Fti (x̃
k
ti) − min

x∈Xti (xkt−1)

Fk−1
ti (x) = Fti (x̃

k
ti) − Fk−1

ti (x̃ kti)

≤ Fti (x̃
k
ti) − F ji

ti (x̃
k
ti). (4.23)

123

G. Lan

Moreover, by (4.7) and (4.18), we have

|Fti (x̃ kti) − Fti (x
ji
t)| ≤ Mt‖x̃ kti − x ji

t ‖ and |F ji
ti (x̃

k
ti) − F ji

ti (x
ji
t)| ≤ Mt‖x̃ kti − x ji

t ‖.

In addition, it follows from the definitions of Fti and Fk
ti (c.f. (4.2) and (4.8)) and

(4.22) that

Fti (x
ji
t) − F ji

ti (x
ji
t) = λ[Vt+1(x

ji
t) − V ji

t+1(x
ji
t)] ≤ λεt .

Combining the previous observations and (4.22), we have

Fti (x̃
k
ti) − Fk−1

ti (x̃ kti)

≤ [Fti (x̃ kti) − Fti (x
ji
t)] + [Fti (x ji

t) − F ji
ti (x

ji
t)] + [F ji

ti (x
ji
t) − F ji

ti (x̃
k
ti)]

≤ (Mt + Mt)‖x̃ kti − x ji
t ‖ + λεt

≤ (Mt + Mt)δt + λεt = εt−1, (4.24)

where the last inequality follows from the definition of εt−1 in (3.24). The above result,
in view of the definitions of Fti and Fk

ti , then implies (4.19).
We will now show that the search point xkt−1 in the preceding stage t − 1 must also

be εt−1-saturated at iteration k. Note that x̃ kti are feasible solutions for the t-th stage
problem and hence that the function value Fti (x̃ kti) must be greater than the optimal
value νti (xkt−1) defined in (4.2). Using this observation, we have

Vt (x
k
t−1) − V k

t (x
k
t−1) = 1

Nt

Nt∑
i=1

νti (xkt−1) − V k
t (x

k
t−1)

≤ 1
Nt

Nt∑
i=1

Fti (x̃ kti) − V k
t (x

k
t−1). (4.25)

Moreover, using the definitions of V k
t (x

k
t−1) and ν̃kti (x

k
t−1) in (4.13) and (4.10), the

relations in (4.16) and the fact that V k
t+1(x) ≥ V k−1

t+1 (x) due to (4.17), we have

V k
t (x

k
t−1) = max{V k−1

t (xkt−1),
1
Nt

Nt∑
i=1

ν̃kti (x
k
t−1)}

= 1
Nt

Nt∑
i=1

ν̃kti (x
k
t−1)

= 1
Nt

Nt∑
i=1

min
{
Fk
ti (x) : x ∈ Xt (xkt−1, ξ̃t j)

}

≥ 1
Nt

Nt∑
i=1

min
{
Fk−1
ti (x) : x ∈ Xt (xkt−1, ξ̃t j)

}

123

Complexity of stochastic dual dynamic programming

= 1
Nt

Nt∑
i=1

Fk−1
ti (x̃ kti), (4.26)

where the last identity follows from the definition of xkt in (4.8). Putting together (4.25)
and (4.26), we have

Vt (x
k
t−1) − V k

t (x
k
t−1) ≤ 1

Nt

Nt∑
i=1

[Fti (x̃ kti) − Fk−1
ti (x̃ kti)]

≤ εt−1, (4.27)

where the last inequality follows from (4.24). The above inequality then implies that
xkt−1 gets saturated at the k-th iteration. Moreover, the point xkt−1 will be added into
the set Skt−1 in view of the definition in Line 11 of Algorithm 3. We have thus shown
both part (a) and part (b). ��

Different from the DDP method, we do not have a convenient way to compute
an exact upper bound on the optimal value for the general multi-stage stochastic
optimization problem. However, we can use gk1(x

k
1) as a termination criterion for the

EDDP method. Indeed, using (4.24) (with t = 1 and i = 1) and the fact that N1 = 1,
we conclude that if gk1(x

k
1) ≤ δ1, then we must have

F11(x
k
1) − F∗ ≤ F11(x

k
1) − Fk−1

11 (xk1) ≤ ε0. (4.28)

It is worth noting that one can possibly provide a stochastic upper bound on F∗ for
solvingmulti-stage stochastic optimization problems.Wewill discuss this idea further
in Sect. 5.

Below we show that each iteration of the EDDP method will either find an ε0-
solution of problem (4.1), or find a new εt -saturated and δt -distinguishable search
point at some stage t .

Proposition 5 Assume that δt ∈ [0,+∞), t = 1, . . . , T , are given. Also let εt , t =
0, . . . , T , be defined in (3.36). Then any iteration k of the EDDP method will either
generate a new εt -saturated and δt -distinguishable search point xkt at some stage
t = 1, . . . , T , or find a feasible solution xk1 of problem (4.1) such that

F11(x
k
1) − F∗ ≤ ε0. (4.29)

Proof Similar to the proof of Proposition 3, we consider the following T cases that
will happen at the k-th iteration of the EDDP method.

