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Abstract

Let X be a closed oriented connected topological manifold of dimension n � 5.
The structure group STOP.X/ is the abelian group of equivalence classes of all
pairs .f;M/ such that M is a closed oriented manifold and f WM ! X is an
orientation-preserving homotopy equivalence. The main purpose of this article
is to prove that a higher rho invariant map defines a group homomorphism from
the topological structure group STOP.X/ of X to the analytic structure group
Kn.C

�
L;0

. zX/� / of X . Here zX is the universal cover of X , � D �1X is the
fundamental group of X , and C�

L;0
. zX/� is a certain C�-algebra. In fact, we

introduce a higher rho invariant map on the homology manifold structure group
of a closed oriented connected topological manifold, and prove its additivity.
This higher rho invariant map restricts to the higher rho invariant map on the
topological structure group. More generally, the same techniques developed in
this paper can be applied to define a higher rho invariant map on the homology
manifold structure group of a closed oriented connected homology manifold. As
an application, we use the additivity of the higher rho invariant map to study
nonrigidity of topological manifolds. More precisely, we give a lower bound for
the free rank of the algebraically reduced structure group of X by the number
of torsion elements in �1X . Here the algebraically reduced structure group of
X is the quotient of STOP.X/ modulo a certain action of self-homotopy equiv-
alences of X . We also introduce a notion of homological higher rho invariant,
which can be used to detect many elements in the structure group of a closed ori-
ented topological manifold, even when the fundamental group of the manifold
is torsion free. In particular, we apply this homological higher rho invariant to
show that the structure group is not finitely generated for a class of manifolds.
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1 Introduction
Let D be an elliptic operator on a closed manifold M of dimension n. Sup-

pose �M is the universal cover of M , and zD is the lift of D onto �M . Then zD
defines a higher index class in Kn.C �r .�1M//, where �1M is the fundamental
group of M and Kn.C �r .�1M// is the K-theory of the reduced group C �-algebra
C �r .�1M/. This higher index class is an obstruction to the invertibility of zD. It
is a far-reaching generalization of the classical Fredholm index and plays a funda-
mental role in the studies of many problems in geometry and topology such as the
Novikov conjecture and the Gromov-Lawson-Rosenberg conjecture. Higher index
classes are often referred to as primary invariants. When the higher index class of
an elliptic operator is trivial and given a specific trivialization, a secondary index
theoretic invariant naturally arises. This secondary invariant is called the higher
rho invariant in acknowledgement of the discussion in [77, chap. 14E] of invariants
for odd-dimensional manifolds with finite fundamental group and the discussion
in [1] of invariants of odd-dimensional manifolds with flat bundles, and its connec-
tion to index theory for manifolds with boundary. It serves as an obstruction of the
locality of the inverse of an invertible elliptic operator.

In our current context, if there is an orientation-preserving homotopy equiva-
lence between two oriented closed manifolds, then the higher index of the signature
operator on the disjoint union of the two manifolds (one of them with opposite ori-
entation) is trivial with a trivialization given by the homotopy equivalence. Hence
such a homotopy equivalence naturally defines a higher rho invariant. More gener-
ally, the notion of higher rho invariants can be defined for homotopy equivalences
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between topological manifolds, and it is a powerful tool to detect whether a homo-
topy equivalence can be “deformed” into a homeomorphism. The main purpose of
this paper is to prove that the higher rho invariant defines a group homomorphism
on the structure group of a topological manifold. As an application, we use the
higher rho invariant to detect elements in reduced structure groups of topological
manifolds.

Let X be a closed oriented connected topological manifold of dimension n.
The structure group STOP.X/ is the abelian group of equivalence classes of all
pairs .f;M/ such that M is a closed oriented manifold and f WM ! X is an
orientation-preserving homotopy equivalence. In this version, the zero element
corresponds to the identity map IdWX ! X . Of course, replacingX by a homotopy
equivalent manifold Y means that the new zero element is IdWY ! Y . Thus,
although it transpires that STOP.X/ is a functor, its identification with the set of
manifolds homotopy equivalent to X is that of collapsing a torsor to a group by
choosing a base element. The main result of this article is to prove that the higher
rho invariant defines a group homomorphism from STOP.X/ to Kn.C �L;0. zX/

�/,
where � D �1X is the fundamental group of X , zX is the universal cover of X ,
and C �L;0. zX/

� is a certain geometric C �-algebra. The definition of C �L;0. zX/
� is

reviewed in Section 2, and the precise definition of the higher rho invariant is given
in Section 4.6.

Perhaps the simplest interpretation of the abelian group structure on STOP.X/

can be described through a periodicity map,1 which is an injection from STOP.X/

to STOP
@

.X �D4/, where D4 is the 4-D Euclidean unit ball and STOP
@

.X �D4/ is
the rel @ version of structure set of X � D4 (cf. Definition 3.24 below). The set
STOP
@

.X �D4/ carries a natural abelian group structure by stacking (cf. Definition
3.25), hence induces an abelian group structure on STOP.X/. Both STOP.X/ and
STOP
@

.X � D4/ carry a higher rho invariant map. It is not difficult to verify that
the higher rho invariant map on STOP

@
.X �D4/ is additive, i.e., a homomorphism

between abelian groups. One possible approach to show the additivity of the higher
rho invariant map on STOP.X/ is to prove the compatibility of higher rho invariant
maps on STOP.X/ and STOP

@
.X � D4/. owever, there are some essential analyt-

ical difficulties to directly prove such a compatibility, due to the subtleties of the
periodicity map. A main novelty of this paper is to give a new description of the

1 The periodicity map was first given by Siebemann [48, app. C to Essay V], with a correction
by Nicas [51] (cf. the discussion after Proposition 3.29). We denote this Siebenmann periodicity
map by SP . A geometric construction of a periodicity map, denoted by GP , was given by Cappell
and the first author [14], cf. the discussion after Proposition 3.29 below. At the time when Cappell
and the first author wrote their paper, it was not known whether the map GP coincides with the
Siebenmann periodicity map SP . Later, Crowley and Macko showed that a quaternionic (resp.,
octonionic) version of GP coincides with SP2 (resp., SP4) [23]. In this paper, we show that GP
indeed coincides with SP by applying the device of periodicity spaces from the work of the first
author and Yan [80, 81] (cf. Proposition 3.30 and Theorem 3.32).
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topological structure group in terms of smooth manifolds with boundary (see Def-
inition 3.4 and the discussion in Section 3.4 below). This new description uses a
broader class of objects than closed manifolds and an equivalence relation broader
than h-cobordism, which allows us to replace topological manifolds in the usual
definition of STOP.X/ by smooth manifolds with boundary. Such a description
leads to a transparent group structure given by disjoint union. The main body of
the paper is devoted to proving that the new description coincides with the classi-
cal description of the topological structure group and to developing the theory of
higher rho invariants in this new setting, in which higher rho invariants are easily
seen to be additive. As a consequence, the higher rho invariant maps on STOP.X/

and STOP
@

.X �D4/ are indeed compatible (see Proposition 9.1 below).
We point out that, in the odd-dimensional case, the higher rho invariant defined

in this paper is a refinement of the higher rho invariant for signature operators in
the literature (cf. [39, sec. 3], [54, remark 4.6], [93]). More precisely, in the odd-
dimensional case, the higher rho invariant in the literature is twice that of the higher
rho invariant of this paper (cf. Remark 6.7 and Theorem 6.9 below).

The higher rho invariant map we construct is actually defined on the homology
manifold structure group SHTOP.X/ of X , where SHTOP.X/ is the abelian group
of equivalence classes of all pairs .f;M/ such that M is a closed oriented ANR
homology manifold and f WM ! X is an orientation-preserving homotopy equiv-
alence. This higher rho invariant map coincides with the original higher rho invari-
ant map when restricted to the topological structure group; cf. the discussion after
Theorem 3.33 below. More generally, our method can also be applied to define
a higher rho invariant map on the homology manifold structure group of a closed
oriented connected homology manifold; cf. Remark 3.36. All results of the paper
can be easily extended to the case where X has multiple connected components
by studying each component separately. For simplicity, we shall only consider the
case where X is connected.

As an application, we use our main theorem to estimate the sizes of reduced
structure groups of topological manifolds. There are two different ways for a self-
homotopy h of X to act on STOP.X/ (cf. Section 8). One action induces a group
isomorphism of STOP.X/ and is compatible with the actions of h on other terms in
the topological surgery long exact sequence ofX . We denote this action by ˛h. The
other action, denoted by ˇh, only induces a set-theoretic bijection of STOP.X/, and
in general is not compatible with the actions of h on other terms in the topological
surgery long exact sequence ofX . Let zS TOP

alg .X/ be the quotient group of STOP.X/

modulo the subgroup generated by elements of the form � � ˛h.�/ for all � 2
STOP.X/ and all orientation-preserving self-homotopy equivalences h of X (see
Definition 8.1). We call zS TOP

alg .X/ the algebraically reduced structure group of X .
Similarly, we can define a version of reduced structure group for the other action,
which will be denoted by zS TOP

geom.X/ and called the geometrically reduced structure
group of X from now on. We apply our main theorem, combining with the work
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in [85], to give a lower bound of the free rank of zS TOP
alg .X/. There is strong evidence

suggesting that an analogue holds for zSTOP
geom.X/ as well.

When the strong Novikov conjecture holds for �1X , we introduce a homological
higher rho invariant. We call this invariant the Novikov rho invariant for obvious
reasons to be explained in Section 7. The Novikov rho invariant can be used to
detect many elements in STOP.X/, even when �1X is torsion free. In particular,
we apply this Novikov rho invariant to show that the structure group is not finitely
generated for certain manifolds.

If the Baum-Connes conjecture holds for �1X , then the Novikov rho invariant
is equivalent to the higher rho invariant. The first author also studied a different
homological higher rho invariant for manifolds satisfying certain vanishing condi-
tions on homology in the middle dimension [79]. The higher rho invariant in the
current paper can also be generalized to those settings. For example, ifM is a man-
ifold and Z=2 acts freely and homologically trivially in the sense of [78], then this
involution defines a homological higher rho invariant [79, remark 0.8(a)], which
away from the prime number 2 is realized by an element in the topological struc-
ture group of M . This plays an important role in the cobordism of homologically
trivial actions [78].

The higher rho invariant map on the structure set of a smooth manifold was first
introduced by Higson and Roe [39]. Zenobi extended the higher rho invariant map
(as a map of sets) to topological manifolds [93]. In the cyclic cohomology setting,
Lott studied the higher eta invariant (a close relative of the higher rho invariant)
under certain conditions [49].

Our approach to the higher rho invariant is very much inspired by the work
of Higson and Roe on the analytic surgery long exact sequence for smooth man-
ifolds and structure sets of smooth manifolds [37–39]. In their work, Higson
and Roe proved that in the smooth setting, the higher rho invariant establishes a
set-theoretic commutative diagram between the smooth surgery sequence and the
analytic surgery sequence. Our main result implies that in the topological set-
ting, the higher rho invariant can be used to construct a commutative diagram of
abelian groups between the topological surgery sequence and the analytic surgery
sequence. In fact, the same method also establishes a commutative diagram be-
tween the homology-manifold surgery sequence and the analytic surgery (cf. Pro-
position 6.12). Furthermore, this method can also be used to show that the Cheeger-
Gromov rho invariant [17] defines a homomorphism on the structure group.

There are other equivalent ways of studying the topological surgery sequence.
Our approach in the current paper is closer to those of Wall [77] and Quinn [57]
and is more geometric in nature. If we were to take a more algebraic approach
by using Ranicki’s algebraic surgery long exact sequence [63], then many of the
discussions in Section 3 could be avoided. In particular, if we use Ranicki’s alge-
braic surgery long exact sequence, then the techniques from [37–39] can be adapted
more directly to the topological setting. On the other hand, our geometric approach
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appears to be more intuitive and directly implicates elliptic operators in the discus-
sion. We remark that the rational additivity of the higher rho invariant for finite
fundamental groups (more generally, the rational additivity after mapping the fun-
damental group to a finite group) was proved by Crowley and Macko [23, theorem
1.1].

The paper is organized as follows. In Section 2, we recall some standard defi-
nitions of geometric C �-algebras. In Section 3, we introduce a new definition of
structure groups of topological manifolds based on ideas of Wall and ideas from
controlled topology. This new definition leads to a transparent group structure of
the topological structure group, which is given by disjoint union. We prove that
the new definition of the structure group is naturally isomorphic to the classical
structure group. In Sections 4 and 5, we define the higher rho invariant map, and
prove that it is well-defined and additive. In Section 6, we compare the topolog-
ical surgery long exact sequence to the analytic surgery long exact sequence. In
particular, the topological surgery long exact sequence maps naturally to the ana-
lytic surgery long exact sequence, and they fit into a commutative diagram of exact
sequences of abelian groups (cf. Diagram (6.1)). In Section 7, we introduce the
Novikov rho invariant, which is a homological version of the higher rho invariant.
We use the Novikov rho invariant to show that the structure group is not finitely
generated for a class of manifolds. In Section 8, we give a lower bound of the free
rank of the algebraically reduced structure groups of a topological manifold under
certain mild conditions. In Section 9, we outline how to adapt the methods in this
paper to handle signature operators arising from Lipschitz structures on topological
manifolds. We also show that the higher rho invariant map defined using Lipschitz
structures is compatible with the Siebenmann periodicity map.

2 Preliminaries
In this section, we briefly recall some standard definitions of geometric C �-

algebras. We refer the reader to [30, 65, 89] for more details.
Let X be a proper metric space; i.e., every closed metric ball in X is compact.

An X -module is a separable Hilbert space equipped with a �-representation of
C0.X/, the algebra of all continuous functions on X that vanish at infinity. An X -
module is called nondegenerate if the �-representation of C0.X/ is nondegenerate.
An X -module is said to be standard if no nonzero function in C0.X/ acts as a
compact operator.

DEFINITION 2.1. Let HX be a X -module and T a bounded linear operator acting
on HX .

(i) The propagation of T is defined to be the nonnegative real number

supfd.x; y/ j .x; y/ 2 supp.T /g;
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where supp.T / is the complement (in X �X ) of the set of points .x; y/ 2
X �X for which there exist f; g 2 C0.X/ such that gTf D 0 and f .x/ ¤
0, g.y/ ¤ 0;

(ii) T is said to be locally compact if f T and Tf are compact for all f 2
C0.X/;

(iii) T is said to be pseudolocal if ŒT; f � is compact for all f 2 C0.X/.

DEFINITION 2.2. Let HX be a standard nondegenerate X -module and B.HX / the
set of all bounded linear operators on HX .

(i) The Roe algebra of X , denoted by C �.X/, is the C �-algebra generated by
all locally compact operators in B.HX / with finite propagation.

(ii) C �L.X/ is the C �-algebra generated by all bounded and uniformly norm-
continuous functions f W Œ0;1/! C �.X/ such that

propagation of f .t/! 0 as t !1.

(iii) C �L;0.X/ is the kernel of the evaluation map

ev W C �L.X/! C �.X/; ev.f / D f .0/:

In particular, C �L;0.X/ is an ideal of C �L.X/.
(iv) If Y is a subspace of X , the C �-algebra C �L.Y IX/ (resp., C �L;0.Y IX/) is

defined to be the closed subalgebra of C �L.X/ (resp., C �L;0.X/) generated
by all elements f such that there exist ct > 0 satisfying limt!1 ct D 0

and

supp.f .t// � f.x; y/ 2 X �X j d..x; y/; Y � Y / � ctg

for all t .

Remark 2.3. Similarly, we can also define maximal versions of C �L.X/, C
�
L;0.X/,

C �L.Y IX/, and C �L;0.Y IX/ (cf. [30]). We point out that all the above C �-algebras
are nonunital.

Now in addition we assume that a discrete group � acts properly onX by isome-
tries. Let HX be a X -module equipped with a covariant unitary representation of
� . If we denote the representation of C0.X/ by ' and the representation of � by
� , this means

�.
/.'.f /v/ D '.f 
 /.�.
/v/;

where f 2 C0.X/, 
 2 � , v 2 HX , and f 
 .x/ D f .
�1x/. In this case, we call
.HX ; �; '/ a covariant system.

