
Ren et al., Sci. Adv. 2020; 6 : eaaz9125     1 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 9

C H E M I C A L  P H Y S I C S

Chemomechanical origin of directed locomotion driven 
by internal chemical signals
Lin Ren1, Ling Yuan1, Qingyu Gao1,2*, Rui Teng1, Jing Wang1, Irving R. Epstein2*

Asymmetry in the interaction between an individual and its environment is generally considered essential for the 
directional properties of active matter, but can directional locomotions and their transitions be generated only 
from intrinsic chemical dynamics and its modulation? Here, we examine this question by simulating the locomo-
tion of a bioinspired active gel in a homogeneous environment. We find that autonomous directional locomotion 
emerges in the absence of asymmetric interaction with the environment and that a transition between modes of 
gel locomotion can be induced by adjusting the spatially uniform intensity of illumination or certain kinetic and 
mechanical system parameters. The internal wave dynamics and its structural modulation act as the impetus for 
signal-driven active locomotion in a manner similar to the way in which an animal’s locomotion is generated via 
driving by nerve pulses. Our results may have implications for the development of soft robots and biomimetic 
materials.

INTRODUCTION
Diverse, often complex, locomotion is a key feature of active matter 
far from equilibrium (1–4). Elements of matter consume energy to 
interact with other elements and/or with the environment. Global 
locomotion and other collective behaviors then organically emerge 
on a macroscopic level. For living organisms, locomotion typically 
involves (5) fundamental direct and retrograde waves, i.e., motion 
propelled by muscular waves along or opposed, respectively, to the 
direction of motion, and more sophisticated modes such as walking, 
swimming, reciprocating migration, etc. A general understanding 
of the dynamic origin of active matter locomotion has not yet been 
achieved (1). A solution to this challenging task would be a major 
contribution toward the design of soft robots and active materials.

Asymmetry in the interaction between an individual and its 
environment is generally considered essential for the directional 
properties of active matter locomotion (1–4, 6). This principle also 
applies to the locomotion of living organisms; e.g., gastropods (such 
as snails) interact with substrates through viscoelastic mucus (with 
hysteretic asymmetry properties), while annelids (e.g., earthworms) 
harness their setae to produce an asymmetric frictional force during 
peristaltic interactions with the ground (5). In artificial systems, 
three methods are frequently used to introduce asymmetries into 
the system. In the first, asymmetries are incorporated into individual 
units (e.g., Janus particles) and generate (7) self-diffusiophoresis, 
self-electrophoresis, self-thermophoresis, self-acoustophoresis, or 
self-osmophoresis to drive motion. In the second, uniform particles 
or samples are subject to an inhomogeneous external field, such as 
a gradient of electric field, temperature, solute concentration, 
acoustic pressure, etc., that generates stresses and flows near the 
particle surface to drive its movement (8). Photoresponsive materials 
in the presence of patterned light (9) are another example of this 
approach. Moreover, the coupling dynamics achieved by using a 
field gradient can produce autonomous locomotion. Examples 
include the self-shadow effect of a photoactive polymer film to drive 

autonomous peristalsis of the film under directional illumination 
(10), the positive and negative phototactic locomotion of a Belousov-
Zhabotinsky (BZ) gel under differential illumination (11), and the 
periodic migration of a BZ gel attributed to autonomous transitions 
of chemical dynamics under linear gradient illumination (12). The 
third method is a combination of the above two approaches, i.e., 
coupling between a heterogeneous field and a nonuniform medium. 
An example is the use of a time-varying magnetic field to drive and 
control a small untethered sample containing an embedded magnetic 
structure to perform the complex, multimodal locomotion involved 
in swimming, climbing, rolling, walking, jumping, or crawling (13). 
Note that although locomotion of the magnetic sample exhibits 
complex functionality, it is not autonomous.

Nevertheless, there are many examples in nature indicating that 
the origin of active matter locomotion is not necessarily an asym-
metric interaction between an individual and its environment or 
an evolving asymmetrically embedded structure. For example, an 
animal’s locomotion can be not only complicated by limbs or wings, 
but it is also related to the system dynamics of internal interactions 
that generate stress asymmetries and play the basic role of a driving 
force (5). To cite two examples, amoeboid locomotion is caused by 
signal communication between individual cells (14), and the auton-
omous movement of a liquid crystal droplet is due to the collective 
dynamics of active nematics inside the drop (15).

These points raise the following fundamental questions: In addi-
tion to exploiting external asymmetries in natural and man-made 
systems, can locomotion and transitions between locomotive modes 
be generated solely by the intrinsic dynamics of the system (16)? 
Can this general problem concerning active matter locomotion be 
studied in a relatively simple chemical system, regardless of the 
much greater complexity of living organisms and fluid systems?

