
NEBULA: A Neuromorphic Spin-Based Ultra-Low
Power Architecture for SNNs and ANNs

Sonali Singh, Anup Sarma, Nicholas Jao, Ashutosh Pattnaik, Sen Lu, Kezhou Yang,
Abhronil Sengupta, Vijaykrishnan Narayanan, Chita R. Das

School of Electrical Engineering and Computer Science
The Pennsylvania State University

{sms821, avs6194, naj5075, szl5689, kzy74, sengupta, vxn9, cxd12}@psu.edu, ashutosh.pattnaik@hotmail.com

Abstract—Brain-inspired cognitive computing has so far fol-
lowed two major approaches – one uses multi-layered artificial
neural networks (ANNs) to perform pattern-recognition-related
tasks, whereas the other uses spiking neural networks (SNNs) to
emulate biological neurons in an attempt to be as efficient and
fault-tolerant as the brain. While there has been considerable
progress in the former area due to a combination of effective
training algorithms and acceleration platforms, the latter is still
in its infancy due to the lack of both. SNNs have a distinct
advantage over their ANN counterparts in that they are capable
of operating in an event-driven manner, thus consuming very
low power. Several recent efforts have proposed various SNN
hardware design alternatives, however, these designs still incur
considerable energy overheads.

In this context, this paper proposes a comprehensive design
spanning across the device, circuit, architecture and algorithm
levels to build an ultra low-power architecture for SNN and ANN
inference. For this, we use spintronics-based magnetic tunnel
junction (MTJ) devices that have been shown to function as both
neuro-synaptic crossbars as well as thresholding neurons and can
operate at ultra low voltage and current levels. Using this MTJ-
based neuron model and synaptic connections, we design a low
power chip that has the flexibility to be deployed for inference
of SNNs, ANNs as well as a combination of SNN-ANN hybrid
networks – a distinct advantage compared to prior works. We
demonstrate the competitive performance and energy efficiency
of the SNNs as well as hybrid models on a suite of workloads. Our
evaluations show that the proposed design, NEBULA, is up to
7.9× more energy efficient than a state-of-the-art design, ISAAC,
in the ANN mode. In the SNN mode, our design is about 45×
more energy-efficient than a contemporary SNN architecture,
INXS. Power comparison between NEBULA ANN and SNN
modes indicates that the latter is at least 6.25× more power-
efficient for the observed benchmarks.

Index Terms—Neural nets, low power design, domain-specific
architectures, memory technologies

I. INTRODUCTION

Machine learning based deep artificial neural networks

(ANNs) have achieved phenomenal success at complex cog-

nitive tasks such as image processing and speech and pat-

tern recognition [23], [26]–[28], [43], [61], [81], [83], [87].

Although loosely modelled after the structure of the human

brain, the energy cost of training and deploying these ANNs

is quite high, exposing a wide gap between the two in terms

This research is supported in part by NSF grants #1317560, #1763681,
#1629915, #1955815 and the Semiconductor Research Corporation CRISP
and CBRIC centers.

of energy efficiency. Despite several hardware advancements

with accelerators like GPUs [49], [60], [84], TPUs [39] and

other custom ASICs [3], [53], [65], [67], [91], present day

computing system is far from achieving the unparalleled power

efficiency of a ∼20W human brain [19], [86]. Furthermore, the

existing ANN algorithms lack the ability to efficiently process

spatio-temporal information. Spiking Neural Networks (SNNs)

[24], [40], [64], on the other hand, are a paradigm shift from

conventional ANNs as they process information in an efficient,

event-driven manner, closely emulating the human brain.

Broadly, SNNs can be considered as a special class of

artificial neural networks in which neurons communicate with

each other using asynchronous events, called spikes. The

behavior of a network that is composed of spiking neurons

is functionally similar to biological neurons, where signals

are extremely sparse and are processed in a parallel fash-

ion. As a result, SNN-based models have been used as a

tool for studying various processes and subsystems of the

brain including processing and storage of neural information,

as well as various forms of plasticity. It has been shown

that networks of spiking neurons are computationally more

powerful than other non-spiking neural network models with

sigmoidal gates [82]. Recent work has demonstrated that SNNs

can achieve competitive accuracy at par with standard non-

spiking networks (ANNs) for complex image recognition tasks

[74]. When deployed on to low power neuromorphic hardware

that is able to leverage their event-driven behavior, SNNs can

exhibit an order of magnitude lower power consumption than

an iso-network ANN [74].

Several prior works have attempted at designing scalable

SNN platforms. Of these, SpiNNaker [22], TrueNorth [12],

Loihi [16] follow a digital approach whereas BrainScaleS [69]

and Stanford Neurogrid [6] take a mixed-signal approach.

These designs vary in terms of programmability as well as

the degree of biological complexity that they can handle.

In spite of the significant advances, these systems are still

quite power-hungry. For example, a TrueNorth chip [12] is

composed of 4096, 256-neuron clusters or cores, totaling to

∼1.2 million neurons per chip. A human brain-scale emulation

(∼100B neurons) would require connecting several racks of

such chips together, which would consume tens of kilo-Watts

of power. Many recent approaches have focused on leveraging

the emerging technologies such as ReRAM, PCRAM, FeFET

363

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00039

along with their underlying physics to support more energy-

efficient computation and communication primitives [4], [5],

[34], [45], [51], [57], [88], [90], [92]. However, most of

these technology-driven efforts have focused on small problem

sizes, and their scalability to larger applications needs to be

established.

While SNN-based architectures have shown promise in

achieving brain-like energy efficiency compared to those based

on ANN, they are yet to demonstrate their overall supremacy.

This is attributed to several factors. First, for achieving brain-

like energy efficiency, each computing primitive should be

extremely power efficient. This is needed even at the lowest

device level, where primarily CMOS or emerging technologies

like RRAM/PCRAM have been used [48]. Second, ANNs have

become popular and gradually more efficient and accurate due

to significant advancements in general-purpose software stack

[1], [13], [32], [62] as well as accelerators such as TPUs. In

contrast, there is a lack of efficient HW-SW ecosystem that

can support SNNs. Third, even algorithmic optimizations for

improving the accuracy of SNN computations and learning

are not fully explored, thereby limiting the efficacy of SNNs.

Finally, there is a lack of application/benchmark suite for

testing the capabilities of SNN hardware to their fullest poten-

tial. Most prior studies have either used simple applications

or smaller sub-problems to demonstrate the effectiveness of

SNNs. Thus, it is essential to consider a holistic approach em-

bracing technology, architecture, and algorithm for designing

a neuromorphic ecosystem.

In this context, this paper proposes a novel multi-modal

architecture called NEBULA, that is distinct from all prior ef-

forts in that it can support an SNN, an ANN as well as a hybrid

model composed of SNN and ANN. To address the energy ef-

ficiency at the device level, NEBULA is designed using a spin-

based ultra low-power device, called Magnetic Tunnel Junction

(MTJ) [79], which is used to mimic the behavior of a single

neuron (as a compute unit) as well as of a crossbar of synapses

(as memory). MTJ-based primitives are known to be more

power-efficient than their CMOS/PCRAM/MRAM/ReRAM

based counterparts [71], thus laying the foundations of an ultra

low power platform. The main contributions of this paper are

as follows:

• It uses an ultra-low power MTJ-based synaptic device

to design a morphable neuron core that forms the building

block for a scalable architecture. In addition to performing

in-memory analog computations for high parallelism, we

minimize the use of power-hungry ADCs (Analog to Digital

Converters) by aggregating partial sums of analog currents

using a hierarchy of neurons, instead of converting them

to digital values as in prior works [14], [56], [75], [78].

Furthermore, we avoid SRAM reads and writes needed to

update neuron membrane potential by leveraging the inherent

property of spin-based MTJ neurons to store this potential

through domain wall movement.

• NEBULA can be deployed for an SNN, an ANN as well

as a hybrid SNN-ANN network. SNNs need high evidence

integration times to achieve accuracy comparable to ANN,

which leads to high energy consumption. We show that a

hybrid model can be leveraged to get the same accuracy as cor-

responding SNN in fewer timesteps, consequently lowering the

energy consumption while retaining SNN’s power efficiency.

To the best of our knowledge, ours is the first work to design an

architecture that can support spiking, non-spiking and hybrid

models.

• We map several deep ANN and SNN workloads to the

proposed architecture and perform an in-depth comparative

study of accuracy, power and energy efficiency. Our evalua-

tions show that, NEBULA, in the ANN mode is up to 7.9×
more energy efficient than a state-of-the-art ANN accelerator,

ISAAC [75]. In the SNN mode, it is ≈45× more energy-

efficient than a contemporary SNN architecture, INXS [56].

Comparison of ANN and SNN modes of NEBULA shows

that the latter is at least 6.25× more power-efficient.

II. BACKGROUND

In this section, we provide an overview of SNNs, the

functional properties of an MTJ-based synaptic device and

and how these devices can be arranged to design a crossbar

of spiking and non-spiking neurons for designing neural cores

as the basic blocks in our NEBULA architecture.