DEFINITION 2.4 ([92]). A covariant system .HX ; �; '/ is called admissible if

(1) the �-action on X is proper and cocompact;
(2) HX is a nondegenerate standard X -module;
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(3) for each x 2 X , the stabilizer group �x acts on HX regularly in the sense
that the action is isomorphic to the action of �x on l2.�x/˝H for some
infinite-dimensional Hilbert space H . Here �x acts on l2.�x/ by transla-
tions and acts on H trivially.

We remark that for each locally compact metric space X with a proper and
cocompact isometric action of � , there exists an admissible covariant system .HX ;

�; '/. Also, we point out that the condition .3/ above is automatically satisfied if
� acts freely on X . If no confusion arises, we will denote an admissible covariant
system .HX ; �; '/ by HX and call it an admissible .X; �/-module.

DEFINITION 2.5. Let X be a locally compact metric space X with a proper and
cocompact isometric action of � . IfHX is an admissible .X; �/-module, we denote
by CŒX�� the �-algebra of all �-invariant locally compact operators with finite
propagations in B.HX /. We define C �.X/� to be the completion of CŒX�� in
B.HX /.

Similarly, we can define C �L.X/
� , C �L;0.X/

� , C �L.Y IX/
� , and C �L;0.Y IX/

� .

Remark 2.6. Up to isomorphism, C �.X/ D C �.X;HX / does not depend on the
choice of the standard nondegenerate X -module HX . The same holds for C �L.X/,
C �L;0.X/, C

�
L.Y IX/, C

�
L;0.Y IX/ and their �-equivariant versions.

Remark 2.7. Note that we can also define maximal versions of all �-equivariant
C �-algebras above. For example, we define the maximal �-invariant Roe algebra
C �max.X/

� to be the completion of CŒX�� under the maximal norm:

kakmax D sup
�

˚
k�.a/k j � W CŒX�� ! B.H 0/ a �-representation

	
:

Similarly, we can define the maximal versions ofC �L.X/
� ; C �L;0.X/

� ; C �L.Y IX/
� ,

and C �L;0.Y IX/
� . See for example [85] for more details.

3 Structure Groups of Topological Manifolds
In this section we introduce a definition of structure groups for topological man-

ifolds based on ideas of Wall and ideas from controlled topology. We shall prove
that our new definition is naturally isomorphic to the classical structure group. This
new definition is similar in spirit to the algebraic definition given by Ranicki in [63]
but has some advantages for our analytic purposes. One feature of our definition is
that elements of the structure group can be represented by smooth manifolds with
boundary, which is crucial for constructing our higher rho invariant. Another fea-
ture is that the group structure of the structure group becomes transparent. Indeed,
the group structure is given by disjoint union.

Given an oriented closed connected topological manifold X , the structure set
STOP.X/ is defined to be the set of equivalence classes of orientation-preserving
homotopy equivalences f WM ! X . HereM is an oriented closed connected topo-
logical manifold. Two orientation-preserving homotopy equivalences f WM ! X
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and gWN ! X are equivalent if there exists an h-cobordism2 .W IM;N/ with an
orientation-preserving homotopy equivalence

F W .W IM;N/! .X � I IX � f0g; X � f1g/

such that F jM D f and F jN D g. It is known that STOP.X/ has an abelian group
structure; cf. [14, 48, 63].

More generally, let X be a (not necessarily oriented) closed topological man-
ifold. Let wW�1.X/ ! Z=2 be its orientation character. We can similarly de-
fine a group STOP.X;w/ consisting of equivalence classes of orientation-character-
preserving homotopy equivalences f W .M;wM / ! .X;w/, where .M;wM / is a
closed topological manifold M with its orientation character wM W�1M ! Z=2.
Here a continuous map f W .M;wM /! .X;w/ is called orientation character pre-
serving if the map �1M

f�
�! �1X ! Z=2 agrees with wM . The equivalence rela-

tion is defined similarly.
In the above definition of STOP.X;w/, if we replace manifolds by ANR homol-

ogy manifolds everywhere, then we obtain the homology-manifold-structure group
SHTOP.X;w/ of .X;w/; cf. [11].

3.1 A New Definition of the Structure Group
In this subsection, we give a new definition of the structure group of a topolog-

ical manifold. Let X be a closed topological manifold. Fix a metric on X that
agrees with the topology of X . Note that such a metric always exists.

DEFINITION 3.1. Let Y be a topological space. We call a continuous map 'WY !
X a control map of Y .

DEFINITION 3.2. Let Y and Z be two compact Hausdorff spaces equipped with
continuous control maps  WY ! X and 'WZ ! X . A continuous map f WY !
Z is said to be an infinitesimally controlled homotopy equivalence over X , if there
exist proper continuous maps

ˆWZ � Œ1;1/! X � Œ1;1/; ‰WY � Œ1;1/! X � Œ1;1/;

F WY � Œ1;1/! Z � Œ1;1/; GWZ � Œ1;1/! Y � Œ1;1/;

satisfying the following conditions:
(1) ˆ ı F D ‰;
(2) F jY�f1g D f , ˆjZ�f1g D ', and ‰jY�f1g D  ;
(3) there is a proper continuous homotopy fHsg0�s�1 between

H0 D F ıG and H1 D IdWZ � Œ1;1/! Z � Œ1;1/

2 To be precise, M and N are identified with the corresponding boundary component of W by
some orientation-preserving homeomorphisms, which are part of the data of an h-cobordism. Fol-
lowing the usual convention, we shall omit these homeomorphisms from the notation.
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such that the diameter of the set

ˆ.H.´; t// D fˆ.Hs.´; t// j 0 � s � 1g

goes uniformly (i.e., independent of ´ 2 Z) to 0 as t !1;
(4) there is a proper continuous homotopy fRsg0�s�1 between

R0 D G ı F and R1 D IdWY � Œ1;1/! Y � Œ1;1/

such that the diameter of the set

‰.R.y; t// D f‰.Rs.y; t// j 0 � s � 1g

goes uniformly to 0 as t !1.

We will also need the following notion of restrictions of homotopy equivalences
gaining infinitesimal control on parts of spaces. Suppose M is a topological mani-
fold with boundary @M . We define the space of M attached with a cylinder by

CM DM [@M .@M � Œ1;1//:

Suppose .M; @M; '/ and .N; @N; / are two manifold pairs equipped with contin-
uous maps 'WM ! X and  WN ! X . Let

f W .N; @N /! .M; @M/

be a homotopy equivalence with ' ı f D  . Suppose

gW .M; @M/! .N; @N /

is a homotopy inverse of f . Note that  ı g ¤ ' in general. Let fhsg0�s�1 be a
homotopy between f ı g and

IdW .M; @M/! .M; @M/:

Similarly, let frsg0�s�1 be a homotopy between g ı f and

IdW .N; @N /! .N; @N /:

DEFINITION 3.3. With the above notation, we say that on the boundary f restricts
to an infinitesimally controlled homotopy equivalence f j@N W @N ! @M over X if
there exist proper continuous maps

ˆWCM ! X � Œ1;1/ and ‰WCN ! X � Œ1;1/;

F WCN ! CM and GWCM ! CN;

a proper continuous homotopy fHsg0�s�1 between

H0 D F ıG and H1 D IdWCM ! CM;

and a proper continuous homotopy fRsg0�s�1 between

R0 D G ı F and R1 D IdWCN ! CN

satisfying the following conditions:
(1) ˆjM D ',‰jN D  , F jN D f ,GjM D g,HsjM D hs , andRsjN D rs;
(2) ˆ ı F D ‰;



ADDITIVITY OF HIGHER RHO INVARIANTS 11

(3) the diameter of the set

ˆ.H.a; t// D fˆ.Hs.a; t// j 0 � s � 1g

goes uniformly to 0 for all .a; t/ 2 @M � Œ1;1/ as t !1;
(4) the diameter of the set

‰.R.b; t// D f‰.Rs.b; t// j 0 � s � 1g

goes uniformly to 0 for all .b; t/ 2 @N � Œ1;1/, as t !1.

In the following, we adopt the notion of manifold k-ads from Wall’s book [77,
chap. 0] to encode a total space with some number of distinguished subsets, all of
whose intersections are required to be “good”. For example, a manifold 1-ad is a
manifold with boundary.

In order to make our definition of structure groups functorial, we shall follow
Farrell and Hsiang’s modifications of Wall’s definition of L-groups [27, sec. 3].
Although Farrell and Hsiang’s modifications are for L-groups, the same idea also
applies to structure groups. Let w be a Z=2-principal bundle over X , and if no
confusion is likely to rise, denote the corresponding morphism induced on �1.X/
(after choosing a base point inX ) also by wW�1.X/! Z=2. Moreover, we denote
the local Z-coefficients on X associated to w by wZ.

We define Sn.X;w/ to be the set of equivalence classes of the following objects.

DEFINITION 3.4. An object of Sn.X;w/ consists of the following data (see Figure
3.1):

(1) two manifold 1-ads .M; @M/ and .N; @N / with dimM D dimN D n,
where @M (resp. @N ) is the boundary of M (resp., N );

X

N

M

@N

@M

f

'

 

f j@N

FIGURE 3.1. An object � D .M; @M; ';N; @N; ; f / of Sn.X;w/,
where f j@N is an infinitesimally controlled homotopy equivalence and
f is a homotopy equivalence.
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(2) continuous maps 'WM ! X and  WN ! X so that the pullback Z=2-
principal bundle '�.w/ (resp.,  �.w/) is the orientation covering of M
(resp., N );

(3) a homotopy equivalence of manifold 1-ads

f W .N; @N /! .M; @M/

such that f�.ŒM �/ D ŒN � and ' ı f D  , where ŒM � (resp., ŒN �) is the
fundamental class of M (resp., N ), an element in Hn.M; @M I'�.w/Z/
(resp.,Hn.N; @N I �.w/Z/). Moreover, on the boundary f restricts to an
infinitesimally controlled homotopy equivalence f j@N W @N ! @M overX .

Remark 3.5. We shall prove below that, if X is a closed connected topological
manifold of dimension � 5 and w is the orientation covering of X , then Sn.X;w/
is naturally isomorphic to the structure group STOP.X;w/ of .X;w/, where the
latter group is described at the beginning of this section withw being the associated
orientation character of X .

If � D .M; @M; ';N; @N; ; f / is an object, then we denote by �� the same
object but with the signs on the fundamental classes of M and N switched. For
two objects �1 and �2, we write �1C �2 to be the disjoint union of �1 and �2. This
sum operation is clearly commutative and associative, and admits a zero element:
the object with M (hence N ) empty. We denote the zero element by 0.

DEFINITION 3.6. The equivalence relation for defining Sn.X;w/ is given as fol-
lows. Let

� D .M; @M; ';N; @N; ; f /

be an object from Definition 3.4. We write � � 0 if the following conditions are
satisfied. See Figure 3.2.

(1) There exists a manifold 2-ad .W; @W / of dimension .nC 1/ with a contin-
uous map ˆWW ! X so that the pullback Z=2-principal bundle ˆ�.w/ is
the orientation covering of W . Here @W D M [@M @2W , and in partic-
ular @M D @.@2W /. In other words, W is a manifold with corners, and
its boundary is the union of M and @2W (two manifolds with boundary)
which are glued together along their common boundary @M D @.@2W /.
We also assume ˆjM D '.

(2) Similarly, we have a manifold 2-ad .V; @V / of dimension .n C 1/ with a
continuous map ‰ W V ! X so that the pullback Z=2-principal bundle
‰�.w/ is the orientation covering of V . Moreover, @V D N [@N @2V and
‰jN D  .

(3) There is a homotopy equivalence of 2-ads

F W .V; @V /! .W; @W /

such that F�.ŒV �/ D ŒW � and ‰ ı F D ˆ, where ŒV � (resp., ŒW �) is
the fundamental class of V (resp.,W ), an element ofHn.V; @V I‰�.w/Z/
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X

N

M

@2V

@2W

@N D @@2V

@M D @@2W

ˆ

‰

F j@2V

V

W

F

FIGURE 3.2. Equivalence relation � � 0 in the definition of Sn.X;w/,
where F j@2V is an infinitesimally controlled homotopy equivalence and
F jN D f is a homotopy equivalence. In this picture, V (resp., W )
should be viewed as a solid with boundary @V (resp., @W ).

(resp., Hn.W; @W Iˆ�.w/Z/). Moreover, F restricts to f on N , and F
restricts3 to an infinitesimally controlled homotopy equivalence

F j@2V W @2V ! @2W over X:

We further write �1 � �2 if �1 C .��2/ � 0. It is not difficult to check that �
is an equivalence relation. We denote the set of equivalence classes by Sn.X;w/.
Note that Sn.X;w/ is an abelian group with the addition given by disjoint union.

Remark 3.7. Let w and v be Z=2-principal bundles over X and Y , respectively.
Each bundle map �Ww ! v induces a group homomorphism ��WSn.X;w/ !
Sn.Y; v/ by essentially composing4 the data of an element � 2 Sn.X;w/ with the
map �. This makes the definition of Sn.X;w/ functorial.

3 Here we are using an obvious generalization of Definition 3.3 to the case of manifold 2-ads or
manifold n-ads.

4 For example, for the element � D .M; @M; ';N; @N; ; f / 2 S.X;w/, � induces a canon-
ical local coefficient isomorphism '�.w/ ! .�'/�.v/, which in turn induces a map from
Hn.M; @M I'

�.w/Z/ to Hn
�
M; @M I .�'/�.v/Z

�
. Then the corresponding fundamental class for

the manifold pair .M; @M/ as part of the data of�.�/ D .M; @M;� ı';N; @N;� ı'; f / is the im-
age of ŒM � under this mapHn.M; @M I'�.w/Z/! Hn

�
M; @M I .�'/�.v/Z

�
. See also [27, sec. 3,

p. 103].
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3.2 Surgery Long Exact Sequences
In this subsection, we give a description of surgery long exact sequences based

on ideas of Wall. This will be used later to naturally identify Sn.X;w/ with the
structure group STOP.X;w/.

First, let us review the definition of normal maps. Let both .M; @N / and .N; @N /
be n-dimensional manifolds with boundary. Let wM (resp., wN ) be the orientation
covering of M (resp., N ). Equivalently, we think of wM and wN as elements in
H 1.M IZ=2/ and H 1.N IZ=2/, respectively.

DEFINITION 3.8. Let � be a k-dimensional vector bundle overN such that the first
Stiefel-Whitney class of � agrees with wN 2 H 1.N IZ=2/. A map

f W .M; @M/! .N; @N /

is called a normal map if the following conditions are satisfied:
(1) f preserves orientation characters, that is, wM D f �.wN /;
(2) there exists an embeddingM ,! RnCk with its normal bundle denoted by

�M such that there is a bundle map
xf W �M ! �

covering f that is an isomorphism on each fiber.
If in addition f maps the fundamental class ŒM �, an element in Hn.M; @M I

wMZ/, to the fundamental class ŒN �, an element in Hn.N; @N IwNZ/, then we
say f has degree 1.

Now we review the following geometric definition of L-groups due to Wall [77,
chap. 9].

DEFINITION 3.9. An object of Ln.�1X;w/ consists of the following data (cf.
Figure 3.3):

(1) two manifold 1-ads .M; @M/ and .N; @N / with dimM D dimN D n,
where @M (resp., @N ) is the boundary of M (resp., @N );

(2) continuous maps 'WM ! X and  WN ! X so that the pullback Z=2-
principal bundles '�.w/ (resp.,  �.w/) is the orientation covering of M
(resp., N );

(3) a degree 1 normal map of the 1-ads

f W .N; @N /! .M; @M/

such that ' ı f D  . Moreover, on the boundary f j@N W @N ! @M is a
homotopy equivalence.

DEFINITION 3.10. The equivalence relation for defining Ln.�1X;w/ is given as
follows. Let

� D .M; @M; ';N; @N; ; f /

be an object from Definition 3.9 above. We write � � 0 if the following conditions
are satisfied (cf. Figure 3.4):
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X

N

M

@N

@M

f

'

 

f j@N

FIGURE 3.3. An object � D .M; @M; ';N; @N; ; f / in Ln.�1X;w/,
where f is a degree 1 normal map and f j@N is a homotopy equivalence.

X

N

M

@2V

@2W

@N D @@2V

@M D @@2W

ˆ

‰

F j@2V

V

W

F

FIGURE 3.4. Equivalence relation � � 0 for the definition of
Ln.�1X;w/, where F j@2V is a homotopy equivalence and F jN D f

is a degree 1 normal map.

