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Abstract

Stochastic dual dynamic programming is a cutting plane type algorithm for multi-
stage stochastic optimization originated about 30 years ago. In spite of its popularity
in practice, there does not exist any analysis on the convergence rates of this method.
In this paper, we first establish the number of iterations, i.e., iteration complexity,
required by a basic dual dynamic programming method for solving single-scenario
multi-stage optimization problems, by introducing novel mathematical tools including
the saturation of search points. We then refine these basic tools and establish the
iteration complexity for an explorative dual dynamic programing method proposed
herein and the classic stochastic dual dynamic programming method for solving more
general multi-stage stochastic optimization problems under the standard stage-wise
independence assumption. Our results indicate that the complexity of these methods
mildly increases with the number of stages T, in fact linearly dependent on 7 for
discounted problems. Therefore, they are efficient for strategic decision making which
involves a large number of stages, but with a relatively small number of decision
variables in each stage. Without explicitly discretizing the state and action spaces, these
methods might also be pertinent to the related reinforcement learning and stochastic
control areas.
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1 Introduction

In this paper, we are interested in solving the following stochastic dynamic optimiza-
tion problem

min Hl(xl,cl)—i-)»E[ min  H(x2, ¢2)
x1€X1 )

x2€X2(x1

xreXr(xr—1)

+AE[---+AE[__min HT(xT,cT)]]], (1.1)

with feasible sets X; given by

X1 :={xe X SR" : Ajx; = by, P (x1, py) <0}, (1.2)
X (x—1) = X (-1, 8)
= {x € X; CR": Ayx = Bix;_1 + b, &(x, p,) < szt—1}~ (1.3)

Here T denotes the number of stages, H; (-, c¢;) are closed convex objective functions,
X, C R™ areclosed convex sets, A € (0, 1]denotes the discounting factor, A; : R —
R™, B; : R"-! — R™ and Q, : R"-! — R are linear mappings, and @, ; (-, p,) :
R* — R,i = 1,..., p; are closed convex constraint functions. Moreover, & :=
(A1, b1, By, py, c1)isagivendeterministic vector, and §; := (A, b;, B;, Q,, p;, ¢1),
t =2,..., T, are the random vectors at stage ¢. In particular, if H; are affine, X, are
polyhedral and @; do not exist, then problem (1.1) reduces to the well-known multi-
stage stochastic linear programming problem (see, e.g., [5,28]). The incorporation
of the nonlinear (but convex) objective functions H; and constraints @, allows us to
model a much wider class of problems.

In spite of its wide applicability, multi-stage stochastic optimization remains highly
challenging to solve. As shown by Nemirovski and Shapiro [29] and Shapiro [26], the
number of scenarios of &, ¢t = 2,..., T, required to solve problem (1.1) has to
increase exponentially with 7. In particular, if the number of stages T = 3, the total
number of samples (a.k.a. scenarios) should be of order O(1/ €*) in general. There
exist many algorithms for solving multi-stage stochastic optimization problems (e.g.,
[11,21,24]), but quite often without guarantees provided on their rate of convergence.
More recently, Lan and Zhou [17] developed a dynamic stochastic approximation
method for multi-stage stochastic optimization by generalizing stochastic gradient
descent methods, and show that this algorithm can achieve this optimal sampling and
iteration complexity bound for solving general multi-stage stochastic optimization
problems with 7 = 3. The complexity of this method depends mildly on the problem
dimensions, but increases exponentially with respect to 7. As a result, this type of
method is suggested for solving some operational decision-making problems, which
involve a large number of decision variables but only a small number of stages.

In practice, we often encounter strategic decision making problems which span a
long horizon and thus require a large number of stages 7. In this situation, a crucial
simplification that has been explored to solve problem (1.1) more efficiently is to
assume the stage-wise independence. In other words, we make the assumption that
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the random variables &, ¢t = 2, ..., T, are mutually independent of each other. Under
this assumption, we can write problem (1.1) equivalently as

miny, ex, {Hi(x1, ¢1) + AVa(x1)}, (1.4)
where the value factions V;,r = 2, ..., T, are recursively defined by

Vi(xi—1) == EVi (x—1, 6],
Vi(xi—1,&) = minxtex[(xl_l){H,(x,, c) + AVip1(xp)}, (1.5)

and
Vryi(xr) =0. (1.6)

Furthermore, as pointed out by Shapiro [27], one can generate a relatively small
(i.e., N;) number of samples for each & and define the so-called sample average
approximation (SAA) problem by replacing the expectation in (1.5) with the average
over the generated samples (see Sect. 4 for more details).

Under the aforementioned stage-wise independence assumption, a widely-used
method for solving the SAA problem is the stochastic dual dynamic programming
(SDDP) algorithm. SDDP is an approximate cutting plane method, first presented by
Birge [4] and Pereira and Pinto [21] and later studied by Shapiro [27], Philpott et. al.
[22], Donohue and Birge [6], Hindsberger [12], Kozmik and Morton [14], Guigues [10]
and Zou et. al. [30], among many others. SDDP has been applied to solve problems
arising from many different fields such as hydro-thermal planning [9,30] and bio-
chemical process control [2]. Each iteration of this algorithm contains two phases.
In the forward phase, feasible solutions at each stage will be generated starting from
the first stage based on the cutting plane models for the value functions built in the
previous iteration. Then in the backward phase, the cutting plane models for the value
functions of each stage will be updated starting from the last stage. While the cost
per iteration of the SDDP method only linearly depends on the number of stages, it
remains unknown what is the number of iterations required by the SDDP method to
achieve a certain accurate solution of problem (1.4). Existing proofs of convergence of
SDDP are based on the assumption that the procedure passes through every possible
scenario many times [8,19,27]. Of course when the number of scenarios, although
finite, is astronomically large this is not very realistic. In addition, such analysis does
not reveal the dependence of the efficiency of SDDP on various parameters, e.g.,
number of stages, target accuracy, Lipschitz constants, and diameter of feasible sets
etc.

It is well-known that when the number of stages 7 = 2, SDDP reduces to the
classic Kelley’s cutting plane method [13]. As shown in Nesterov [20], the number of
iterations required by Kelley’s cutting plane method could depend exponentially on the
dimension of the problem even for a static optimization problem inevitably. Therefore,
this type of method is not recommended for solving large-scale optimization problems.
However, it turns out that the global cutting plane models are critically important for
multi-stage optimization especially if the number of stages is large and one does
not know the structure of optimal policies. In these cases we need to understand the

@ Springer



G.Lan

efficiency of these cutting plane methods in order to identify not only problem classes
amenable for these techniques, but also possibly to inspire new ideas to solve these
problems more efficiently.

This paper intends to close the aforementioned gap in our understanding about
cutting plane methods for multi-stage stochastic optimization. Our main contributions
mainly exist in the following several aspects. Firstly, we start with a dual dynamic
programming (DDP) method for solving dynamic convex optimization problem with
a single scenario. This simplification allows us to build a few essential mathemat-
ical notions and tools for the analysis of cutting plane methods. More specifically,
we introduce the notion of saturated and distinguishable search points. Using this
notion, we show that each iteration of DDP will either find a new saturated and distin-
guishable search point, or compute an approximate solution for the original problem.
As a consequence, we establish the total number of iterations required by the DDP
method for solving the single-scenario problem. More specifically, we show that the
iteration complexity of DDP only mildly increases w.r.t. the number of stages 7', in
fact linearly dependent on 7" for many problems, especially those with a discounting
factor A < 1. The dependence of DDP on other problem parameters has also been
thoroughly studied. We also demonstrate that one can terminate DDP based on some
easily computable upper and lower bounds on the optimal value.

Secondly, motivated by the analysis of the DDP method, we propose a new explo-
rative dual dynamic programming (EDDP) for solving the SAA problem of multi-stage
stochastic optimization in (1.4). When solving the SAA problem, we have to choose
one out of N; possible feasible solutions in the forward phase, and each one of them
corresponds to a random realization of &;. In EDDP, we choose a feasible solution
in an aggressive manner by selecting the most distinguishable search point among
the saturated ones in each stage. As a result, we show that the number of iterations
required by EDDP for solving the SAA problem is the same as that of DDP for solving
the single-scenario problem. However, to implement EDDP we need to maintain the
set of saturated search points explicitly.

Thirdly, we show that the SDDP method can be viewed as a randomized version
of the EDDP algorithm by choosing the aforementioned feasible solution at each
stage ¢ randomly from the N, possible selections. Since this algorithm is stochastic,
we establish the expected number of iterations required by SDDP to compute an
approximate feasible policy for solving the SAA problem. In particular the iteration
complexity of SDDP is worse than that of DDP and EDDP by a factor of N :=
max{Ny, ..., N}, but still mildly increases w.r.t. T. Moreover, we show that the
probability of having large deviation from this expected iteration complexity decays
exponentially fast. In addition, we establish the convergence of the gap between a
stochastic upper bound and lower bound on the optimal value, and show how we can
possibly use these bounds to terminate the algorithm.

To the best of our knowledge, all the aforementioned complexity results, as well as
the analysis techniques, are new for cutting plane methods for multi-stage stochastic
optimization.

This paper is organized as follows. In Sect. 2, we present some preliminary results
on the basic cutting plane methods for solving static convex optimization problems.
In Sect. 3, we present the DDP method for single-scenario problems and establish its
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convergence properties. Section 4 is devoted to the EDDP method for solving the SAA
problem for multi-stage stochastic optimization. In Sect. 5, we establish the complexity
of the SDDP method. Finally, some concluding remarks are made in Sect. 6.

2 Preliminary: Kelley’s cutting plane methods

In this section, we briefly review the basic cutting plane method and establish its
complexity bound. Consider the convex programming problem of

?ei? fx), 2.1

where X C R" is a convex compact setand f : X — R is a sub-differentiable convex
function. Moreover, we assume that f is Lipschitz continuous s.t.