Case 1: gkt (x
k
t) ≤ δt , ∀1 ≤ t ≤ T − 1;

Case t , t = 2, . . . , T − 1: gki (x
k
i) ≤ δi , ∀t ≤ i ≤ T − 1, and gkt−1(x

k
t−1) > δt−1;

Case T : gkT−1(x
k
T−1) > δT−1.

For the first case, it follows from the assumption gk1(x
k
1) ≤ δ1 and (4.28) that xk1

must be an ε0-solution of problem (4.1). Now let us consider the t-th case for any

123

G. Lan

t = 2, . . . , T −2. Since gkt−1(x
k
t−1) > δt−1, the search point xkt−1 is δt -distinguishable.

Moreover, we conclude from the assumption gkt (x
k
t) ≤ δt and Proposition 4.a) that the

point xkt−1 must be εt−1-saturated. Hence, the search point xkt−1 is δt -distinguishable
and εt−1-saturated for the t-th case, t = 2, . . . , T − 1. Finally for the T -th case, xkT−1
is δT−1-distinguishable by assumption. Moreover, by Lemma 7, xkT−1 in the (T − 1)-
stage will get 0-saturated. Hence xkT−1 is δT−1-distinguishable and εT−1-saturated.
The result then follows by putting all these cases together. ��

We are now ready to establish the complexity of the EDDP method. For the sake
of simplicity, we will fix the norm ‖ · ‖ to be an l∞ norm to define the distances and
Lipschitz constants at each stage t .

Theorem 2 Suppose that the norm used to define the bound on Dt in (4.4) is the l∞
norm. Also assume that δt ∈ [0,+∞) are given and that εt are defined in (3.36). Then
the number of iterations performed by the EDDP method to find a solution satisfying

F11(x
k
1) − F∗ ≤ ε0 (4.30)

can be bounded by K̄ + 1, where

K̄ :=
T−1∑
t=1

(
Dt
δt

+ 1
)nt

. (4.31)

In particular, If nt ≤ n, Dt ≤ D,max{Mt , Mt } ≤ M and δt = ε for all t = 1, . . . , T ,
then the EDDP method will find a solution xk1 of problem (4.1) s.t.

F11(x
k
1) − F∗ ≤ 2M min

{
1

1−λ
, T − 1

}
ε, (4.32)

within at most K̄ε + 1 iterations with

K̄ε := (T − 1)
(D

ε
+ 1

)n
. (4.33)

Proof Let us count the total number of possible search points for saturation before
an ε-optimal policy of problem (4.1) is found. Using (4.15) and the assumption the
feasible region for each stage t is inside a box with side length Dt (c.f., (4.4)), we can
see that the number of possible search points for saturation at each stage is given by

(
Dt
δt

+ 1
)nt

.

As a consequence, the total number of iterations that EDDPwill performbefore finding
an ε0-optimal policywill be bounded by K̄+1. If nt ≤ n, Dt ≤ D, max{Mt , Mt } ≤ M
and δt = ε for all t = 1, . . . , T , we can obtain (4.32) by using the bound (3.46) for
ε0 in (4.30). Moreover, the bound in (4.33) follows directly from (4.31). ��

123

Complexity of stochastic dual dynamic programming

We now add some remarks about the results obtained in Theorem 2 for the EDDP
method. First, comparing with the DDP method for single-scenario problems, we can
see that these two algorithms exhibit similar iteration complexity. However, the DDP
method provides some guarantees on an easily computable gap between the upper and
lower bound. On the other hand, we can terminate the EDDP method by using the
quantity gk1. Second, the EDDP method requires us to maintain the set of saturated
search points Skt and explicitly use the selected norm ‖ · ‖ to compute gkt . In the next
section, we will discuss a stochastic dual dynamic programming method which can
address some of these issues associated with EDDP, by sacrificing a bit on the iteration
complexity bound in terms of its dependence on the number of scenarios Nt . Third,
similar to the DDP method, we can replace nt in the complexity bound of the EDDP
method with the dimension of the effective region X̄t in (4.31).

5 Stochastic dual dynamic programming

In this section, we still consider the SAA problem (4.1) for multi-stage stochastic
optimization and suppose that Assumptions 4, 5 and 6 hold throughout this section.
Our goal is to establish the iteration complexity of the stochastic dual dynamic pro-
gramming (SDDP) for solving this problem.

As mentioned in the previous section, when dealing with multiple scenarios in
each stage t , we need to select xkt from x̃ti , i = 1, . . . , Nt , defined in (4.8), where x̃ti
corresponds to a particular realization ξ̃ti , i = 1, . . . , Nt . While the EDDP method
chooses xkt in an aggressive manner by selecting the most “distinguishable” search
points, SDDP will select xkt from x̃ti , i = 1, . . . , Nt , in a randomized manner.