Here, we try to answer these questions by studying a bioinspired 
active gel (17) locomoting in a homogeneous environment. Our 
system is a widely studied self-oscillating polymer gel that hosts the 
tris(bipyridine)ruthenium [Ru(bipy)]-catalyzed Belousov-Zhabotinsky 
reaction (BZR). It is a reaction-diffusion-stress coupling system, 
which can transform chemical energy into mechanical work auto
nomously, producing not only periodic swelling-deswelling but also 
continuous locomotion of the gel (18). The redox state of the catalyst 
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undergoes periodic changes during the homogeneous BZR oscillations, 
causing the gel to undergo autonomous swelling and deswelling, 
reminiscent of the rhythmic muscle contractions in animals (17). 
In a large enough gel sample, the propagation of chemical waves 
(spatiotemporal patterns of the concentration of oxidized catalyst) 
drives gel peristalsis, resulting in locomotion of the whole sample. 
This phenomenon is analogous to nerve pulses driving the locomo-
tion of animals through deformable muscles (19). The gel lattice-
spring model (gLSM) proposed by Balazs and coworkers (20–22) 
captures the chemomechanical dynamics of the BZ gel, i.e., the 
large-scale shape changes (23), locomotion, and collective behaviors 
of the gel sample (24).

The first effort toward understanding BZ gel locomotion reported 
(25) that the direction of motion results from a counter-effect of 
polymer-solvent interdiffusion during the chemical waves, which 
propels the gel against the direction of wave motion (retrograde 
wave locomotion). Subsequently, under a step-changed light inten-
sity condition, another fundamental mode of locomotion, i.e., di-
rect wave locomotion, and a retrograde-direct wave transition, were 
found, which was attributed to a “chemical anchoring effect” mod-
ulating the push-pull competition of the chemical waves (19). That 
study revealed that the internal dynamics (push-pull effects) of the 
system play a dominant role in the gel locomotion. A more complex 
form of locomotion, reciprocating migration of the gel, was subse-
quently found (12), in which an autonomous transition between 
retrograde and direct wave locomotion is rooted in the interaction 
between the system’s dynamic instability and a gentle spatial gradi-
ent of illumination. Like neuronal signals, which can be described, 
for example, by the Fitzhugh-Nagumo (26–28) or Hodgkin Huxley 
model (29), BZ waves, described by the Oregonator model, interact-
ing with an active gel are nonlinear signal waves, which can serve as 
an analog of active (e.g., animal) locomotion.

It is, however, difficult to extract the essential origin of the gel 
locomotion from these earlier studies (11, 12, 19) due to the pres-
ence of differential illumination (i.e., the gel interacts with a hetero-
geneous environment), which introduces asymmetrical interaction 
into the system. In this work, we address the questions raised above 
by simulating a BZ gel that can move in a periodic space under a 
homogeneous environment; that is, no asymmetrical effect is intro-
duced into the system from external conditions. We also examine 
the effects of modifying the parameters that govern the internal 
dynamics of the gel.

RESULTS
Locomotion modes and their transition in one  
spatial dimension
To investigate the gel locomotion in a homogeneous environment, 
we use pulse waves to propel a stimulus-responsive gel under uni-
form light intensity on a pseudo–one-dimensional (1D) ring. The 
1D gel system can be seen as a collective of homogeneous synchro-
nizing lattice oscillators. Once initialized, e.g., by a random fluctuation, 
the phase differences between these diffusion mechanics–coupled 
oscillators evolve to generate pulse waves that repeatedly propagate 
through the periodic boundary even in the absence of illumination, 
and no asymmetry is introduced into the gel sample via the boundary 
conditions or the environment (see fig. S1). The coupled oscillators 
lead to propagating pulse waves, resulting in directional locomotion 
of the entire gel. To speed up the simulations, we initiate pulse 

waves to propagate in the gel with the most likely wave number, i.e., 
one-pulse waves, according to fig. S2. A modified gLSM is used to 
study the gel locomotion, in which the kinetics of the photosensitive 
BZR, i.e., photoinduction and photoinhibition effects (30), the rela-
tionship between extreme values of the v variable and the light 
intensity (19), and the illumination-induced bifurcation of local 
oscillations, are described by a two-variable photosensitive Oregonator 
model (11, 31). The chemical kinetics and the structure of the 
chemical waves can be modulated by varying the intensity of the 
homogeneous illumination (I), which allows us to control the gel 
locomotion propelled by the chemical waves. The details of the 
model, parameters, calculation procedures, and simulation settings 
are given in Materials and Methods.

We next consider the chemical dynamics and locomotion of a 
photosensitive BZ gel modulated by increasing levels of homoge-
neous illumination. Key transitions occur at the following light 
intensities Ia = 0.0625, Ib = 0.0809, Ic = 0.0870, and Id = 0.117: (i) 
simple-to-complex pulse waves with interval-asymmetry structures 
(IASs), (ii) retrograde structured pulse waves to a stationary balance 
between the driving effects of primary and backfired waves, (iii) gel 
with no net motion to direct wave motion, and (iv) breaking up of 
the IASs. These phenomena are discussed in more detail below.