If(x) = fO)I = Mllx —y[l,Vx, y € X. 2.2

Algorithm 1 formally describes Kelley’s cutting plane method for solving (2.1). The
essential construct in this algorithm is the cutting plane model f(x), which always
underestimates f (x) for any x € X. Given the current search point x, this method
first updates the model function f and then minimizes it to compute the new search
point x4 1. It terminates if the gap between the upper bound (ub) and lower bound
(Iby) falls within the prescribed target accuracy €. As a result, an e-solution x € X s.t.
f(x) — f(x*) < € will be found whenever the algorithm stops.

Algorithm 1 Basic cutting plane method

Input: initial points x| and target accuracy €.
Set io(x) = —oo and ubg = +o00.
fork=1,2,..., do
Set f,(x) = max{f, | (x). () + (f (). x — x¢)).
Set xg41 € Argminy oy f(x).
Setlbg = f(x+1) and ubg = minf{ubg_1, f (x4}
if uby — Iby < € then
terminate.
end if
end for

We establish the complexity, i.e., the number of iterations required to have a gap
lower than €, of the cutting plane method in Proposition 1.

Proposition 1 Unless Algorithm 1 stops, we have ||xk+1 — xi|| > €/M for any i =
1, ..., k. Moreover, suppose that the norm || - || in (2.2) is given by the lo, norm and
X C R" is contained in a box with side length bounded by 1. Then the complexity of
the basic cutting plane method can be bounded by

(M )", (2.3)

€
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Proof Note that f . (x) =max;—. . f(x;)+ {f (xi), x — x;) is Lipschitz continuous
with constant M. Moreover, we haveik (x) < f(x)foranyx € X and f(x;) = ik(x,-)
foranyi =1,...,k + 1. Hence,

. . ok
S, Gie) = min £ (x) < min f(x) = /.
Using this observation, we have

ubg —Ibp < f(xi) — b = f, (xi) —1Ibx = f, (xi) = f, (a1) = Mlx; — xpepa |l

Sinceuby —1lby > €, we musthave | x; —xx41]| > €/M.(2.3) then follows immediately
from this observation. O

Even though the complexity bound (2.3) of the cutting plane method has not been
explicitly established before, construction of this proof was used in Ruszczynski [25].
Moreover, as pointed out in [20] the exponential dependence of such complexity bound
on the dimension n does not seem to be improvable in general. It is worth noting that
the cutting plane algorithm does not explicitly depend on the selection of the norm
even though the bound in (2.3) is obtained under the assumption that X sits inside an
loo bOX.

3 Dual dynamic programming for single-scenario problems

In this section, we focus on a dynamic version of the cutting plane method applied

to solve a class of deterministic dynamic convex optimization problems, i.e., multi-

stage optimization problems with a single scenario. This dual dynamic programming

(DDP) method, which can be viewed as SDDP with one scenario, will serve as a

starting point for studying the more general dual dynamic programming methods in

later two sections. Moreover, this method may inspire some interests in its own right.
More specifically, we consider the following dynamic convex programming

f*i= min {f1(x1) :=h1(x1) + A2 (x)}, (3.1
x1€X1
where the value functions v;(-),t =2, ..., T + 1, are defined recursively by
v(xr—1) i= min  {fi(xy) = he (xr) + Avpp1 (X))}, (3.2)
X €Xi(x—1)
vr+1(xr) =0, (3.3)

with convex feasible sets X;(x;_1) given by
X (xp—1) := {x € X, CR"™: A;x = Byx;—1 + by, i (x) < tht—1}~ (3.4)

Similarly to problem (1.1), here X, C R™ are closed convex sets independent of x;_1,
A € (0, 1] denotes the discounting factor, A; : R — R™ B, : R*-! — R™ and
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Q; : R"-1 — R are linear mappings, and A, : X, > R and Pri X, > R,
i =1,..., ps, are closed convex functions. Thus, we can view problem (3.1) as a
single-scenario multi-stage optimization problem in the form of (1.1), by assuming
& = (A;, by, By, Oy, p,, ¢;) to be deterministic, and setting /,(-) = H;(-, ¢;) and
& () = D4(-, py)-

Throughout this section, we denote &X; the effective feasible region of each period ¢
defined recursively by

X1, t=1,
X =1 (3.5)
Urex,_ Xe(x), t=2.
Observe that X; is not necessarily convex and its convex hull is denoted by Conv(&5).
Moreover, letting Aff (X}) be the affine hull of X; and 5, (¢) := {y € Aff(&X)) : ||y] <
€}, we use

Xi(e) := X + B (e)

to denote X; together with its surrounding neighborhood.
In order to develop a cutting plane algorithm for solving problem (3.1), we need to
make a few assumptions and discuss a few quantities that characterize the problem.

Assumption 1 For any # > 1, there exists D; > 0 s.t.
”Xt —x,/|| < D[, th,x; (S Xt, vVt > 1. (36)

The quantity D; provides a bound on the “diameter” of the effective feasible region
A;. Clearly, Assumption 1 holds if the convex sets X; are compact, since by definition
we have X; C Conv(X;) C X,, Vt > 1.

Assumption 2 For any ¢ > 1, there exists €, € (0, +00) s.t.
hi(x) < 400, Vx € X;(€;) and rint(X,41(x)) # 0, Vx € X;(€;), 3.7

where rint(-) denotes the relative interior of a convex set.

Assumption 2 describes certain regularity conditions of problem (3.1). Specifically,
the two conditions in (3.7) imply that 4, and v;4 are finitely valued in X} (e;). The
second relation in (3.7) also implies the Slater condition of the feasible sets in (3.4)
and thus the existence of optimal dual solutions to define the cutting plane models
for problem (3.1). Here the relative interior is required due to the nonlinearity of
the constraint functions in (3.4) and we can replace rint(X,41(x)) with X,y (x) if
the latter is polyhedral. Conditions of these types have been referred to as extended
relatively complete recourse, which is less stringent than imposing complete recourse
with € = 400 in the second relation in (3.7) (see [8]).

In view of Assumption 2, the objective functions f;, as given by the summation
of h; and Av;41, must be finitely valued in &X; (€;). In addition, by Assumptions 1 the
set A} is bounded. Hence the convex functions f; must be Lipschitz continuous over
X; (see, e.g., Section 2.2.4 of [15]). We explicitly state the Lipschitz constants of f;
below since they will be used in the convergence analysis our algorithm.
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Assumption 3 For any ¢ > 1, there exists M; > 0 s.t.
[ fr (xt) — ft(xz/)l < M;||x; — xl/||, th,x,/ € &;. (3.8)

We are now ready to describe a dual dynamic programming method for solving
problem (3.1) (see Algorithm 2). For notational convenience, we assume that X (xg ) =
X for any iteration k > 1.

Algorithm 2 Dual dynamic programming (DDP) for single-scenario problems

1: Setg?(x)zfoo,t=2 ..... T,Q(%+l =0, andub9=+oo,t=1 ..... T.
2:fork=1,2,..., do
3: forr=1,2,..., T do > Forward phase.
xf‘ € Argmin {i’;_l(x) = h(x) + Ag];;ll x):xe Xt(xlk_l)} . 3.9)
4:  end for
50 Setubk = minfubk !, T TR, (K.
6:
7:  Set y’}H =0. > Backward phase.
8 fort=T7,T—-1,..., 2 do
Tl = min { £200 = i) 420k @ x e Xl (3.10)
@Y (k) = [Br, 011y¥, where y¥ is the optimal dual multiplier of (3.10).
vf () = max {of 1@, 5 G G o px =] (3.11)
9:  end for
10: end for

We now make a few observations about the above DDP method. Firstly, in the for-
ward phase our goal is to compute a new policy (x{‘, x’z‘, e, x’}) sequentially starting
from xlf for the first stage. In this phase we utilize the cutting plane model y]t:ll ()asa
surrogate for the value function v, (-) in order to approximate the objective function
f:(+) at stage ¢, because we do not have a convenient expression for the value function
vr41(). Since (xf, x4, ..., x%) is a feasible policy by definition, S A Ry ()
gives us an upper bound on the optimal value f* of problem (3.1), and accordingly,
ublf gives us the value associated with the best policy we found so far.

Secondly, given the new generated policy (xf , x'z‘ e x§ ), our goal in the backward
phase is to update the cutting plane models yi‘_l (+) to y’,‘(-), in order to provide
a possibly tighter approximation of v;(-). More specifically, by Assumption 2, the
feasible region of X; (x,k_1 ) of the subproblem in (3.10) has anonempty relative interior.
Hence the function value ﬁf (xffl) and the associated vector [By, Q,]y,k are well-
defined, and they define a supporting hyperplane for the approximate value function
f)f(~) defined in (3.10) (after replacing xtk_l with any x € X;_1(€,_1)). Using all these

supporting hyperplanes of ﬁf‘ that have been generated so far, we define a cutting plane
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model yf : R — R, which underestimates the original value function v, (-) as shown
in the following result.

Lemma1 Foranyk > 1,

) < oF o) < P00 < v, Y e X (G-t =2, T, (3.12)
@) < A0 < i) Ve e M@ =1, T (3.13)

Proof First observe that the inequalities in (3.13) follow directly from (3.12) by using
the facts that f;(x) = h;(x) + Av;41(x) and ﬁ(x) = h;(x) + 20k, (x) due to the
definitions of f; and i f in (3.2) and (3.9), respectively. Moreover, the first relation
yf‘l(x) < yf (x) follows directly from (3.11).