A. ANN and SNN Primitives

The core primitives in a neural network are the neuron

and the synapse. Let us first consider the traditional ANN

computing framework, the de-facto standard for current deep

learning algorithms. Each ANN neuron in a particular layer

receives the weighted summation of neuron outputs from a

previous layer. A non-linear transfer function is then applied

to the weighted sum to get an activation value. Eq.1, below,

shows this for a Rectified Linear (ReLU) transfer function:

y = max(0,
∑

j

wjij), (1)

where y is the neuron’s activation value, ij is the j-th neuron

input, and wj is the strength of the j-th incoming synapse.

As a significant shift from ANNs, SNNs draw inspiration

from the fact that biological neurons process information

temporally by means of sparse spiking signals. SNN com-

putational models abstract the neuron/synapse functionality to

a much higher degree of biofidelity. In this work, we focus on

Linear-Integrate-Fire (IF) spiking neuron framework to model

this bio-plausibility, as represented by Eq. 2 below:

u(t+ 1) = u(t) +
∑

j

wjij(t), (2)

where, u(t) is the model state variable (corresponding to the

neuron membrane potential) and ij(t) is the input current

from the j-th synaptic input at the current time-step t. The

neuron fires or emits a spike when its membrane potential

reaches a pre-defined value, vth, called the firing threshold

and then resets back to a resting potential vreset until new

inputs arrive and start accumulating at the membrane again.

364

Fig. 1: Spin-based (a) DW-MTJ Synaptic device, (b) Device
characteristics are shown for a 20 × 0.6nm3 magnet
calibrated to experimental measurements [20]. The device
characteristics illustrate that programming current mag-
nitude is directly proportional to the amount of domain
wall displacement, i.e. MTJ conductance change [72].

While a higher degree of biofidelity like modelling neuron

membrane potential leak, homeostasis, refractory period or

synaptic plasticity are exploration avenues from brain em-

ulation perspectives [22], IF spiking neurons without any

leak and refractory period have recently shown promise as

a primitive for scalable training of SNNs [74]. However, our

proposal can be easily extended to incorporate such additional

characteristics. Inference using IF neurons is based on a

rate-encoding framework – the neuron activation value is

represented by the total number of spikes emitted by it over

a given time window. A key advantage of using SNNs as a

computational paradigm is attributed to the event-driven nature

of computation. Since the neuron units transmit information

as binary spike signals, neuromorphic hardware that leverage

such event-driven behavior in computation and communication

can operate at significantly reduced power levels. Also, as

shown in Figure 4, the spiking activity (average number of

spikes fired by a neuron per timestep) gradually decreases

as we go deeper into the network, implying lower power

consumption on event-driven hardware.

B. Spintronic Technology

1) Device Basics: Magnetic Tunnel Junction (MTJ) is the

basic building block of our proposed “In-Memory” archi-

tecture. In an MTJ structure, there are two nanomagnets

with a sandwiched insulator layer. The magnetization of one

of the nanomagnets is pinned (“Pinned” layer), while the

magnetization of the other nanomagnet (“Free” layer) is free

to change its direction under an external stimulus, such as

spin-transfer torque induced by a spin current [77]. The device

possesses a high resistance in anti-parallel (AP) state (when the

magnetizations of the two nanomagnet layers are in opposite

direction) and a low resistance in parallel (P) state (when the

magnetizations of the two layers are in the same direction).

2) Synaptic Device: In this work, a modified MTJ structure

[72] is utilized to realize the functionality of a synapse

primarily because MTJ devices can be operated at ultra-

low power. The modified structure has an elongated “Free”

layer to stabilize a domain wall (DW) between two magnetic

domains with opposite magnetization directions. The domain

Fig. 2: Spin-based (a) Integrate-fire (IF) spiking neuron, (b) Non-
spiking neuron [70], [72].

wall can move continuously in the “Free” layer to change the

proportion of the P and AP domains, resulting in continuous

conductance change of the device, which enables multiple

resistive states to be encoded. To reduce the critical current

density required for domain-wall displacement and achieve

decoupled “write” and “read” current paths, we consider spin-

Hall effect (SHE) based magnet-heavy metal (HM) bilayers.

The device structure, referred to as DW-MTJ, is shown in

Figure 1(a), where a current flowing through the HM layer

(between terminals T2 and T3) results in a conductance change

between terminals T1 and T3 (Figure 1(b)). This device acts

as the synapse primitive in our design and can be programmed

to multi-level resistive states and is characterized by low

switching current requirements and linear device behavior

(device conductance change varies in proportion to magnitude

of programming current). For inference, the device state is

read through the MTJ structure between terminals T1 and

T3. Experimentally, a multi-level DW motion based resistive

device was recently shown to exhibit 15-20 intermediate re-

sistive states [50]. DW-MTJ uses lower programming voltages

(∼100mV) and energy (∼100fJ) compared to competing

technologies such as Phase Change Memories (PCM) and

Resistive Random Access Memories (RRAM) [36], [38], [44],

which are characterized by much higher programming voltages

(few V) and programming energies in the pJ range. They

are also characterized by limited reliability and endurance in

contrast to spintronics technologies [35].

3) Spiking/Non-spiking Neuronal Device: The displace-

ment of the domain wall is proportional to the magnitude

of input spikes through the heavy metal, which provides an

intrinsic correspondence to the integrate-fire characteristics of

a spiking neuron. The spiking neuron device structure is shown

in Figure 2(a), where the MTJ is now located at the extreme

edge and changes its state as the domain wall reaches the

opposite edge of the ferromagnet. The SNN MTJ is interfaced

with a reference MTJ and this resistive divider enables the

inverter to generate an output spike [70]. Whenever there is

an output spike, a current in the opposite direction is applied

to reset the domain wall position to the left edge of the

magnet. Additionally, for non-spiking networks, the device

structure in Figure 1(a) can be used as a Saturating Rectified

Linear neuron by interfacing with a reference MTJ and a

transistor operating in the saturation region (instead of an

365

inverter in the spiking scenario) [72] (Figure 2(b)). Note that

the neuron threshold values are fixed in our design. In order

to map different threshold values, the scaling factor can be

accounted for by appropriately shifting the synaptic weight

range driving the neurons. This can be either achieved by

choosing an appropriate oxide thickness or scaling the synaptic

read voltages.

C. All-Spin Neuromorphic Crossbar Array

Spintronic neurons and synapses can be arranged in a

crossbar fashion, as shown in Figure 3, to realize an “All-

Spin” crossbar array primitive [70]. RWL and WWL are the

“read” and “write” control signals. In this work, since we focus

only on the inference mode, the WWL control signals are

turned off after programming weights at the synapse MTJs.

The RWL signals control the read operations at the synapse

MTJs and write operations at the neuron MTJs [72]. An

appropriate magnitude of voltage applied along the BL can be

used to program the domain wall position accordingly. Such an

“In-Memory” computing primitive efficiently implements the

parallel dot-product computing kernel by simple application

of Kirchoff’s law. The design of the interface neuron device

and circuit as specified earlier can transform this to either

an SNN or ANN. The DW-MTJ based crossbar design offers

the following benefits. DW-MTJ based neurons have two

properties that make it possible to operate large crossbar arrays

of spintronic synapses at very low terminal voltages (typically

100mV). Their magneto-metallic behavior ensures a low input

resistance of the spin neurons, reducing the voltage drop across

the device. In addition, the DW-MTJ can be switched with

small currents. Since both the current and resistance are small,

the input supply voltage to the entire array can be small.

Fig. 3: All-spin Neuromorphic
Crossbar Array.

Further, spintronic

neurons are inherently

current-driven and thereby,

can be easily interfaced with

the current outputs provided

by the crossbar array unlike

voltage-controlled devices,

based on RRAM/PCM

technologies. Hence, they

do not require costly

current to voltage converters

unlike CMOS and other

emerging technology-based

implementations [54], [89].

Consequently, the proposed

crossbar using DW-MTJ

has significant potential for

power and performance advantages over other competing

technologies such as RRAM and PCM. Preliminary analysis

has demonstrated the potential of ∼100× improvement in

energy consumption of “All-Spin” neuromorphic systems in

comparison to a baseline CMOS implementation [73].

Fig. 4: Layerwise average neuron spiking activity.

III. RELATED WORK

A significant body of research in the past decade has been

dedicated to designing faster and accurate ANN models and

hardware architectures. Due to the high degree of parallelism

inherent in ANNs, processing-in-memory based solutions have

been actively researched in order to efficiently run the large

scale computations involved. ISAAC [75] and PRIME [14] use

memristor-based crossbar arrays to perform in-situ multiplica-

tion in analog domain. Although such architectures are effi-

cient in performing computation within a tile, their ADC oper-

ation in every cycle is a major power bottleneck. INXS [56], an

SNN oriented architecture, performs weighted accumulation of

incoming spikes to update the neuron membrane potential and

a spike is generated when the membrane potential reaches its

threshold value. Although the architecture emulates a spiking

network, it suffers from the same fundamental disadvantage:

the accumulated membrane potential at every time step has to

be converted via ADC to a digital value. In addition, it does not

consider explorations for the underlying hardware technology.