At low light intensity (0.0 ≤ I < Ia), e.g., I = 0.02, as shown in 
Fig. 1A, simple pulse waves repeatedly propagate through the gel, 
propelling the gel to move opposite to the waves (inset view of the 
net displacement shown in Fig. 1B), generating retrograde wave gel 
locomotion. One can identify two wave regions in these simple 
waves: the wave front and the wave back are indicated in Fig. 1A. 
These regions respectively push and pull the local gel to move along 
the +x and −x directions alternately (“1-push” and “2-pull” in the 
inset of Fig. 1B), and the net displacement over 1 cycle is in the −x 
direction, as shown in the inset of Fig. 1B. We emphasize that gel 
locomotion is driven by simple pulse waves even without illumination, 
i.e., I = 0, indicating that internal interaction between BZ waves and 
active matter is the origin of the stress asymmetry between push and pull.

When the intensity exceeds Ia, IAS begin to emerge in the simple 
pulse waves. As shown in Fig. 1, C, E, and G, the simple pulse wave 
is transformed into a complex pulse wave. An IAS is a structural 
unit of these complex pulse waves produced by an illumination-
induced spatiotemporal distortion. A complete IAS is shown in the 
inset to Fig. 1G. Each complex pulse wave is formed by the arrange-
ment of six IASs (NIAS = 6 under illumination intensities Ia < I < Id), 
and each IAS is made up of two local waves, that is, a primary wave 
and a backfired wave. Primary waves are local waves that propagate 
along the overall direction of the pulse waves (red arrow in Fig. 1G, 
inset), whereas backfired waves are local waves that propagate in the 
opposite direction (blue arrow in Fig. 1G, inset). Each IAS has four 
wave regions, the primary wave’s front and back and the backfired 
wave’s front and back, which are roughly located at numbers 1 to 4, 
respectively, in Fig. 1G. With increasing illumination (Ia < I < Id), 
each IAS undergoes gradual distortion, as shown in Fig. 1 (C, E, and 
G). Note that the overall direction of pulse wave propagation does 
not change during this process. Under the driving force of these 
gradually distorting waves, the dynamics of the locus of the gel’s 
center, Rc, (adjusted for the moving baseline) changes gradually 
from quasiperiodic (Fig. 1D) to aperiodic oscillation (Fig. 1, F and H) 
with increasing illumination.

Meanwhile, the net displacement of the Rc locus shows the gel 
locomotion transition from a retrograde wave (I = 0.070, Fig. 1D) 
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Fig. 1. Spatiotemporal plots of v and the motion of the gel center under homogeneous illumination. The two columns display spatiotemporal plots of v and position 
of the gel center versus time, respectively. The light intensity is (A and B) I = 0.020, (C and D) I = 0.070, (E and F) I = 0.087, and (G and H) I = 0.110. Color denotes the 
concentration of v. Labels 1 to 4 in (G) denote the approximate positions of the four wave regions in one interval structure, respectively, the primary wave’s front and back 
and the backfired wave’s front and back. Movie S1 shows the gel locomotion at I = 0.0, 0.02, 0.070, 0.087, and 0.116.
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through a motionless state (I = Ic, Fig. 1F) and, ultimately, to a direct 
wave (I = 0.110, Fig. 1H). This transition is mediated by the IAS of 
the waves, and the zero net-displacement state of the gel is the critical 
state of the transition (light intensity Ic is the transition point). In 
this work, we have not found direct waves driven by simple pulse 
waves, which indicates that the presence of IAS may be necessary 
for the transition between retrograde and direct wave locomotion. 
When the intensity of illumination exceeds Id, the IAS breaks up 
into reverse-propagating pulse waves (see fig. S3), and the gel returns 
to retrograde wave locomotion comparable to that seen at low I, but 
in the opposite direction. Note that the retrograde-direct transition 
can also be generated by adjusting other system parameters such as 
 (Oregonator kinetic parameter), f (Oregonator stoichiometric 
parameter), * (chemistry-gel dynamic coupling parameter), K 
(wave number) and Lgel (size of the gel), as shown in figs. S4 to S7.

Kinematic analysis of gel locomotion
To clarify the origin of the homogeneous light-induced transition 
between locomotion modes, we quantify key characteristics of the 
pulse wave and the gel locomotion by introducing several parame-
ters: the local curvature [(x)] of the chemical waves (12), the mean 
velocity of the gel movement (Vg), and the mean net displacement 
of the gel center for each wave region (Li). The first step needed to 
ensure that these characterizations are useful is the division of the 
pulse wave into regions. We accomplish this by using the total 
differential of v in the spatiotemporal plots, which captures the 
integrated dynamics of the pulse waves. The differential expression 
reads

	​ dv  = ​ v​ x​​ dx + ​v​ t​​ dt​	 (1)

Using Eq. 1, we propose a criterion to divide the pulse wave 
regions, as shown in Table 1.