Second, we observe that the functions ﬁf and v, are well-defined over X;_;(€;,_1)
due to Assumption 2 and will show that the remaining inequalities in (3.12), i.e.,
v (x) < tF(x) < v (x),¥x € Xi_1(&_1), hold by using induction backwards for
t = T,...,1 at any iteration k. Let us first consider + = T. Note that y];~+1 =0
and thus by comparing the definitions of vr(x) and f)]} (x) in (3.2) and (3.10), we
have % (x) = vr (x). Moreover, by definition & (x% ) + ((05) (x5 _ ), x —xk_))
is a supporting hyperplane of f)’} (x) at x’}_l. Combining these observations with the
definition of yl} (x), we have

vh(x) < TRk ) (@) ok x = xh ) < 90 = vr (o). (3.14)

Now assume that yf x) < ﬁf (x) < vs(x) for some 0 < ¢ < T. Using the induction
hypothesis of yf (x) < v;(x) in the the definitions of v,_1(x) and f)f‘_l (x)in (3.2) and
(3.10), we conclude that ﬁ;‘_l (x) < v,—1(x). Moreover, by definition (f)f_ 1)’()c;‘_z) is
a subgradient of f)f_ () at xtk_2. Combining these relations, we conclude

R ) = 0 k) (@) ) —xk L) < 8 (0 < v (). (BU15)

O

In order to establish the complexity of Algorithm 2, we need to show that the
approximation functions f f () are Lipschitz continuous on AX;.

Lemma2 Foranyt > 1, there exists M, > 0 s.t.
|4 ) = fEODT < Mol — X1, Voo, x] € X V= 1 (3.16)

Proof Note that by Assumption 2, for any x € X;(€), the feasible region of X, (x)
has a nonempty relative interior, hence for any l = 1, ..., k, the function values
vy 4 (x{) and the associated vectors [ B, 11, Q/+1]y, 4 are well-defined. Therefore, the

. . . . k .
piecewise linear function v;_ ; (x) given by

.....
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is well-defined and sub-differentiable. This observation, in view of the convexity of
h; and Assumption 2, then implies that i i‘ x)=h;(x)+ Ayf (x) is sub-differentiable
on X;. We now provide a bound for the subgradients ( ftk )’ on X;. Note that for any
x € X;(€) and xg € X;, we have

(Y (x0), x = x0) < fX(0) = fHxo) < f ) — [ (x0), (3.17)

where the last inequality follows from (3.13). Letting || - ||« := max <1 (-, x) denotes
the conjugate norm of || - || and setting x = xo + E(ft‘)/(xo)/n(ﬁ‘)’(xo)n*, we have

ENYY ol < f0) = f1(x0) < max f(x) - min 1@,

which implies that

I Gl < H max £ = min £100], Vo € .

1 (€

The result in (3.16) then follows directly from the above inequality, the boundedness
of X; and hence X (€), and the fact that

f¥ 0 = PR < maxd S Gl 1S G el — /1

due to the convexity of f . and the Cauchy Schwarz inequality. O

We now add some discussions about the Lipschitz continuity of k obtained in
Lemma 2. Firstly, it might be interesting to establish some relationship between the
Lipschitz constants M, and M, for f f and f;, respectively. Under certain circumstances
we can provide such a relationship. In particular, let us suppose that

FEo0) < fitxo) < fH(x0) + €. (3.18)
It then follows from the above assumption and (3.17) that
(Y (x0), x = x0) < f(x) = f(x0) + €.
Setting x = xo + € f'(x0) /Il f'(x0) ||+, we conclude
gII(ﬁ)’(XO)II* = f() = f(x0) +€ = Mllx —xoll +€ < €M +¢€,

which implies that

If o)« <M+ 1 and M, < M; +1. (3.19)

Note however that the above relationship does not necessarily hold for a situation more
general than (3.18).

@ Springer



Complexity of stochastic dual dynamic programming

Secondly, while it is relatively easy to understand how the discounting factor A
impacts the Lipschitz constants M; for the objective functions f; over different stages,
its impact on the Lipschitz constants M, for the approximation functions f f is more

complicated since we do not know how the Lagrange multipliers y,k changes w.r.t.
A. On the other hand, the discounting factor does play a role in compensating the
approximation errors accumulated over different stages for the DDP method. Since
we cannot quantify precisely such a compensation by simply scaling the Lipschitz
constants M; and M, we decide to incorporate explicitly the discounting factor A into
our problem formulation, as well as the analysis of our algorithms. We will see that
to incorporate X just makes some calculations, but not the major development of the
analysis, more complicated. One can certainly assume that A = 1 in order to see the
basic idea of our convergence analysis.

In order to establish the complexity of DDP, we need to introduce an important
notion as follows.

Definition 1 We say that a search point xtk gets €;-saturated at iteration k if
Ot () = v () < €. (3.20)

In view of the above definition and (3.12), for any ¢;-saturated point xlk we must
have

o) < v ) = 0f L 6D + e (3.21)

In other words, yf 1 Will be a tight approximation of v, at xtk with error bounded
by €. By (3.12), we also have ny (x,k) < gi‘;l(x,/‘) for any k' > k, and hence
Vi1 () = v () < v () — U () < €

This implies that once a point xﬁ‘ becomes ¢;-saturated at the k-th iteration, the functions

yfﬁrl will also be a tight approximation of v, at x,k with error bounded by ¢, for any
iteration kK’ > k.
Below we describe some basic properties about the saturation of the search points.

Lemma 3 Any searchpointxl}f1 generated for the (T —1)-th stage must be 0-saturated
forany k > 1.

Proof Note that by (3.12), we have vk (x5 ) < v(xk_,). Moreover, by (3.11),
Vr(p_y) = Ty = vg_)

where the last equality follows from the fact that vl} +1 = 0 and the definitions of

vr(x) and 9% (x) in (3.2) and (3.10). Therefore we must have v%. (x5 ) = v(x§_)),

which, in view of (3.20), implies that x%_ | is O-saturated. m|
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We now state a crucial observation for DDP that relates the saturation of search
points across two consecutive stages. More specifically, the following result shows

that if one search point x; at stage ¢ has been ¢;-saturated at iteration j, and a new

search point generated at a later iteration k is close to x;, then a search point in the
previous stage r — 1 will get €;_1-saturated with an appropriately chosen value for
€r—1.

Proposition 2 Suppose that the search point xtk generated at the k-th iteration is close
enough to x; generated in a previous iteration 1 < j <k, i.e.,

Ixk —x/ 1l < & (3.22)
for some &; € [0, 400). Also assume that the search point xtj is €;-saturated, i.e.,
v () = vl o) < e (3.23)
Then we have

Fref) = 710 = A () — v ()]

< €1 = (M + M) + Aeq. (3.24)
In addition, for any t > 2, we have
v ) — () <€ (3.25)

and hence the search point xlki1 will get €;_1-saturated at iteration k.

Proof By the definitions of f; and S f_l in (3.2) and (3.9) , we have

fi0) = 57100 = Mu (0 = v (0], Vx € X (xf )

and hence first identity in (3.24) holds. It follows from the definition of xtk in (3.9) and
the first relation in (3.13) that

fix) = min 7@ = St = £
X€Xi(x;_y)
< fix) = f1 6. (3.26)
Now by (3.8) and (3.16), we have
1A = HGDI < Millxk — x| and (£ (cF) = 7)) < M IxF = ).

In addition, by (3.23) and the definition f; and i { , we have

fi) = 1) = Mu () — vl (6D < e
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Combining the previous observations and (3.22), we have

[ = 60 < U6H = LD+ LA = D1+ o) = £
< (M; + M) |xF — x| + e
< (M; + M) + rér = €1, (3.27)

where the last equality follows from the definition of €;_; in (3.24). Thus we have
shown the inequality in (3.24).

We will now show that the search point x,’c_1 in the preceding stage t — 1 must also
be ¢,_1-saturated at iteration k. Note that x{‘ is a feasible solution for the 7-th stage
problem and hence that the function value f; (x,k) must be greater than the optimal
value v, (xlk_ 1)- Using this observation, we have

v (xF ) =k ) < A6 =0k Gak ). (3.28)

Moreover, using the definitions of v} (xt 1) and vk (xt ) in (3.10) and (3.11), the
relations in (3.12) and the fact that Qt+1 (x) > 2z+1 (x) due to (3.13), we have

v () = max{uy (L)), 3 (L))}
= 7, (x, D)
— min {L (x):xe X,(xf_l)}
= min { 4710 1 x € Xoef )
=if*‘(xtk), (3.29)

where the last identity follows from the definition of xlk in (3.9). Putting together (3.28)
and (3.29), we have

v ) — ) < fif) = £
< €1, (3.30)

where the last inequality follows from (3.27). The above inequality then implies that
xtk_1 gets €,_1-saturated at the k-th iteration. O

Observe that the functions f;(-) are not directly computable since they depend on
the exact value functions v;4+1(-). The following result relates the notion of saturation
to the gap between a computable upper bound Z, (AT h ,(x ) and the lower bound
f lf ! (xf) on the optimal value f*, under the assumption that the concludlng 1nequa11ty

(3.24) obtained in Proposition 2 holds for all the stages, i.e., A[vs+] (x,k) _[_H (x )<
e,_l,Vt = 1,...,T.
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Lemma4 Suppose that at some iteration k > 1, we have

Ave () = Vi ()] < e, (3.31)
foranyt =1,...,T. Then we have
T
ST () = SO < Z A le . (3.32)

=1 =1

Proof By the definition of flc_l (x]f) in (3.9), we have

SO = ) + as T G,
which together with our assumption in (3.31) imply that
i (x) + 27 k) — e = AT (b — 571 (D] < e (3.33)

Moreover, it follows from (3.9) and (3.13) that

l(xt)+)"vt+l (x,)_mln{fk M) xEXt(xt 1)}

< min {f(x) ‘xe x,(x,fl)} = v, (xk ),
which, in view of our assumption

Muee () — o5 6D < e,

then implies that
he () 4 v ) < v (6K ) e (3.34)

forany s = 2, ..., T.Multiplying A’~" to both side of the above inequalities, summing
them up with the inequalities in (3.33), and using the fact that vy (x?) = 0, we have

T T
M () = i) = X e
=1 - =1
O

In the sequel, we use Stk ~! to denote the set of ¢;-saturated search points at stage ¢
that have been generated by the algorithm before the k-th iteration. Using these sets,
we now define the notion of distinguishable search points as follows.