(1) There exists a manifold 2-ad .W; @W / of dimension .nC 1/ with a contin-
uous map ˆWW ! X so that the pullback Z=2-principal bundle ˆ�.w/ is
the orientation covering of W . Here @W DM [@M @2W and ˆjM D '.

(2) Similarly, we have a manifold 2-ad .V; @V / of dimension .n C 1/ with a
continuous map ‰ W V ! X so that the pullback Z=2-principal bundle
‰�.w/ is the orientation covering of V . Moreover, @V D N [@N @2V and
‰jN D  .
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(3) There is a degree 1 normal map of manifold 2-ads

F W .V; @V /! .W; @W /

such that‰ıF D ˆ. Moreover, F restricts to f onN , and F j@2V W @2V !
@2W is a homotopy equivalence over X .

We denote the set of equivalence classes byLn.�1X;w/. Note thatLn.�1X;w/
is an abelian group with the addition given by disjoint union.

It is a theorem of Wall that the above definition of L-groups is equivalent to the
algebraic definition of L-groups Lhn.�;w/ when n � 5 [77, chap. 9], [73]. More
precisely, Wall [77, chap. 9] dealt with the surgery theory for simple homotopy
equivalences, and the algebraic L-groups that appeared in that chapter are usually
denoted by Ls�.�;w/, where s stands for simple and w is a group homomorphism
� ! Z=2. In the current paper, we deal with homotopy equivalences instead of
simple homotopy equivalences, hence the groups Lh�.�;w/ instead of Ls�.�;w/.
When n is even, Lsn.�;w/ is defined as the abelian group of equivalence classes
of quadratic forms of the ring5 Z� [77, chap. 5, p. 49]. When n is odd, Lsn.�;w/
is defined as the abelian group of equivalence classes of automorphisms on hy-
perbolic forms of the ring Z� [77, chap. 6, p. 68]. The definition of Lh�.�;w/ is
essentially the same, once we drop the simplicity condition. In general, the groups
Lh�.�;w/ and Ls�.�;w/ are different. The same argument in Wall [77, chap. 9]
proves the following theorem.

THEOREM 3.11 ([77, chap. 9]). Let � D �1X . For all n � 5, Ln.�1X;w/ is
naturally isomorphic to the algebraic definition of Lhn.�;w/.

The dimension restriction (n � 5) in the above theorem is necessary. If n < 5,
although this cobordism theoretic definition of Ln.�1X;w/ still gives an abelian
group, it is not clear what it really describes because of well-known problems of
low-dimensional surgery. Moreover, these groups (in low dimensions) could well
be dependent on the category. On the other hand, as long as n � 5, not only is
Ln.�1X;w/ naturally isomorphic to the algebraic definition of Lhn.�1X;w/, but
also the map �CP2 (i.e., taking the direct product with CP2) induces an isomor-
phism

Ln.�1X;w/
Š
�! LnC4.�1X;w/:

This motivates us to give the following definition, which makes Wall’s geometric
definition of L-groups into a 4-periodic theory in all dimensions.

DEFINITION 3.12. For each n 2 Z, we define Ln.�1X;w/ to be the direct limit of

� � � ! Lk.�1X;w/
�CP2

����! LkC4.�1X;w/
�CP2

����! LkC8.�1X;w/! � � � ;

where k � n .mod 4/.

5 Here Z� is considered as a ring with involution, where the involution is induced by w that maps

 ! w.
/g�1.
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X

N

M

@N

@M

f

'

 

f j@N

FIGURE 3.5. An object � D .M; @M; ';N; @N; ; f / of Nn.X;w/,
where f is a degree 1 normal map and f j@N is an infinitesimally con-
trolled homotopy equivalence.

Now we shall also introduce a controlled version of Wall’s L-group definition,
which will be identified with H�.X IL�/. Here L� is an �-spectrum of simplicial
sets of quadratic forms and formations over Z such that L0 ' G=TOP; cf. [88,
sec. 3].

DEFINITION 3.13. An object of Nn.X;w/ consists of the following data (cf. Fig-
ure 3.5):

(1) two manifold 1-ads .M; @M/ and .N; @N / with dimM D dimN D n,
where @M (resp., @N ) is the boundary of M (resp., @N );

(2) continuous maps 'WM ! X and  WN ! X so that the pullback Z=2-
principal bundles '�.w/ (resp.,  �.w/) is the orientation covering of M
(resp., N ) respectively;

(3) a degree 1 normal map of manifold 1-ads

f W .N; @N /! .M; @M/

such that ' ı f D  . Moreover, on the boundary f j@N W @N ! @M is an
infinitesimally controlled homotopy equivalence over X .

DEFINITION 3.14. The equivalence relation for defining Nn.X;w/ is given as fol-
lows. Let

� D .M; @M; ';N; @N; ; f /

be an object from Definition 3.13 above. We write � � 0 if the following conditions
are satisfied (cf. Figure 3.6):

(1) There exists a manifold 2-ad .W; @W / of dimension .n C 1/ with a con-
tinuous mapˆWW ! X so that the pullback Z=2-principal bundleˆ�.w/
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X

N

M

@2V

@2W

@N D @@2V

@M D @@2W

ˆ

‰

F j@2V

V

W

F

FIGURE 3.6. Equivalence relation � � 0 for the definition of Nn.X;w/,
where F j@2V is an infinitesimally controlled homotopy equivalence and
F jN D f is a degree 1 normal map.

is the orientation covering of W . Moreover, @W D M [@M @2W and
ˆjM D '.

(2) Similarly, we have a manifold 2-ad .V; @V / of dimension .n C 1/ with a
continuous map ‰ W V ! X so that the pullback Z=2-principal bundle
‰�.w/ is the orientation covering of V . Moreover, @V D N [@N @2V and
‰jN D  .

(3) There is a degree 1 normal map of 2-ads

F W .V; @V /! .W; @W /

such that ‰ ı F D ˆ. Moreover, F restricts to f on N , and

F j@2V W @2V ! @2W

is an infinitesimally controlled homotopy equivalence over X .

We denote by Nn.X;w/ the set of equivalence classes from Definition 3.13.
Note that Nn.X;w/ is an abelian group with the addition given by disjoint union.

Following the same strategy from Definition 3.12, we shall turn Nn.X;w/ and
Sn.X;w/ into 4-periodic theories.

DEFINITION 3.15. For each n 2 Z, we define Nn.X;w/ to be the direct limit

� � � ! Nk.X;w/
�CP2

����! NkC4.X;w/
�CP2

����! NkC8.X;w/! � � � ;
where k � n .mod 4/. Similarly, we define Sn.X;w/ to be the direct limit

� � � ! Sk.X;w/
�CP2

����! SkC4.X;w/
�CP2

����! SkC8.X;w/! � � � ;
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where k � n .mod 4/.

Let us discuss a key point of our definitions of Nn.X;w/ and Sn.X;w/. For
simplicity,6 let us focus on the oriented case, that is, w is the trivial Z=2-principal
covering of X and will be dropped from our notation during this discussion. The
L-groups (either Lh or Ls), besides having an algebraic definition, also have a
cobordism theoretic definition, according to Wall [77, chap. 9]. Now by ideas from
controlled topology (cf. [28], [88, sec. 3]), if we impose extra infinitesimal control
on objects in Wall’s cobordism theoretic definition of L-groups, we obtain a gen-
eralized homology theory. Indeed, a cobordism-type construction such as Nn.X/
defines a generalized homology theory if it satisfies an appropriate transversality
condition (see, for example, [61]). This transversality condition is indeed satisfied
by Nn.X/ due to infinitesimal control. See, for example, Definition 3.41 for how
this works in the PL (i.e., piecewise linear) category.

Let us recast the above discussion in the language of spectra. In fact, based on
Wall’s cobordism theoretic definition, Quinn constructed geometric surgery spec-
tra of �-sets that realized L-groups as their homotopy groups [56]. From this
perspective, our construction N�.X/ above can be viewed as a cobordism the-
oretic representation of the generalized homology theory determined by such a
spectrum. See [61] for a more thorough discussion of some closely related top-
ics. On the other hand, based on the algebraic definition of L-groups, Ranicki
constructed quadratic L-theory spectra that also realize L-groups as their homo-
topy groups [63, chap. 13]. Consequently, Quinn’s geometric surgery spectra and
Ranicki’s quadratic L-theory spectra give rise to (homotopy) equivalent spectra. It
follows that Nn.X/ is naturally isomorphic to Hn.X IL�/, where L� is the qua-
dratic L-theory spectrum for the trivial group e—an �-spectrum of simplicial sets
of quadratic forms and formations over Z—such that L0 ' G=TOP. Moreover,
the natural morphism

i�WNn.X/! Ln.�1X/;

which is defined by forgetting infinitesimal control, can also be viewed as induced
by a map � of spectra. Now the groups S�.X/ are just the (stable) homotopy
groups of the homotopy fiber of this map �.

Let us prove that Nn.X/ is naturally isomorphic to Hn.X IL�/ for all n �
0. This isomorphism will be used later in the surgery exact sequence to identify
Sn.X/ with STOP.X/ when X is a closed connected oriented topological manifold
of dimension � 5. By a standard fact from algebraic topology, it suffices to show
that there is a natural morphism between the two homolgy theories that induces an
isomorphism when X is one point. In our current case, there is a natural morphism
from Nn.X/ toHn.X IL�/ by mapping an element of Nn.X/ to its corresponding
(local) algebraic Poincaré complex. It remains to identify the groups Nn.fptg/
and Hn.fptgIL�/. In fact, in order to make this identification, we shall slightly

6 The argument for the general case is the same, once we have used twisted L-spectra [63, app. A]
instead of the usual L-spectrum.
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modify our definitions of Ln.�1X/, Nn.X/, and Sn.X/. It will become clear that
the modified version coincides with our original version above (Definitions 3.4,
3.9, and 3.13) when n ¤ 4. In other words, the only essential change happens in
dimension n D 4.

DEFINITION 3.16. An object of Lnew
n .�1X/ consists of the following data:

(1) two oriented manifold 1-ads .M; @M/ and .N; @N / with dimM D dimN

D n, where @M (resp., @N ) is the boundary of M (resp., @N );
(2) continuous maps 'WM ! X and  WN ! X ;
(3) a degree 1 normal map of the 1-ads

f W .N; @N /! .M; @M/

such that ' ı f D  . Moreover, on the boundary,

f j@N W @N ! @M

is a Z�-homology equivalence.

Here f j@N is a Z�-homology equivalence, which means that it induces an iso-

morphism H�.@N IZ�/
Š
�! H�.@M IZ�/ on homology with local coefficients in

Z� , where � D �1.@M/. Equivalently, let e@M be the universal covering space
of @M and .@N /� the covering space of @N , which is the pullback of e@M along
the map f j@N . We say f j@N is a Z�-homology equivalence if the lifted map
zf W .@N /� !e@M induces an isomorphism on homology.

The equivalence relation for the objects in Lnew
n .�1X/ is defined the same as in

Definition 3.10 except that we replace homotopy equivalences by Z�-homology
equivalences everywhere. Similarly, we can define N new

n .X/ and Snew
n .X/ using

(infinitesimally controlled) Z�-homology equivalences instead of (infinitesimally
controlled) homotopy equivalences.

In fact, in dimension n � 5, the modified version Lnew
n .�1X/ is naturally iso-

morphic to the original version Ln.�1X/; see, for example, [34]. Following the
discussion above, from the viewpoint of spectra, we also see that N new

n .X/ and
Snew
n .X/ are naturally isomorphic to Nn.X/ and Sn.X/, respectively, when n � 5.
With the same notation from above, observe that

f j@N W @N ! @M

is a degree 1 map, since f W .N; @N / ! .M; @M/ is. When n D 0 or 1, f j@N
is automatically a homeomorphism. When n D 2, f j@N is a degree 1 map be-
tween circles, which is necessarily a homotopy equivalence and thus homotopic to
a homeomorphism. When n D 3, f j@N is a degree 1 map between oriented sur-
faces, in particular, it induces a surjection .f j@N /�W�1.@N /� �1.@M/ between
the fundamental groups.

Let G � �1.@N / be the kernel of this surjection. If G is trivial, then .f j@N /�
is an isomorphism, which together with Z�-homology equivalence implies that f
is a homotopy equivalence. If G is nontrivial, we claim that �1.@N /=G has to
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be finite. Indeed, if �1.@N /=G is infinite, then f@N=G is a noncompact surface,
where f@N is the universal covering space of @N . It follows that G is a free group.
Note that the pullback covering space .@N /� over @N is isomorphic to the covering
space f@N=G over @N . However, the first homology group of f@N=G is nontrivial,
whereas the first homology group of e@M is always trivial. This is a contradiction
to the assumption that f j@N is a Z�-homology equivalence. Therefore, if G is
nontrivial, then �1.@N /=G is finite. It follows that �1.@N /=G D �1.@M/ has to
be trivial, that is, @M is the 2-sphere. In this case, .@N /� D @N , and a comparison
of homology groups shows that f j@N is a homotopy equivalence. Note that a ho-
motopy equivalence between oriented surfaces is homotopic to a homeomorphism.

To summarize, in dimensions n D 0; 1; 2; and 3, the new definitionsLnew
n .�1X/,

N new
n .X/, and Snew

n .X/ coincide with their original versions. Moreover, in these
dimensions, we can assume that our objects have no boundary. Indeed, for each

� D .M; @M; ';N; @N; ; f / 2 Lnew
n .�1X/;

we can first assume f j@N is a homeomorphism by the above discussion, then glue
the element .N; @N; ;N; @N; ; Id/ to � , that is, glue .N; @N / to .M; @M/ along
the boundary and .N; @N / to .N; @N / along the boundary. Note that the element

.N; @N; ;N; @N; ; Id/

is equivalent to 0 in Lnew
n .�1X/; thus such a gluing does not change the class of

� in Lnew
n .�1X/. In other words, for the trivial group e, the group Lnew

n .e/ D

Ln.e/ is precisely the conventional manifold bordism group �n.G=TOP/, when
n D 0; 1; 2; or 3. It follows from the Atiyah-Hirzebruch spectral sequence and the
homotopy groups of G=TOP that L0.e/ D L1.e/ D L3.e/ D 0 and L2.e/ D Z=2
(given by the Arf invariant).

The case where n D 4 is more subtle. Ideally, we would like to realize all in-
tersection forms in the algebraic definition of Lh4.e/ by elements in the geometric
definition ofL4.e/ (Definition 3.9). One standard method is to apply the Wall real-
ization (cf. [77, chap. 10]). For any orientation-preserving homotopy equivalence
between two closed 3-manifolds gWA ! B , the Wall realization process applied
to A will produce a cobordism W between A and another 3-manifold C together
with a degree 1 normal map GWW ! B � I such that GjC WC ! B D B � f1g

is a Z�-homology equivalence.7 This is the reason that we need the modified
version Lnew

4 .e/. With this modification, every element of Lh4.e/ can be realized
by an element of Lnew

4 .e/. More explicitly, recall that the Poincaré homology
sphere bounds a manifold E with the E8-quadratic form. Now consider a map
f W .E; @E/ ! .D4;S3/ that induces a homology equivalence from @E to S3.
This defines a generator of the group Lh4.e/. In particular, all elements of Lh4.e/
can be realized by using boundary connected sums of f W .E; @E/! .D4;S3/.

7 In dimensions � 4, the Wall realization will actually produce a homotopy equivalence on the
other end. However, for 3-manifolds, we only get a Z�-homology equivalence in general.
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Remark 3.17. For n � 4, we have only showed thatLnew
n .e/ is isomorphic toLh4.e/

in the case of the trivial group e. This is all we need to conclude Theorem 3.18
below. We do not claim that Lnew

4 .�1X/ is isomorphic to Lh4.�1X/ for a general
fundamental group.