We choose this criterion based on the following reasoning. On 
the one hand, at the wave fronts of both simple (Fig. 1A) and com-
plex (Fig. 1, C, E and G) pulse waves, the local value of v increases 
with time (vt > 0), while at all wave backs, it decreases with time 
(vt < 0). On the other hand, when the overall motion of the pulse 
waves lies along the +x direction (with I < 0.117), the spatial gradi-
ents of v (i.e., vx) are negative and positive, respectively, at the pri-
mary wave front and wave back, but for backfired waves, the signs 
of vx are reversed due to the wave traveling in the −x direction, as 
shown in Fig. 1G. Therefore, the wave’s regions can be numerically 
identified by the criterion for vt and vx in Table 1. Using this criteri-
on, the changes of the wave regions with increasing I may be distin-

guished, as shown in Fig. 2A. Simple pulse waves (e.g., the plot with 
I = 0.02) contain only the primary wave’s front (1) and back (2). For 
complex pulse waves (plots with I = 0.07 to 0.116), the backfired 
wave front (3) and wave back (4) are adjacent to the primary wave 
front and wave back.

For gel locomotion driven by pulse waves, the mean velocity of 
gel movement (Vg) represents the push-pull effect of the waves with 
increasing light intensity. Integrating the instantaneous velocity of 
the local gel, i.e., Vp, as shown in Fig. 2B, over each wave region 
yields the displacement in that region, Li

	​​ L​ i​​ = ​ 1 ─ S ​ ​ ∑ 
j=1

​ 
S
  ​​​ ∑ 

k=1
​ 

G
  ​​ ​(​V​ p​​)​ i​​ t​	 (2)

where S denotes the grid number of the gel, G = T/t, T is the period 
of the pulse wave, and (Vp)i denotes velocity of grids located in the 
wave region i. The sum of Li over all IAS in one wave is the net dis-
placement (LT) driven by one pulse signal

	​​ L​ T​​ = ​∑ i=1​ N  ​​ ​L​ i​​​	 (3)

Then, Vg is given by

	​​ V​ g​​ T = ​L​ T​​​	 (4)

where N denotes the number of characteristic regions of a pulse 
wave (for a simple pulse wave, N = 2, and for a complex wave, 
N = 4).

Using the above characteristic parameters, we analyze the transi-
tion from retrograde to direct wave locomotion of the gel. Note that 
the growing instability of the simple pulse waves with increasing 
illumination is the key process modulating the driving force acting 
on the gel. Therefore, we first examine how the structure of the 
chemical waves varies with the light intensity. For chemical waves, 
a spatial plot of the local curvature [(x)] versus I describes the 
distortion of the waves with increasing illumination, as shown in 
Fig. 2C. The defining equation for (x) can be found in Eq. 11 of 
Materials and Methods. In Fig. 2C, when I < Ia (region I), (x) is 
always zero, which indicates that only simple pulse waves propagate 
in the gel. As I increases from Ia to Id (region II), a spatially periodic 
organization of (x) begins to emerge and gradually strengthen, 
leading to six periodic structures (IAS) and distortion of the pulse 
waves. Meanwhile, comparing Fig. 2A with Fig. 2C, we see that 
when I exceeds Ia, wave regions 3 and 4 start to appear. The shape of 
the waves shortly after onset is seen at I = 0.07, near the transition 
point (Ia), in the spatiotemporal plots shown in Fig. 2 (A and B). 
The plots show a backfired wave front (wave region 3), which stems 
from the primary wave front (wave region 1). Its back (wave region 4) 
originates from the primary wave’s back (wave region 2). The com-
plex dynamics in wave region 2 (primary wave back) play a key role 
in the transition of the locomotion mode and will naturally arise in 
our subsequent analysis.

The partial displacements Li (i = 1, 2, 3, 4) serve as the blocks 
from which the gel locomotion is built, since they characterize 
the propulsive contribution from each wave region. The key lies in 
finding the spatiotemporal region that dominates the mode transi-
tion of the gel locomotion. Fig. 2D, the Vg-I curve, shows the net 
velocity of gel locomotion as a function of the illumination intensity 
in simple pulse wave–driven retrograde wave locomotion [region I, 

Table 1. A criterion for identifying the subregions of chemical waves.  

Region of waves vt vx
Primary wave’s front 

(region 1)
>0 <0

Primary wave’s back 
(region 2)

<0 >0

Backfired wave’s front 
(region 3)

>0 >0

Backfired wave’s back 
(region 4)

<0 <0
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Vg < 0 and (x) = 0] as well as in complex pulse wave–propelled 
retrograde wave locomotion [region II, Vg < 0 and (x) ≠ 0] and 
complex pulse wave–driven direct wave locomotion [region II, 
Vg > 0 and (x) ≠ 0]. From Eqs. 3 and 4, and the above discussion, 
we have