The SDDP method is formally described in Algorithm 4. This method still consists
of the forward phase and backward phase similarly to theDDP andEDDPmethods. On
one hand, we can view DDP as a special case of SDDPwith Nt = 1, t = 1, . . . , T . On
the other hand, there exist a few essential differences between SDDP in Algorithm 4
and EDDP in Algorithm 3. First, in the forward phase of SDDP, we randomly pick
up an index it and solve problem (5.1) to update xkt . Equivalently, one can view xkt
as being randomly chosen from x̃ kti , i = 1, . . . , Nt , defined in (4.8) for the EDDP
method. Note that we do not need to compute x̃ kti for i �= it , even though they will be
used in the analysis of the SDDP method. Hence, the computation of the forward path
(xk1 , . . . , x

k
T) in SDDP is less expensive than that in EDDP. Second, in SDDP we do

not need to maintain the set of saturated search points and thus the algorithmic scheme
is much simplified. However, without these sets, we will not be able to compute the
quantities gkt as in Algorithm 3 and thus cannot perform a rigorous termination test as
in EDDP. We will discuss later in this section how to provide a statistical upper bound
by running the forward phase a few times.

As mentioned earlier, our goal in this section is to solve the SAA problem in (4.1)
instead of the original problem in (1.1). Hence the randomness for the SDDP method
in Algorithm 4 comes from the i.i.d. random selection variable i kt only. The statistical
analysis to relate the SAA problem in (4.1) and the original problem in (1.1) has been
extensively studied especially under the stage-wise independence assumption (e.g.

123

G. Lan

Algorithm 4 Stochastic dual dynamic programming (SDDP)

1: Set V 0
t (x) = −∞, t = 2, . . . , T , V k

T+1(x) = 0, k ≥ 1.
2: for k = 1, 2, . . . , do
3: for t = 1, . . . , T do � Forward phase.
4: Pick up it ≡ ikt from {1, 2, . . . , Nt } uniformly randomly.
5: Set

xkt ∈ Argminx∈Xt (xkt−1,ξ̃tit)

{
Fk−1
tit

(x) := Ht (x, c̃t it) + λV k−1
t+1 (x)

}
. (5.1)

6: end for

7: for t = T , T − 1, . . . , 2 do � Backward phase.
8: for i = 1, . . . , Nt do
9: Set ν̃kti (x

k
t−1) and (ν̃kti)

′(xkt−1) according to (4.10) and (4.11).
10: end for
11: Update V k

t (x) according to (4.12) and (4.13).
12: end for
13: end for

[27]). The separation of these two problems allows us to greatly simplify the analysis
of SDDP.

Whenever the iteration index k is clear from the context, we use the short-hand
notation it ≡ i kt . We also use the notation

i[k,t] := {i11 , . . . , i1T , i21 , . . . , i
2
T , . . . , . . . , i k−1

1 , . . . , i k−1
T , i k1 , . . . , i

k
t }

to denote the sequence of random selection variables generated up to stage t at the k-th
iteration. The notions i[k,0] and i[k−1,T] will be used interchangeably. As a filtration is
a sequence of sigma-algebras, this statement seems imprecise. It seems to me that Ik,t
is a sigma-algebra but not a filtration, while Ik,t t is a filtration. It should be noted that
fo any iteration k ≥ 1, we must have i k1 = 1 since the number of scenarios N1 = 1.
In other words, i k1 is alway deterministic for any k ≥ 1.

The complexity analysis of SDDP still relies on the concept of saturation. Let us
denote Sk−1

t the set of saturated points in stage t , i.e., Sk−1
t := {xt : Vt+1(xt) −

V j
t+1(xt) ≤ εt , for some j ≤ k − 1}. We still use x ji

t for some ji < k − 1 to denote

the closest point to x̃ kti from the saturated points Sk−1
t , i.e.,

x ji
t ∈ Argmins∈Sk−1

t
‖s − x̃ kti‖, (5.2)

Vt+1(x
ji
t) − V ji

t+1(x
ji
t) ≤ εt . (5.3)

In SDDP, we will explore the average distance between x̃ kti to the set S
k−1
t defined as

follows:

g̃kt := 1
Nt

Nt∑
i=1

‖x̃ kti − x ji
t ‖. (5.4)

123

Complexity of stochastic dual dynamic programming

Note that the search point xkt is a function of i[k,t] and hence is also random. x̃ kti
depends on xkt−1 (see (4.8)) and hence on i[k,t−1]. Moreover, the set of saturated points

Sk−1
t only depends on i[k−1,T] since it is defined in the backward phase of the previous

iteration. Hence, g̃kt is measurable w.r.t. Ik,t−1, but it is independent of the random
selection variable i kt for the current stage t at the k-th iteration.

Lemma 8 below summarizes some important properties about g̃kt .

Lemma 8 Let δt ∈ [0,+∞) be given and εt be defined in (3.24). If g̃kt ≤ δt , then we
have

1
Nt

Nt∑
i=1

[Fti (x̃ kti) − Fk−1
ti (x̃ kti)] = λ

Nt

Nt∑
i=1

[Vt+1(x̃ kti) − V k−1
t+1 (x̃ kti)] ≤ εt−1. (5.5)

Moreover, for t ≥ 2 we have

Vt (x
k
t−1) − V k

t (x
k
t−1) ≤ εt−1. (5.6)

Proof First note the second inequality in (4.24) still holds since it does not depend on
the selection of xkt . Hence we have

Fti (x̃
k
ti) − Fk−1

ti (x̃ kti) ≤ (Mt + Mt)‖x̃ kti − x ji
t ‖ + λεt .