A large body of work has attempted to emulate the func-

tionality of bio-inspired SNNs via SW and/or HW based

solutions. For example, SpiNNaker [22] uses an ARM-based

chip multiprocessor system that consumes ∼1W of power to

emulate thousands of neurons in a time-multiplexed fashion.

Neurogrid [6] takes a mixed signal approach to simulate SNNs,

where the constituent chips are connected in a tree topology.

BrainScaleS [69] is a wafer-scale hardware system, which

uses continuous time analog electronic circuitry to physically

emulate neurons and synapse dynamics. IBM TrueNorth [12]

uses digital neurosynaptic cores that mimic the operation of

a cluster of neurons interconnected using a crossbar array.

Intel’s Loihi [16] architecture features synaptic delays and

programmable synaptic learning rules in the primitive neuron

model. The architecture has 128 neuromorphic cores organized

in a mesh topology where each core realizes 1024 primitive

spiking neural units. All of these architectures consume orders

of magnitude more power than the ∼20W target when scaled

to billions of neurons and this is the primary motivation to

look at other low-power design alternatives starting from the

basic neuron model. In this context, a new flexible CMOS-

based neuron model, Flexon was proposed for SNNs [47],

which can simulate a wide variety of complex biological

neuron models efficiently, as compared to a CPU or a GPU.

As stated earlier, our MTJ-based neuron and synaptic model

366

is much more power efficient than any CMOS based design.

Besides these, Tianjic [63] is a multi-modal pattern recognition

system, where SNNs are used for voice recognition and ANNs

are used for object detection and tracking. It is a hybrid

ANN-SNN system level design consisting of separate modules

being used for different tasks. In contrast, our hybrid SNN-

ANN design considers algorithmic modifications for a single

network partitioned into spiking and non-spiking layers in the

hybrid mode that preserves low-power benefits of SNNs, while

reducing latency disadvantage of SNNs with respect to ANNs.

IV. OVERVIEW OF NEBULA DESIGN

A. Overall Design

C

Fig. 5: Mapping a 3D kernel to a
crossbar.

The basic building block

of NEBULA is the neu-

ral core (NC) as shown

in Figure 6(a). A neu-

ral core consists of an

eDRAM memory that re-

ceives inputs from the net-

work, SRAM-based input

and output buffers (IB/OB),

which supply inputs to

and store outputs from the

crossbars, a super-tile com-

posed of a 2 × 2 array of

morphable tiles (Tile0 to Tile3), which function as the dot

product engine, as well as some peripheral circuits. Multiple

neural cores (denoted by S, A in Figure 6(b)) are tiled on

a chip using a mesh NoC to create a highly scalable and

parallel architecture. Figure 7(b) shows that the morphable

tiles are further composed of 2 × 2 atomic crossbars, which

can be configured using switches to realize different matrix

sizes. The Neuron Units (NU) are attached along both the

vertical extremities of the crossbar columns through switches

and each NU consists of an array of neurons designed either

for spiking or non-spiking modes. In every cycle, the input

buffers supply inputs to the crossbars as analog voltages along

the Bit-Lines (BLs), shown in Figure 3. These voltages are

weighted by conductance values programmed at each synapse

and the resulting current gets summed along the column

Source-Lines (SLs), thus effectively performing several dot-

products in parallel. The current accumulated along a SL

passes through the dedicated spin neurons and moves their

domain wall in proportion to its magnitude, thereby modulat-

ing the neuron output. In addition to these components, the

augmented Routing Unit (RU), in conjunction with ADC in

Figure 6(a) enable efficient reduction and activation of layers

which span multiple NCs. The Accumulator Unit (AU) in

Figure 6(b) supports hybrid mode operation.

In the next subsections we explain the detailed design of

each component on the chip.

B. Spin-based Neural Core Design

1) Dedicated Neural Cores for ANN and SNN: An impor-

tant difference between ANN1 and SNN inference is that in

the former, the neurons are stateless whereas in the latter, they

maintain a state. The input and output of a spiking neuron is

in the form of a binary spike train. In contrast, the stateless

ReLU neuron in an ANN is simply thresholded at 0 and has

continuous valued (multi-bit) inputs and outputs. The hardware

implication of these algorithmic differences is that we need to

support multi-bit inputs to the atomic crossbars for the ANN

operation and only single-bit inputs for the SNN operation.

The multiple bits for the ANN can be supplied to the crossbar

at once by using multi-level drivers or they can be fed serially

to the crossbar using 1-bit DACs as in [75]. For our ANN NC,

we choose the former design due to energy considerations. As

a result, the MTJ neurons as well as the drivers in the ANN

NC (denoted by A in Figure 6(b)) are larger and consume

more power. SNN operation, on the other hand, does not need

multi-bit drivers for binary inputs and therefore, is allocated

to a dedicated low-power NC, denoted by S in Figure 6(b).

Note that both the ANN and SNN NC designs are represented

by Figure 6(a) as they are logically the same and only differ

in the area and power consumption of their components.

2) Morphable Tiles for Varying Kernel Dimensions: Figure

5 shows how a kernel of size (Rf = KH×KW×C) is flattened

to be mapped along the vertical dimension of a crossbar. Rf is

the receptive field size of the kernel. A crossbar of size N×M
can process M kernels of Rf <= N in parallel. Although

larger crossbar sizes provide dense synaptic connectivity and

are ideal for mapping large receptive fields, they incur a high

energy overhead due to the need to activate multiple rows in

parallel and the large amount of read currents flowing through

the SLs during MAC operations. Also, due to rigid array

dimensions, sometimes many of the synaptic connections are

unused. For example, the first layer of VGG-Net [76] will only

use 27× 64 of the synapses available in a 128× 128 crossbar

array. In contrast, smaller crossbars can help boost synapse

utilization but will impose additional peripheral circuitry over-

head due to kernel fragmentation across multiple crossbars and

merge-summing. Consequently, we propose a morphable tile

architecture that can better match the application requirements.

Figure 7(b) shows a logical view of our tile architecture. The

tile crossbar (shown as Tile2 in Figure 7(a)) is decomposable

into a 2 × 2 array of smaller atomic crossbars (ACs) of

size M × M . Depending on the kernel size being mapped,

the atomic crossbars can either function independently or in

tandem with other ACs in a tile when they are connected via

a programmable switch. Each AC has a dedicated NU which

consists of M MTJ neurons, one along each SL, and M BLs,

which allow it to function independently. On the other hand,

all the 4 ACs can be connected using the central switches to

get a fully functioning crossbar of size 2M×2M . Figure 7(b)

shows a possible crossbar configuration in which the right half

1We refer to feed-forward neural networks as ANNs - RNNs and RBMs
are beyond the scope of this work.

367

Fig. 6: The NEBULA architecture (a) A Neural Core (NC), (b) A NEBULA chip consisting of ANN and SNN NCs, (c) Accumulator
Unit (AU) to support hybrid mode.

Fig. 7: (a) A supertile of 2× 2 morphable tiles and neuron unit
hierarchy, (b) A morphable tile of 2× 2 atomic crossbars
and neuron units at vertical extremities.

of the morphable tile supports a kernel size of up to 2M ×M
by connecting the top and bottom ACs. The left half of the

tile shows the ACs functioning independently.

3) Minimizing ADCs through Current Summation and a
Hierarchy of Neuron Units: Large receptive field sizes of a

layer generally overflow the crossbar dimensions and need to

be mapped across multiple crossbars. In architectures such as

[14], [75], [78], the partial sums of a dot product spanning

multiple crossbars are first converted to digital signals using

Sense Amplifiers (SAs) or ADCs and then aggregated using

digital adders and stored in SRAM registers. As already noted

in previous works, this operation is very power hungry due

to the use of ADCs for analog to digital conversion. Also,

in order to amortize the high power and area cost of ADCs,

they are shared by multiple crossbars and time-multiplexed

across their columns. This affects the overall throughput of

the design. In order to mitigate the high ADC overheads for

aggregating partial sums and improve computation throughput,

we propose a novel super-tile design consisting of a hierarchy

of NUs. The key idea is that we add the partial sums in the

current domain itself by using simple Kirchoff’s Current Law

and activate the appropriate NU hierarchy level depending on

the size of the currently mapped kernel. For example, for a

kernel whose receptive field size is Rf ≤ M where the size

of the most atomic crossbar is M × M , we activate the NU

arrays at hierarchy level 0 (denoted by H0 in Figure 7(a)),

while the other NUs are turned off. The atomic crossbar (AC)

can now process up to M kernels of size Rf in parallel.