Definition 2 We say that a search point xf at stage ¢ is §;-distinguishable if
8 (x ) >4, (3.35)
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where gf (x) denotes the distance between x to the set S,k -1 given by

min_ -1 |ls —x]|, t<T
k seSs, ’ ’
g (x) = !
! , 0.W.

Below we show that each iteration of the DDP method will either find an €g-solution
of problem (3.1), or find a new ¢;-saturated and 4, -distinguishable search point at some
stage ¢ by properly specifying §; and ¢, forr =0, ..., T — 1.

Proposition 3 Assume that §; € [0,+400) fort = 1,..., T are given. Also let us
denote
0, t=T-1,
€ =472 (3.36)

Z (M +Mr+1)31+1)\t71], t<T -2
=t

Then, every iteration k of the DDP method will either generate a 8;-distinguishable
and €;-saturated search point x; at some staget =1, ..., T, or find a feasible policy
(¥, ... xk) of problem (3.1) such that

fih) — f* < e, (3.37)

T T
YA ) = TN < XA e, (3.38)
=1 t=1

Proof First note that the definition of ¢, is computed according to the recursion ¢, =
(M; + M,)é; + \e; (see (3.24)) and the assumption that e7_; = 0. Next, observe that
exactly one of the following 7 cases will happen at the k-th iteration of the DDP
method.

Case 1: gf(xtk) <6, V1<t <T-—1;
Caset,t =2,...,T — L:gh(xF) <8, Vt <i <T — Loand gk | (xF ) > 6_1;
Case T: gl}fl(xl;fl) > 67_1.

We start with the first case. In this case, we have gf (xtk) <&, Vi<t <T-1.

Hence, xtk must be close to an existing €;-saturated point xi” for some j; <k —1s.t.
lxk —x/' Il <8, Vi<t <T—1. (3.39)

It then follows from the above relation (with 7 = 1), (3.24), and the fact f* > i’;*l (b
that

AGH = < AGH = 710D =ameh) - ahl <. (340)
Moreover, we conclude from (3.24) and (3.39) that

AMu1 () — v )] < €1, Y1 <t < T — 1. (3.41)
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Hence, the assumptions in Lemma 4 hold and the result in (3.38) immediately follows.
We now examine the 7-th case for any 2 < ¢t < T — 2. In these cases, we
have 8:11 (xlkfl) > §;_1 and thus xtkf1 is 8;_1-distinguishable. In addition, we have

gf (xtk) < &;. As a result, xtk must be close to an existing €;-saturated point xtj " with
Ji < k—1.This observation, in view of (3.25), then implies that v; (x;‘_l) —yf (xtk_l) <
€,—1. Hence xtk_1 is both §,_1-distinguishable and €,_-saturated.

For the T-th case, we have g’}_l (x’}_l) > J8r_; and hence x’}_l is 8-
distinguishable. Also by Lemma 3, xl;fl will get O-saturated. Therefore, xl;fl is
81 _1-distinguishable and e7_1-saturated (with e7_; = 0).

Combining all these cases together, we conclude that every DDP iteration will either
generate a §;-distinguishable and ¢;-saturated search point at some staget = 1, ..., T,
or find a feasible policy of problem (3.1) satisfying (3.37) and (3.38). O

It is worth noting that each DDP iteration can possibly generate more than one
8;-distinguishable and ¢;-saturated points. For example, for the #-case in the the above
proof of Proposition 3, we pointed out that xtkfl is §;_1-distinguishable and €;_1-
saturated. Some other search point x{‘ withi <t —2in the preceding stages might also
become §;-distinguishable and ¢;-saturated even though there are no such guarantees.

We are now ready to establish the complexity of the DDP method. For the sake
of simplicity, we will fix the norm || - || to be an I/, norm to define the distances and
Lipschitz constants at each stage ¢. It should be noted, however, that the DDP method
itself does not really depend on the selection of norms. The /,, norm is chosen because
it will help us to count the number of search points needed in each stage to guarantee
the convergence of the algorithm.

Theorem 1 Suppose that the norm used to define the bound on Dy in (3.6) is the [
norm. Also assume that §; € [0, +00) are given and that €; are defined in (3.36). Then
the number of iterations performed by the DDP method to find a solution satisfying
(3.37) and (3.38) can be bounded by

T—1 n,
) (’j—;+1) .y (3.42)
t=1

In particular, If n; < n, Dy < D, max{M;, M,} < M and§; = € forallt =1,..., T,
then the DDP method will find a feasible policy (x’f, ey xl}) of problem (3.1) s.t.

ek — §2Mmin{ﬁ,T—1} e, (3.43)

T
XA ) - 47 o = 2 min{ L Z00 e

within at most
T -D(2+1)" +1 (3.45)

iterations.
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Proof Let us count the total number of possible search points for saturation before a
solution satisfying (3.37) and (3.38) is found. Using (3.35) and the assumption the
effective feasible region for each stage ¢ is inside a box with side length D; (c.f., (3.6)),
we can see that the number of possible §;-distingushable search points for saturation
at each stage is given by

n
N[=<?_:+1)t

This observation together with Proposition 3 then imply that the total number of
iterations performed by DDP will be bounded by ZIT;]] N: + 1 and hence by (3.42).

Now suppose that n;, < n, D; < D, max{M;,M,} < M and §; = € for all
t =1,...,T. We first provide a bound on ¢; defined in (3.36). For0 <t < T — 2,
we have

T-2
€ = Z )&T_[[(Mr—&-l +M‘[+1)8T+1]

=t
T-2
=2M Y A€
=t
§2Mmin{%,T—t— 1}6
<2Mmin | T 1~ 1]e (3.46)

and as a result,

T T T-2
Z )\,tilét_l = Z )\.lilet_l = Z )\tft
t=0

=1 =1
T-2
<2M Y [k’min{ﬁ,T—t— 1”6
t=0

T-2 .
<2M Zmin{ﬁj,T—t—l}e
t=0

< 2M min [ L, T } c. (3.47)
Using these bounds in (3.37) and (3.38), we obtain relations (3.43) and (3.44). More-
over, the iteration complexity bound in (3.45) follows directly from (3.42). O

We now add some remarks about the results obtained in Theorem 1.

Firstly, similar to the basic cutting plane method, the bound in (3.42) has an expo-
nential dependence on n,. However, since the algorithm itself does not require us
to explicitly discretize the decision variables in R™, the complexity bound actually
depends on the dimension of the affine space spanned by effective feasible region A;
defined in (3.5), which can be smaller than the nominal dimension r;.

Secondly, it is interesting to examine the dependence of the complexity bound
in (3.45) on the number of stages 7. In particular, if the discounting factor A < 1,
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the number of iterations required to find an e-solution of problem (3.1), i.e., a point
X1 s.t. f1(x;) — f* < € only linearly depends on 7. When the discounting factor
X =1, we can see that T also appears in the termination criterions (3.43) and (3.44).
As a result, the number of iterations required to find an e-solution of problem(3.1)
will depend on T". The discounting factor provides a mechanism to compensate the
errors accumulated from approximating the value function v;4 by yf 4 starting from
t=T—-1tot =1

Thirdly, while the termination criterion in (3.43) cannot be verified since the func-
tion value f and f* are not easily computable, the gap between the upper and lower
bound in the Lh.s. of (3.44) can be computed as we run the algorithm. It should be
noted that the dependence on T for these two criterions are slightly different especially
when the discounting factor A = 1 (see the r.h.s. of (3.43) and (3.44)).

4 Explorative dual dynamic programming

In this section, we generalize the DDP method for solving the multi-stage stochastic
optimization problems which have potentially an exponential number of scenarios. As
discussed in Sect. 1, we assume that we can sample from the probability distribution
P, of the random vector &, t = 2,...,T. A sample average approximation (SAA)
of the original problem (1.1) is constructed by replacing the true distribution of & =
(As, by, By, Q,, p,, ¢;) with the empirical distribution Py, based on a random sample

éti = (Atisgtiaétis Qti»ﬁti,gti),i =1,...,N;

from the distribution P; of size N;. Consequently the probability distribution P, x

- x Pr of the random process &, ..., &r is replaced by Py, X - - x Py,. Under
the stage-wise independence assumption of P; and hence Py, it has been shown in
[27] that under mild regularity assumptions we can approximate problem (1.4) by the
SAA problem defined as

F* :=miny ex, {F11(x1) = Hi(x1, c1) + AVa(x1)}, 4.1)

where the value factions V;,r = 2, ..., T, are recursively defined by

N,
. 1
Vilxi—1) = N, Z Vri (x—1),
i=1

= “4.2)
Vi (Xr—1) == minx,eX,(x,,l,éri){Ffi(xf) = Hy(xg, ¢1i) + AVip1 (x)},
and
Vrsi1(xr) =0. 4.3)

We will focus on how to solve the SAA problem in (4.1). The essential difference
between this problem and the single-scenario problem in (3.1) is that each stage ¢
involves N; (rather than one) subproblems. As a consequence, when determining the
search point x,k at each stage ¢ in the forward phase, we need to choose one out of N;
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feasible solutions and each one of them corresponds to a realization §,,~ of the random
variables. In this section, we will present a deterministic dual dynamic programming
method which chooses the feasible solution in the forward phase in an aggressive
manner, while in next section, we will discuss a stochastic approach in which the
feasible solution in the forward phase will be chosen randomly. As we will see, the
former approach will exhibit better iteration complexity while the latter one is easier
to implement. We start with the deterministic approach also because the analysis for
the latter stochastic method is built on the one for the deterministic approach.