THEOREM 3.18. We have a natural isomorphism

N new
n .X/ Š Hn.X IL�/ for all n 2 Z:

PROOF. There is a natural morphism from N new
n .X/ toHn.X IL�/ by mapping

an element of N new
n .X/ to its corresponding (local) algebraic Poincaré complex.8

This is a natural morphism of two generalized homology theories. To show this
natural morphism is an isomorphism, it suffices to show that it induces an isomor-
phism when X is a point. Now if X is a point, then any Z�-homology equivalence
automatically has infinitesimal control. If n � 5, it follows from [77, chap. 9] of
Wall that

N new
n .fptg/ D Lnew

n .e/! Hn.X IL�/ D L
h
n.e/

is an isomorphism. Now by the discussion before the theorem, we have

N new
n .fptg/ D Lnew

n .e/ D

(
0 if n D 0;
Lhn.e/ if 1 � n � 4;

which coincides with Hn.fptgIL0/. This finishes the proof. �

Note that the new versions Lnew
n .�1X/, N new

n .X/, and Snew
n .X/ were only

needed to make sure that these groups indeed give us the topological surgery exact
sequence. As we have seen above, when n ¤ 4, the new version coincides with
the original version, and in fact we shall exclusively be interested in the case where
n � 5. From now on, if no confusion is likely to arise, we will continue to write
Ln.�1X/, Nn.X/, and Sn.X/ instead of Lnew

n .�1X/, N new
n .X/, and Snew

n .X/.
Now to form the surgery long exact sequence, let us introduce the following

relative L-groups.

DEFINITION 3.19. An object

� D .M; @˙M;';N; @˙N; ; f /

of Ln.�1X;X;w/ consists of the following data (see Figure 3.7):

(1) two manifold 2-ads .M; @˙M/ and .N; @˙N/ of dimM D dimN D n,
with @M D @CM [ @�M (resp., @N D @CN [ @�N ) the boundary ofM
(resp., @N ), in particular, @.@CM/ D @.@�M/ and @.@CN/ D @.@�N/;

8 Since an object in Nn.X/ consists of two manifolds with boundary with their boundaries related
by an infinitesimal Z�-homology equivalence, the (local) algebraic Poincaré complex is obtained
by gluing the two local relative Poincaré complexes along the boundary by this infinitesimal Z�-
homology equivalence.
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@@CM D @@�M

@�M

@CM

M

f

f j@CN

f j@@CN

X

'

 

@�N

@CN

@@CN D @@�N

N

FIGURE 3.7. An object � D .M; @˙M;';N; @˙N; ; f / of
Ln.�1X;X;w/, where f j@@CN is an infinitesimally controlled homo-
topy equivalence, f is a degree 1 normal map, and f j@CN is a homotopy
equivalence.

(2) continuous maps 'WM ! X and  WN ! X so that the pullback Z=2-
principal bundles '�.w/ (resp.,  �.w/) is the orientation covering of M
(resp., N ) respectively;

(3) a degree 1 normal map of manifold 2-ads

f W .N; @N /! .M; @M/

such that ' ı f D  ;
(4) the restriction f j@CN W @CN ! @CM is a homotopy equivalence over X

such that f�Œ@CN� D Œ@CM�;
(5) the restriction f j@�N W @�N ! @�M is a degree 1 normal map over X ;
(6) the homotopy equivalence f j@CN restricts to an infinitesimally controlled

homotopy equivalence f j@.@˙N/W @.@˙N/! @.@˙M/ over X .

DEFINITION 3.20. The equivalence relation for defining Ln.�1X;X;w/ is given
as follows. Let

� D .M; @˙M;';N; @˙N; ; f /

be an object from Definition 3.19 above. We write � � 0 if the following condi-
tions are satisfied (cf. Figure 3.8).

(1) There exists a manifold 3-ad .W; @W / of dimension .n C 1/ with a con-
tinuous mapˆWW ! X so that the pullback Z=2-principal bundleˆ�.w/
is the orientation covering of W . Here @W is the union of M , @2W and
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N

@2V

@CN D @@2;CV

@�N D @@3;�V

@3V

@@2;�V D @@3;CV

V

M

@2W

@CM D @@2;CW

@�M D @@3;�W

@3W

@@2;�W D @@3;CW

F

F j@2V is a homotopy equivalence

W

X

‰ ˆ

FIGURE 3.8. Equivalence relation � � 0 for the definition of
Ln.�1X;X;w/, where F j@@2;�V is an infinitesimally controlled homo-
topy equivalence and F j@2V is a homotopy equivalence.

@3W , and ˆjM D '. Moreover, we have decompositions

@M D @CM [ @�M; @.@2W / D @@2;CW [ @@2;�W;

@.@3W / D @@3;CW [ @@3;�W;

such that @CM D @@2;CW; @�M D @@3;�W , and @@2;�W D @@3;CW:

Furthermore, we have

@CM \ @�M D @@2;CW \ @@2;�W D @@3;CW \ @@3;�W:

(2) Similarly, we have a manifold 3-ad .V; @V / of dimension .n C 1/ with a
continuous map ‰ W V ! X so that the pullback Z=2-principal bundle
‰�.w/ is the orientation covering of V . Moreover, @V D N [ @2V [ @3V
satisfies similar conditions as W .

(3) There is a degree 1 normal map of manifold 3-ads

F W .V; @V /! .W; @W /

such that ˆ ı F D ‰ and F jN D f .
(4) The map F j@2V W @2V ! @2W is a homotopy equivalence overX such that

F�Œ@2V � D Œ@2W �.
(5) F restricts to an infinitesimally controlled homotopy equivalence

F j@@2;�V W @@2;�V ! @@2;�W over X .

We denote by Ln.�1X;X Iw/ the set of equivalence classes from Definition
3.19. Note that Ln.�1X;X Iw/ is an abelian group with the addition given by
disjoint union. We also can make this relative L-groups into a 4-periodic theory.
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DEFINITION 3.21. For each n 2 Z, we define Ln.�1X;X;w/ to be the direct limit
of

� � � ! Lk.�1X;X;w/
�CP2

����! LkC4.�1X;X;w/
�CP2

����! LkC8.�1X;X;w/! � � � ;

where k � n .mod 4/.

Note that every element

� D .M; @M; ';N; @N; ; f / 2 Ln.�1X;w/

naturally defines an element in Ln.�1X;X;w/ by letting @�M D ¿. We denote
this map by

j�WLn.�1X;w/! Ln.�1X;X;w/:

For every element

� D .M; @˙M;';N; @˙N; ; f / 2 Ln.�1X;X;w/;

we see that
�� WD f@�M; @.@�M/; '; @�N; @.@�N/; ; f g

defines an element in Nn�1.X;w/. We call �� the .�/-boundary of � .
Various groups defined above fit into the following long exact sequence. The

proof is essentially identical to that of theorem 9.6 in Wall [77, chap. 9].

THEOREM 3.22. We have the following long exact sequence:

� � � ! Nn.X;w/
i�
�! Ln.�1X;w/

j�
�! Ln.�1X;X;w/

@�
�! Nn�1.X;w/! Ln�1.�1X;w/! � � �

where i�WNn.X;w/ ! Ln.�1X;w/ is the natural map defined by forgetting in-
finitesimal control, and the map @� maps each element of Ln.�1X;X;w/ to its
.�/-boundary, that is, if � D fM; @˙M;';N; @˙N; ; f g 2 Ln.�1X;X;w/;

then
@�.�/ D �� WD f@�M; @.@�M/; '; @�N; @.@�N/; ; f g:

Consequently, we have the following 4-periodic ( for all n 2 Z) long exact se-
quence

(3.1)
� � � ! Nn.X;w/

i�
�! Ln.�1X;w/

j�
�! Ln.�1X;X;w/

@�
�! Nn�1.X;w/! Ln�1.�1X;w/! � � �

PROOF. It is easy to see that the map @� is well-defined. It remains to prove the
exactness of the sequence.

An element in Nn�1.X;w/ maps to 0 in Ln�1.�1X;w/ if and only if its im-
age is cobordant to the empty set in Ln�1.�1X;w/. However, such a cobordism
defines an element in Ln.�1X;X;w/. This proves the exactness at Nn�1.X/.

Note that @�j� D 0 by definition. On the other hand, given an element � in
Ln.�1X;X;w/, if � maps to 0 in Nn�1.X;w/, then we can take a cobordism of
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@�.�/ to the empty set, and glue it to � along @�.�/. The resulting new element is
cobordant to � , and its .�/-boundary is empty, so it lies in the image of the map
j�. This proves the exactness at Ln.�1X;X;w/.

Finally, let us prove the exactness at Ln.�1X;w/. Suppose

� D fM; @M; ';N; @N; ; f g

is an element of Nn.X;w/; then we shall show that it is cobordant to 0 in Ln.�1X;
X;w/. Indeed, a cobordism of � to the empty set is provided by � � I where I is
the unit interval. More precisely, � � I consists of the following data.

(i) W DM � I with a continuous map

ˆ D 'WW
p1
�!M ! X;

where p1WW !M is the projection map onto M . Moreover,

@W DM [ @2W [ @3W

with @2W D @M � I and @3W DM .
(ii) Similarly, V D N � I with a continuous map

‰ D  WV
q1
�! N ! X;

where q1WV ! N is the projection map onto N . Moreover,

@V D N [ @2V [ @3V;

where @2V D @N � I and @3V D N .
(iii) A degree 1 normal map

F D f � IdW .V; @V /! .W; @W /

such that ˆ ı F D ‰ and F jN D f .
(iv) F j@2V W @2V D @N � I ! @2W D @M � I is a homotopy equivalence

such that F�Œ@2V � D Œ@2W �. This is because f W @N ! @M is an in-
finitesimally controlled homotopy equivalence, thus in particular a homo-
topy equivalence.

(v) F restricts to an infinitesimally controlled homotopy equivalence

F j@@2;�V W @@2;�V D @N ! @@2;�W D @M

over X .
This proves that j�i� D 0. Conversely, suppose an element

� D fM; @M; ';N; @N; ; f g 2 Ln.�1X;w/

maps to 0 in Ln.�1X;X;w/; that is, � is cobordant to 0 in Ln.�1X;X;w/. Let
us use the same notation as in Definition 3.20. In our current case, we have @M D
@CM with @�M D ¿, @@2W D @@2;CW [ @@2;�W , and @@3W D @@3;CW with
@@3;�W D ¿ such that

@CM D @@2;CW and @2;�W D @@3;CW:
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Moreover, we have @@2;CW \ @@2;�W D ¿: Similar conditions also apply to V .
It follows that F W .V; @V /! .W; @W / is a cobordism between � and the element

� D .@3W; @@3W;ˆj@3W ; @3V; @@3V;‰j@3V ; F j@3W /:

Note that � is an element of Nn.X Iw/. This finishes the proof. �

3.3 Relations between Various Structure Groups
In this subsection, we prove Sn.X Iw/ is naturally isomorphic to LnC1.�1X;

X;w/. Moreover, when X is a closed topological manifold of dimension n � 5,
we show that STOP.X;w/ is naturally isomorphic to Sn.X Iw/.

Consider the natural homomorphism

c�WSn.X;w/! LnC1.�1X;X;w/

given by
� D fM; @M; ';N; @N; ; f g 7! � � I;

where � � I consists of the following data:
(1) a manifold 2-ad .M � I; @˙.M � I // with

@C.M � I / DM D @�.M � I /I

in particular, we have @@C.M � I / D @M D @@�.M � I /;
(2) similarly, another manifold 2-ad .N � I; @˙.N � I // with

@C.N � I / D N D @�.N � I /I

(3) a continuous map z' WD ' ı pWM � I
p1
�!M

'
�! X such that the pullback

Z=2-principal bundle .' ı p/�.w/ M � I is the orientation covering of
M � I , where p is the projection map from M � I to M ; similarly, a
continuous map

� WD  ı qWN � I q
�! N

 
�! X

such that the pullback Z=2-principal bundle . ı q/�.w/ is the orientation
covering of N � I , where q is the projection map from N � I to N ;

(4) a degree 1 normal map of manifold 2-ads

zf WD f � IdW .N � I; @˙.N � I //! .M; @˙.M � I //

such that z' ı zf D � ;
(5) the restriction

zf j@C.N�I/W @C.N � I / D N ! @C.M � I / DM

is a homotopy equivalence over X such that zf�ŒN � D ŒM �;
(6) the restriction zf j@�.N�I/WN !M is a degree 1 normal map overX ; here

we recall that every homotopy equivalence naturally defines a degree 1
normal map;
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(7) zf restricts to an infinitesimally controlled homotopy equivalence
zf j@@˙.N�I/W @@˙.N � I / D @N ! @@˙.M � I / D @M

over X .
There is also a natural homomorphism

r�WLnC1.�1X;X;w/! Sn.X;w/
by taking the .C/-boundary of an element; that is,

� D fM; @˙M;';N; @˙N; ; f g 2 LnC1.�1X;X;w/

maps to

�C D f@CM; @@CM;'; @CN; @@CN; ; f g 2 Sn.X;w/:
It is easy to see that c� and r� are well-defined.

PROPOSITION 3.23. The homomorphisms c� and r� are inverses of each other. In
particular, we have Sn.X;w/ Š LnC1.�1X;X;w/.

PROOF. Clearly, we have r� ı c� D 1. Conversely, if

� D fM; @˙M;';N; @˙N; ; f g

is an element inLnC1.�1X;X;w/, then c�ır�.�/ is cobordant to � inLnC1.�1X;
X;w/. Indeed, consider the element

.� � I /
[

.�C�I/�f0g� ��f1g

.�C � I � I /

where .�C�I /�f0g is glued to the subset .�C�I / � � in � �f1g. This produces
a cobordism between c� ı r�.�/ D .�C � I /� f1g and � � f0g. In other words, we
have c� ı r� D 1. This finishes the proof. �

Now we shall use the surgery long exact sequence to identify Sn.X Iw/ with
STOP.X Iw/. Consider the natural map

��WSTOP.X Iw/! Sn.X Iw/
by

Œ'WM ! X� 7! � D fM; @M D ¿; '; X; @X D ¿; Id; f D 'g:
It is easy to see that �� is a well-defined map of sets.

For notational simplicity, we will work with the case where X is oriented and
the Z=2-principal bundle w on X is trivial. The same argument also works for the
general case. Recall that, for n D dimX � 5, we have the following geometric
surgery long exact sequence

(3.2)

� � � !LhnCiC1.�1X/! STOP
@ .X �Di /

!N TOP
@ .X �Di /! LhnCi .�1X/!

� � � !LhnC1.�1X/Ü STOP.X/! N TOP.X/! Lhn.�1X/

where
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(a) Di is the i -dimensional Euclidean unit ball;
(b) STOP

@
is the rel @ version9 of the structure set, whose definition we shall

review below;
(c) N TOP is the set of normal invariants, and N TOP

@
is its rel @ version;

(d) the map LhnC1.�1X/Ü STOP.X/ is a natural action of LhnC1.�1X/ on
STOP.X/.

Moreover, all terms starting from LhnC1.�1X/ to the left, in the sequence (3.2), are
abelian groups, and all arrows to the left ofLhnC1.�1X/ are group homomorphisms.

DEFINITION 3.24. Suppose Y is an oriented compact manifold with boundary @Y .
We define STOP

@
.Y / to be the set of equivalence classes of orientation-preserving

homotopy equivalences
f W .M; @M/! .Y; @Y /

from compact manifolds with boundary such that f W @M ! @Y is a homeo-
morphism. Two orientation-preserving homotopy equivalences f W .M; @M/ !

.Y; @Y / and gW .N; @N / ! .Y; @Y / are equivalent if there exists a rel @-h-cobord-
ism10 .W IM;N/ with an orientation-preserving homotopy equivalence

F W .W IM;N/! .Y � I IY � f0g; Y � f1g/

such that F jM D f , F jN D g, and F j@Y�I is a homeomorphism, where @Y � I
is the part of @W that sits between @M and @N .

Similar to the definition of ��WSTOP.X/! Sn.X/, there is a natural map

ˇ�WSTOP
@ .X �Di /! SnCi .X/

for all i � 1, by mapping

f'W .M; @M/! .X �Di ; X � Si�1/ 2 STOP
@ .X �Di /

to
� D fM; @M;p ı ';X �Di ; X � Si�1; p; f D 'g 2 SnCi .X/

where pWX � Di ! X is the projection of X � Di onto X . When i � 1, there
is a natural group structure on STOP

@
.X �Di /, which is geometrically defined by

stacking. Let us review the definition of stacking (cf. [14], [23, def. 2.4]). For
i � 1, let us denote Si�1

˙
WD f.x1; : : : ; xi / 2 Si�1 D @Di j ˙x1 � 0g; and

Di˙ WD f.x1; : : : ; xi / 2 D
i
j ˙x1 � 0g:

Fix suitable homeomorphisms

.Di ; S i�1C ; S i�1� / Š .DiC;S
i�1
C ;Dk�1/

and

.Di ; S i�1C ; S i�1� / Š .Di�;S
i�1
� ;Dk�1/:

9 rel @ means “relative to boundary.”
10 In particular, @W DM [@M @Y � I [@N N .
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We see that Di D Di
C
[Di�1 D

i
�.