The ACs in this case will function independently and produce

outputs through their dedicated NUs. If 2M < Rf ≤ 4M ,

we activate the central vertical switches for a crossbar size of

2M ×M , and extend it further by summing the SL currents

flowing from each half of the tile and activating only the NU

at level H1 in the super-tile. As a result, a single tile of size

2M ×2M can support kernel sizes of upto 4M ×M . Further,

if 4M < Rf ≤ 8M , the NUs at level H1 can be bypassed

to sum SL currents coming from tiles 0 and 1. In this case,

the NU at hierarchy level H2 will be active. In summary, by

employing this unique design, a super-tile can support kernel

sizes of upto 16M × M . So, if the Rf of a kernel is less

than 16M , its partial sums are aggregated within the NC, thus

obviating the need for ADCs and sending multiple bits across

the network fabric. If, however, Rf > 16M , the computations

are spread out across multiple NCs whose partial sums are

accumulated at RUs which are augmented with an adder and

ReLU activation logic.

4) Supporting SNN, ANN and Hybrid Modes: As explained

in section IV-B1, the NEBULA architecture has dedicated

NCs for processing ANN and SNN to leverage the maxi-

mum advantage from both modes (Figure 6(b)). In the SNN

mode, current summation output from the SLs represents the

membrane potential increment of the spiking neuron that gets

applied to the MTJ device and causes a displacement of its do-

main wall. Note that the domain wall displacement represents

the neuron membrane potential at the current timestep, which

persists until the next potential increment. This obviates the

need to store and fetch neuron membrane potential in every

cycle. Once the domain wall reaches the opposite end, it fires

a spike voltage through the inverter, which is written to the

SRAM output buffer. The ANN circuit works in a similar way

except that the threshold voltage of the neuron is set to 0

and the output is a continuous value. In the hybrid mode, we

perform a major part of the computations using SNN NCs

and a small part using the ANN cores. However, as the ANNs

require multi-bit continuous inputs, we cannot directly send

the spiking output of the SNN cores to the ANN cores. As

a result, we include an array of Accumulator Units (AUs in

368

Fig. 8: Cycle-wise operations in NEBULA.

Figure 6(b)) in our design to accumulate the spikes over a

time-window and then send it to the ANN cores. Figure 6(c)

shows the AU architecture. In our hybrid mode evaluations,

we have also accounted for the overhead incurred by this

accumulation process.

5) NEBULA in Action: NEBULA is a pipelined architec-

ture, where each stage in the pipeline is of 110 ns latency. The

duration of a pipeline stage or cycle is dictated by the time

required to switch the domain wall in the MTJ neurons. Figure

8 shows the operations taking place in each cycle in NEBULA.

The pipeline starts with fetching data from the local eDRAM

to the IB (cycle1). In cycle2, data is read from the IB and

driven by peripheral circuitry to the crossbars. If the kernel fits

onto the super-tile, the accumulated current, after traversing

the neuron hierarchy, gets thresholded at the appropriate NU

to yield a binary spike or a multi-bit value (depending on

mode of operation), which gets written to the OB. In cycle3,

the OB data is written back to eDRAM from where it is

eventually released into the network (Rf <= 16 × M).

However, if the kernel overflows into multiple NCs (denoted

by Rf > 16×M), there are additional stages in the pipeline to

reduce the partial sum tree and then finally apply the activation

function. In Figure 8, this is indicated by the dashed rectangle

around the pipeline stages. Therefore, if the kernel MAC

overflows the NC at the end of cycle-2, in cycle-3 it goes

to the ADC, which sequentially digitizes the partial sums and

sends it to the eDRAM. The partial sum operands are reduced

by adders placed at the RUs. After one or more reduction

hops, the final activation value is computed by the activation

or spike logic at an RU, and is written to the eDRAM of

a destination NC. Note that ADCs are used sparingly in our

design – only when kernels are too large to fit on a super-

tile. Also, the ADCs need to process at most 128 neurons

in a 110ns cycle due to our unique mapping technique. This

prevents the ADCs from being a bottleneck even though they

are shared by multiple tiles in an NC. All synaptic weights are

pre-programmed and control configurations are pre-computed

and loaded at compile time using state machines onto the chip.

C. Precision Considerations in NEBULA

NEBULA supports ANN, SNN and hybrid models with

weight and activation precision of 4 bits in inference. This is

equivalent to 16 resolution levels that can be supported by the

crossbar synaptic cells and the spiking MTJ neurons. Our pre-

liminary evaluation of models trained on CIFAR and MNIST

Fig. 9: Accuracy vs weight discretization levels. Activa-
tions are quantized to 4 Bits.

datasets shows that a weight and activation precision of 4-

bits each is sufficient to achieve accuracy competitive to their

floating-point counterparts. Additionally, considerable work

done on quantization-aware training, post-training quantization

and fine-tuning of deep neural networks [2] have demonstrated

that deep networks can yield competitive accuracies during

inference even at lower resolutions. As a result, we choose

to adhere to 4-bits for this architecture, even though higher

resolutions can be supported through additional hardware

using the schemes proposed in the works such as PRIME [14],

ISAAC [75] and CASCADE [15].

Since we train all our models with floating point precision,

the weights and feature maps can have any value under the

FP precision scope. However, the resource-constrained analog

devices cannot support arbitrary magnitudes of current and

precision levels, and therefore, we account for such limitations

at the algorithmic level. This is done by clipping the ReLU

activations at a certain percentile of the activation values. By

passing a subset of the training dataset through the model, we

fix the maximum activation values for every layer at amax,

beyond which all values would be clipped without affecting

the accuracy. Next, we quantize the activation to 16 levels

using a range based linear quantizer as described in [94].

Resistance-based crossbar synapse circuits impose an addi-

tional constraint on the resistance ranges that can be supported

by the device. Specifically, the ratio of maximum to minimum

device conductance (or equivalently synaptic weight) that can

be supported in the underlying technology is limited. This

translates to an additional constraint on the weight values that

are programmed at the synapses. Consequently, we account for

this limitation in our model simulations by clipping the kernel

values to a certain range. This range was empirically decided

for each layer to minimize accuracy loss. Finally, each of the

weight ranges were quantized to 16 levels within maximum

and minimum conductance levels to achieve a fully quantized

model with negligible accuracy loss. Figure 9 reports the

accuracy of VGG and MobileNet networks quantized using

this technique. While limited MTJ resistance ratio between

ON and OFF states is a design concern currently, 7× ratio

has been experimentally observed [31] and this is expected

to increase to over 10× in the future [29]. Alternatively, the

computation can be distributed across multiple crossbars to

account for limited conductance ranges [10]. Note that, since

the weight and activation ranges vary from layer-to-layer,

369

ANN type Dataset % Accuracy t steps Depth
ANN SNN

3-layer MLP MNIST 96.81 95.75 50 3
Lenet5 MNIST 99.12 98.56 40 5

MobileNet-v1 CIFAR-10 91.00 81.08 500 29
VGG-13 CIFAR-10 91.60 90.05 300 20

MobileNet-v1 CIFAR-100 66.06 56.88 1000 29
VGG-13 CIFAR-100 71.50 68.32 1000 18

SVHN Network SVHN 94.96 94.48 100 12
AlexNet ImageNet 51 50 500 11

TABLE I: ANN-to-SNN conversion accuracy.

while the number of quantization levels remains constant,

some signal scaling factors are needed at every layer – this

is taken care of by the peripheral circuitry in our design.

D. Impact of Noise and Signal Variability

Signal noise and variability in analog computations are a

concern for all emerging technologies like PCRAM, ReRAM

and MTJ. However, neuromorphic applications are known

to be resilient and, therefore, can tolerate non-idealities like

device mismatch, noise and other variabilities [66] to a certain

degree. In order to validate our hypothesis, we ran Monte-

Carlo simulations with 10% variations in weights during

inference for a 16-level fully quantized ANN and SNN and

observed that the inference accuracy decreases only by 0.74%

and 0.81%, respectively. The accuracy of the noise-injected

quantized VGG-ANN is 90.31% and that of VGG-SNN is

89.41%, indicating resilience to minor imprecisions in the

underlying hardware.

V. EVALUATION METHODOLOGY

We developed several deep SNN benchmarks using popular

ANNs that were trained using back-propagation on standard

image recognition datasets such as MNIST [46], CIFAR-10,

CIFAR-100 [42], SVHN [59] and ImageNet [17]. As reported

in Table I, these SNNs yield comparable accuracy to their

ANN counterparts. In this section, we briefly describe the

method used for this conversion, which is mainly adapted from

the works of [9], [18], [68]. We then provide motivation for

hybrid SNN-ANN models followed by some details on device

and circuit-level modeling of DW-MTJs.

A. ANN to SNN Conversion

For near lossless conversion from continuous-valued ANNs

to SNNs, the original networks need to be trained with the

following constraints:

Average Instead of Max-pooling for Pooling Layers: Since

the feature maps are encoded with binary spikes, a max-

pooling layer would either output a 1 or a 0 at every time-

step, irrespective of the number of spikes present in its input

map. As a result, information loss occurs due to the max-

pooling from input to output feature maps. Also, max-pooling

cannot be implemented directly using a crossbar architecture

and requires additional circuitry. Replacing max-pooling with

average pooling eases hardware mapping.