Let X;; be the effective feasible region for the i-th subproblem in stage ¢, and X;
be the effective feasible region all the subproblems in stage ¢, respectively, given by

X, = le = 1,
. Uxe)e,_]Xt(xs &), t=>2,

and

.....

Observe that X, is not necessarily convex. Moreover, letting Aff () be the affine hull
of X; and B, (¢) := {y € Aff (X)) : |ly|l < €}, we use

Xi(e) := X, + By(e)

to denote X; together with its small surrounding neighborhood.
We make the following assumptions throughout this section.

Assumption 4 For any ¢ > 1, there exists D; > 0 s.t.
lx; — x/| < Dy, ¥x;, x| € X, Vt > 1. (4.4)

With a little abuse of notation, we still use Dy as in the previous section to bound
the “diameter” of the effective feasible region A&;. Clearly, Assumption 4 holds if the
convex sets X; are compact, since by definition we have X; C Conv(X;) C X;, Vr >
1.

Assumption 5 For any ¢ > 1, there exists €; € (0, +00) s.t.
H,(x, ;) < 400, Vx € X:(&),Vi=1,..., Ny, 4.5)

rint (X1 (v, Een)) £ Vx € B@E)LYi= 1. Ny, (46)

where rint(-) denotes the relative interior of a convex set.

Assumption 5 describes certain regularity conditions of problem (4.1). Specifically,
the conditions in (4.5) and (4.6) imply that H;(x, ¢;;) and V; are finitely valued in
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a small neighborhood of &;;. The second relation in (3.7) also implies the Slater
condition of the feasible sets in (4.2) and thus the existence of optimal dual solutions
to define the cutting plane models for problem (4.1). Here the relative interior is
required due to the nonlinearity of the constraint functions in (4.2) and we can replace
rint (x,+1 (x. §(t+l),-)> with X,41(x, &) if the latter is polyhedral.

In view of Assumption 5, the objective functions F;; must be Lipschitz continuous
over X3 (€;). We explicitly state the Lipschitz constants of F; below since they will be
used in the convergence analysis our algorithms. For the sake of notation convenience,
we still use M, to denote the Lipschitz constants for Fy;.

Assumption6 Foranyt > 1landi =1, ..., N, there exists M; > 0 s.t.
| Fri(x;) — Fyi (xt/)| < M;|lx; — X;”, Vs, xt/ € X 4.7)

We now formally state the explorative dual dynamic programming (EDDP) method
as shown in Algorithm 3. A distinctive feature of EDDP is that it maintains a set of
saturated search points S ,k for each stage 7. Similar to Definition 1, we say that a search
point xtk generated by the EDDP method is €;-saturated at iteration k if

k k k
Vit () = Vi () < e (4.14)
Moreover, similar to Definition 2, we say an ¢;-saturated search point x,k at stage 7 is
8;-distinguishable if

. .
x5 = x] 1 > &

for all other ¢,-saturated search points x,j that have been generated for stage ¢ so far by
the algorithm. Equivalently, an ¢,-saturated search point xtk is 8;-distinguishable if

&b > 5. (4.15)

Here gf (x,k) (c.f., (4.9)) denotes the distance between x,k to the set Sf ~1 ie., the set
of currently saturated search points in stage 7. Similar to the DDP method, saturation
is defined for two given related sequences {¢;} and {4;}. More precisely, the proposed
algorithm takes {6;} as an initial argument and ends with {¢;} (derived from {§;})
saturated points.

In the forward phase of EDDP, for each stage 7, we solve N, subproblems as shown in
(4.8) to compute the search points )Etkl., i=1,..., N, Foreach )?tkl., we further compute
the quantity gf ()Ztki) in (4.9), i.e., the distance between fc;"l and the set S f “lof currently
saturated search points in stage . Then we will choose from )Etkl i=1,..., N, the
one with the largest value of gk ()Etkl.) as xk, ie., gh(xk) = max;=1__n, g ()Ztki). We
can break the ties arbitrarily (or randomly to be consistent with the algorithm in the
next section). The search point x,k is deemed to be saturated if gf (xtk ) is small enough,

therefore so is the case for )Etkl for all i. As a consequence, the point xtl:l must also be

saturated and can be added to Stkf1 . We call the sequence (x{‘ e, x'}) a forward path
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Algorithm 3 Explorative dual dynamic programming (EDDP)

I: Set VY(x) = —00,t =2,..., T, VA () =0,k>Land ) =4,t=1,....T
2: fork=1,2,..., do
3: fort=1,...,Tdo

> Forward phase.

4: fori=1,2,..., N; do
ifoeamgming e AET @ = mean v o] (48)
. min__ -1 s — %K), ¢ < T,
gf(xfl) = { SES; ti (49)
0, 0.W.
5: end for
6: Choose x,k from { ;} such that g; (x, ) = max gf (i;‘i).
i=1,..., f
7:  end for
8 ifg] (xl ) < &g then Terminate.
9: fort = T T —1,...,2do > Backward phase.
10: if g, (xt) < then
1 Set sk | = sl Uk ).
12: end if
13: fori=1,..., Ny do
W= min {Efi(x) = Hy(x, &) +Azf+l(x)} . (4.10)
X€Xr(x;_y.611)
(5{([)/()6,,{,]) =By, Q,i]ytk[, where yrki is the optimal
dual multipliers of (4.10). 4.11)
14: end for
15:
N,
VE = e N R ek, (Y = e N R ek ). (4.12)
VE) = max [ VI 0, VE 4+ (70— 5] (4.13)
16:  end for
17: end for

atiteration k, since it is the trajectory generated in the forward phase for one particular
scenario of the data process &;;. In view of the above discussion, the EDDP method

always chooses the most “distinguishable” forward path to encourage

exploration in

an aggressive manner (see Line 6 of Algorithm 3). This also explains the origin of the

name EDDP.

The backward phase of EDDP is similar to the DDP in Algorithm 2 with the
following differences. First, we need to update the set Stk for the saturated search
points. Second, the computation of the cutting plane model also requires the solutions

of N; subproblems in (4.10).
The following result is similar to Lemma 1 for the DDP method.
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Lemma5 Foranyk > 1,

N; -
VIl s Vi < 5 X500 S Vi) Ve € Xy Eo) =2, T,
j=1

(4.16)
FElo < Fho) < Fuo), Vx e @), t=1,...,T,i=1,...,N,. (417

Proof The proof is similar to that of Lemma 1. The major difference exists in that
(3.15) will be replaced by

Ni—1
k _ 1 ~1 k ~k k k
Vi = X [y k) 4 (G ) G = xf )]
]:
Ni—1 N;

t—1
~k 1 k
. ng Vion,; ) = 55 z Vi—1y; (%)

= Vl* 1 (x) )
and hence we skip the details. O

In order to establish the complexity of the EDDP Algorithm, we need to show that
the approximation functions F' '[‘i (+) are Lipschitz continuous on &};. For convenience,
we still use M, to denote the Lipschitz constants for F’ fl.. We skip its proof since it is
similar to that of Lemma 2 after replacing Assumption 2 with Assumption 5.

Lemmaé Foranyt > landi =1,..., N, there exists M, > 0 s.1.

|FX(x) — FRG) < M, llx — X1, Yx,x, € X(E) V> 1. (4.18)

ti
Below we describe some basic properties about the saturation of search points.

Lemma 7 Any search point xI}_l generated for the (T — 1)-th stage in EDDP must
be O-saturated for any k > 1.

Proof Note that by (4.16), we have VA (xk_ ) < V(x%_|). Moreover, by (4.13),

N;
VA D = 3 30 [l el + (@) . B xb = )
j=1
LSk o k
= Nr th(xt—l) = N7 > V()
j=1 j=1
=V@xp_y)

where the second-to-last equality follows from the fact that v'} +1 = 0 and the defini-
tions of vr;(x) and T)l}j (x) in (4.2) and (4.10). Therefore we must have X’} (x’}_l) =
V(x?_ 1)» which, in view of (4.14), implies that x? is O-saturated. O
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We now generalize the result in Proposition 2 for the DDP method to relate the
saturation of search points across two consecutive stages in the EDDP method.

Proposition 4 Assume that §; € [0, +00) fort = 1,..., T are given and that €; are
defined recursively according to (3.24) for some given er—1 > 0. Also let gf‘(-) be
defined in (4.9) and assume that xtk is chosen such that

gf(x,k) = max gf(ifi).
i=1,...,N;
(a) Ifgf(xlk) <6&,t=2,...,T — 1, then we have

Fi(E) — Fy7 ) = MV (55 — Vi Gl < €. (4.19)

Moreover, for any T > 2, we have
Vik ) = vEGE ) < e (4.20)

where €;_1 is defined (3.24).
(b) Slk, t=1,...,T — 1, contains all the €;-saturated search points at stage t gener-
ated by the algorithm up to the k-th iteration.

Proof We prove the results by induction. First note that by (4.9) we have g’} (x?) =0.
Moreover, by Lemma 7, any search point x’}_l will be 0-saturated and hence part a)
holds with ey_; = 0 fort = T — 1. Moreover, in view of Line 11 of Algorithm 3 and
the fact gl} (x];) =0, S’;fl contains all the 0-saturated search point obtained for stage
T — 1 and hence part b) holds forr =7 — 1.