	​​ V​ g​​ T  = ​ L​ primary​​ + ​L​ backfire​​​	 (5)

where Lprimary = L1 + L2 and Lbackfire = L3 + L4 are the net displace-
ments driven by the primary waves and the backfired waves, respec-
tively. For a simple pulse wave, there is no Lbackfire. To examine the 
competition between the primary and backfired waves that deter-
mines the transition from negative to positive Vg, we plot Lprimary 
and Lbackfire versus I in Fig. 2E. Here, the light intensity Ib denotes 
the critical point where Lprimary = Lbackfire. Near the retrograde-direct 
transition point Ic, Lprimary increases roughly linearly with I, while 

Lbackfire (which is negative) decreases at a rate that diminishes with 
I. A clearer view is shown in the inset of Fig. 2E, where |Lprimary|/​
|Lbackfire| increases linearly across Ic and is always larger than 1, indi-
cating that Lprimary dominates the transition from negative to posi-
tive Vg at Ic. The decomposition of Lprimary and Lbackfire into L1 to L4 
with increasing illumination around Ic is shown in Fig. 2F. One can 
see that L1 is nearly constant, whereas |L2| decreases substantially, 
resulting in a negative-to-positive transition of LT, indicating that 
L2 dominates the change of Lprimary. On the other hand, for back-
fired waves, the two curves L3-I and L4-I are roughly symmetric 
about the zero line (horizontal dashed line in Fig. 2F), so that they 
almost cancel each other. In summary, wave region 2, which is the 
primary wave back, is the key region for the retrograde-direct tran-
sition of the gel locomotion.

In this stimulus-responsive gel with chemomechanical activity, the 
locomotion of the gel stems from the chemically induced asymmetry 

Fig. 2. Pulse wave–driven gel kinematics under different intensities of homogeneous illumination. Spatiotemporal plots of (A) v and (B) Vp. Red and black dashed 
lines, respectively, denote vt = 0 and vx = 0, which coincide for simple pulse waves, as shown in the first column of spatiotemporal plots of (A) and (B). (C) Spatial distribution 
of (x) versus I. The plot consists of 116 data points at an interval of I = 0.001. (D) Vg versus I. (E) Lprimary and Lbackfire versus I. (F) Li versus I, i = 1 to 4. Light intensities Ia to Id 
denote critical points as follows: appearance of backfired waves, Lprimary = Lbackfire, Vg = 0, and IAS breakup, respectively. I, II, and III denote regions of simple, complex, and 
multiple waves, respectively.
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of the internal stress over the sample. We now analyze the internal 
dynamics of Vp by examining the effect of homogeneous illumina-
tion on the kinematic terms, i.e., the mean values of the gel velocity 
[(Vp)mean

i ], the stress gradient [(x)mean
i ], and the apparent friction co-

efficient [(′)mean
i ] in each wave region, as shown in Fig. 3. The rela-

tionship between the local velocity of the gel and the stress is given 
by (21)

	​​ V​ p​​ = ​  ​σ​ x​​ ─ ​ζ ′ ​(ϕ) ​​	 (6)

where ​​​ x​​  =  − ▽ (​​ osm​​ − ​​el​ 
1D​)​, ​​ζ ′ ​(ϕ ) = ​Λ​0​ −1​(1 − ϕ ) ​(ϕ / ​ϕ​ 0​​)​​ 3/2​​, Vp is the 

grid velocity of the gel, x is the stress gradient, and ′() is the 
apparent friction coefficient. The mean values of the kinematic 
parameters [(Vp)mean

i ] (x)mean
i , and (′)mean

i ] represent the average 
over each wave region (Fig. 3, A, C, and D). Ai, the area that each 
wave region occupies in the plots (Fig. 3, A and B), is also shown 
in Fig. 3B.

Each displacement Li can be decomposed into (Vp)mean
i   × Ai/S, as 

shown in Fig. 3 (A and B). (Vp)mean
i  varies linearly with illumination 

near Ic in all four wave regions. However, (Vp)mean
2  has a markedly 

smaller slope. The areas of the wave regions also undergo a roughly 
linear change with I around Ic; i.e., A3 and A4 increase, while A1 
and A2 decrease. Our analysis of (Vp)mean

i  and Ai suggests that the 
kinematics of L2 are dominated by the velocity of the gel rather than 
the relative areas of the wave regions.

We next analyze the mechanics of the local gel velocity (Vp) 
under the driving of the chemical waves using Eq. 6. The mean 
value of the apparent friction viscosity (′)mean

i  is investigated in 
Fig. 3D and fig. S8G. Under illumination Ic (see fig. S8G), the dis-
tribution of (′)mean

i  over each wave region is relatively uniform. 