Rectified Linear Unit (ReLU) as the Sole Activation Function:
This is because, the behavior of the rectified linear function

Fig. 10: Model: MobileNet-v1, Dataset: CIFAR-100. Correlation
between ANN and SNN feature maps at layers 1, 5, 20
and 28.

can be well approximated by a spiking Linear-Integrate-and-

Fire (IF) neuron in the absence of leak and refractory period

[9], [18]. Specifically, the total number of spikes fired by

the IF neuron is proportional to the activation value of the

corresponding ReLU neuron.

Also, the accuracy loss is negligible when networks are

trained with average instead of max-pooling layers [8] and

ReLU activations are widely used in state-of-the-art CNNs. As

a result, most of the popular ANNs are potential candidates for

such ANN-to-SNN conversion. The spiking network (with IF

neurons) is initialized with the same topology and weights as

the pre-trained network and then the following modifications

are made to it:

1) Each input pixel intensity is approximated by a rate-

encoded poisson spike train [41] to lend a temporal

aspect to the SNN. The presence and absence of a

spike in a time step are represented by binary 1 and

0, respectively.

2) All the ReLU neurons in the ANN are replaced with IF

neurons in the SNN. We also add an additional layer of

IF neurons after every pooling layer to make the entire

network amenable to SNN hardware.

3) Next, we set the thresholds for all IF neurons in the SNN

using a data-based normalization approach outlined in

[18] and [68].

Handling Batch-Normalization Layers: A Batch Normaliza-

tion (BN) [33] layer is a part of many state-of-the-art ANNs

[30] [80] [23] and is used to normalize the activation values

of intermediate layers to zero mean and unit variance, thereby

enabling higher learning rates and faster network convergence

[7] during training. We apply the technique discussed in [68]

to ‘fold’ back the BN layer into the weights and biases of

the previous layer resulting in a BN-free ANN that can be

efficiently converted to an SNN and mapped to crossbars.

B. Motivation for Hybrid SNN-ANN Models

As shown in Table I, the SNN integration times needed

to yield accuracy comparable to the corresponding ANN

is a function of the network depth and complexity of the

dataset on which it is trained. The evidence integration time

is particularly sensitive to the network depth as corroborated

by Figure 10, in which we plot layer-wise correlation values

between the feature maps of the ANN and the converted SNN

370

VGG SVHN
Mode t-step Acc (%) Mode t-step Acc (%)
SNN - 90.05 SNN - 94.48
Hyb-1 250 90.10 Hyb-1 80 94.46
Hyb-2 200 85.57 Hyb-1 70 94.18
Hyb-2 150 78.90 Hyb-2 60 94.37
Hyb-2 100 59.23 Hyb-3 50 93.39
Hyb-3 100 62 Hyb-3 40 93.29

TABLE II: Hybrid SNN-ANN model accuracy. E.g. Hyb-2 has 2
non-spiking layers.

for MobileNet-v1 on CIFAR-100 for 100 images. Figure 10

indicates that as the layer depth increases from 1 to 28, the

correlation between ANN and SNN feature maps drops. Also,

this drop in correlation is higher for the case in which the

network is simulated for 600 timesteps (shown on left), as

opposed to when it is simulated for 1000 timesteps (shown

on right). As a result, the former yields higher error than the

latter. The long evidence integration time can be attributed to

the temporal sparsity (or low spiking rate) inherent in SNNs,

due to which it takes a certain amount of time to propagate

enough information to the later layers for accurate prediction.

Fig. 11: Logical view of fully spiking vs hybrid models.

Longer integration times not only increase inference latency,

but also lead to higher energy consumption in SNN hardware

(refer to Figure 17 (first and last bars above the x-axis)). In

order to reduce the integration times without loss of accuracy,

we propose a hybrid approach in which, we split a deep neural

network into two parts – the first part (closer to the input)

is in the spiking domain and is converted using the method

described in section V-A. The second part consists of layers

which are in the ANN domain and accept continuous input

values. The inputs to this layer are aggregated from the spikes

collected from the previous layer as shown in Figure 11. The

output spikes from an intermediate layer are aggregated over

time (shown in white e in the figure) and scaled by a constant

factor. The values obtained after such aggregation represent the

activation values from the previous layer in the continuous

domain, which are then fed as input to the next layer. This

helps to prevent loss of information from one layer to the

next due to transmission of spikes. The layers shown in green

accept continuous inputs and hence, are considered to be non-

spiking.

C. Power, Area and Performance Modelling

In order to drive the architectural level analysis, a device-

circuit co-simulation framework was used to characterize

the delay, power and area of our “All-Spin” neuromorphic

crossbar array, while accounting for algorithm level constraints

like bit-precision of neurons/synapses, neuron thresholds, etc.

The core magnetization dynamics of the domain-wall based

ferromagnetic strip is simulated in MuMax [85]. The device

simulation framework was calibrated to experimental mea-

surements reported in [20]. The MTJ resistance is simulated

using a modified version of Non-Equilibrium Green’s Function

(NEGF) based transport simulation framework reported in [21]

and its layout area is extracted based on [37]. The device

level characteristics were incorporated in the circuit level

HSPICE simulator and the crossbar was designed including

the synaptic device cell, interconnect parasitics and peripheral

components. The interconnect parasitics are derived based on

the layout dimensions of the cell and the crossbar size. The

CMOS transistors, used to construct the crossbar peripherals,

are evaluated with Predictive Technology Model (PTM) for a

32nm process node [93]. The layout design of the peripheral

circuitry is pitch-matched to a single synaptic cell such that

each row of the crossbar connects to its assigned driver, e.g.

input spike drivers for the SNN and multi-voltage DAC-based

driver for the ANN.

Design Tradeoffs: Next, we explain the design tradeoffs

involved in the device-circuit layers of the stack. The device

length was determined by the number of programmable states

required in the neuron/synapse units. We considered 20nm to

be the minimum programmable resolution for DW pinning

[73], resulting in a device length of 320nm to represent

16 resistance states. For the synapse, the device dimensions

causes the cell area of the crossbar to be large. The neuron de-

vice width, crossbar supply voltage, crossbar resistance ranges

(can be varied by MTJ oxide thickness) and neuron “write”

latency served as important tradeoff parameters between en-

ergy consumption and network accuracy. Since the crossbar is

interfaced with the neuronal spin devices, the crossbar output

current flows through the heavy-metal resistance. In order

to ensure proper dot-product evaluation and consequently

low neuron device resistance, the neuron device width was

scaled to 200nm. For a given neuron programming duration,

the crossbar supply voltage determines the required crossbar

conductance range (to ensure critical current supply to the

neuron). The crossbar resistances have to be sufficiently high

to ensure maximal input voltage drop across the crossbar array.

Increasing the supply voltage/lowering the crossbar conduc-

tances reduces the dot-product evaluation non-ideality while

increasing the energy consumption. The synaptic device width

was scaled to ensure that the maximum “read” current (“write”

current for neuron) does not disturb the programmed DW

position in the synapse. For an extensive discussion of such

device-circuit design tradeoffs, please refer to [70]. We further

optimized our design based on the ANN/SNN operating mode.

Due to high activation sparsity in SNN, the number of active

rows for a particular crossbar is usually much lower than ANN,

thereby allowing us to relax the constraints for ensuring near-

ideal dot-product evaluation, while simultaneously reducing

the energy consumption. Note that our ANN design (and the

neuron, synapse devices), unlike the bit-splitting techniques

explored in [75], has been optimized for multi-bit processing.

This has been done in order to leverage the core neuron device

371

Fig. 12: Layerwise energy consumption of ISAAC [75] normal-
ized to NEBULA-ANN for AlexNet and MobileNet.

thresholding functionality directly in a single crossbar evalua-

tion. Hence, while our core ANN crossbar power consumption

is increased due to less sparsity of ANN inputs, the number

of cycles required per inference is greatly reduced in contrast

to architectures utilizing bit-splitting which, in turn, reduces

the resultant energy consumption per inference.

Neural Core (NC)
Component Param Spec Power Area (mmˆ2)
eDRAM [25] size 32 KB 9.55 mW 0.02523
ADC [11] resolution 4 bits 0.43 mW 0.005
ANN Super-Tile size 128 KB 98.87 mW 0.4247
SNN Super-Tile size 128 KB 8.46 mW 0.3822
ANN Input Buffer size 16 KB 4.36 mW 0.06462
SNN Input Buffer size 4 KB 1.08 mW 0.01615
ANN Output Buffer size 2 KB 0.545 mW 0.00808
SNN Output Buffer size 0.5 KB 0.136 mW 0.00202

Core Total ANN
SNN

113.8 mW
19.66 mW

0.528
0.431

Super-Tile Components

ANN DAC
count
voltage
resolution

16x128
0.75 V
4 bits

26.56 mW 0.04848

ANN Crossbar

count
array size
bits/cell
total size

16
128x128
4
128 KB

72.16 mW 0.376

SNN Driver
count
voltage
resolution

16x128
0.25 V
1 bit

0.904 mW 0.00606

SNN Crossbar

count
array size
bits/cell
total size

16
128x128
4
128 KB

7.4 mW 0.376

Neuron Unit (NU) count 23x128 0.151 mW 0.000189

Super-Tile Total ANN
SNN

98.87 mW
8.46 mW

0.4247
0.3822

Digital Accumulator Unit (AU)

Adder
count
width

1024
8 bit

0.355 mW 0.00588

Register
count
width
total size

1024
16 bit
2 KB

0.545 mW 0.00808

Accumulator Total 0.9 mW 0.0669
Major Components Total, Operating frequency 1.2 GHz

ANN Cores count 14x1 1.593 W 7.392
SNN Cores count 14x13 3.578 W 78.4
Accumulators count 14x1 12.6 mW 0.937
Total 5.2 W 86.729

TABLE III: Component Specifications for NEBULA.