Now assume that g{‘ (x,k ) < §; for the 7-th stage for some t < T — 1. In view of this
assumption and the definition of x,k, we have

k =k ; ~k
8t (‘xli) = mln ||S - xti” = 5[
seSf‘*1

forany i = 1, ..., N;. Note that we must have Stk_1 # ) since otherwise g{‘(itki) =
+00. Hence, there exists x;" € Stk_1 for some j; < k — 1 such that

Ix/ —zk1 < &, (4.21)
Ve () = v ) < e, (4.22)

foranyr =1,..., N;.
Observe that by the definition fo xtki in (4.8) and the first relation in (4.17), we have

Fi(¥)— min  Fi7'(0) = Fu(E) — Fj ' (&)
xeXyi(x,_y)

< Fi(z5) — FIiGGh). (4.23)

—ti "t
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Moreover, by (4.7) and (4.18), we have
|Fi (B — Fii (D < MyIZE — X)) and |G — FEGD < M IEE — X))

In addition, it follows from the definitions of F;; and F' fl. (c.f. (4.2) and (4.8)) and
(4.22) that

Fi(x]") = Fli(x]") = AV (6] = VI (D] < 2er.

Combining the previous observations and (4.22), we have
Fi(5) — Fy7 ' &)
< [Fi (&) = Fi {1+ [Fu (x]') = Fi D1+ [FJ () — FlEGE]
< (M; + M)IE; — x| + 2er
< (M; + M,)é + e = €1, (4.24)

where the last inequality follows from the definition of €, _1 in (3.24). The above result,
in view of the definitions of F}; and FX. then implies (4.19).

=—ti°
We will now show that the search point xtk_1 in the preceding stage r — 1 must also
be €;_1-saturated at iteration k. Note that )?tkl are feasible solutions for the ¢-th stage
problem and hence that the function value F;; ()Etki) must be greater than the optimal

value vy; (xlkfl) defined in (4.2). Using this observation, we have

N;
Vi) = Vi) = 5 b3 vii () = V()
1=

1 L =~ kook
=~ ,Zl Fi(®5) — vEak ). (4.25)
1=

Moreover, using the definitions of Xﬂ‘ (xtk_l) and f)tk,. (xtk_ 1) in (4.13) and (4.10), the

relations in (4.16) and the fact that Xf () = Kf;ll (x) due to (4.17), we have

N
Vi) =max{Vi o), g 2 ok ))
i=1

=

LYk
N, i; Uy (1)
| o k kg
= Lomin {00 sx € XoGl )
i=1
i k—1 Kz
> 2 min [P0 x e Xy, 6
i=1
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Ni

1 k—1,~k
= ﬁ,giﬁ (x5, (4.26)

where the last identity follows from the definition of xtk in (4.8). Putting together (4.25)
and (4.26), we have

N;
Vi) = Vi) < 4 DIFaGED — i G

i=1

< €1, (4.27)

where the last inequality follows from (4.24). The above inequality then implies that
xtk_l gets saturated at the k-th iteration. Moreover, the point x;‘_l will be added into
the set Stk_1 in view of the definition in Line 11 of Algorithm 3. We have thus shown

both part (a) and part (b). m]

Different from the DDP method, we do not have a convenient way to compute
an exact upper bound on the optimal value for the general multi-stage stochastic
optimization problem. However, we can use g]f (xll‘) as a termination criterion for the
EDDP method. Indeed, using (4.24) (with# = 1 and i = 1) and the fact that N| = 1,
we conclude that if g’l‘ (x{‘) < 81, then we must have

Fii(xb) — F* < Frih) — F5N ) < e (4.28)

It is worth noting that one can possibly provide a stochastic upper bound on F* for
solving multi-stage stochastic optimization problems. We will discuss this idea further
in Sect. 5.

Below we show that each iteration of the EDDP method will either find an €p-
solution of problem (4.1), or find a new ¢,;-saturated and §,-distinguishable search
point at some stage .

Proposition 5 Assume that §; € [0, 4+00), t = 1,..., T, are given. Also let €;, t =
0,..., T, be defined in (3.36). Then any iteration k of the EDDP method will either
generate a new €;-saturated and §8;-distinguishable search point xtk at some stage
t=1,...,T, orfind a feasible solution xll‘ of problem (4.1) such that

Fii(x¥) — F* < . (4.29)
Proof Similar to the proof of Proposition 3, we consider the following T cases that

will happen at the k-th iteration of the EDDP method.

Case 1: gf(xtk) <6, V1<t <T-—1;
Caser,t=2,....,T —l: gF(x}) <8, ¥t <i <T — Land g& | (xF ) > 8,
Case T: g'}fl(xl;fl) > 07_1.

For the first case, it follows from the assumption g’f (xlf) < &1 and (4.28) that x’f
must be an €p-solution of problem (4.1). Now let us consider the 7-th case for any
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t=2,...,T—2.Since gf_l (xtk_l) > §;_1, the search point xtk_l is 6;-distinguishable.
Moreover, we conclude from the assumption gf‘ (x[k) < §; and Proposition 4.a) that the
point xtk_l must be €;_1-saturated. Hence, the search point xf‘_l is &;-distinguishable
and €;_1-saturated for the 7-th case, t = 2, ..., T — 1. Finally for the 7'-th case, x?_l
is 87 _1-distinguishable by assumption. Moreover, by Lemma 7, XI}_] in the (T — 1)-

stage will get O-saturated. Hence x?fl is 87_1-distinguishable and e7_;-saturated.

The result then follows by putting all these cases together. O
We are now ready to establish the complexity of the EDDP method. For the sake
of simplicity, we will fix the norm || - || to be an [, norm to define the distances and

Lipschitz constants at each stage ¢.

Theorem 2 Suppose that the norm used to define the bound on Dy in (4.4) is the I«
norm. Also assume that 8; € [0, +00) are given and that €; are defined in (3.36). Then
the number of iterations performed by the EDDP method to find a solution satisfying

Fii(x¥) — F* < ¢ (4.30)
can be bounded by K + 1, where
Tl n
K=Y (5—; + 1) . 431)
t=1

In particular, If ny < n, Dy < D, max{M;, M,} < M and é; =€ forallt =1,...,T,
then the EDDP method will find a solution x{‘ of problem (4.1) s.t.

F“(x’f)—F*gszin{ﬁ,T—l} e, (4.32)
within at most K¢ + 1 iterations with
Ke:=({T -1 (2+1)". (4.33)

Proof Let us count the total number of possible search points for saturation before
an e-optimal policy of problem (4.1) is found. Using (4.15) and the assumption the
feasible region for each stage ¢ is inside a box with side length D; (c.f., (4.4)), we can
see that the number of possible search points for saturation at each stage is given by

D, i
(g n 1) .

As a consequence, the total number of iterations that EDDP will perform before finding
an €p-optimal policy will be bounded by K+1. Ifn; <n,D; < D,max{M;, M,} <M
and 6; = e forallt = 1,..., T, we can obtain (4.32) by using the bound (3.46) for
€o in (4.30). Moreover, the bound in (4.33) follows directly from (4.31). O
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We now add some remarks about the results obtained in Theorem 2 for the EDDP
method. First, comparing with the DDP method for single-scenario problems, we can
see that these two algorithms exhibit similar iteration complexity. However, the DDP
method provides some guarantees on an easily computable gap between the upper and
lower bound. On the other hand, we can terminate the EDDP method by using the
quantity g’l‘. Second, the EDDP method requires us to maintain the set of saturated
search points S,k and explicitly use the selected norm || - || to compute gi‘. In the next
section, we will discuss a stochastic dual dynamic programming method which can
address some of these issues associated with EDDP, by sacrificing a bit on the iteration
complexity bound in terms of its dependence on the number of scenarios ;. Third,
similar to the DDP method, we can replace n; in the complexity bound of the EDDP
method with the dimension of the effective region X, in (4.31).

5 Stochastic dual dynamic programming

In this section, we still consider the SAA problem (4.1) for multi-stage stochastic
optimization and suppose that Assumptions 4, 5 and 6 hold throughout this section.
Our goal is to establish the iteration complexity of the stochastic dual dynamic pro-
gramming (SDDP) for solving this problem.

As mentioned in the previous section, when dealing with multiple scenarios in

each stage 7, we need to select x,k from x;;,i = 1, ..., Ny, defined in (4.8), where X;;
corresponds to a particular realization é,i, i =1,..., N;. While the EDDP method
chooses x,k in an aggressive manner by selecting the most “distinguishable” search
points, SDDP will select xtk from X;;,i =1, ..., Ny, in a randomized manner.

The SDDP method is formally described in Algorithm 4. This method still consists
of the forward phase and backward phase similarly to the DDP and EDDP methods. On
one hand, we can view DDP as a special case of SDDP with Ny = 1,r =1,...,T.0n
the other hand, there exist a few essential differences between SDDP in Algorithm 4
and EDDP in Algorithm 3. First, in the forward phase of SDDP, we randomly pick
up an index i; and solve problem (5.1) to update xtk. Equivalently, one can view x,k
as being randomly chosen from itki, i =1,..., N, defined in (4.8) for the EDDP
method. Note that we do not need to compute itkl fori # i;, even though they will be
used in the analysis of the SDDP method. Hence, the computation of the forward path
(xlf, e, xl}) in SDDP is less expensive than that in EDDP. Second, in SDDP we do
not need to maintain the set of saturated search points and thus the algorithmic scheme
is much simplified. However, without these sets, we will not be able to compute the
quantities gf‘ as in Algorithm 3 and thus cannot perform a rigorous termination test as
in EDDP. We will discuss later in this section how to provide a statistical upper bound
by running the forward phase a few times.