Summing up the above inequalities, we can see that

1
Nt

Nt∑
i=1

[Fti (x̃ kti) − Fk−1
ti (x̃ kti)] ≤ (Mt + Mt)

1
Nt

Nt∑
i=1

‖x̃ kti − x ji
t ‖ + λεt

= (Mt + Mt)g̃
k
t + λεt

≤ εt−1,

which together with the definitions of Fti and Fk−1
ti then imply (5.5). Moreover, (5.6)

follows from (4.27) and (5.5). ��
Similar to the previous section, we use

gkt (x
k
t) :=

{
mins∈Sk−1

t
‖s − xkt ‖, t < T ,

0, o.w.

to measure the distance between xkt and the set of saturated points. Clearly, gkt (x
k
t) is

a random variable dependent on xkt and hence measurable w.r.t. Ik,t . We say that xkt is
εt -saturated if V k

t+1(x
k
t)−V t+1(x

k
t) ≤ εt . Moreover, xkt is said to be δt -distinguishable

if gkt (x
k
t) > δt .

The quantitates g̃kt and g̃kt+1 defined in (5.4) provide us a way to check whether
xkt is δt -distinguishable and εt -saturated. More specifically, If g̃kt > δt for some stage
t < T at iteration k, then there must exist an index i∗t ≡ i k,∗t ∈ {1, . . . , Nt } s.t.

123

G. Lan

‖x̃ kti∗t − x
ji∗t
t ‖ > δ or equivalently gkt (x̃

k
ti∗t

) > δt (since otherwise g̃kt ≤ δt). Note

that both g̃kt and i∗t are measurable w.r.t. Ik,t−1 but independent of the i kt . Therefore,
conditioning on Ik,t−1 the probability of having i kt = i∗t is 1/Nt , and consequently by
the law of total probability, Prob{xkt = x̃ kti∗t

} = 1/Nt . Moreover, we can see that the
conditional probability of

Prob{gkt (xkt) > δt |g̃kt > δt } =
Nt∑
i=1

1
Nt
Prob{gkt (x̃ kti) > δt |g̃kt > δt }

≥ 1
Nt
Prob{gkt (x̃ kti∗t) > δt |g̃kt > δt }

= 1
Nt

. (5.7)

In other words, if g̃kt > δt , then with probability at least 1/Nt , xkt will be δt -
distinguishable. If, in addition, g̃kt+1 ≤ δt+1, then in view of Lemma 8, we have
V k
t+1(x

k
t) − V t+1(x

k
t) ≤ εt and hence xkt will be εt -saturated.

While EDDP can find at least one new saturated and distinguishable search point in
every iteration, SDDP can only guarantee so in probability as shown in the following
result. We use the random variable qk to denote whether there exists such a point
among any stages at iteration k. Clearly, qk is measurable w.r.t. Ik,T .
Lemma 9 Assume that δt ∈ [0,+∞), t = 1, . . . , T , are given. Also let εt , t =
0, . . . , T , be defined in (3.36). The probability of finding a new δt -distinguishable and
εt -saturated and search point at the k-iteration of SDDP can be bounded by

Prob{qk = 1} ≥ 1
N̄

(1 − Prob{g̃ki ≤ δi , i = 1, . . . , T − 1}), (5.8)

where
N̄ := max{N1, . . . , NT }. (5.9)

Proof First note that εt in (3.36) is computed according to the recursion εt−1 =
(Mt + Mt)δt + λεt and the assumption εT−1 = 0. Next observe that exactly one of
the following T cases will happen at the k-th iteration of the SDDP method.

Case 1: g̃kt ≤ δt , ∀1 ≤ t ≤ T − 1;
Case t , t = 2, . . . , T − 1: g̃ki ≤ δi , ∀t ≤ i ≤ T − 1, and g̃kt−1 > δt−1;
Case T : g̃kT−1 > δT−1.

We use the random variable qkt = 1 or 0 to denote whether a δt -distinguishable and
εt -saturated search point is found for case t .

Let us start with the T -th case. ByLemma7, xkT−1 in stage T−1will get 0-saturated.
Moreover, by (5.7), we have

Prob{gkT−1(x
k
T−1) > δT−1|g̃kT−1 > δT−1} ≥ 1

NT−1
.

Hence, the probability of finding a new 0-saturated and δT−1-distinguishable search
point for the T -th case can be bounded by

123

Complexity of stochastic dual dynamic programming

Prob{qkT = 1} ≥ Prob{gkT−1(x
k
T−1) > δT−1}

= Prob{gkT−1(x
k
T−1) > δT−1|g̃kT−1 > δT−1}Prob{g̃kT−1 > δT−1}

≥ 1
NT−1

Prob{g̃kT−1 > δT−1}
≥ 1

N̄
Prob{g̃kT−1 > δT−1}. (5.10)

Now consider the t-th case for t = 2, . . . , T − 2. By assumption, we have
g̃ki ≤ δi , i = t, . . . , T − 1, implying g̃kt ≤ δt . Hence, by Lemma 8, we have
V k
t (xkt−1)−V t (x

k
t−1) ≤ εt−1. In addition, it follows from the assumption g̃kt−1 > δt−1

and (5.7) that with probability at least 1/Nt−1, xkt−1 is δt−1-distinguishable. Therefore,
we conclude that