VI. EXPERIMENTAL RESULTS

The benchmark networks evaluated in this work are based

on popular image recognition datasets such as MNIST [46],

CIFAR-10, CIFAR-100 [42], SVHN [59] and ImageNet [17].

We use both the ANN and SNN versions of the networks to

Fig. 13: (a) Average energy consumption of ISAAC [75] nor-
malized to NEBULA-ANN, (b) Layerwise energy con-
sumption of INXS [56] normalized to NEBULA-SNN
for VGGNet.

evaluate the ANN and SNN hardware modes of NEBULA. Ta-

ble I lists the individual benchmark’s characteristics (accuracy,

depth, timesteps etc.) in their ANN and SNN versions. Further,

as a proof of concept, we also evaluate a hybrid version

of AlexNet [43], VGGNet [76] and SVHN on our hybrid

architecture and the hybrid model accuracies are reported in

Table II. We map the networks to our architecture and use

an analytical model to estimate the system-level area, power,

energy and throughput for the benchmarks. We also compare

our ANN accelerator design with the state-of-the-art CNN

accelerator, ISAAC [75]. For this, we estimate their energy

consumption using the component parameters reported in the

paper. Since ISAAC is designed for 16-bit computations, while

NEBULA is optimized for 4-bits, we adapt the ISAAC design

to cater to 4-bit computations for a fair and direct comparison.

As a result, we reduce the number of cycles required for

16-bit bit-serial computations from 16 cycles to 4 cycles in

ISAAC, and also, scale down the ADC power accordingly.

On the other hand, to provide a fair comparison with the

SNN mode on NEBULA, we choose the SNN accelerator,

INXS [56]. Table III reports the power, area and count of all

the components used in NEBULA. Finally, we analyze the

NEBULA architecture in ANN, SNN and hybrid modes and

elucidate the merits of each.

A. Comparison with ISAAC

Figure 12 shows the layer-wise energy consumption of

MobileNet-v1 and AlexNet on ISAAC [75], normalized to

the energy consumption of NEBULA. On an average, the

energy consumption of NEBULA, while running MobileNet-

v1, is ≈7.9× lower when compared to executing on ISAAC.

Similarly, AlexNet shows a ≈2.8× improvement in energy

efficiency over ISAAC. One of the reasons for this is, the

bit-serial computations in ISAAC lead to a deep pipeline and

consequently a higher latency. Intra-tile pipeline in ISAAC

for computing the dot-product one bit at a time, combined

with layer replication, causes many components including the

memristive crossbars and power-hungry ADCs to be active

across multiple cycles. While our design also replicates kernels

to gain higher parallelism, our intra-NC pipeline has fewer

stages. This is enabled by the all-spin DW-MTJ crossbar

arrays, which perform the dot-product in a single cycle after

which its dynamic power is zero, if there are no more inputs.

Additionally, since the weights are programmed on a single

372

synaptic device as opposed to being sliced across multiple

devices in the crossbar, the ADC and shift-add operations

needed to aggregate different weight slices and the associated

overhead are also avoided. This helps to save energy in

layers with smaller receptive fields. For layers with large

receptive fields, NEBULA attempts to contain the merge-

summing within a super-tile by virtue of its hierarchical NUs.

As a result, it is able to save energy for all layers with various

receptive field sizes.

We further notice in Figure 12 that the energy savings in

the even-numbered layers 2, 4, 6, 8 etc. that correspond to

depthwise-separable convolutions in MobileNet-v1 are gener-

ally higher as compared to the savings in the odd-numbered

layers, which perform point-wise convolutions. This is because

the crossbar utilization is low due to smaller receptive field

size of separable convolutions, leading to lower power con-

sumption. As opposed to MobileNet-v1, the AlexNet network

has only dense convolutions, resulting in higher crossbar

utilization. Its large convolution kernels sometimes occupy

multiple NCs, which can lead to the use of ADC and thereby,

increase the energy consumption of NEBULA. Figure 13(a)

shows the overall energy consumption of ISAAC with respect

to NEBULA for different ANN benchmarks. The proposed

architecture is energy-efficient across a variety of networks

with different layer sizes and depths. Energy savings are

highest for MobileNet because it consists of light-weight

convolution layers that have small Rf sizes, which therefore,

can be contained within an NC.

B. Comparison with INXS

As NEBULA is specifically designed and optimized for

SNNs, we see major benefits of our design when compared

to a contemporary SNN accelerator, INXS [56]. Figure 13(b)

shows the layer-wise energy consumption of VGG-SNN on

INXS normalized to that of NEBULA to be ≈45× higher

on average. The reasons for such high energy savings in

NEBULA are two-fold: firstly, the thresholding logic is lo-

calized to a neural core and is performed in-situ by the MTJ

neuron units by virtue of their domain wall movement. In

INXS, the membrane potential increments from the crossbars

are first converted to digital signals using an ADC, and after

summation of partial sums are sent on the network to the

neuron unit. Secondly, at the neuron unit in INXS, an SRAM

read is performed to retrieve the previous membrane potential,

which gets added to the current potential increment and is

written back into the register. This operation happens at every

algorithmic timestep of the SNN leading to high energy over-

head. The NEBULA-SNN architecture avoids these multiple

loads and stores otherwise needed for SNN operation and

localizes the thresholding logic within the NC for most cases.

We also observe from Figure 13(b) that the fully connected

(FC) layers show greater savings than the convolution (conv)

layers. This is because (for this case) the FC layers have

smaller Rf sizes compared to the conv layers, which helps

to avoid ADC operations. In addition, as we go deeper into

the network, the low spiking rate of neurons also helps to

reduce the dynamic power consumption of those layers.

C. Analyzing NEBULA

1) Power Considerations in NEBULA: ANN-SNN conver-

sion relies on the fact that a ReLU unit behaves in a similar

manner to an IF spiking neuron. In other words, it is an

alternative form of information encoding, where the multi-

bit ANN neuron output is encoded as a set of binary signals

distributed over time. The 0, 1 binary spike representation

can be leveraged to reduce the peak and average power

consumption of a system, by turning off computations in the

absence of spikes. Figure 14 shows the layer-wise peak power

consumption of NEBULA-ANN relative to NEBULA-SNN

for different networks. As we can see, the ANN peak power

consumption can be as high as ≈50× compared to SNN.

Instantaneous peak power consumption has significant impact

on the chip power grid design and the cost of packaging,

especially for low-cost edge devices. SNNs provide a knob

to redistribute the higher instantaneous power of ANNs over

multiple clock cycles. Figure 17 (bottom axes) shows the

average power consumption of NEBULA-SNN with respect

to NEBULA-ANN for different benchmarks. Results from

all our benchmarks show that the SNN mode is ≈7× more

power-efficient than the ANN mode. Note that while other

circuit-level/architecture optimizations could be potentially

explored to reduce the peak power consumption, ANN-SNN

conversion provides a mathematically consistent framework

to automatically distribute ANN computations over time by

utilizing the same hardware architecture on NEBULA. The

number of iterations for SNN can be increased to reduce the

instantaneous peak power and reach ANN accuracy.

2) Energy Consumption in NEBULA: Figures 15(a) and (b)

show relative energy consumption of the major components

in NEBULA in the SNN and ANN modes for VGGNet,

respectively. Due to the low power design of spiking NCs,

particularly of MTJ crossbars and DACs (refer to Table III),

they make a small contribution (≈23%) to the overall energy

as compared to their energy contribution in the ANN cores

(65.5%). As a result, the SRAM energy becomes more signifi-

cant in the SNN mode (due to higher static power of SRAMs)

and contributes to 36.6% of the total on average. Although

there is only one ADC per NC, its energy contribution in

SNN mode is higher (≈12%) compared to that in ANN mode

due to the large number of time-steps for which it needs to be

active. We also observe that the relative energy consumption

of the deeper layers is higher in ANN mode as compared to

SNN. This can be attributed to the high activation sparsity of

SNNs in later layers, which is also corroborated by Figure 4.

Figure 16 reports the relative energy breakdown of eight

different SNNs and ANNs on NEBULA, which shows similar

trends as observed on VGGNet (Figure 15) for other network

models. Overall, in the SNN mode, SRAM memories and

crossbars followed by eDRAM mostly dominate the energy

consumption, whereas in the ANN mode, crossbars and DACs

are the major energy consumers.