DEFINITION 3.25. Suppose

f1W .M1; @M1/! .X �Di ; X � Si�1/

and
f2W .M2; @M2/! .X �Di ; X � Si�1/

are two elements in STOP
@

.X � D4/. We define the sum of f1 and f2 to be the
following element:

f D f1 [ f2WM ! X �Di D X �DiC [X �D
i
�

where M is obtained from gluing M1 and M2 along

f �11 .X �Di�1/ Š f �12 .X �Di�1/:

With respect to this group structure, the map ˇ� is in fact a group homomor-
phism.

LEMMA 3.26. For i � 1, the map

ˇ�WSTOP
@ .X �Di /! SnCi .X/

is a group homomorphism.

PROOF. It is easy to see that the stacking procedure gives a cobordism between
the resulting new element and the disjoint union of the two elements that we started
with. This finishes the proof. �

For i � 0, we have a natural homomorphism

˛�WN TOP
@ .X �Di /! NnCi .X/;

which is defined similarly as the map ˇ� above.

LEMMA 3.27. If X is a closed oriented connected topological manifold of dimen-
sion n � 5, then the map

˛�WN TOP.X/! Nn.X/

is an isomorphism.

PROOF. For each i � 0, there is a commutative diagram

N TOP
@

.X �Di / //

Š

��

NnCi .X/

Š

��

HnCi .X IL�/ HnCi .X IL�/

where the vertical isomorphisms are the corresponding algebraic normal invariant
maps (cf. Theorem 3.18). This finishes the proof. �
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Remark 3.28. We remark that all explicit descriptions of normal invariants are
torsorial. While a Poincaré complex can have a normal invariant, and this is a well-
defined homotopical notion, and the description of normal invariants as lifts of the
Spivak fibration is also canonical, the description of the aggregate of these lifts in
terms of the classifying space G=CAT involves first picking a preferred lift.

Now by construction, the geometric surgery long exact sequence (3.2) and the
long exact sequence from Theorem 3.22, together with the maps ˛�, ˇ�; and ��, fit
into the following commutative diagram:

N TOP
@

.X � I / //

˛� Š

��

LnC1.�1X/ // STOP.X/ //

��

��

N TOP.X/ //

˛� Š

��

Ln.�1X/

NnC1.X/ // LnC1.�1X/ // Sn.X/ // Nn.X/ // Ln.�1X/:

(3.3)

By using the action of LnC1.�1X/ on STOP.X/ and the proof of the standard five
lemma, we obtain the following proposition.

PROPOSITION 3.29. If dimX D n � 5, then the map

��WSTOP.X/! Sn.X/
is a bijection of sets. Moreover, for i � 1, the map

ˇ�WSTOP
@ .X �Di /! SnCi .X/

is a group isomorphism.

For any oriented closed topological manifold X with dimX � 5, STOP.X/

carries an abelian group structure by Siebenmann’s periodicity theorem [48, app.
C to Essay V], which makes the geometric surgery long exact sequence (3.2) into
an exact sequence of abelian groups everywhere. More precisely, Siebenmann’s
periodicity theorem states that there is an injection

STOP.X/ ,! STOP
@ .X �D4/:

To see that the abelian group structure on STOP
@

.X �D4/ induces an abelian group
structure on STOP.X/, one needs the fact that the map � WSTOP

@
.X � D4/ ! Z

arising in Nicas’ correction [51] to Siebenmann’s periodicity theorem is a group
homomorphism.

The map � can be described as follows. Suppose

f W .Y; @Y /! .X �D4; X � S3/

is an element of STOP
@

.X �D4/. Let V be the transverse inverse image of fptg �
D4, where pt is a point of X . Then V is a compact oriented manifold whose
boundary is S3. Now we glue a D4 to V along S3, and obtain a closed oriented
manifold V 0 of dimension 4. The map � takes f to 1=8 of the signature of V 0

(since this signature is automatically a multiple of 8). It is easy to see that � is a
group homomorphism, since the signature of a connected sum is the sum of the
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signatures. The Siebenmann’s periodicity theorem (with the above correction by
Nicas) can now be stated in terms of the following exact sequence:

0! STOP.X/! STOP
@ .X �D4/

�
�! Z:

As a consequence, STOP.X/, viewed as the kernel of the group homomorphism � ,
carries an abelian group structure.

In order to see how the map ��WSTOP.X/ ! Sn.X/ behaves with respect to
the abelian group structure on STOP.X/ induced by the Siebenmann periodicity
theorem, we shall in fact use a geometric periodicity map, denoted by GP , due to
Cappell and the first author [14]. A priori, it is not clear whether the map GP coin-
cides with the Siebenmann periodicity map SP . Crowley and Macko showed that
a quaternionic (resp., octonionic) version of GP coincides with SP2WSTOP.X/!

STOP
@

.X � D8/ (resp., SP4WSTOP.X/ ! STOP
@

.X � D16/) [23]. Our discussion
below will show that GP coincides with SP .

Now let us briefly review the construction of the map GP . It is a fundamental
fact that any homotopy equivalence f WM ! X in STOP.X/ has a unique (up to
isotopy) associated embedding M ! X � D3. This is due to Browder-Casson-
Haefiger-Sulivan-Wall, which is explained in [77] in the analogous PL case, with
the topological case following from [48]. Quinn’s end theorem [58] gives a canon-
ical mapping cylinder structure on the neighborhood of M in X �D3. The same
reasoning gives a mapping cylinder approximate fibration X � D3 over M . The
map

GP WSTOP.X/! STOP
@ .X �D4/

is defined by taking the Hopf fibration S3 ! S2 over the mapping cylinder (away
from M ) and gluing M back.

PROPOSITION 3.30. If n D dimX � 5, the map

��WSTOP.X/! Sn.X/
is a group homomorphism.

PROOF. It suffices to prove the following diagram commutes:

STOP.X/
� � GP

//

��

��

STOP
@

.X �D4/

ˇ�
��

Sn.X/ � � �CP2 // SnC4.X/

(3.4)

where the map GP is the geometric Siebenmann periodicity map described above,
and�CP2 is the map induced by taking the product with CP2. Here is the intuitive
reason why this diagram commutes. For an element f WM ! X in STOP.X/, the
construction of GP first looks at the boundary of the neighborhood M in X �D3,
which is homeomorphic to X � S2 has a block bundle structure over M with
fiber S2. Now taking the Hopf disk bundle over S2 (i.e., the unit disk bundle of
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the tautological line bundle over S2 D CP1) and fiberwise coning its boundary is
somehow invoking the �CP2 isomorphism in surgery theory. Indeed, CP2 can be
obtained by gluing the Hopf disk bundle over S2 and D4 along their boundaries,
both of which are S3.

Now let us give a rigorous argument using the device of “periodicity spaces”
[80, 81]. One convenient setting for our argument below is the stratified surgery
theory of Browder and Quinn [8]. The relevant periodicity space for our discussion
is the stratified space P D CP2 [ D3, where D3 is glued to CP2 along S2 D
CP1, andP is a stratified space having three strata: S2, VD3, and VD4 D CP2 � S2.

In our definition (Definition 3.9) of Ln.�1X/, an object consists of manifolds
with boundary and some extra data. In the following, we shall enlarge the set
of objects by allowing stratified (singular) manifolds over P . Here we call Y a
stratified manifold (with boundary) over P if there is a map f WY ! P such that
the strata of Y are the pullbacks of the strata of P and the map is transversal to
each stratum of P .

The group LBQnC4.�1X IP / is defined to be the cobordism of surgery problems
over X ,11 except that we allow the objects to be .n C 4/-dimensional stratified
manifolds over P . Equivalently, each element of LBQnC4.�1X IP / can be thought
of as a surgery problem over X � S2 with extensions over X �D3 and X �CP2,
where in the latter case we insist that the surgery problem over X � CP2 restricts
transversally to the given one onX�S2. We point out that the reference space here
is still X , and P is only used as a model space to produce a stratification structure
for these objects, hence the notation LBQnC4.�1X IP / to distinguish the role of P
from that of X . Similarly, we define LBQnC4.�1X ID

4 rel @/, where the objects are
stratified over D4 and restrict to a trivial surgery problem over S3 � D4.

We make the following key observations.

(1) Some straightforward calculations within Browder-Quinn’s stratified sur-
gery theory show that the inclusion map D4 rel @ into P (that is, D4 is
identified with the complement of a tubular neighborhood of S2 in CP2)
induces an isomorphism L

BQ
nC4.�1X ID

4 rel @/
Š
��!L

BQ
nC4.�1X IP /. The

restriction map that takes a surgery problem over P to its restriction over
CP2 also induces an isomorphism

L
BQ
nC4.�1X IP /

Š
��! LnC4.�1X/:

In terms of spectra, these maps induce homotopy equivalences of the cor-
responding spectra.

11 Here we follow the usual convention of calling an element in Wall’s geometric definition (cf.
Definition 3.9) of L-groups a surgery problem.
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(2) Similar to Definitions 3.4 and 3.13, we can also define groups SBQ� .X IP /

and NBQ
� .X IP /, and they fit into an exact sequence:

� � � ! L
BQ
nC5.�1X IP /! SBQnC4.X IP /! NBQ

nC4.X IP /

! L
BQ
nC4.�1X IP /! SBQnC3.X IP /! � � � :

Remark 3.31. Let LnC4.�1X ID3;S2/ be the relative L-group for the pair of
spaces .X � D3; X � S2/, which is trivial by Wall’s �-� theorem [77, theorem
3.3]. The composite map

STOP.X/
�P
��! SBQnC4.X IP /! LnC4

�
�1X ID

3;S2
�

is trivial because it ends in the trivial group, where the first map is taking direct
product with P and the second map is given by the restriction from P to D3. It
also has the interpretation, in the topological category, that after crossing a structure
over X with D3, it can be (approximately) fibered over X . This is essentially
the content of the embedding theorem of Browder-Casson-Haefiger-Sulivan-Wall,
which is the core of the construction of the geometric periodicity map GP .

The inclusion map D4 rel @ into P and the restriction map from P to CP2

induce the following commutative diagram:

L
BQ
nC5.�1X ID

4 rel @/ //

��

SBQnC4.X ID4 rel @/ //

i�
��

NBQ
nC4.X ID

4 rel @/ //

��

L
BQ
nC4.�1X ID

4 rel @/

��

L
BQ
nC5.�1X IP /

//

��

SBQnC4.X IP / //

r�

��

NBQ
nC4.X IP /

//

��

L
BQ
nC4.�1X IP /

��

LnC5.�1X/ // SnC4.X/ // NnC4.X/ // LnC4.�1X/

where all vertical maps are isomorphisms. Moreover, the same argument from
Proposition 3.29 shows that the natural map

STOP
@ .X �D4/! SBQnC4.X ID

4 rel @/

is an isomorphism.
Now it follows by construction that the map GP coincides with the following

composition:12

STOP.X/
��
�! Sn.X/

�P
��! SBQnC4.X IP /

i�1�
��! SBQnC4.X ID

4 rel @/ Š STOP
@ .X �D4/:

The map
�CP2WSn.X/! SnC4.X/

12 Here the map �P WSn.X/ ! SBQnC4.X IP / is given by taking the direct product of an ele-
ment with P . It is an isomorphism, hence P is called a periodicity space. The fact that �P is an
isomorphism is essentially a consequence of Wall’s �-� theorem [77, theorem 3.3] (see [80, 81]).
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coincides with the composition

Sn.X/
�P
��! SBQnC4.X IP /

r�
�! SnC4.X/;

and the map ˇ�WSTOP
@

.X �D4/! SnC4.X/ coincides with the composition

STOP
@ .X �D4/ Š SBQnC4.X ID

4 rel @/
i�
�! SBQnC4.X IP /

r�
�! SnC4.X/:

Therefore, we have the commutative diagram

STOP.X/
� � GP

//

��

��

STOP
@

.X �D4/

ˇ�
��

Sn.X/ � � �CP2 // SnC4.X/

This finishes the proof. �

For reference, we mention explicitly that our discussion readily implies the fol-
lowing:

THEOREM 3.32. The geometric periodicity map coincides with the Siebenmann
periodicity map, that is, GP D SP .

PROOF. The former is induced by crossing with the stratified space P and the
latter by crossing with CP2, as explained above. Hence the theorem follows from
the discussion above. �

To summarize, combining Proposition 3.29 and Proposition 3.30, we have the
following theorem.

THEOREM 3.33. If X is a closed oriented connected topological manifold with
dimX D n � 5, then the map

��WSTOP.X/! Sn.X/
is an isomorphism.

Remark 3.34. More generally, if X is a closed connected topological manifold of
dimension � 5 and w is the orientation covering of X , then the map

��WSTOP.X;w/! Sn.X;w/
is an isomorphism.

We conclude this subsection with the following brief discussion of the 4-periodic
surgery exact sequence from line (3.1) in Theorem 3.22 and homology manifold
structure groups.

For this discussion, let us assume that X is a closed connected topological man-
ifold of dimension � 6. If we invert CP2 and consider the 4-periodic theory as in
Definition 3.12 and 3.15, then Sn.X;w/ is naturally isomorphic to the homology
manifold structure group SHTOP.X;w/ of X . Indeed, according to [11, corollary,
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p. 438], SHTOP.X/ is isomorphic to STOP
@

.X �D4/, where the latter group consists
entirely of structures with manifold representatives, due to the rel @ condition.13

The 4-periodic surgery long exact sequence from line (3.1) in Theorem 3.22 gives
the surgery long exact sequence for homology manifold structures; cf. [11, Main
Theorem]. In fact, by construction, our higher rho invariant map (Definition 4.38)
is naturally defined on the homology manifold structure group; also see the dis-
cussion after Proposition 3.48. All the main results of this paper, in particular
Theorem 4.40 and Theorem 8.8, hold for both the manifold structure group and the
homology manifold structure group.

Remark 3.35. For the 4-periodic theory, the analogue of Theorem 3.18 is

Nn.X/ Š Hn.X IL�h0i/ for all n 2 Z;

where L�h0i is an�-spectrum of simplicial sets of quadratic forms and formations
over Z such that L0h0i ' Z � G=TOP. In fact, the proof for this 4-periodic
analogue is easier, and the extra discussion surrounding Theorem 3.18 (such as the
modifications in dimension 4) is not needed, since after applying the periodicity
map all calculations can be done in a sufficiently high dimension.

Remark 3.36. More generally, the same method from above can be applied to the
case whereX is a closed oriented connected ANR homology manifold of dimension
� 6. The analogue of the 4-periodic exact sequence from line (3.1) in Theorem
3.22 in this case is precisely the homology manifold surgery exact sequence of [11,
Main Theorem, p. 439]. Here the only essential difference from the topological
manifold case is that we do not have special low-dimensional features to correct
for the lack of realization of L0.e/ by manifolds.

3.4 Structure Group by Smooth or PL Representatives
In this subsection, we observe that the elements in our definition of the structure

group always have smooth representatives. Perhaps this is the main philosophical
point of this approach to surgery—the most naturally functorial version of struc-
tures is independent of the category, and boils down to the topological category.

Let X be a closed connected topological manifold. Consider the smooth and PL
versions of the long exact sequence from Theorem 3.22, and denote them by

(3.5)
� � � ! NC1

nC1.X Iw/
i�
�! LC

1

nC1.�1X Iw/

j�
�! SC

1

n .X Iw/
@�
�! NC1

n .X Iw/! � � �

and

(3.6)
� � � ! N PL

nC1.X Iw/
i�
�! LPL

nC1.�1X Iw/

j�
�! SPL

n .X Iw/
@�
�! N PL

n .X Iw/! � � �

13 Quinn showed that an ANR homology manifold whose boundary is a manifold can be resolved
rel boundary [59, 60].
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respectively, where the various groups are defined as follows.

DEFINITION 3.37. An element

� D .M; @M; ';N; @N; f / 2 SC
1

n .X Iw/ (resp., SPL
n .X Iw/)

consists of the following data:
(1) � is an element of Sn.X Iw/ (cf. Definition 3.4);
(2) M and N are smooth (resp., PL) manifolds with boundary, and the map

f WN !M is smooth (resp., PL).