Prob{V k
t (xkt−1) − V t (x

k
t−1) ≤ εt−1, g(x

k
t−1) > δt−1

|g̃kt−1 > δt−1; g̃ki ≤ δi , i = t, . . . , T − 1} ≥ 1
Nt−1

and hence that

Prob{qkt = 1} ≥ Prob{V k
t (xkt−1) − V t (x

k
t−1) ≤ εt−1, g(x

k
t−1) > δt−1}

≥ 1
Nt−1

Prob{g̃kt−1 > δt−1; g̃ki ≤ δi , i = t, . . . , T − 1}
≥ 1

N̄
Prob{g̃kt−1 > δt−1; g̃ki ≤ δi , i = t, . . . , T − 1} (5.11)

for any t = 2, . . . , T − 2. Combining (5.10) and (5.11), we conclude that the prob-
ability of finding a new εt -saturated and δt -distinguishable search point at iteration k
of SDDP can be bounded by

Prob{qk = 1} ≥
T∑
t=2

Prob{qkt = 1}

≥ 1
N̄

T∑
t=2

Prob{g̃kt > δt ; g̃ki ≤ δi , i = t + 1, . . . , T − 1}

= 1
N̄

(1 − Prob{g̃ki ≤ δi , i = 1, . . . , T − 1}).

��
In view of Lemma 9, one of the following three different cases will happen for

each SDDP iteration: (a) g̃kt ≤ δt for all t = 1, . . . , T − 1. The probability of this
case is denoted by Prob{g̃ki ≤ δi , i = 1, . . . , T − 1}; (b) A new εt -saturated and
δt -distinguishable search point will be generated with probability at least

1
N̄

(1 − Prob{g̃ki ≤ δi , i = 1, . . . , T − 1});

and (c) none of the above situation will happen, implying that this particular SDDP
iteration is not productive.

123

G. Lan

Observe that if for some iteration k, we have g̃kt ≤ δt for all t = 1, . . . , T −1. Then
by Lemma 8 (with t = 1), we have

F11(x
k
1) − F∗ ≤ F11(x

k
1) − Fk−1

11 (xk1) ≤ ε0. (5.12)

Moreover, we have

λ
Nt

Nt∑
i=1

[Vt+1(x̃ kti) − V k−1
t+1 (x̃ kti)] ≤ εt−1

for all t = 1, . . . , T . This observation together with the fact that xkt is randomly chosen
from x̃ kti , i = 1, . . . , Nt , then imply that the expectation of Vt+1(xkt) − V k−1

t+1 (xkt)
conditionally on i[k,t−1]:

E[Vt+1(x
k
t) − V k−1

t+1 (xkt)|Ik,t−1] = λ
Nt

Nt∑
i=1

[Vt+1(x̃ kti) − V k−1
t+1 (x̃ kti)]

≤ εt−1, t = 1, . . . , T . (5.13)

Similar in spirit to Lemma 4, the following result relates the above notion of saturation
to the gap between a stochastic upper bound and lower bound on the optimal value of
problem (4.1).

Lemma 10 Suppose that the relations in (5.13) hold for some iteration k ≥ 1. Then
we have

T∑
t=1

λt−1
E[Ht (xkt , c̃tit)|Ik,t−1] − E[Fk−1

11 (xk1)|Ik−1,T] ≤
T∑
t=1

λt−1εt−1. (5.14)

Proof Note that we have N1 = 1. By the definition of xk1 in (5.1) and our assumption
in (5.13), we have

E[H1(x
k
1 , c̃t1) + λV2(x

k
1) − Fk−1

11 (xk1)|Ik−1,T]
= E[H1(x

k
1 , c̃t1) + λV2(x

k
1)|Ik−1,T] − E[H1(x

k
1 , c̃t1) + λV k−1

2 (xk1)|Ik−1,T]
= λE[V2(xk1) − V k−1

2 (xk1)|Ik−1,T]
≤ λε1. (5.15)

Now consider the t-th stage for any t ≥ 2. By the definition of xkt in (5.1), we have

Ht (x
k
t , c̃tit) + λV k−1

t+1 (xkt) = min{Ht (x, c̃tit) + λV k−1
t+1 (x) : x ∈ Xt (x

k
t−1)}

≤ min{Ht (x, c̃tit) + λVt+1(x) : x ∈ Xt (x
k
t−1)}

= νtit (x
k
t−1)

123

Complexity of stochastic dual dynamic programming

for any t ≥ 2. Taking conditional expectation on both sides of the above inequality
and using our assumption λE[Vt+1(xkt) − V k−1

t+1 (xkt)|Ik,t−1] ≤ εt−1, we then have

E[Ht (x
k
t , c̃tit) + λVt+1(x

k
t)|Ik,t−1] ≤ E[νtit (xkt−1)|Ik,t−1] + εt−1

= E[Vt (xkt−1)|Ik,t−1] + εt−1

= E[Vt (xkt−1)|Ik,t−2] + εt−1,

where the first identity follows from the definition of Vt and the selection of it , and
the second identity follows from the fact that xkt−1 is independent of i

k
t . Multiplying

λt−1 to both side of the above inequalities, summing them up with the inequalities in
(5.15), and using the fact that VT+1(xkT) = 0, we have

T∑
t=1

λt−1
E[Ht (xkt , c̃tit)|Ik,t−1] − E[Fk−1

11 (xk1)|Ik−1,T] ≤
T∑
t=1

λt−1εt−1.