373

Fig. 14: Layerwise peak power of ANN compared to SNN on NEBULA for various models.

Fig. 15: Component-wise energy breakdown of VGGNet on NEBULA in (a) SNN and (b) ANN modes.

Fig. 16: Component-wise relative energy breakdown of various
models on NEBULA in (a) SNN and (b) ANN modes.

3) NEBULA Hybrid SNN-ANN Architecture: Figures 17(a),

(b) and (c) show a comparative behavior of SNN, hybrid

and ANN models on NEBULA. The top axes show energy

consumption of hybrid and ANN models with respect to

SNN. The x-axis displays the number of time-steps for which

the models were simulated. Starting from a pure SNN, we

progressively add more ANN layers to the hybrid model from

left to right (number of ANN layers in hybrid model are

annotated in yellow). The rightmost bar shows pure ANN.

The figures indicate that the energy consumption of SNN is

≈5-10× higher compared to that of the ANN and ≈1.1-2.5×
higher than the hybrid models. The higher energy consumption

of SNN is an artifact of distributing the computations in

time. Since both the ANN and SNN hardware in NEBULA

have the same synchronization clock, higher algorithmic time

steps directly translates to higher energy consumption. This

could potentially be mitigated by employing more efficient

temporal codes at the algorithm level and is a field of active

research [52], [55], [58].

We attempt to counter the high energy consumption of

SNNs by performing a small part of the computations in

the ANN domain. This serves the dual purpose of keeping

both latency and energy in check, while also maintaining

higher accuracy compared to pure SNNs. The dotted lines in

Figure 17 indicate iso-accuracy points of the SNN and hybrid

models. The numbers next to the red arrows above the hybrid

bars indicate the difference in accuracy of the hybrid model

compared to pure SNNs for the same number of time steps.

For example, the hybrid bar consisting of 3 ANN layers at

t=100 time steps in Figure 17(b) has ≈14% higher accuracy

compared to a pure SNN simulated for 100 time steps.

The bottom axes in Figures 17(a), (b) and (c) show the

power consumption of SNN and hybrid models normalized

to the ANN power consumption on NEBULA for AlexNet,

VGGNet and SVHN networks. The ANN power consumption

is ≈6.25× higher than SNN for SVHN and ≈10× higher

for AlexNet and VGGNet models. Compared to the hybrid

models, the ANN power consumption is at least 3.6× and up

to ≈9.3× higher. This establishes the importance of SNN-

ANN hybrid models as a trade-off between energy/latency

and power. Hybrid models can benefit from the low power

requirement of SNNs, while also reducing the high latency and

energy consumption of SNNs. The normalized power curve

374

Fig. 17: SNN vs Hybrid vs ANN: Power and energy comparisons on NEBULA for (a) AlexNet, (b) VGGNet, (c) SVHN models.

shows that the power consumption of the hardware increases

as more ANN layers are added to the hybrid model and in the

worst case, where all but one layers are in the ANN mode, it

will approach the ANN power consumption. Also, the network

layer size (number of neurons) increases as we go from the

bottom-up, requiring more AUs to be active, thereby increasing

power overhead. As a result, it is important to have few ANN

layers in the hybrid model to minimize this overhead.

VII. CONCLUSIONS

In the quest for designing more power-efficient SNN ar-

chitectures to solve complex problems akin to a human

brain, this paper presents a spin-based ultra-low power

architecture, called NEBULA. In contrast to the prior

CMOS/PCRAM/RRAM based designs, the proposed MTJ-

based design is inherently more power-efficient because it

operates in mV programming voltage range compared to V
range for other devices. Using this MTJ-based basic neuron

and synapse model, we design a morphable neuron core that

has the flexibility to operate as an SNN, ANN or a hybrid

network for inference – a distinct advantage compared to prior

art. In addition, the neural cores need minimal number of

power hungry ADCs and DACs, required in other designs.

Using the neural cores, we show how the design can be

scaled to integrate a large number of tiles for solving complex

problems.

We demonstrate the competitive performance and energy-

efficiency of the SNNs as well as the hybrid models on

a suite of workloads. Comparison of the NEBULA design

with state-of-the-art ISAAC [75] design in the ANN mode

shows that our MTJ-based architecture is ≈2.8 to ≈7.9×
more energy-efficient than the former. Similarly, in the SNN

mode, NEBULA is ≈45× more energy efficient than the INXS

design [56]. Power comparison between NEBULA ANN and

SNN modes indicate that the latter is ≈6.25 to 10× more

power-efficient for the observed benchmarks.

REFERENCES

[1] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015. [Online]. Available: https://www.
tensorflow.org/

[2] M. Alizadeh et al., “A Systematic Study of Binary Neural Networks’
Optimisation,” in ICLR, 2019.

[3] M. Alwani et al., “Fused-layer CNN accelerators,” in MICRO, 2016.

[4] A. Ankit et al., “RESPARC: A Reconfigurable and Energy-Efficient
Architecture with Memristive Crossbars for Deep Spiking Neural Net-
works,” in DAC, 2017.

[5] A. Ankit et al., “PUMA: A Programmable Ultra-efficient Memristor-
based Accelerator for Machine Learning Inference,” in ASPLOS, 2019.

[6] B. Benjamin et al., “Neurogrid: A Mixed-Analog-Digital Multichip
System for Large-scale Neural Simulations,” Proc. IEEE, 2014.

[7] J. Bjorck et al., “Understanding Batch Normalization,” in NeurIPS,
2018.

[8] Y. Boureau et al., “A Theoretical Analysis of Feature Pooling in Visual
Recognition,” in ICML, 2010.

[9] Y. Cao et al., “Spiking Deep Convolutional Neural Networks for Energy-
Efficient Object Recognition,” IJCV, 2015.

[10] M. Chen et al., “Magnetic Skyrmion as a Spintronic Deep Learning
Spiking Neuron Processor,” IEEE Trans. Magn., 2018.

[11] V. Chen et al., “An 8.5mW 5GS/s 6b flash ADC with dynamic offset
calibration in 32nm CMOS SOI,” in VLSIC, 2013.

[12] H.-P. Cheng et al., “Exploring the Optimal Learning Technique for IBM
TrueNorth Platform to Overcome Quantization Loss,” in NANOARCH,
2016.

[13] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” 2014.

[14] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,” in
ISCA, 2016.

[15] T. Chou et al., “CASCADE: Connecting RRAMs to Extend Analog
Dataflow In An End-To-End In-Memory Processing Paradigm,” in
MICRO, 2019.

[16] M. Davies et al., “Loihi: A Neuromorphic Manycore Processor with
On-chip Learning,” IEEE Micro, 2018.

[17] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,”
in CVPR, 2009.

[18] P. U. Diehl et al., “Fast-classifying, High-accuracy Spiking Deep Net-
works through Weight and Threshold Balancing,” in IJCNN, 2015.

[19] D. Drubach, The Brain Explained. Prentice Hall, 2000.

[20] S. Emori et al., “Spin Hall Torque Magnetometry of Dzyaloshinskii
Domain Walls,” Phys. Rev. B, 2014.

[21] X. Fong et al., “KNACK: A Hybrid Spin-charge Mixed-mode Simulator
for Evaluating Different Genres of Spin-transfer Torque MRAM Bit-
cells,” in SISPAD, 2011.

[22] S. B. Furber et al., “The Spinnaker Project,” Proc. IEEE, 2014.

[23] H. G. et al., “Densely Connected Convolutional Networks,” CVPR, 2016.

[24] S. Ghosh-Dastidar et al., “Spiking Neural Networks,” IJNS, 2009.

[25] F. Hamzaoglu et al., “A 1 Gb 2 GHz 128 GB/s Bandwidth Embedded
DRAM in 22 nm Tri-Gate CMOS Technology,” IEEE J. Solid-State
Circuits, 2015.

[26] K. J. Han et al., “State-of-the-Art Speech Recognition Using Multi-
Stream Self-Attention with Dilated 1D Convolutions,” ASRU Workshop,
2019.

[27] J. Hauswald et al., “Sirius: An Open End-to-End Voice and Vision
Personal Assistant and its Implications for Future Warehouse Scale
Computers,” in ASPLOS, 2015.

[28] K. He et al., “Deep Residual Learning for Image Recognition,” in CVPR,
2016.

375

[29] A. Hirohata et al., “Roadmap for Emerging Materials for Spintronic
Device Applications,” IEEE Trans. Magn., 2015.

[30] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” ArXiv, 2017.

[31] S. Ikeda et al., “Tunnel Magnetoresistance of 604% at 300 K by
Suppression of Ta Diffusion in Co Fe B/ Mg O/ Co Fe B Pseudo-
spin-valves Annealed at High Temperature,” Appl. Phys. Lett., 2008.

[32] “Intel Math Kernel Library. Reference Manual,” https://software.intel.
com/en-us/mkl-developer-reference-c, Intel Corporation.

[33] S. Ioffe et al., “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” ArXiv, 2015.