Changes in the sign of Vp arise from x rather than from ′, which is 
always positive. We can estimate (Vp)mean

i  in each region by av-
eraging Eq. 6

	​​ (​V​ p​​)​
i
​ mean​  ≈ ​ 

​(​σ​ x​​)​i​ 
mean​
 ─ 

​(​ζ ′ ​(ϕ ) )​i​ 
mean​

 ​ (i  =  1, 2, 3, 4)​	 (7)

As shown in Fig. 3C, each curve of (x)mean
i  versus I shows a trend 

that parallels the corresponding (Vp)mean
i -I curve in Fig. 3A. Each 

(′)mean
i  changes little with I, especially for the primary wave. As the 

inset to Fig. 3D shows that the ratio of (′)mean
1  to (′)mean

2  is almost in-
dependent of I, implying that the notable decrease of |L2| near Ic 
(see Fig. 2F) is dominated by the mechanical term (x)mean

2 . Note 
that positive and negative x values favor direct and retrograde waves, 
respectively; thus, the changes in the pull effect [(x)mean

2 ] with 
illumination facilitate the transition from retrograde to direct 
waves.

The above analysis suggests that the insensitivity of ​​(​σ​ x​​)​2​ 
mean​​ to 

changes in I is the key to the locomotion transition. As shown in fig. S8 
(E and F) (at I = Ic), Vp and x display areas of both push and pull 
behavior within wave region 2. It seems clear that the Vp-induced 
decrease of |L2| (see Fig. 2F) and the x-induced decrease of |Vp| in 
wave region 2 (Fig. 3A) arise from the same mechanism. Both 
are generated from the internal competition between opposing 
domains in wave region 2. In Fig. 4A, at the critical light intensity 
(Ic), we can distinguish three sub-areas (2a, 2b, and 2c) in wave 
region 2 in which x is either negative (2a) or positive (2b and 2c).

As the illumination level increases, the net force that generates 
the retrograde-direct wave transition arises from two effects. First, 
there are four subregions, that is, wave regions 1, 2a, 2b, and 2c, in 
the primary wave of complex pulses. Both push (wave region 1) and 

Fig. 3. Effect of light intensity on the kinematic parameters in each region of an IAS. Mean values of kinematic parameters in each wave region: (A) (Vp)mean
i  versus I. 

(B) Ai versus I. (C) (x)mean
i  versus I. (D) (′)mean

i  versus I.
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pull effects (wave region 2a) in the primary wave are strengthened 
with illumination (see fig. S8F). Second, with increasing illumina-
tion, two additional subregions (2b and 2c) contribute growing 
push effects to offset the pull effect from subregion 2a, leading to a 
nearly constant value of (x)mean

2  with increasing illumination. Briefly, 
the mixing of the push and pull effects within wave region 2 leads to 
weakening of the total pull effect and, ultimately, to transition from 
retrograde to direct wave gel locomotion.

Dynamic origin of the transition from retrograde to direct 
wave locomotion
Why do multiple areas of push and pull effects coexist within wave 
region 2? We seek here to answer this question by examining the 
dynamical details of the stress gradient. In the gLSM, x is described 
by the following equation

	​​ ​ x​​ = B(, v ) ​​ x​​ − ​​​ *​  ​v​ x​​​	 (8)

where

	 ​B(, v) = 1 − 1 / (1 − ) + 2 ​​ 0​​  + 3 ​​ 1​​ ​​​ 2​ − ​​​ *​ v + ​C​ 0​​(​​ ⊥​​ ​​ 0​​ / ​​​ 2​ –1 / (2 ​​ 0​​))​	

The right side of Eq. 8 contains two composite terms, B(,v)x 
and vx (* is set to 1.0), where  and v are dynamical variables of 
the system. The quantities, v, , vx, x, and B are shown for pulse waves 
at several illumination intensities in fig. S8 (A to D and H, respec-
tively). Sub-areas of wave region 2 are marked as 2a, 2b, and 2c in 
each of these plots. From fig. S8H, we see that B is always negative. 
The volume fraction, , is positive by definition. As shown in 
Fig. 4B and fig. S8C, vx is always positive in wave region 2. So, 
according to Eq. 8, for x to be positive, x must be negative, i.e., we 
require a pushing force. Further, Fig. 4B shows that negative x 
and small positive vx occur in areas 2b and 2c of the pulse waves 

to give a push effect, offsetting the pull effect in area 2a of the pulse 
waves.

The dynamic term x in region 2 of the pulse wave is the key 
factor for the mode transition of the gel locomotion. As shown in 
Fig. 4B, x is antiphase to vx. The evolutions of , x v, and vx obey 
reaction-diffusion-mechanics coupling dynamics according to Eq. 9. 
As shown in Fig. 4C, the dynamics of local oscillations at the gel 
center undergo a bifurcation as the level of illumination is increased, 
changing from simple oscillations (e.g., the inset showing the u-v 
limit cycle with a stable periodic orbit at I = 0.020) to complex oscil-
lations (e.g., the u-v trajectories at I = 0.070, 0.087, and 0.110), with 
the bifurcation occurring at Ib. Because the pulse waves are generat-
ed from the diffusion of local oscillations through the gel, such a 
complex local oscillation appears to be necessary to support the 
backfired waves (see fig. S8A). In addition, as shown in the insets of 
Fig. 4C, when I > Ib, with increasing illumination the orbit expands 
in the u-v plane, which leads to a greater variation of v over time 
and space. The changes in  are strongly correlated with those in v, 
which accounts for the stimulus-responsive nature of the gel. Thus, 
over time, an illumination-enhanced oscillatory amplitude of v 
leads to an increasing amplitude of , x, and vx oscillations (see fig. 
S9, C and D). In essence, the parameter-induced instability of sim-
ple local oscillations constitutes the dynamic origin of the backfired 
waves, which leads to the transition from retrograde to direct wave 
locomotion of the gel in the absence of external asymmetries.