��
We also need to use the following well-known result for the martingale difference

sequence when establishing the iteration complexity of SDDP.

Lemma 11 Let ξ[t] ≡ {ξ1, ξ2, . . . , ξt } be a sequence of iid random variables, and
ζt = ζt (ξ[t]) be deterministic Borel functions of ξ[t] such that E|ξ[t−1] [ζt] = 0 a.s. and
E|ξ[t−1] [exp{ζ 2

t /σ 2
t }] ≤ exp{1} a.s., where σt > 0 are deterministic. Then

∀λ ≥ 0 : Prob
{

N∑
t=1

ζt > λ

√
N∑
t=1

σ 2
t

}
≤ exp{−λ2/3}. (5.16)

and

∀λ ≥ 0 : Prob
{

N∑
t=1

ζt < −λ

√
N∑
t=1

σ 2
t

}
≤ exp{−λ2/3}. (5.17)

Proof The proof of (5.16) can be found, e.g., Lemma 2 in [16]. In addition, (5.17)
follows from (5.16) by replacing ζt with −ζt . ��

We are now ready to establish the complexity of SDDP.

Theorem 3 Suppose that the norm used to define the bound Dt in (4.4) is the l∞ norm.
Also assume that δt ∈ [0,+∞) and εt are defined in (3.36). Let K denote the number
of iterations performed by SDDP before it finds a forward path (xk1 , . . . , x

k
T) defined

in (5.1) for problem (4.1) s.t.

F11(x
k
1) − F∗ ≤ ε0, (5.18)

T∑
t=1

λt−1
E[Ht (xkt , c̃tit)|Ik,t−1]

123

G. Lan

− E[Fk−1
11 (xk1)|Ik−1,T] ≤

T∑
t=1

λt−1εt−1. (5.19)

Then we have E[K] ≤ K̄ N̄ + 2, where K̄ and N̄ are defined in (4.31) and (5.9),
respectively. In addition, for any α ≥ 1, we have

Prob{K ≥ α K̄ N̄ + 1} ≤ exp
(
− (α−1)2 K̄ 2

2α N̄

)
. (5.20)

Proof First note that if g̃kt ≤ δt for all t = 1, . . . , T − 1, then (5.18) and (5.19) must
hold in view of the discussions after Lemma 9 (c.f. (5.12) and (5.13)) and Lemma 10.
Therefore, the event g̃kt ≤ δt for all t = 1, . . . , T − 1 will not happen for any
1 ≤ k ≤ K − 1. In other words, we have Prob{g̃kt ≤ δt , t = 1, . . . , T − 1} = 0 for all
1 ≤ k ≤ K − 1, which, in view of (5.8), implies that for any 1 ≤ k ≤ K − 1,

Prob{qk = 1} ≥ 1
N̄

. (5.21)

Moreover, observe that we must have

K−2∑
k=1

qk ≤ K̄ , (5.22)

since otherwise the algorithm has generated totally K̄ εt -saturated and δt -distinguish-
able search points during the first K −2 iterations, and thusmust terminate at the K −1
iterations (i.e., (5.18) and (5.19) must hold due to g̃K−1

t ≤ δt for all t = 1, . . . , T −1).
Taking expectation on both sides of (5.22), we have

K̄ ≥ EK [E[
K−2∑
k=1

qk |K]] ≥ EK [K−2
N̄

] = E[K]−2
N̄

,

implying that E[K] ≤ N̄ K̄ + 2.
Now we need to bound the probability that the algorithm does not terminate in

α N̄ K̄ + 1 iterations for α ≥ 1. Observe that

Prob{K ≥ α N̄ K̄ + 1} ≤ Prob{
α N̄ K̄∑
k=1

qk < K̄ }, (5.23)

since K ≥ α N̄ K̄ + 1 must imply that
∑α N̄ K̄

k=1 qk < K̄ . Note that qk − E[qk] is a
margingale-difference sequence, and E[exp((qk)2)] ≤ 1. Hence we have

Prob

{
α N̄ K̄∑
k=1

qk < α K̄ − λ
√

α N̄ K̄

}

≤ Prob

{
α N̄ K̄∑
k=1

qk ≤
α N̄ K̄∑
k=1

E[qk] − λ
√

α N̄ K̄

}

123

Complexity of stochastic dual dynamic programming

≤ exp(−λ2/2),∀λ > 0, (5.24)

where the first inequality follows from the fact that E[qk] ≥ 1/N̄ , k = 1, . . . , α N̄ K̄ ,

and thus
∑α N̄ K̄

k=1 E[qk] ≥ α K̄ , and the second inequality follows from Lemma 11.
Setting

λ = (α−1)K̄√
α N̄

in the above relation, we then conclude that

Prob

{
α N̄ K̄∑
k=1

qk < K̄

}
≤ exp

(
− (α−1)2 K̄ 2

2α N̄

)
. (5.25)

Combining (5.23) and (5.25), we then conclude that

Prob{K ≥ α N̄ K̄ + 1} ≤ exp
(
− (α−1)2 K̄ 2

2α N̄

)
, ∀α ≥ 1.