We point out that X is only a topological manifold, and the control maps ' and
 are only assumed to be continuous. The groups NC1

n .X Iw/, LC
1

n .�1X Iw/,
N PL
n .X Iw/, and LPL

n .�1X Iw/ are defined similarly. There is an obvious map
from the smooth version to the PL version, which in turn can be mapped to the
topological version.

Recall that, for n � 5, the group Ln.�1X;w/ remains the same in all smooth,
PL, and topological categories (see, for example, [77, chap. 9] where the proof for
identifying Ln.�1X;w/ with the algebraic definition Lhn.�1X;w/ works equally
for all three categories).

We shall make the same modification as in Definition 3.16 for dimensions � 4
so that both NC1

n .X Iw/ and N PL
n .X Iw/ define the same homology theory as

Nn.X Iw/. To be more precise, the same discussion before Theorem 3.18 works
for the PL category. While surgery is usually impossible in the smooth category,
thanks to the work of Cappell and Shaneson [13], it still works stably, that is, af-
ter taking connected sums with sufficiently many copies of S2 � S2, where S2

is the standard 2-sphere. As a consequence, it follows that NC1

n .X Iw/ is natu-
rally isomorphic to N PL

n .X Iw/ and Nn.X Iw/ for all n � 0. Now the following
proposition is an immediate consequence of the five lemma.

PROPOSITION 3.38. For n � 5, we have natural isomorphisms

SC1n .X Iw/ Š SPL
n .X Iw/ Š Sn.X Iw/:

In particular, every element in Sn.X Iw/ has a smooth (resp., PL) representative.

Remark 3.39. The reader should not confuse SC1n .X Iw/ with the smooth struc-
ture set of a smooth manifold. The group SC1n .X Iw/ still characterizes topolog-
ical manifold structures on X . The novelty here is that we allow manifolds with
boundary and corners in the definition of SC1n .X Iw/. Similar remarks apply to
SPL
n .X Iw/ as well.
This type of argument would fail if we restrict ourselves to only closed mani-

folds as in the classical definition of STOP.X/. Moreover, we point out that our
definition Sn.X/ continues to make sense even if X is not a manifold. One essen-
tial point here is that with our new definition, we are forcing structure groups to be
functorial, which they do not seem to be in the case of smooth manifold structures.
In fact, the smooth manifold structure set does not carry an abelian group structure
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that makes the smooth surgery exact sequence into an exact sequence of abelian
groups.

3.5 Piecewise Linear Control
In this subsection, we will give another definition of the structure group using

a different type of control that, we will see, can be used to obtain infinitesimal
control.

Note that our definition of Sn.X/ only depends on the homotopy type of X . In
other words, Sn.X/ is isomorphic to Sn.X 0/ for every pair of homotopy equiva-
lent spaces X and X 0. Recall that every closed topological manifold is homotopy
equivalent to a finite CW -complex (cf. [47]), and therefore homotopy equivalent
to a finite simplicial complex.14 On the other hand, every finite simplicial complex
is homotopy equivalent to a smooth manifold with boundary. Indeed, after being
embedded into a Euclidean space, a finite simplicial complex is homotopy equiv-
alent to a regular neighborhood, which is a smooth manifold with boundary.15 To
summarize, every topological manifold of dimension � 5 is homotopy equivalent
to a smooth manifold with boundary. So from now on, without loss of generality,
let us assume X is a smooth manifold with boundary. In particular, let us fix a
triangulation of X throughout this subsection.

Remark 3.40. In the above discussion, when we homotope a topological manifold
Z to a smooth manifold, say X , the dimension of X is larger than that of Z in
general. However, we point out that the objects in the definition of Sn.Z/ and
Sn.X/ are still of dimension n, regardless of the dimension of X or Z.

In the following, we work in the PL category. In particular, all objects are
equipped with a triangulation and all morphisms are assumed to be simplicial. We
refer the reader to [69–71] for more details on PL transversality.

DEFINITION 3.41. Let Y and Z be a pair of PL manifolds equipped with certain
triangulations. A homotopy equivalence hWY ! Z is said to be PL controlled over
X via the control map 'WZ ! X if the following is satisfied.

(1) ' is transversal to the triangulation of X . That is, the map 'WZ ! X is
transversal to every simplex�k in the triangulation ofX . In particular, the
inverse image of each simplex�k (in the triangulation of X ) is a manifold
k-ad.

(2) h restricts to a homotopy equivalence from .' ı h/�1.�k/ to '�1.�k/ for
every simplex �k of X . More precisely, there exists a homotopy inverse
gWZ ! Y of h such that
(i) the homotopy H W h ı g ' Id restricts to a homotopy on '�1.�k/;

(ii) the homotopyH 0Wgıh ' Id restricts to a homotopy on .'ıh/�1.�k/.

14 In fact, any manifold of dimension¤ 4 is homeomorphic to a CW complex.
15 Note that, in general, the dimension of this smooth manifold with boundary is larger than the

dimension of the original topological manifold we started with.
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Remark 3.42. Note that, in the above definition, for each simplex �k in X , the
homotopy equivalences h and g and the homotopies H and H 0 all respect the
appropriate manifold ad structure on the inverse image '�1.�k/. In particular,
near various boundaries of '�1.�k/, the map h, g, H , and H 0 have appropriate
product structures. For example, the inverse image K D '�1.�1/ of a 1-simplex
�1 is a manifold 1-ad, that is, a manifold with boundary @K. In this case, the
restrictions of h, g, H , and H 0 on '�1.�1/ maps @K to @K, and have product
structure near @K. We refer the reader to [77, chap. 0] for more details on the
notion of manifold m-ads.

Now similar to Section 3.4, we can define a new surgery long exact sequence by
using PL-control instead of infinitesimal control (Definition 3.3):

(3.7)
� � � ! N PLC

nC1 .X Iw/
i�
�! LPLC

nC1.�1X Iw/

j�
�! SPLC

n .X Iw/
@�
�! N PLC

n .X Iw/! � � �

where the superscript PLC stands for PL-representatives with PL-control. More
precisely, for example, for elements in SPL

n .X Iw/, we replace infinitesimal control
with PL-control, and denote the new group by SPLC

n .X Iw/.

Remark 3.43. The definition of PL-control we gave works well only when X is
a PL manifold. We point out that, when X is a PL manifold with boundary, to
define SPLC

n .X Iw/, every element � D .M; @M; ';N; @N; ; f / is assumed to be
disjoint from the boundary of X . That is, '.M/\ @X D ¿,  .N/\ @X D ¿, and
all other relevant data do not intersect @X . Similar remarks apply to N PLC

n .X Iw/PL

and LPLC
n .�1X Iw/.

Remark 3.44. Using the ideas of Quinn from [61], we can generalize the above
construction to the case where X is an arbitrary finite polyhedron. In that case,
to define PL control, the conditions are not on inverse images of simplices, but
rather of their dual cones. In this more general setting, the covariant functoriality
of SPLC

n .X Iw/ becomes clear.

In the following proposition, we prove that the above notion of PL-control in
fact implies infinitesimal control by modifying the control map 'WZ ! X if nec-
essary. More precisely, we can keep the map hWY ! Z unchanged, and homotope
the control map ' to another control map x' so that h becomes infinitesimally con-
trolled with respect to x'.

PROPOSITION 3.45. Let X be an n-dimensional PL manifold with boundary that
is equipped with a triangulation. Suppose hWY ! Z is a PL controlled homotopy
equivalence over X via the control map 'WZ ! X . Then there exists a control
map x'WZ ! X such that

(1) x' is homotopic to ';
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(2) h restricts to a proper homotopy equivalence

hW x �1U ! x'�1U

for all open subsets U � X , where x D x' ı h.

PROOF. The proof is by induction and uses a “dual cone” picture as described,
for example, in [61, sec. 6].

Suppose K is a simplicial complex. We take the first barycentric subdivision
of K. For every simplex � in K, we define the dual cone D.�/ to be the union of
all simplices of the subdivision that intersect � in exactly the barycenter of � . Now
the key idea of the proof is to crush all the nontrivial changes in topology of Z and
Y , and the homotopy equivalence h to small parts. More precisely, we have the
following induction construction. Let X .k/ be the k-skeleton of X , that is, X .k/ is
the union of all simplices in X of dimensions � k.

(i) INITIAL STEP. First, consider Z.1/ D '�1.X .1// the inverse image of
X .1/. Note that '�1.X .1// has product structure near Z.0/ D '�1.X .0//.
Let us denote by Z.0/" for such a small open neighborhood (with product
structure) of Z.0/ in Z.1/. Let Z.1/c D Z.1/ �Z

.0/
" be the complement of

Z
.0/
" in Z.1/.
We define a new control map

'1WZ
.1/
D '�1.X .1//! X

by mapping each component ofZ.1/c to the barycenter of the corresponding
1-simplex in X and stretching out Z.0/" (which is of product structure)
accordingly (cf. Figures 3.9 and 3.10). Intuitively, we see that the nontrivial
changes of topology from Z.0/ to Z.1/ are all pushed to the barycenters of
1-simplices in X . In particular, for all open subsets V � X .1/, h restricts
to a proper homotopy equivalence hW �11 .V / ! '�11 .V /, where  1 D
'1 ı h.

(ii) INDUCTION STEP. Suppose we have defined the control map

'k WZ
.k/
D '�1.X .k//! X .k/:

Now let us extend 'k to a control map

'kC1WZ
.kC1/

D '�1.X .kC1//! X .kC1/:

Intuitively, for each simplex�kC1 ofX , we shall define 'kC1 so that most
of '�1.�kC1/ is mapped to the barycenter of �kC1, and the remaining
part of '�1.�kC1/ (which again has an appropriate product structure) is
stretched out accordingly.

More precisely, note that Z.kC1/ has product structure near Z.k/. Let
us denote by Z.k/" a small open neighborhood (with product structure) of
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'

FIGURE 3.9. The original map '.

'1

FIGURE 3.10. The new map '1.

Z.k/ inZ.kC1/. LetZ.kC1/c D Z.kC1/�Z
.k/
" be the complement ofZ.k/"

in Z.kC1/. We define a new control map

'kC1WZ
.kC1/

D '�1.X .kC1//! X

by mapping each component of Z.kC1/c to the barycenter of the corre-
sponding .kC1/-simplex inX , and stretching outZ.k/" (which has a prod-
uct structure) accordingly. It is clear that this process keeps 'k unchanged
on Z.k/.

In the end, we obtain a new control map x' D 'nWZ ! X , where n is the dimension
of X . It is clear from the construction that x' is homotopic to '. Moreover, h
restricts to a proper homotopy equivalence

hW x �1U ! x'�1U

for all open subsets U � X , where x D x' ı h. This finishes the proof. �
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DEFINITION 3.46. Let Y and Z be a pair of PL manifolds equipped with trian-
gulations. A homotopy equivalence hWY ! Z is said to be PL infinitesimally
controlled over X via a control map x'WZ ! X if h is PL controlled over X via x'
and h restricts to a proper homotopy equivalence

hW x �1U ! x'�1U

for all open subsets U � X , where x D x' ı h.

The following is an immediate corollary of Proposition 3.45.

COROLLARY 3.47. Let � D .M; @M; ';N; @N; ; f / be an element in SPL
m .X/PL.

Then there exists a control map x'WM ! X such that x' is homotopic to ' and on
the boundary f restricts to a PL infinitesimally controlled homotopy equivalence
f j@N W @N ! @M .

In order to more directly apply the discussion above to the geometrically con-
trolled category (Section 4.4), let us state the PL infinitesimal control in terms of
triangulations. We borrow the notation from Definition 3.3. In our current situa-
tion, we can choose proper simplicial maps

ˆWCM ! X � Œ1;1/ and ‰WCN ! X � Œ1;1/;

F WCN ! CM and GWCM ! CN;

and a proper simplicial homotopy fHsg0�s�1 between

H0 D F ıG and H1 D IdWCM ! CM

and a proper simplicial homotopy fH 0sg0�s�1 between

H 00 D G ı F and H 01 D IdWCN ! CN

such that the following are satisfied:

(1) ˆ D x' � IdW @M � Œ1;1/! @M � Œ1;1/, where x' is the new controlled
map obtained from ' as in Proposition 3.45 above; ‰ D x � IdW @N �
Œ1;1/! @N�Œ1;1/, where x D x'ıf ; and F D f �IdW @N�Œ1;1/!
@M � Œ1;1/ with commutative diagram

@N � Œ1;1/

x �Id ''

f �Id
// @M � Œ1;1/

x'�Idww

X � Œ1;1/

(2) X � Œ1;1/ is equipped with a triangulation of bounded geometry (cf. Def-
inition 4.12) such that the sizes of simplices uniformly go to 0 as we ap-
proach infinity along the cylindrical direction; for example, this is can be
achieved by the standard subdivision in Section 4.2.
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(3) f � Id is PL infinitesimally controlled. More precisely, the homotopy

H WF ıG ' IdWCM ! CM

restricts to a homotopy on ˆ�1.�/ for every simplex � in X � Œ1;1/.
The homotopy

H 0WG ı F ' IdWCN ! CN

restricts to a homotopy on ‰�1.�/ for every simplex � in X � Œ1;1/.
(4) All maps f � Id, G,H , andH 0 are geometrically controlled over the cone

CX (see Definition 4.32) in the sense of Section 4.4 below.
Recall that the surgery long exact sequence built using PL transversality is

equivalent to the surgery long exact sequence built using block bundles; cf. [62],
and also [12, 51]. By Proposition 3.45, we have the following commutative dia-
gram:

// N PLC
kC1

.X Iw/ //

˛kC1

��

LPLC
kC1

.�1X Iw/ //

ˇk
��

SPLC
k

.X Iw/ //

�k
��

N PLC
k

.X Iw/

˛k

��

//

// N PL
kC1

.X Iw/ // LPL
kC1

.�1X Iw/ // SPL
k
.X Iw/ // N PL

k
.X Iw/ // :

Let us first prove that all vertical maps are isomorphisms when k � dimX C 5.
We will then show how to handle the general case.

PROPOSITION 3.48. If k � dimX C 5, then the map

�k WSPLC
k .X Iw/! SPL

k .X Iw/

is an isomorphism.

PROOF. Let us first prove that the maps

˛k WN PLC
k .X Iw/! N PL

k .X Iw/

and
ˇk WL

PLC
k .�1X Iw/! LPL

k .�1X Iw/

are isomorphisms. This, for example, can be proven by the same techniques from
[77, chap. 9]. The reason for the assumption k � dimX C 5 comes from the
fact that, in order to apply the techniques from [77, chap. 9], the fibers of the
control maps such as 'WM ! X need to be at least 5-dimensional. So when
k � dimX C 5, we have that ˛k and ˇk are isomorphisms. Now the proof is
finished by applying the five lemma. �

Now let us consider the case of Sn.X/ where n D dimX . If we apply the
periodicity map �CP2 twice, then we have

Sn.X/ Š SPL
n .X/ ,! SPL

nC8.X/ Š SPLC
nC8.X/:
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So far in this subsection we have been assuming that X is a PL manifold. Now
let us consider that case where X is a topological manifold of dimension n, which
is the case that we are mainly interested in. Let X 0 be a PL manifold (possibly
with dimension greater than n) that is homotopic to X (cf. the discussion at the
beginning of this subsection). Then after applying the periodicity map ` times, we
have

Sn.X/ Š Sn.X 0/ Š SPL
n .X

0/ ,! SPL
nC4`.X

0/ Š SPLC
nC4`.X

0/

as long as nC 4` � dimX 0 C 5:

As a consequence, our definition of the higher rho invariant map (see Definition
4.38 below)

�WSn.X/! Kn
�
C �L;0.

zX/�
�

is in fact the composition

Sn.X/ Š SPLC
nC4`.X

0/
�
��! KnC4`

�
C �L;0.

zX 0/�
�
Š Kn

�
C �L;0.

zX/�
�
:

On the other hand, by the product formula for higher rho invariants, we have

�.� �CP2/ D �.�/ in KnC4`
�
C �L;0.

zX 0/�
�
Š KnC4`C4

�
C �L;0.

zX 0/�
�

for any element � 2 SPLC
nC4`

.X 0/. This product formula can be proved by a similar
argument as in Proposition D.3 and the fact that the signature of CP2 is equal to 1;
also see Remark 3.49 below. It follows that the higher rho invariant map above is
independent of the choices of X 0 and `. From now on, if no confusion is likely to
arise, we will write Sn.X/ in place of SPLC

nC4`
.X 0/.