DISCUSSION
In summary, we used a modified gLSM model to study the locomo-
tion of a mechanosensitive BZ oscillating gel in a periodic space. 
Two locomotion modes, that is, retrograde and direct wave loco-
motion, as well as the transition between them, can be found in such 
a symmetrical system by adjusting kinetic or mechanical parameters. 

Fig. 4. Mixed push and pull effects within primary wave back and dynamic bifurcation diagram of maximum of v at the gel center. (A) Sub-areas of x plot at I = Ic. 
Red and black dashed lines, respectively, denote vt = 0 and vx = 0. (B) Spatial profiles of v, x, vx, and vxx within wave region 2 at I = Ic along the vertical red line in (A). 
(C) Dynamic bifurcation diagram of maximum of v at the gel center (vmax-center) versus I. The insets are the trajectories of the u-v oscillations at different light intensities.
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The numerical results indicate that the retrograde-direct transition 
of the gel locomotion occurs only if the gel is driven by complex 
pulse waves with IAS. Detailed analysis reveals that the complex 
pulse waves host four wave regions, including two push and two 
pull areas. Changes in the structure of these regions as the parame-
ters are varied modulate the competition between the push and pull 
effects to generate the transition between modes. We have found 
that the dominant factor lies in the behavior of the primary wave 
back, in which homogeneous light-enhanced structural changes of 
the IAS inhibit the pull effect from this wave region to produce the 
retrograde-direct transition. Analysis of the chemical dynamics un-
covers the origin of the locomotion, which is that the simple pulse 
waves lose stability to a more complex waveform, as modulated by 
the homogeneous illumination intensity and/or other parameters.

Further, in the absence of external asymmetric environmental 
interaction, or even in an isolated system without illumination 
(movie S1), autonomous active locomotion can be driven by inter-
action between simple internal nonlinear pulses and active respon-
sive matter within the system. This interaction can be modulated by 
system parameters to change the locomotion direction and velocity, 
i.e., interaction with an external asymmetric environment is not a 
prerequisite for active locomotion. Here, by adjusting the system 
parameters, complex waves (local complex oscillations or chaos) 
result in reversal of the direction of locomotion. It is unlikely that 
such a transition can be realized without the loss of stability of simple 
pulse waves to more complex waves.

Coupling between nonlinear pulse signals, responsive active 
matter and a structured boundary [e.g., asymmetric system con-
struction (7, 10) or appendages (32) like setae, mucus, limbs, or 
wings] should result in more diverse and sophisticated autonomous 
locomotion and collective behavior without the need for external 
stimulation.

Last, adaptability and “intelligent” motion of active matter in 
response to environmental stimuli have been reported, such as 
dynamic asymmetric light (9) and magnetic field–induced (13) ver-
satile locomotion. Addition of internal nonlinear driving signals 
and active population communication would increase such systems’ 
computational ability to respond to environmental stimuli, produc-
ing functionally complex and potentially evolutionary motion that 
would enhance the level of intelligence in active matter. One can 
envision that designed DNA signals with different chemical reac-
tion networks (33, 34) might be coupled with mechanical forces to 
construct a biocompatible active system for delivering and releasing 
drugs by using both internal and external control.

MATERIALS AND METHODS
Our BZ gel model is constructed by coupling the Yashin-Balazs 
model (gLSM) (20–22) with the two-variable form of the Amemiya 
model of the photosensitive BZR (11, 31). The governing partial 
differential equations (PDEs) for a 1D gel are

          ​​​
⎧

 
⎪

 ⎨ 
⎪

 
⎩

​​​ 
                                 dϕ / dt  =  − ϕ ∇ Vp

​    ​                                                         du / dt  =  − u ∇ Vp + ∇ ​(​​uVp / ​(​​1 − ϕ​)​​​)​​ + ∇ ​(​​​(​​1 − ϕ​)​​  ∇ ​ (​​u / ​(​​1 − ϕ​)​​​)​​​)​​ + F​(​​u, v, ϕ, I​)​​​​     

​                                              dv / dt  =  − v ∇ Vp + G​(​​u, v, ϕ, I​)​​​

 ​​​

(9)

	​​ V​ p​​  =  ∇ σ / ​ζ ′ ​(ϕ)​	

	 ​∇  = ∇ ( + ln(1 −  ) + ( ) ​​​ 2​ − ​​​ *​ v + ​c​ 0​​ ​v​ 0​​ [ ​( / ​​ 0​​)​​ −1​ ​​⊥​ −4​ −  ​(2 ​​ 0​​)​​ −1​ ] )​	