As mentioned earlier, our goal in this section is to solve the SAA problem in (4.1)
instead of the original problem in (1.1). Hence the randomness for the SDDP method
in Algorithm 4 comes from the i.i.d. random selection variable i only. The statistical
analysis to relate the SAA problem in (4.1) and the original problem in (1.1) has been
extensively studied especially under the stage-wise independence assumption (e.g.
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Algorithm 4 Stochastic dual dynamic programming (SDDP)

I: Set VY(x) = —o0,t =2,..., T, VA () =0,k > 1.
2: fork=1,2,..., do

3: fortr=1,...,T do > Forward phase.
4: Pickup i; = itk from {1, 2, ..., Nt} uniformly randomly.
5 Set
ke Argmin, g {7”1 () == Hy (x, &;,) +)»Vf+ll(x)}. (5.1
6:  end for
7. fort=T,T — ,2do > Backward phase.
8: fori = 1 N, do
9: Set v v (xt 1) and (v”) (xr D according to (4.10) and (4.11).
10: end for
11: Update Kf (x) according to (4.12) and (4.13).
12:  end for
13: end for

[27]). The separation of these two problems allows us to greatly simplify the analysis
of SDDP.

Whenever the iteration index k is clear from the context, we use the short-hand
notation i, = i¥. We also use the notation

. el 1.2 ) .k—l k—1 .k ik
TR (ST 720 U RN N A FET

to denote the sequence of random selection variables generated up to stage ¢ at the k-th
iteration. The notions i[x o} and i[x—1,7] will be used interchangeably. As a filtration is
a sequence of sigma-algebras, this statement seems imprecise. It seems to me that /. ;
is a sigma-algebra but not a filtration, while /i ;, is a filtration. It should be noted that
fo any iteration k > 1, we must have i {‘ = 1 since the number of scenarios N; = 1.
In other words, i ’1‘ is alway deterministic for any k > 1.

The complexity analysis of SDDP still relies on the concept of saturation. Let us
denote Sk_l the set of saturated points in stage ¢, i e., Sf_l = {xy @ Vip1(xy) —

H_I(x,) < ¢, forsome j < k — 1}. We still use x, " for some j; < k — 1 to denote

the closest point to x”. from the saturated points St Uie.,

Xl e Argmin, _ge1[|s — R (5.2)

Vi1 () = VI Gl < e (5.3)

In SDDP, we will explore the average distance between )Etkl to the set S,k ~! defined as
follows:

gk = Nl Z —xt (5.4)
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Note that the search point x¥ is a function of if;, and hence is also random. )Efl

depends on )c[k_l (see (4.8)) and hence on i ;—1}. Moreover, the set of saturated points

S,k_l only depends on i[x—1,7] since it is defined in the backward phase of the previous
iteration. Hence, gt is measurable w.r.t. Z; ;—1, but it is independent of the random
selection variable i¥ i, for the current stage ¢ at the k-th iteration.

Lemma 8 below summarizes some important properties about gf

Lemma8 Let §; € [0, +00) be given and €; be defined in (3.24). Ifgf‘ < &, then we
have

N;
Z Fi(GE) — Fi7 (801 =+ Z Vit G = VI @) <61, (5.5)

Moreover, fort > 2 we have
Vik ) — VEGE ) <t (5.6)

Proof First note the second inequality in (4.24) still holds since it does not depend on
the selection of x*. Hence we have

FiGE) — FEIGRY < (Mg + M)IFE — x|+ her.

Summing up the above inequalities, we can see that

Ny Ny
1 ~k k—1,~k 1 ~k
N El[Fn () — Ey ()] = (M +M;)ﬁli§1 (B —x]' Il + e

= (M, + M) + re;

5 €r—1,

which together with the definitions of F}; and F' ffl then imply (5.5). Moreover, (5.6)
follows from (4.27) and (5.5). O

Similar to the previous section, we use

: k
min__q-1 ||ls — xS, t<T,
g ) =1 < f
, 0.W.

to measure the distance between x, and the set of saturated points. Clearly, g&(xk ) is
arandom variable dependent on x, and hence measurable w.r.t. Zy ;. We say that x* is
+-saturated if V. +1(x )=V, +1(xt) < ¢;. Moreover, xtk is said to be &;-distinguishable
1f 8 (x, ) > 6.
The quantitates §{‘ and gff 1 defined in (5.4) provide us a way to check whether
x,k is §;-distinguishable and €;-saturated. More specifically, If gt > §; for some stage

t < T at iteration k, then there must exist an index i = z,k e {l,..., Ny} st
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- Jix . - . .
||xtkl.* —x; " || > & or equivalently gf(xtkl.*) > §; (since otherwise gf < §;). Note
t t
that both gk and i* are measurable w.r.t. Z; ,— but independent of the i¥. Therefore,
conditioning on 7 ;_; the probability of having i ,k = i} is 1/ N;, and consequently by
the law of total probability, Prob{xtk = )Etkl.*} = 1/N;. Moreover, we can see that the
t
conditional probability of

N
Prob{g; (x{) > 818 > 8} = Y 3-Probigf (i) > &,13f > &}
i=1

v

N Problef (&) > 8/1g) > &)

=% (5.7
In other words, if gf > &, then with probability at least 1/N;, xtk will be §;-
distinguishable. If, in addition, gf 11 = 8¢+1, then in view of Lemma 8, we have
Vt’; l()ctk) -V, +1(xf) < ¢; and hence xf will be ¢,-saturated.

While EDDP can find at least one new saturated and distinguishable search point in
every iteration, SDDP can only guarantee so in probability as shown in the following
result. We use the random variable g¥ to denote whether there exists such a point
among any stages at iteration k. Clearly, g is measurable w.r.t. Ik,T-

Lemma9 Assume that §; € [0,4+00), t = 1,...,T, are given. Also let €, t =
0, ..., T, bedefined in (3.36). The probability of finding a new §;-distinguishable and
€:-saturated and search point at the k-iteration of SDDP can be bounded by

Prob{gk =1} > %(1 —Prob{gk <&;,i=1,....,T - 1)), (5.8)

where B
N :=max{Ny, ..., Nr}. (5.9)

Proof First note that ¢, in (3.36) is computed according to the recursion €, =
(M; + M,)5; + \e; and the assumption e7—; = 0. Next observe that exactly one of
the following T cases will happen at the k-th iteration of the SDDP method.

Case 1: gk <6, V1<t <T —1;
Caset,t =2,...,T —1: gk <&, Ve <i<T—1l,and g~ | > 8,_y;
Case T: g’;_l > 6r_1.

We use the random variable q’t‘ = 1 or 0 to denote whether a §;-distinguishable and
€;-saturated search point is found for case 7.

Let us start with the 7'-th case. By Lemma 7, x§_1 instage T — 1 will get O-saturated.
Moreover, by (5.7), we have

Prob{gl},l(xl},l) > 5T—1|§I;—1 >dr—1} = er_1‘

Hence, the probability of finding a new O-saturated and §7_1-distinguishable search
point for the T-th case can be bounded by
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Prob{g. = 1} > Prob{gh (x% ) > 871}
= Prob{gf_ (¥5_) > 871185y > S7—1}Prob{g}_; > d7-1)

> 5 Prob{gr_y > 671}
> %Prob{g’;_l > 8r_1). (5.10)
Now consider the 7-th case for + = 2,...,7 — 2. By assumption, we have
gf < §j,i = t,...,T — 1, implying gf‘ < §;. Hence, by Lemma 8, we have

Vlk (xtk_ D=V, (xtk_l) < €;—1. In addition, it follows from the assumption gf_ 1> 01
and (5.7) that with probability atleast 1 /N;_1, x[k_l is 6,1 -distinguishable. Therefore,
we conclude that

Prob{VF(xk ) — V,(F ) < €1, gk ) > 8

~k .~k e
18—1 > 8—1;8 < bi,i=t,..., _1}_Nt]
and hence that

Prob{gX = 1} > Prob{V}(xF ) — vV, ) < €1, g(cF ) > 811}
> y=Prob{gf | > 8-1:8 <8,i=1t,....T—1}

z%Prob{gf_l S8 18 <8 i=1,..., T =1} (5.11)

forany r = 2,..., T — 2. Combining (5.10) and (5.11), we conclude that the prob-
ability of finding a new ¢;-saturated and §,-distinguishable search point at iteration k
of SDDP can be bounded by

T
Prob{gX = 1} > 3" Prob{g* = 1}
t=2

I \
~

LS Prob(gh > 81k <sii=r+1.....T—1)

=2

i_(l Prob{gf <&;,i =1, T —1)).

O

In view of Lemma 9, one of the following three different cases will happen for
each SDDP iteration: (a) gf < g forallt = 1,..., T — 1. The probability of this
case is denoted by Prob{gf < §i,i = 1,...,T — 1}; (b) A new ¢,-saturated and
d;-distinguishable search point will be generated with probability at least

%(I—Prob{gl{‘ <&,i=1,....,T —1});

and (c) none of the above situation will happen, implying that this particular SDDP
iteration is not productive.
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Observe that if for some iteration k, we have gf <é;forallt =1,..., T —1.Then
by Lemma 8 (with t = 1), we have

e — F* < Fh — FA1 66 < e (5.12)

Moreover, we have
i k—1,~k
Z Vl‘+](xn) X[+] ( n‘)] S €r—1

forallr = 1, ..., T.This observation together with the fact that xt is randomly chosen
from Xk, i = 1 ., N;, then imply that the expectation of V,_H(xl) - Vt 1 (xtk)

t’
conditionally on i ;1

E[Vi1 (xf) = Vi 0O Ti—1] = Z Vi (36 — Vi G0))

<eé€_1,t=1,...,T. (5.13)

Similar in spirit to Lemma 4, the following result relates the above notion of saturation
to the gap between a stochastic upper bound and lower bound on the optimal value of
problem (4.1).