Remark 3.49. Suppose Y m1 and Y n2 are complete Riemannian manifolds of dimen-
sion m and n. Let DY1 , DY2 , and DY1�Y2 be the signature operator on Y1, Y2,
and Y1 � Y2, respectively. Then the signature operator DY1�Y2 D DY1 �DY2 if
m � n is even, and DY1�Y2 D 2.DY1 �DY2/ if m � n is odd. Here DY1 �DY2 is
the external product of DY1 and DY2 . See, for example, [68, lemma 6].

Remark 3.50. Everything in this subsection has an obvious equivalent counterpart
in terms of smooth representatives with PL-control. For example, we also have a
long exact sequence

(3.8)
� � � ! NC1

nC1.X Iw/PL
i�
�! LC

1

nC1.�1X Iw/PL
j�
�!

SC1n .X Iw/PL
@�
�! NC1

n .X Iw/PL ! � � �

where the subscript PL stands for PL-control. That is, for example, for elements in
SC1n .X Iw/, we replace infinitesimal control with PL-control.
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4 Additivity of Higher Rho Invariants
In this section, we define the higher rho invariant for elements in Sn.X/ using

our new description of the structure group, where X is a closed oriented topologi-
cal manifold of dimension n. Furthermore, we prove that the higher rho invariant
defines a group homomorphism from Sn.X/ to Kn.C �L;0. zX/

�/, where zX is a uni-
versal cover of X and � D �1X .

4.1 A Hybrid C �-Algebra
In this subsection, we introduce a certain hybrid C �-algebra that is useful for

the definition of higher rho invariant.
Suppose � is a countable discrete group. Let Y be proper metric space equipped

with a proper �-action.

DEFINITION 4.1. We define C �c .Y /
� to be the C �-subalgebra of C �.Y / generated

by elements ˛ 2 C �.Y / of the following form: for any " > 0, there exists a �-
invariant �-cocompact subset K � Y such that the propagations of ˛�.Y�K/ and
�.Y�K/˛ are both less than ". Here �.Y�K/ is the characteristic function on Y �K.

DEFINITION 4.2. We define C �L;0;c.Y /
� to be the C �-subalgebra of C �L;0.Y / gen-

erated by elements ˛ 2 C �L;0.Y / of the following form: for any " > 0, there exists a
�-invariant �-cocompact subsetK � Y such that the propagations of ˛.t/�.Y�K/
and �.Y�K/˛.t/ are both less than " for all t 2 Œ0;1/.

LetX � Œ1;1/ be as before. We denote the universal cover ofX by zX and write
� D �1X . It is obvious that Ir D C �L;0.

zX � Œ1; r�I �X � Œ1;1//� is a two-sided

closed ideal of C �L;0;c. zX � Œ1;1//
� for any r � 1.

DEFINITION 4.3. Let I be the norm closure of the union[
r�1

Jr D

[
r�1

C �L;0.
zX � Œ1; r�I zX � Œ1;1//� :

Note that J is also a two-sided closed ideal of C �L;0;c. zX � Œ1;1//
� . Recall

that

Ki
�
C �L;0.

zX � Œ1; r�I zX � Œ1;1//�
�
D Ki

�
C �L;0.

zX � Œ1; r�/�
�
D Ki

�
C �L;0.

zX/�
�

for i D 0; 1. It follows that Ki .J / D Ki .C
�
L;0.
zX/�/:

PROPOSITION 4.4. The inclusion J � C �L;0;c.
zX � Œ1;1//� induces an isomor-

phism at the level of K-theory. That is, we have

Ki
�
C �L;0;c.

zX � Œ1;1//�
�
Š Ki .J / D Ki

�
C �L;0.

zX/�
�

for i D 0; 1.
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PROOF. For notational simplicity, let us write

A D C �L;0;c.
zX � Œ1;1//� :

We have the following short exact sequence of C �-algebras:

0! I ! A
q
�! A =I ! 0:

To prove the proposition, it suffices to show that

Ki .A =I / D 0

for i D 0; 1. This can be proven by an Eilenberg swindle argument as follows.
We prove the odd case, that is, K1.A =I / D 0; the even case is completely

similar. Suppose x̨ is an invertible element in A C=I where A C is the unitization
of A . Let ˛ be a lift of x̨ in A C. Without loss of generality, let us assume that
˛ � 1 2 A . For each n 2 N, we define an element ˛n 2 A C as follows:

˛n.t/ D

�
1 if 0 � t � n,

˛.t � n/ if t � n.

We define

ˇ.t/ D

1M
nD0

�
1C �n.˛n.t/ � 1/�n

�
;

where �n is the characteristic function on the set zX � Œn;1/.
We claim that ˇ is an element in A C. Indeed, recall that, for any " > 0, there

exists a positive integer N such that:
(1) the propagation of ˛.t/ is < ", for all t � N ;
(2) the propagation of ˛.t/j zX�ŒN;1/ is < ", for all t � 0.

It follows that, for any " > 0, we have that
(i) the propagation of ˇ.t/ is < " for all t � 2N ;

(ii) the propagation of ˇ.t/j zX�ŒN;1/ is < " for all t � 0.

This proves that ˇ 2 A C.
Let us denote by x̌ the image of ˇ in A C=I . We show that x̌ is in fact invertible

in A C=I . Let ! 2 A C be the lift of .x̨/�1. Define

�.t/ D

1M
nD0

�
1C �n.!n.t/ � 1/�n

�
;

where !n and �n are defined similarly as above. Note that the operators

1 � ˇ.t/�.t/ and 1 � �.t/ˇ.t/ are supported in zX � Œ1; nC 1�

for all t 2 Œ0; n�. It follows that 1�ˇ� and 1��ˇ are in the closure of
S
r�1Jr .

In particular, 1 � ˇ� and 1 � �ˇ are in J . Therefore, x̌ is an invertible element
in A C=I .
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Similarly, let us define


.t/ D

1M
nD1

.1C �n.˛n.t/ � 1/�n/:

The same argument from above also shows that 
 2 A C. Denote by x
 the image
of 
 in A C=I . Then x
 is also an invertible element in A C=I .

Note that x
.t � 1/ D x̌.t/. Moreover, x
 and x̌ are connected by a path of
invertible elements x
s , 0 � s � 1, where x
s.t/ D x
.t � s/. Therefore, we have

Œx
� D Œ x̌� 2 K1.A =I /:

It follows that
Œ x̌� D Œx̨�˚ Œx
� D Œx̨�˚ Œ x̌� 2 K1.A =I /;

which implies that Œx̨� D 0. This finishes the proof. �

We also introduce a hybrid version for localization C �-algebras.

DEFINITION 4.5. We define C �L;c.Y /
� to be the C �-subalgebra of C �L.Y / gener-

ated by elements ˛ 2 C �L.Y / of the following form: for any " > 0, there exists a
�-invariant �-cocompact subsetK � Y such that the propagations of ˛.t/�.Y�K/
and �.Y�K/˛.t/ are both less than " for all t 2 Œ0;1/.

The analogue of Proposition 4.4 does not hold for C �L;c.Y /
� . In fact, the fol-

lowing lemma shows that the K-theory groups of C �L;c.Y /
� always vanish.

LEMMA 4.6. We have Ki .C �L;c. zX � Œ1;1//
�/ D 0 for i D 0; 1.

PROOF. It is easy to see that

Ki
�
C �L;c.

zX � Œ1;1//�
�
D Ki

�
C �L.
zX � Œ1;1//�

�
:

The latter is always 0 by a standard Eilenberg swindle argument. This finishes the
proof. �

The following corollary is an immediate consequence of the above lemma.

COROLLARY 4.7. We have the following isomorphism:

Ki
�
C �c .
zX � Œ1;1//�

�
Š KiC1

�
C �L;0;c.

zX � Œ1;1//�
�
:

PROOF. It follows from applying the results above to the K-theory long exact
sequence of

0! C �L;0;c.
zX � Œ1;1//� ! C �L;c.

zX � Œ1;1//� ! C �c .
zX � Œ1;1//� ! 0:

�
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4.2 Simplicial Complexes and Refinements
In this subsection, we describe a refinement procedure for a given triangula-

tion M . This refinement procedure produces a particular subdivision of M , de-
noted by Sub.M/, such that all successive refinements

Subn.M/ WD Sub.Subn�1.M//

have uniform bounded geometry, that is, uniform with respect to n 2 N. There
are other treatments of subdivision schemes in the literature which also achieve
the uniformity of bounded geometry [25] [29]. The following discussion is taken
from [40].

Let us first recall the notion of typed simplicial complexes.

DEFINITION 4.8 (cf. [10,45]). SupposeM is a simplicial complex of dimension n.
LetM 0 be the set of vertices ofM . A type onM is a map ' WM 0 ! f0; 1; : : : ; ng

such that for any simplex ! 2M , the images by ' of the vertices of ! are pairwise
distinct. A simplicial complex equipped with a type is said to be typed.

Given any simplicial complex M of dimension n, we denote its barycentric
subdivision by Y . Then Y admits a type. Indeed, Y is the set of totally ordered
subsets of M , that is,

Y k D f.�0; : : : ; �k/ j �j 2 X and �i is a face of �iC1g:

The dimension function, which maps each barycenter of a simplex of M to the
dimension of that simplex, is a type on Y .

Now suppose M is a typed simplicial complex of dimension n. In particular,
this gives a consistent way of ordering the vertices of each simplex in X according
to the type map. Therefore, each k-simplex of M can be canonically identified
with the standard k-simplex �k . Now to define our refinement procedure, it suf-
fices to describe certain subdivisions of the standard simplices so that the number
of simplices containing any given vertex remains uniformly bounded for all suc-
cessive subvisions. One way to achieve this is by the so-called standard subdivi-
sion [83, app. II.4]. In the following, we briefly recall the construction of standard
subdivision, and refer the reader to [83, app. II.4] for more details.

Let � D Œv0; v1; : : : ; vk� be a standard simplex with its vertices given in the
order shown. Set

vij D
1

2
vi C

1

2
vj ; i � j I

in particular, vi i D vi . These are the vertices of the standard subdivision of � ,
denoted Sub.�/. Define a partial ordering on these vertices by setting

vij � vkl if k � i and j � l:

Now the simplices of Sub.�/ are all those formed from the vij , which are in in-
creasing order. Moreover, each simplex in Sub.�/ naturally inherits an ordering
of vertices from the above partial ordering of vij . It is not difficult to verify that
Sub.�/ carries a natural type by mapping vij 7! .j � i/.
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To summarize, given a typed simplicial complex M of dimension n, we apply
the above standard subdivision procedure (consistently) to each n-simplex of M .
We call the resulting simplicial complex the standard subdivision of M , denoted
by Sub.M/. Note that Sub.M/ is also typed.

4.3 Hilbert-Poincaré Complexes
In this subsection, we recall the definition of Hilbert-Poincaré complexes, which

is fundamental for studying higher signatures of topological spaces. We refer to
[37] for more details.

Let A be a unital C �-algebra. Consider a chain complex of Hilbert modules
over A:

E0
b1
 � E1

b2
 � � � �

bn
 � En

where the differentials bj are bounded adjointable operators. The j th homology
of the complex is the quotient space obtained by dividing the kernel of bj by the
image of bjC1. Note that, since the differentials need not have closed range, the
homology spaces are not necessarily Hilbert modules themselves.

DEFINITION 4.9. An n-dimensional Hilbert-Poincaré complex (over a C �-algebra
A) is a complex of finitely generated Hilbert A-modules

E0
b1
 � E1

b2
 � � � �

bn
 � En

together with adjointable operators T W Ep ! En�p such that

(1) if v 2 Ep, then T �v D .�1/.n�p/pT v;
(2) if v 2 Ep, then T b�.v/C .�1/pbT .v/ D 0;
(3) T is a chain homotopy equivalence16 from the dual complex

En
b�n
 � En�1

b�n�1
 ��� � � �

b�1
 � E0

to the complex .E; b/.

Now we will associate to each n-dimensional Hilbert-Poincaré complex an in-
dex class, called signature, in the K-theory group Kn.A/.

DEFINITION 4.10. Let .E; b; T / be an n-dimensional Hilbert-Poincaré complex.
We denote l to be the integer such that

n D

(
2l if n is even,
2l C 1 if n is odd.

Define S W E ! E to be the bounded adjointable operator such that

S.v/ D ip.p�1/ClT .v/

for v 2 Ep. Here i D
p
�1.

16 To be precise, by item .2/, we need to impose appropriate signs so that T becomes a genuine
chain map. However, we will follow the usual convention and leave it as is, with the understanding
that appropriate signs are employed.
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It is not hard to verify that S D S� and bS C Sb� D 0. Moreover, if we define
B D b C b�, then the self-adjoint operators B ˙ S W E ! E are invertible [37,
lemma 3.5].

DEFINITION 4.11. The signature index of a Hilbert-Poincaré complex is defined
as follows.

(i) Let .E; b; T / be an odd-dimensional Hilbert-Poincaré complex. Its signa-
ture is the class in K1.A/ of the invertible operator

.B C S/.B � S/�1 W Eev ! Eev

where Eev D p̊E2p.
(ii) If .E; b; T / is an even-dimensional Hilbert-Poincaré complex, then its sig-

nature is the class in K0.A/ determined by the formal difference ŒPC� �
ŒP�� of the positive projections of B C S and B � S .

4.4 Geometrically Controlled Poincaré Complexes
In this subsection, we recall the definition of geometrically controlled Poincaré

complexes [38]. They are Hilbert-Poincaré complexes in the geometrically con-
trolled category.

DEFINITION 4.12. A simplicial complex M is of bounded geometry if there is a
positive integer k such that each of the vertices of M lies in at most k different
simplices of M .

DEFINITION 4.13. Let X be a proper metric space. A complex vector space V
is geometrically controlled over X if it is provided with a basis B � V and a
function c W B ! X with the following property: for every R > 0, there is an
N < 1 such that if S � X has diameter less than R then c�1.S/ has cardinality
less than N . From now on, we call such V a geometrically controlled X -module,
and the function c a labeling of the elements in B . In particular, we say v 2 B is
labeled by c.v/ 2 X .

Note that each geometrically controlled vector space V over X is assigned with
a basis B . There is a natural completion of V into a Hilbert space V in which the
basis B of V becomes an orthonormal basis of SV .

Let V �
f
D Homf .V;C/ be the vector space of finitely supported linear functions

on V . Then V �
f

is identified with V under the inner product on SV .

DEFINITION 4.14. A linear map T WV ! W is geometrically controlled over X
if:

(1) V and W are geometrically controlled;
(2) the matrix coefficients of T with respect to the given bases of V andW are

uniformly bounded;
(3) there is a constant K > 0 such that the .v; w/-matrix coefficients is 0

whenever d.c.v/; c.w// > K. The smallest such K is called the propaga-
tion of T .
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It is easy to see that a geometrically controlled linear map T WV ! W has a
natural dual

T �WW �f ! V �f

that is canonically identified with a geometrically controlled linear map, still de-
noted by T �,

T �WW ! V:

DEFINITION 4.15. A chain complex

E0
b1
 � E1

b2
 � � � �

bn
 � En

is called a geometrically controlled chain complex over X if each Ep is a geo-
metrically controlled X -module, and each bp is a geometrically controlled linear
map.

DEFINITION 4.16. Let f1; f2W .E; b/! .E 0; b0/ be geometrically controlled chain
maps between two geometrically controlled chain complexes .E; b/ and .E 0; b0/.
We say f1 and f2 are geometrically controlled homotopic to each other if there
exists a geometrically controlled linear map hW .E�; b/! .E 0

�C1; b
0/ such that

f1 � f2 D b
0hC hb:

In this case, h is called a geometrically controlled chain homotopy between f1
and f2.

Now we give the definition of geometrically controlled Poincaré complexes.

DEFINITION 4.17. An n-dimensional geometrically controlled Poincaré complex
(with control respect to X ) is a complex of geometrically controlled X -modules

E0
b1
 � E1

b2
 � � � �

bn
 � En

together with geometrically controlled linear maps T WEp ! En�p and bWEp !
Ep�1 such that:

(1) if v 2 Ep, then T �v D .�1/.n�p/pT v;
(2) if v 2 Ep, then T b�.v/C .�1/pbT .v/ D 0;
(3) T is a geometrically controlled chain homotopy equivalence from the dual

complex

En
b�n
 � En�1

b�n�1
 ��� � � �

b�1
 � E0

to the complex .E; b/. Here we have identified the finitely supported dual
E�
f

with E.