	​​ ζ ″ ​(ϕ ) = ​(​Λ​ 0​​(1 − ϕ ))​​ −1​ ​(ϕ / ​ϕ​ 0​​)​​ 3/2​​	

where (11, 20–22, 31) u and v are the nondimensionalized concen-
trations of HBrO2 and Ru(bpy)3

3+ in the Oregonator model, respec-
tively;  is the volume fraction of gel; ∇ denotes the stress gradient, 
c0 is the cross-link density, and v0 denotes the volume of a mono-
meric unit within the polymer chains, with c0v0 = 1.3 × 10−3. Vp is 
the velocity vector of the polymer. The apparent friction coefficient, 
′(), is a function of . 0 is a dimensionless kinetic coefficient set 
to 100. * is a coupling constant that couples the chemical reaction 
to the gel dynamics. 0 denotes the undeformed polymer volume 
fraction, which was set to 0.139. The functions F and G describe the 
reaction kinetics of the BZR (modified Oregonator model). We 
replace the simple Oregonator in the Yashin-Balazs model with a 
two-variable photosensitive Oregonator model that incorporates both 
photoinduction and photoinhibition in the Ru(bipy)-catalyzed BZR. 
The functions F(u,v,,I) and G(u,v,,I) that describe the gel-coupled 
BZR are

	 ​{​
​ F(u, v, , I ) = ​(1 − )​​ 2​ u − ​u​​ 2​ − (fv + I ​P​ 1​​) (1 −  ) ​[​​u − q ​(1 − )​​ 2​ ​[u + q ​(1 − )​​ 2​]​​ 

−1
​ + I ​P​ 2​​​

​       
 G(u, v, , I ) =  [ ​(1 − )​​ 2​ u − (1 − ) v + I(0.5 ​P​ 1​​ + ​P​ 2​​ )]

  ​​	

(10)

Here, , f, and q are the Oregonator parameters. I denotes 
the dimensionless homogeneous light intensity. P1 and P2 are rate 
coefficients that characterize the two key photochemical reaction 
steps. Our simulation of the gel uses 200 grid points (denoted by S), 
and the gel length (Lgel) is set at 126.0 U. All times, space, variables, 
and parameters are dimensionless (7, 12, 21). The choice of model 
parameters ensures an oscillatory gel medium.

The PDEs were numerically integrated using the gLSM compu-
tational approach (20–22), using an unequal distance grid approxi-
mation for the 1D Laplacian operators (22) (first and second derivatives). 
The integration time step was t = 1.0 × 10−4, and the space step was 
varied according to the local //, where // characterizes the degree 
of swelling along the unrestricted direction of the gel along the 
long(x) axis of the tube. The other two (restricted) dimensions are 
characterized by ⊥, which is fixed. Initially, the BZ gel was assumed 
to be in the steady state. The initial volume fraction was 1D ini = 0/
(//⊥

2). The default values for our model simulation were f = 1.0, 
 = 0.3, * = 1.0, P1 = 0.124, P2 = 0.77, // = 1.26, and ⊥ = 1.06.

The waves can arise spontaneously due to random fluctuations. 
Initially, the variables u, v, and  were assigned their stationary val-
ues (uss, vss, and ss) (21, 22), where uss and vss are the solutions (22) 
of F(uss, vss, ss) = 0, G(uss, vss, ss) = 0 at * = 0.0. We then added 
random noise (50% of the amplitude of uss) to all grid points, which 
induces synchronous oscillations or pulse waves. Figure S1 shows a 
schematic for a self-oscillating gel driven by pulse waves under 
periodic boundary conditions. In fig. S2, we examine the relative 
stability of different wave numbers in the absence of illumination by 
simulating 1000 independent runs with different random initial 
conditions at gel sizes L = 126.0, 315.0, and 630.0. At all gel lengths 
studied, the most probable outcome is a single wave propagating 
over the entire gel. To speed up the calculation, we initialize a pulse wave 
in the dark with K = 1 in the subsequent simulations. The illumination 
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effect on the locomotion of the system is studied by alternately 
allowing the wave to reach a stable behavior, recording its charac-
teristics, and then increasing the illumination by 0.001. For all 
spatiotemporal plots, the data spacing in time and x are 0.5 and 1.0 U, 
respectively.

We define the curvature (x) at each grid point in the gel to 
characterize the local distortion of the chemical wave, which can be 
written as

	​ (x ) = ​ 
​ ​d​​ 2​ t _ 
d ​x​​ 2​

​
 ─ 

​√ 
_

 ​(1 + ​​(​​ ​ dt _ dx​​)​​​​ 
2
​)​​ 

3
​ ​
 ​​	 (11)

where (x, t) gives the position of a wave peak. To simplify the calcu-
lation, we calculate the local (x) across each wave and then store 
the data in one row, which is assigned to the time t at which the 
wave peak crosses the gel center.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/18/eaaz9125/DC1
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