[34] R. Islam et al., “Device and Materials Requirements for Neuromorphic
Computing,” J Phys D Appl Phys, 2018.

[35] A. S. Iyengar, “Energy-Efficient and Secure Designs Of Spintronic
Memory: Techniques and Applications,” Ph.D. dissertation, The Penn-
sylvania State University, 2018.

[36] B. L. Jackson et al., “Nanoscale Electronic Synapses Using Phase
Change Devices,” JETC, 2013.

[37] S. Jain et al., “RxNN: A Framework for Evaluating Deep Neural
Networks on Resistive Crossbars,” ArXiv, 2018.

[38] S. H. Jo et al., “Nanoscale Memristor Device as Synapse in Neuromor-
phic Systems,” Nano Lett., 2010.

[39] N. P. Jouppi et al., “In-datacenter Performance Analysis of a Tensor
Processing Unit,” in ISCA, 2017.

[40] E. R. Kandel et al., Principles of Neural Science. McGraw-hill New
York, 2000.

[41] R. E. Kass et al., “A Spike-Train Probability Model,” Neural Comput.,
2001.

[42] A. Krizhevsky et al., “Learning Multiple Layers of Features from Tiny
Images,” , 2009.

[43] A. Krizhevsky et al., “Imagenet Classification With Deep Convolutional
Neural Networks,” in NeurIPS, 2012.

[44] D. Kuzum et al., “Nanoelectronic Programmable Synapses Based on
Phase Change Materials for Brain-Inspired Computing,” Nano Lett.,
2011.

[45] A. F. Laguna et al., “Ferroelectric fet based in-memory computing for
few-shot learning,” in GLSVLSI, 2019.

[46] Y. LeCun et al., “MNIST Handwritten Digit Database,”
http://yann.lecun.com/exdb/mnist/, 2010.

[47] D. Lee et al., “Flexon: A Flexible Digital Neuron for Efficient Spiking
Neural Network Simulations,” in ISCA, 2018.

[48] J.-J. Lee et al., “Integrated Neuron Circuit for Implementing Neuromor-
phic System with Synaptic Device,” Solid-State Electron., 2018.

[49] K. Lee, “Introducing Big Basin: Our Next-generation AI Hard-
ware,” ”https://engineering.fb.com/data-center-engineering/introducing-
big-basin-our-next-generation-ai-hardware”.

[50] S. Lequeux et al., “A Magnetic Synapse: Multilevel Spin-torque Mem-
ristor with Perpendicular Anisotropy,” Sci. Rep., 2016.

[51] H. Li et al., “Neuro-inspired Computing with Emerging Memories:
where Device Physics Meets Learning Algorithms,” in Spintronics XII,
2019.

[52] T. Liu et al., “PT-spike: A Precise-time-dependent Single Spike Neuro-
morphic Architecture with Efficient Supervised Learning,” in ASP-DAC,
2018.

[53] T. Luo et al., “Dadiannao: A Machine-Learning Supercomputer,” in
MICRO, 2014.

[54] R. Mochida et al., “A 4M Synapses integrated Analog ReRAM based
66.5 TOPS/W Neural-Network Processor with Cell Current Controlled
Writing and Flexible Network Architecture,” in IEEE Symposium on
VLSI Technology, 2018.

[55] H. Mostafa, “Supervised Learning Based on Temporal Coding in Spiking
Neural Networks,” IEEE Trans. Neural Netw. Learn. Syst., 2016.

[56] S. Narayanan et al., “INXS: Bridging the Throughput and Energy Gap
for Spiking Neural Networks,” in IJCNN, 2017.

[57] V. Narayanan et al., “Video Analytics Using Beyond CMOS Devices,”
in DATE, 2014.

[58] E. O. Neftci et al., “Surrogate Gradient Learning in Spiking Neural
Networks,” 2019.

[59] Y. Netzer et al., “Reading Digits in Natural Images with Unsupervised
Feature Learning,” NeurIPS, 2011.

[60] Nvidia Corporation, “GPU-Based Deep Learning Inference,”
”https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson
tx1 whitepaper.pdf”.

[61] D. S. Park et al., “Specaugment: A Simple Data Augmentation Method
for Automatic Speech Recognition,” ArXiv, 2019.

[62] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in NeurIPS, 2019.

[63] J. Pei et al., “Towards Artificial General Intelligence with Hybrid Tianjic
chip Architecture,” Nature, 2019.

[64] M. Piccolino, “Luigi Galvani’s Path to Animal Electricity,” Comptes
Rendus Biologies, 2006.

[65] M. Putic et al., “Dyhard-DNN: Even More DNN Acceleration with
Dynamic Hardware Reconfiguration,” in DAC, 2018.

[66] D. Querlioz et al., “Immunity to Device Variations in a Spiking Neural
Network With Memristive Nanodevices,” IEEE Trans. Nanotechnol.,
2013.

[67] B. Reagen et al., “Minerva: Enabling Low-power, Highly-accurate Deep
Neural Network Accelerators,” in ISCA, 2016.

[68] B. Rueckauer et al., “Conversion of Continuous-Valued Deep Networks
to Efficient Event-Driven Networks for Image Classification,” Front.
Neurosci., 2017.

[69] S. Schmitt et al., “Neuromorphic hardware in the loop: Training a deep
spiking network on the brainscales wafer-scale system,” in IJCNN, 2017.

[70] A. Sengupta et al., “A Vision for All-spin Neural Networks: A Device
to System Perspective,” IIEEE Trans. Circuits Syst. I, Reg. Papers, 2016.

[71] A. Sengupta et al., “Probabilistic Deep Spiking Neural Systems Enabled
by Magnetic Tunnel Junction,” IEEE Trans. Electron Devices, 2016.

[72] A. Sengupta et al., “Proposal for an All-spin Artificial Neural Network:
Emulating Neural and Synaptic Functionalities through Domain Wall
Motion in Ferromagnets,” IEEE Trans. Biomed. Circuits Syst., 2016.

[73] A. Sengupta et al., “Performance Analysis and Benchmarking of All-
spin Spiking Neural Networks (special session paper),” in IJCNN, 2017.

[74] A. Sengupta et al., “Going Deeper in Spiking Neural Networks: VGG
and Residual Architectures,” Front. Neurosci., 2019.

[75] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” ISCA, 2016.

[76] K. Simonyan et al., “Very Deep Convolutional Networks for Large-scale
Image Recognition,” in ArXiv, 2014.

[77] J. C. Slonczewski, “Currents, Torques, and Polarization Factors in
Magnetic Tunnel Junctions,” Phys. Rev. B, 2005.

[78] L. Song et al., “Pipelayer: A Pipelined Reram-based Accelerator for
Deep Learning,” in HPCA, 2017.

[79] H. J. M. Swagten et al., “Magnetic Tunnel Junctions,” in Encyclopedia
of Materials: Science and Technology. Elsevier, 2010.

[80] C. Szegedy et al., “Going Deeper with Convolutions,” in CVPR, 2015.
[81] M. Tan et al., “Efficientnet: Rethinking Model Scaling for Convolutional

Neural Networks,” ArXiv, 2019.
[82] D. L. Tennenhouse et al., “A Survey of Active Network Research,” IEEE

Commun. Mag., 1997.
[83] H. Touvron et al., “Fixing the Train-Test Resolution Discrepancy,” in

NeurIPS, 2019.
[84] S.-Z. Ueng et al., “Cuda-lite: Reducing gpu programming complexity,”

in LCPC, 2008.
[85] A. Vansteenkiste et al., “MuMax: a New High-performance Micromag-

netic Simulation Tool,” J. Magn. Magn. Mater., 2011.
[86] M. Versace et al., “The Brain of a New Machine,” IEEE Spectr., 2010.
[87] N. Wang et al., “Learning a Deep Compact Image Representation for

Visual Tracking,” in NeurIPS, 2013.
[88] F. Wu et al., “Regulating Firing Rates in a Neural Circuit by Activating

Memristive Synapse with Magnetic Coupling,” Nonlinear Dynamics
Psychol. Life Sci., 2019.

[89] C. Xue et al., “24.1 A 1Mb Multibit ReRAM Computing-In-Memory
Macro with 14.6ns Parallel MAC Computing Time for CNN Based AI
Edge Processors,” in ISSCC, 2019.

[90] B. Yan et al., “Understanding the Trade-offs of Device, Circuit and
Application in ReRAM-based Neuromorphic Computing Systems,” in
IEDM, 2017.

[91] C. Zhang et al., “Optimizing FPGA-Based Accelerator Design for Deep
Convolutional Neural Networks,” in FPGA, 2015.

[92] T. Zhang et al., “Memristive Devices and Networks for Brain-Inspired
Computing,” Phys. Status Solidi-R, 2019.

[93] W. Zhao et al., “New Generation of Predictive Technology Model for
sub-45 nm Early Design Exploration,” IEEE Trans. Electron Devices,
2006.

[94] N. Zmora et al., “Neural Network Distiller: A Python Package For DNN
Compression Research,” https://arxiv.org/abs/1910.12232, 2019.

376