��
We have the following immediate consequence of Theorem 3.

Corollary 1 Suppose that nt ≤ n, Dt ≤ D, max{Mt , Mt } ≤ M and δt = ε for all
t = 1, . . . , T . Let K denote the number of iterations performed by the SDDP method
before it finds a forward path (xk1 , . . . , x

k
T) of problem (4.1) s.t.

F11(x
k
1) − F∗ ≤ 2M min{ 1

1−λ
, T − 1} ε, (5.26)

T∑
t=1

λt−1
E[Ht (xkt , c̃tit)|Ik,t−1] − E[Fk−1

11 (xk1)|Ik−1,T]

≤ 2M min
{

1
(1−λ)2

,
T (T−1)

2

}
ε. (5.27)

Then we have E[K] ≤ K̄ε N̄ + 2, where K̄ε and N̄ is defined in (4.33) and (5.9),
respectively. In addition, for any α ≥ 1, we have

Prob{K ≥ α K̄ε N̄ + 1} ≤ exp
(
− (α−1)2 K̄ 2

ε

2α N̄

)
.

Proof The relations in (5.26) and (5.27) follow by using the bound (3.46) for ε0 in
(5.18) and by using the bound (3.47) for

∑T
t=1 εt−1 in (5.19), respectively. Moreover,

the bounds on E[K] and Prob{K ≥ α K̄ε N̄ + 1} directly follows from Theorem 3 by
replacing K̄ with K̄ε . ��

We now add a few remarks about the results obtained in Theorem 3 and Corollary 1.
Firstly, since SDDP is a randomized algorithm, we provide bounds on the expected
number of iterations required to find an approximate solution of problem (4.1). We

123

G. Lan

also show that the probability of having large deviations from these expected bounds
for SDDP decays exponentially fast. Secondly, the complexity bounds for the SDDP
method is N̄ times worse than those in Theorem 2 for the EDDP method, even though
the dependence on other parameters, including T , n and ε, remains the same. Thirdly,
similar to DDP and EDDP, the complexity of SDDP actually depends the dimension
of the effective feasible region X̄t in (4.31), which can be smaller than nt .

As shown in Theorem 3 and Corollary 1, we can show the convergence of the
gap between a stochastic upper bound on F11(xk1), given by

∑T
t=1 λt−1Ht (xkt , c̃tit),

and the lower bound Fk−1
11 (xk1), generated by the SDDP method. In order to obtain a

statistically more reliable upper bound, we can run the forward phase L ≥ 1 times in
each iteration. In particular, we can replace the forward phase in Algorithm 4 with the
one shown in Algorithm 5. We can then compute the average and estimated standard
deviation of ubk over these L runs of the forward phase.

Algorithm 5 Forward phase with upper bound estimation
1: for l = 1, . . . , L do � Forward phase.
2: Set F̃l = 0.
3: for t = 1, . . . , T do
4: Pick up it from {1, 2, . . . , Nt } uniformly randomly.
5: Set xkt according to (5.1) and F̃l = F̃l + λt−1Ht (xkt , c̃t it).
6: end for
7: Set ubk = ubk + F̃l .
8: end for
9: Set ubk = ubk/L .

It should be noted, however, that the convergence of the SDDPmethod only requires
L = 1. To choose L > 1 helps to properly terminate the algorithm by providing a
statisticallymore accurate upper bound.Moreover, since each run of the forward phase
will generate a forward path, we can use these L forward paths to run the backward
phases in parallel to accelerate the convergence of SDDP. Following a similar analysis
to the basic version of SDDP, we can show that the number of iterations required by the
above variant of SDDP will be L times smaller than the one for Algorithm 4, but each
iteration is computationally more expensive or requires more computing resources for
parallel processing.

6 Conclusion

In this paper, we establish the complexity of a few cutting plane algorithms, including
DDP, EDDP and SDDP, for solving dynamic convex optimization problems. These
methodsbuild uppiecewise linear functions to approximate thevalue functions through
the backward phase and generate feasible policies in the forward phase by utilizing
these cutting plane models. For the first time in the literature, we establish the total
number of iterations required to run these forward and backward phases in order to
compute a certain accurate solution. Our results reveal that these methods have a mild
dependence on the number of stages T .

123

Complexity of stochastic dual dynamic programming

It is worth noting that in our current analysis we assume that all the subproblems
in the forward and backward phases are solved exactly. However, we can possibly
extend the basic analysis to the case when these subproblems are solved inexactly as
long as the errors are small enough. Moreover, we did not make any assumptions on
how the subproblems are solved. As a result, it is possible to extend our complexity
results to multi-stage stochastic binary (or integer) programming problems (see, e.g.,
[30]). In addition, the major analysis for SDDP presented in this paper does not rely
on the convexity, but the Lipschitz continuity of the value functions and their lower
approximations. Hence, it seems to be possible to adapt our analysis for SDDP-type
methods with nonconvex approximations for the value functions [1,23].