Lemma 10 Suppose that the relations in (5.13) hold for some iteration k > 1. Then
we have

T T
S M TYELH (F, Gl Tha ] = BIFY T GHIT ] < X A e (5.14)

=1 t=1

Proof Note that we have N = 1. By the definition of xlf in (5.1) and our assumption
in (5.13), we have

E[H, (x}, &1) + aVa(xb) — FS G Temn 7
= E[H (¢, 1) + AV () Tim1 7] = BLH (35, 1) + 2 VAT T 7]

= AE[Va(xf) — VAT ) T 1)
< A€y. (5.15)

Now consider the 7-th stage for any 7 > 2. By the definition of xtk in (5.1), we have

Hy(xf, &) + AV () = min{H, (x, &4,) + AVE (0) 1 x € X, (xf_))}
< min{H, (x, &i,) + Vi1 (0) 1 x € X, (x}_ )

k
= Vti, (xt—l)
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for any ¢+ > 2. Taking conditional expectation on both sides of the above inequality

and using our assumption AE[V; (xtk) — Xf;ll (xf)|Ik,,_1] < €1, we then have

E[H; (xX, ¢,) + Vi1 O Te 11 < Blvgs, (6K DI Ze—1] + €1
=E[V,(x* )| Ts—1]+ €1
= E[V, (x5 )| T1—2] + €1,

where the first identity follows from the definition of V; and the selection of i;, and
the second identity follows from the fact that xf_l is independent of itk. Multiplying

A'~! to both side of the above inequalities, summing them up with the inequalities in
(5.15), and using the fact that Vr (x’}) = 0, we have

T T
S AMTYELH, (xF, &)\ Tk —1] — ELEST GO o r] < 2 A e
t=1 t=1
O

We also need to use the following well-known result for the martingale difference
sequence when establishing the iteration complexity of SDDP.

Lemma 11 Let & = (£1. &2, ....& ) be a sequence of iid random variables, and
& = & (&) be deterministic Borel functions of &) such that Eig,_,,[¢] = 0 a.s. and
E‘g[lfl][exp{gtz /o] < exp{l} a.s., where o, > 0 are deterministic. Then

N N
V2 > 0 : Prob {Z o>r/y 0,2} < exp{—A2/3}. (5.16)
t=1 t=1
N N
¥ > 0 : Prob : S <—a Y 0,2} < exp{—A%/3}. (5.17)
t=1 t=1

Proof The proof of (5.16) can be found, e.g., Lemma 2 in [16]. In addition, (5.17)
follows from (5.16) by replacing ¢; with —¢;. O

and

We are now ready to establish the complexity of SDDP.

Theorem 3 Suppose that the norm used to define the bound D, in (4.4) is the |5, norm.
Also assume that §; € [0, +00) and €; are defined in (3.36). Let K denote the number
of iterations performed by SDDP before it finds a forward path (xf ey x%) defined
in (5.1) for problem (4.1) s.t.

Fll(x]f)—F* < €o, (5.18)

T
> MTELH (xf L i)\ k1]

t=1
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T
— BT G Tor < X A e (5.19)

t=1

Then we have E[K] < KN + 2, where K and N are defined in (4.31) and (5.9),
respectively. In addition, for any o > 1, we have

Prob{K > aKN + 1} < exp (—%) . (5.20)

Proof First note that if gf <é;forallt =1,...,T — 1, then (5.18) and (5.19) must
hold in view of the discussions after Lemma 9 (c.f. (5.12) and (5.13)) and Lemma 10.
Therefore, the event gf < 4§ forallt = 1,...,T — 1 will not happen for any
1 <k < K — 1. In other words, we have Prob{gf‘ <é,t=1,...,T —1} =0forall
1 <k < K — 1, which, in view of (5.8), implies that forany 1 <k < K — 1,

Prob{g* =1} > % (5.21)

Moreover, observe that we must have
K-2 _
> ¢ <K, (5.22)
k=1

since otherwise the algorithm has generated totally K ¢,-saturated and 8, -distinguish-
able search points during the first K —2 iterations, and thus must terminate at the K — 1
iterations (i.e., (5.18) and (5.19) must hold due to g, -1 <§ forallt =1,...,T—1).
Taking expectation on both sides of (5.22), we have

_ K-2
K = Ex[E[ Y ¢*|K1] = Ex[52) = BE=2,
k=1

implying that E[K] < NK + 2.
Now we need to bound the probability that the algorithm does not terminate in
aNK + 1 iterations for « > 1. Observe that

. aNK )
Prob{K > aNK + 1} < Prob{ }_ ¢* < K}, (5.23)
k=1

since K > aNK + 1 must imply that ZZ]:\_/{Z g* < K. Note that g — E[¢"] is a
margingale-difference sequence, and ]E[exp((qk )2)] < 1. Hence we have
aNK _ _
Prob{ Y gf <akK — )n/aNK}
k=1

aN aN .
< Prob{ Y gF < 3 Elg¥] —waNK}
k=1 k=1
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< exp(—A%/2),Vi > 0, (5.24)

where the first inequality follows from the fact that E[q >1/ N,k=1,...,aNK,

and thus Z“N 3 E[g¢*] > «K, and the second inequality follows from Lemma 11.
Setting

% = (@a=DK
VaN

in the above relation, we then conclude that
aNK _ 2R2
Prob{ > ¢ < K} <exp (—%) (5.25)
k=1

Combining (5.23) and (5.25), we then conclude that

Prob{K > aNK + 1} < exp (—%) Yo > 1.

We have the following immediate consequence of Theorem 3.

Corollary 1 Suppose that n, < n, D; < D, max{M;, M,} < M and 6; = € for all
t=1,...,T. Let K denote the number of iterations performed by the SDDP method
before it finds a forward path (x’f, ey xl}) of problem (4.1) s.t.

F(x}) — F* <2M min{5, T — 1}e, (5.26)

T
Zl NTVELH, (xK, G Tk 1] — ELES T 9 [ Zem 7]
1=

< 2M min { 45 T52 ) e (5.27)

Then we have BE[K] < KN + 2, where K and N is defined in (4.33) and (5.9),
respectively. In addition, for any a > 1, we have

- - 22
Prob{K > KN + 1} < exp (—M> .

2aN

Proof The relations in (5.26) and (5.27) follow by using the bound (3.46) for ¢ in
(5.18) and by using the bound (3.47) for Zthl €;—11n (5.19), respectively. Moreover,
the bounds on E[K ] and Prob{K > aK.N + 1} directly follows from Theorem 3 by
replacing K with K. O

We now add a few remarks about the results obtained in Theorem 3 and Corollary 1.
Firstly, since SDDP is a randomized algorithm, we provide bounds on the expected
number of iterations required to find an approximate solution of problem (4.1). We
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also show that the probability of having large deviations from these expected bounds
for SDDP decays exponentially fast. Secondly, the complexity bounds for the SDDP
method is N times worse than those in Theorem 2 for the EDDP method, even though
the dependence on other parameters, including 7', n and €, remains the same. Thirdly,
similar to DDP and EDDP, the complexity of SDDP actually depends the dimension
of the effective feasible region X, in (4.31), which can be smaller than n;.

As shown in Theorem 3 and Corollary 1, we can show the convergence of the
gap between a stochastic upper bound on Fy;(x¥), given by ST H (6K, Ey),
and the lower bound F" Ifl_l (x’f ), generated by the SDDP method. In order to obtain a
statistically more reliable upper bound, we can run the forward phase L > 1 times in
each iteration. In particular, we can replace the forward phase in Algorithm 4 with the
one shown in Algorithm 5. We can then compute the average and estimated standard
deviation of uby over these L runs of the forward phase.

Algorithm 5 Forward phase with upper bound estimation

l:for/=1,..., L do > Forward phase.
2: SetF; =0.

3 fort=1,..., T do

4 Pick up i; from {1,2, ..., Nt} uniformly randomly.

5: Set xX according to (5.1) and Fj = Fy + A"~V H, (x¥, Giy)-

6 end for

7:  Setuby =uby + Fj.

8: end for

9: Setuby = uby /L.

It should be noted, however, that the convergence of the SDDP method only requires
L = 1. To choose L > 1 helps to properly terminate the algorithm by providing a
statistically more accurate upper bound. Moreover, since each run of the forward phase
will generate a forward path, we can use these L forward paths to run the backward
phases in parallel to accelerate the convergence of SDDP. Following a similar analysis
to the basic version of SDDP, we can show that the number of iterations required by the
above variant of SDDP will be L times smaller than the one for Algorithm 4, but each
iteration is computationally more expensive or requires more computing resources for
parallel processing.

6 Conclusion

In this paper, we establish the complexity of a few cutting plane algorithms, including
DDP, EDDP and SDDP, for solving dynamic convex optimization problems. These
methods build up piecewise linear functions to approximate the value functions through
the backward phase and generate feasible policies in the forward phase by utilizing
these cutting plane models. For the first time in the literature, we establish the total
number of iterations required to run these forward and backward phases in order to
compute a certain accurate solution. Our results reveal that these methods have a mild
dependence on the number of stages 7.
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It is worth noting that in our current analysis we assume that all the subproblems
in the forward and backward phases are solved exactly. However, we can possibly
extend the basic analysis to the case when these subproblems are solved inexactly as
long as the errors are small enough. Moreover, we did not make any assumptions on
how the subproblems are solved. As a result, it is possible to extend our complexity
results to multi-stage stochastic binary (or integer) programming problems (see, e.g.,
[30]). In addition, the major analysis for SDDP presented in this paper does not rely
on the convexity, but the Lipschitz continuity of the value functions and their lower
approximations. Hence, it seems to be possible to adapt our analysis for SDDP-type
methods with nonconvex approximations for the value functions [1,23].

We have discussed a few different ways to terminate DDP, EDDP and SDDP. More
specifically, DDP can be terminated by calculating the gap between the upper and
lower bounds, and EDDP is a variant of SDDP with rigorous termination based on
the saturation of search points, whereas SDDP is usually terminated by resorting to
statistically valid upper bounds coupled with the lower bounds obtained from the
cutting plane models. Recently an important line of research has been developed to
design SDDP-like methods with more reliable and efficient termination criterions (see,
e.g., [3,7,18]). It will be interesting to study the complexity of these new methods in
the future.
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