We have discussed a few different ways to terminate DDP, EDDP and SDDP. More
specifically, DDP can be terminated by calculating the gap between the upper and
lower bounds, and EDDP is a variant of SDDP with rigorous termination based on
the saturation of search points, whereas SDDP is usually terminated by resorting to
statistically valid upper bounds coupled with the lower bounds obtained from the
cutting plane models. Recently an important line of research has been developed to
design SDDP-likemethodswithmore reliable and efficient termination criterions (see,
e.g., [3,7,18]). It will be interesting to study the complexity of these new methods in
the future.

References

1. Ahmed, S., Cabral, F.G., Costa, B.F.P.D.: Stochastic lipschitz dynamic programming (2019)
2. Bao, H., Zhou, Z., Kotsalis, G., Lan, G., Tong, Z.: Lignin valorization process control under feedstock

uncertainty through a dynamic stochastic programming approach. React. Chem. Eng. 4, 1740–1747
(2019)

3. Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic
programming problems. Technical report, The University of Auckland, 70 Symonds Street, Grafton,
Auckland, July 2017 (2017)

4. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper.
Res. 33(5), 989–1007 (1985)

5. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)
6. Donohue, C.J., Birge, J.R.: The abridged nested decomposition method for multistage stochastic linear

programs with relatively complete recourse. Algorithm. Oper. Res. 1(1), 20 (2006)
7. Georghiou, A., Tsoukalas, A., Wiesemann, W.: Robust dual dynamic programming. Oper. Res. 67(3),

813–830 (2019)
8. Girardeau, P., Leclere, V., Philpott, A.B.: On the convergence of decomposition methods for multistage

stochastic convex programs. Math. Oper. Res. 40, 130–145 (2015)
9. Guigues,V.: Sddp for some interstage dependent risk-averse problems and application to hydro-thermal

planning. Comput. Optim. Appl. 57, 167–203 (2014)
10. Guigues, V.: Inexact cuts in deterministic and stochastic dual dynamic programming applied to linear

optimization problems (2018)
11. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage linear programs with

recourse. Math. Oper. Res. 16, 650–669 (1991)
12. Hindsberger, M., Philpott, A.B.: Resa: a method for solving multistage stochastic linear programs. J.

Appl. Oper. Res. 6(1), 2–15 (2014)
13. Kelley, J.E.: The cutting plane method for solving convex programs. J. SIAM 8, 703–712 (1960)
14. Kozmík,V.,Morton,D.P.: Evaluating policies in risk-aversemulti-stage stochastic programming.Math.

Program. 152(1–2), 275–300 (2015)
15. Lan, G.: First-Order and Stochastic Optimization Methods for Machine Learning. Springer, Basel

(2020)

123

G. Lan

16. Lan, G., Nemirovski, A.S., Shapiro, A.: Validation analysis of mirror descent stochastic approximation
method. Math. Program. 134, 425–458 (2012)

17. Lan, G., Zhou, Z.: Dynamic stochastic approximation for multi-stage stochastic optimization.
Manuscript, Georgia Institute of Technology, 2017. Mathematical Programming, under minor revi-
sion (2017)

18. Leclère, V., Carpentier, P., Chancelier, J.P., Lenoir, A., Pacaud, F.: Exact converging bounds for stochas-
tic dual dynamic programming via fenchel duality. SIAM J. Optim. 30(2), 1223–1250 (2020)

19. Linowsky, K., Philpott, A.B.: On the convergence of sampling-based decomposition algorithms for
multistage stochastic programs. J. Optim. Theory Appl. 125, 349–366 (2005)

20. Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, Norwell, MA (2004)

21. Pereira, M., Pinto, L.: Multi-stage stochastic optimization applied to energy planning. Math. Program.
52(1–3), 359–375 (1991)

22. Philpott, A., Matos, Vd, Finardi, E.: On solving multistage stochastic programs with coherent risk
measures. Oper. Res. 61, 957–970 (2013)

23. Philpott, A., Wahid, F., Bonnans, F.: Midas: A mixed integer dynamic approximation scheme, 2016.
PhD thesis, Inria Saclay Ile de France (2016)

24. Tyrrell Rockafellar, R., Wets, Roger J.-B.: Scenarios and policy aggregation in optimization under
uncertainty. Math. Oper. Res. 16(1), 119–147 (1991)

25. Ruszczyński, A.: Decompositionmethods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Program-
ming, pp. 141–211. Elsevier, Amsterdam (2003)

26. Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34, 1–8 (2006)
27. Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209, 63–72

(2011)
28. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and

Theory. SIAM, Philadelphia (2009)
29. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. E-print available

at: http://www.optimization-online.org (2004)
30. Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Math. Program. 175(1–

2), 461–502 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.optimization-online.org

	Complexity of stochastic dual dynamic programming
	Abstract
	1 Introduction
	2 Preliminary: Kelley's cutting plane methods
	3 Dual dynamic programming for single-scenario problems
	4 Explorative dual dynamic programming
	5 Stochastic dual dynamic programming
	6 Conclusion
	References