EXAMPLE 4.18. Our typical example of a geometrically controlled Poincaré com-
plex comes from a triangulation of a closed smooth manifold (more generally, a
triangulation of a complete Riemannian manifold without boundary, e.g., the man-
ifold CM from above); cf. [38, secs. 3 and 4].
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We introduce the following notion of geometrically controlled homotopy equiv-
alences of geometrically controlled Poincaré complexes.

DEFINITION 4.19. Given two n-dimensional geometrically controlled Poincaré
complexes .E; b; T / and .E 0; b0; T 0/, a geometrically controlled homotopy equiv-
alence between them consists of two geometrically controlled chain maps

f W .E; b/! .E 0; b0/ and gW .E 0; b0/! .E; b/

such that

(1) g ı f and f ı g are geometrically controlled homotopic to the identity;
(2) f Tf � is geometrically controlled homotopic to T 0, where f � is the dual

of f :

E 0n

f �

��

E 0n�1
b�noo

f �

��

� � �oo E 00

f �

��

b�1oo

En En�1
b�noo � � �oo E0:

b�1oo

Remark 4.20. In the above definition, it is automatic that gT 0g� is also geometri-
cally controlled homotopic to T . Indeed, we have

gT 0g� ' g.f Tf �/g� D .gf /T .f �g�/ ' T:

There is an obvious equivariant theory of geometrically controlled Poincaré
complexes. We shall omit the details and refer the reader to [38, sec. 3] for fur-
ther reading.

4.5 Analytically Controlled Poincaré Complexes
In this subsection, we recall the definition of analytically controlled Poincaré

complexes [38]. In particular, we review a natural way to pass from the geometri-
cally controlled category to the analytically controlled category; cf. [38, sec. 3].

Recall from Section 2 that anX -module is a separable Hilbert spaceH equipped
with a �-representation of C0.X/, the algebra of all continuous functions onX that
vanish at infinity. To distinguish from geometrically controlledX -modules, we call
such H an analytically controlled X -module from now on.

DEFINITION 4.21. Let H1 and H2 be two analytically controlled X -modules. A
linear map T WH1 ! H2 is said to be analytically controlled if T is the norm limit
of locally compact and finite propagation bounded operators.

Remark 4.22. In this paper, we have chosen to work with signature operators aris-
ing from triangulations of manifolds. This is the bounded case, where all operators
are bounded. If one wants to work with unbounded signature operators arising
from L2-de Rham complexes of Riemannian manifolds, then one needs a slightly
different notion of analytical controls. See [37, sec. 5] for more details.
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The notion of geometrically controlled homotopy equivalence of geometrically
controlled chain complexes naturally passes to the following notion of analytically
controlled homotopy equivalence of analytically controlled chain complexes.

DEFINITION 4.23. A chain complex

E0
b1
 � E1

b2
 � � � �

bn
 � En

is called an analytically controlled chain complex over X if each Ep is an analyti-
cally controlled X -module, and each bp is an analytically controlled morphism.

DEFINITION 4.24. Let f1; f2W .E; b/ ! .E 0; b0/ be analytically controlled chain
maps between two analytically controlled chain complexes .E; b/ and .E 0; b0/. We
say f1 and f2 are analytically controlled homotopic to each other if there exists an
analytically controlled linear map hW .E�; b/! .E 0

�C1; b
0/ such that

f1 � f2 D b
0hC hb:

Now we introduce the notion of analytically controlled Poincaré complexes.

DEFINITION 4.25. An n-dimensional analytically controlled Poincaré complex
(with control respect to X ) is a complex of analytically controlled X -modules

E0
b1
 � E1

b2
 � � � �

bn
 � En

together with analytically controlled linear maps T WEp ! En�p and bWEp !
Ep�1 such that:

(1) if v 2 Ep, then T �v D .�1/.n�p/pT v;
(2) if v 2 Ep, then T b�.v/C .�1/pbT .v/ D 0;
(3) T is an analytically controlled chain homotopy equivalence from the dual

complex

En
b�n
 � En�1

b�n�1
 ��� � � �

b�1
 � E0

to the complex .E; b/.

The following theorem is a rephrasing of a theorem of Higson and Roe [38,
theorem 3.14].

THEOREM 4.26 ([38, theorem 3.14]). Every geometrically controlled Poincaré
complex naturally defines an analytically controlled Poincaré complex by `2-com-
pletion.

We introduce the following notion of analytically controlled homotopy equiva-
lences of analytically controlled Poincaré complexes.

DEFINITION 4.27. Given two n-dimensional analytically controlled Poincaré com-
plexes .E; b; T / and .E 0; b0; T /, an analytically controlled homotopy equivalence
between them consists of two analytically controlled chain maps

f W .E; b/! .E 0; b0/ and gW .E 0; b0/! .E; b/

such that:
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(1) g ı f and f ı g are analytically controlled homotopic to the identity;
(2) f Tf � is analytically controlled homotopic to T 0, where f � is the adjoint

of f .

For an analytically controlled Poincaré complex, its signature index naturally
lies in the K-theory of the Roe algebra C �.X/.

DEFINITION 4.28.
(i) Let .E; b; T / be an odd-dimensional analytically controlled Poincaré com-

plex. Its signature is the class in K1.C �.X// of the invertible operator

.B C S/.B � S/�1 W Eev ! Eev

where Eev D
L
p E2p.

(ii) If .E; b; T / is an even-dimensional analytically controlled Poincaré com-
plex, then its signature is the class inK0.C �.X// determined by the formal
difference ŒPC� � ŒP�� of the positive projections of B C S and B � S .

The following simpler notion of analytically controlled homotopy equivalence
will also be useful later.

DEFINITION 4.29. Let .E; b/ be an analytically controlled chain over X . An op-
erator homotopy of analytically controlled Poincaré duality operators on .E; b/ is
a norm continuous family of operators Ts , s 2 Œ0; 1�, such that each .E; b; Ts/ is
an analytically controlled Poincaré complex.

LEMMA 4.30 (cf. [37, lemma 4.6]). If a Poincaré duality operator T on an ana-
lytically controlled Poincaré complex .E; b/ is operator homotopic to �T through
a path of analytically controlled duality operator Ts , then the path

.B C S/.B � Ss/
�1

is a norm-continuous path of analytically controlled invertible elements connecting
.B C S/.B � S/�1 to the identity.

There is an obvious equivariant theory of analytically controlled Poincaré com-
plexes. We shall omit the details and refer the reader to [38, sec. 2] for further
reading.

Remark 4.31. If one prefers the exposition in terms of Hilbert C �-modules, there is
a natural way to make sense of everything in this subsection by using Roe algebras
in Section 2. More precisely, we fix an ample and nondegenerate analytically con-
trolledX -moduleH . Let C �.X/ be the norm closure of locally compact and finite
propagation bounded linear operators from H to H . That is, C �.X/ is the Roe al-
gebra of X associated to H . Now suppose H 0 is any other analytically controlled
X -module. We define E.H;H 0/ to be the norm closure of locally compact and
finite propagation bounded linear operators fromH toH 0. Then clearly E.H;H 0/
carries a natural right Hilbert C �.X/-module structure. It is not difficult to see
that such a language will give an equivalent description of the discussion in this
subsection.
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4.6 Higher Rho Invariant
In this subsection, we define the higher rho invariant for elements in our new

description of structure group. By Proposition 3.38, without loss of generality, it
suffices to construct the higher rho invariant and prove its additivity for smooth or
PL representatives in Sn.X/. So throughout this subsection, we will be working in
the PL category unless otherwise specified.

Let � D .M; @M; ';N; @N; ; f / be an element of Sn.X/. By the discussion of
Section 3.5, without loss of generality, we can assume � consists of the following
data:

(1) two triangulated PL manifolds with boundary .M; @M/ and .N; @N / with
dimM D dimN D n;

(2) a control map 'WM ! X that is PL transverse to the triangulation of X ;
(3) a PL homotopy equivalence

f W .N; @N /! .M; @M/

such that ' ı f D  . Moreover, on the boundary f restricts to a PL in-
finitesimally controlled homotopy equivalence f j@N W @N ! @M over X .
See the discussion after Corollary 3.47 for more details.

LetX � Œ1;1/ be equipped with the product metric, where the metric on Œ1;1/
is the standard Euclidean metric. By using the standard subdivision of Section 4.2,
there exists a triangulation TriX�Œ1;1/ of X � Œ1;1/ such that:

(1) TriX�Œ1;1/ has bounded geometry in the sense of Definition 4.12;
(2) the sizes17 of simplices in TriX�Œ1;1/ uniformly go to 0 as we approach

infinity along the cylindrical direction.
Recall that every locally finite simplicial complex carries a natural path metric,

whose restriction to each n-simplex is the Riemannian metric obtained by identi-
fying the n-simplex with the standard n-simplex in the Euclidean space Rn. Such
a metric is called a simplicial metric.

DEFINITION 4.32. Let X � Œ1;1/ be equipped with the triangulation TriX�Œ1;1/
from above. We define the simplicial metric cone of X , denoted by CX , to be the
space X � Œ1;1/ equipped with the simplicial metric determined by TriX�Œ1;1/.

Remark 4.33. In order to avoid possible confusion between CX and X � Œ1;1/,
from now on the notation X � Œ1;1/ will only stand for the space X � Œ1;1/
equipped with the product metric.

Recall that the space of M attached with a cylinder is defined to be

CM DM [@M .@M � Œ1;1//:

Let us fix a triangulation of CM as follows. On M , it is the original triangulation
ofM . The triangulation on @M�Œ1;1/ is the pullback triangulation of TriX�Œ1;1/

17 Here the size of a simplex is measured with respect to the product metric on X � Œ1;1/.
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under the map
'@ � IdW @M � Œ1;1/! CX;

where '@W @M ! X is the restriction of 'WM ! X on @M . More precisely, for
every simplex�k � CX , the inverse image .'@� Id/�1.�k/ is a productK��k ,
where K is some triangulated submanifold of @M .

Let � D �1X . We denote by eCM (resp., eCN ) the corresponding �-cover of
CM (resp., CN ) induced byˆWCM ! X�Œ1;1/ (resp.,‰WCN ! X�Œ1;1/).
Here we have borrowed the same notation from Definition 3.3.

Note that the simplicial decomposition of CM (resp., CN ) naturally lifts to
a �-equivariant simplicial decomposition of eCM (resp., eCN ). Consider the �-
equivariant geometrically controlled Poincaré complex

E0.eCM/
b1
 � E1.eCM/

b2
 � � � �

bn
 � En.eCM/

associated to the above �-equivariant simplicial decomposition of eCM , where

(1) Ei .eCM/ is a geometrically controlled . �CX;�/-module,
(2) bi is a geometrically controlled morphism,
(3) the Poincaré duality map T is given by the usual cap product with the �-

equivariant fundamental class of eCM .

The `2-completion of this �-equivariant geometrically controlled Poincaré com-
plex gives rises to a �-equivariant analytically controlled Poincaré complex, still
denoted by .E.eCM/; b; T /. We summarize this in the following lemma.

LEMMA 4.34. .E.eCM/; b; T / is a �-equivariant analytically controlled Poincaré
complex.

Similarly, we have the �-equivariant analytically controlled Poincaré complex
.E.eCN/; b0; T 0/ associated to eCN :

E0.eCN/
b01
 � E1.eCN/

b02
 � � � �

b0n
 � En.eCN/:

Now let us proceed to define the higher rho invariant for elements in Sn.X/. We
will only give the details for the odd-dimensional case, that is, the case where n is
odd. The even-dimensional case is completely similar.

In the following, all controls are measured with respect to the control maps

ˆWCM ! X � Œ1;1/ and ‰WCN ! X � Œ1;1/:

For notational simplicity, we shall drop the term “�-equivariant” in the construc-
tion below, with the understanding that all steps below are done �-equivariantly.
Also, we write E D E.eCM/ and E 0 D E.eCN/.

Let us consider the �-equivariant analytically controlled Poincaré complex

.E ; b; T / D .E ˚E 0; b ˚ b0; T ˚�T 0/:
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Let B D B ˚ B 0 and S D S ˚ �S 0 (cf. Definition 4.10). The signature index of
.E ; b; T / is defined to be the class of .BCS/.B�S/�1 inK1.C �.CX//. Clearly,
the map

(4.1) � WCX ! X � Œ1;1/

by �.x; t/ D .x; t/ is a proper continuous map that induces a C �-algebra homo-
morphism

��WC
�.CX/! C �c .X � Œ1;1//:

Similarly, we have

��WC
�
L;0.CX/! C �L;0;c.X � Œ1;1//:

There are also obvious �-equivariant versions. In the following, unless otherwise
specified, all elements below are to be thought of as their corresponding images
under the map ��.

Following Higson and Roe [37, sec. 4], we shall first build an explicit path of
invertible elements connecting

.B C S/.B � S/�1

to the identity element, within the C �-algebra C �c . zX � Œ1;1//
� .

Let F WE 0 ! E and GWE ! E 0 be the chain maps induced by F WCN ! CM

and GWCM ! CN .

LEMMA 4.35. With the same notation above, F WE 0 ! E and GWE ! E 0 satisfy
the following conditions:

.1/ the chain maps F W .E 0; b0/ ! .E; b/ and GW .E; b/ ! .E 0; b0/ are ana-
lytically controlled;

.2/ GF and FG are analytically controlled homotopic to the identity;

.3/ GTG� is analytically controlled homotopic to T 0.
Moreover, for any " > 0, there exists a positive number k such that the chain
maps F and G and the various homotopies have propagation < " away from
N [ .@N � Œ1; k�/ and M [ .@M � Œ1; k�/.

In particular, we see that the operator�
T 0

0 .s � 1/T 0 � sGTG�

�
implements a Poincaré duality operator for the complex .E ; b/ for each s 2 Œ0; 1�.
This path connects the duality operator T ˚�T 0 to T ˚�GTG�.

Now consider the operator

�T .s/ D � cos.s/T sin.s/TG�

sin.s/GT � cos.s/GTG�

�
:

LEMMA 4.36. The operator �T .s/ implements a Poincaré duality operator for the
complex .E ; b/ for each s 2 Œ0; �=2�.
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PROOF. An analytically controlled homotopy inverse of �T .s/ is given by�
cos.s/˛ sin.s/˛F

sin.s/F �˛ � cos.s/F �˛F

�
where ˛ is an analytically controlled homotopy inverse of T . �

Now concatenate the two paths above and denote the resulting path by

.E ; b;Tt /
with t 2 Œ0; 1�. Let .BC St /.B � St /�1 be the invertible operator representing the
corresponding signature of .E ; b;Tt / (cf. Definition 4.11).

Note that the last duality operator

T1 D

�
0 TG�

GT 0

�
is analytically controlled homotopic to its additive inverse along the path

(4.2)
�

0 exp.is/TG�

exp.�is/GT 0

�
;

with s 2 Œ0; ��. By Lemma 4.30, we see that .B C S1/.B � S1/�1 is connected to
the identity operator through a path of analytically controlled invertible elements.

To summarize, we have constructed a path of analytically controlled invertible
elements in C �c . zX�Œ1;1//

� connecting .BCS/.B�S/�1 to the identity element.
Let us reparametrize the time variable and denote this path by

Vs D .B C Ss/.B � Ss/�1

with V0 D I and V1 D .B C S/.B � S/�1.
Now we shall extend this path to obtain an element in C �L;0;c. zX � Œ1;1//

� . In
other words, we will construct an element

W 2 C �L;0;c.
zX � Œ1;1//�

so that Ws D Vs ˚ I for all s 2 Œ0; 1�, where I is the identity operator.
In fact, the construction ofWs , starting at s � 1, coincides with the construction

of the K-homology class of the signature operator on CM t �CN with controls
with respect to CX . To be more precise, there are in fact two equivalent ways of
constructing the path Ws .

(i) One directly works with the geometrically controlled Poincaré complex
and its refinements associated to CM t �CN . In particular, everything is
controlled overCX . This is what we have chosen to do for the construction
of Vs above. Note that, although CM t �CN is not a closed PL mani-
fold, it is a complete manifold without boundary. It is easy to see that the
construction in Appendix B.1 (not Appendix B.2) applies verbatim to the
space CM t�CN controlled over CX . As a result, we obtain aK-theory
class .Ws/0�s<1 in Kn.C �L;0;c. zX � Œ1;1//

�/:
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(ii) Alternatively, we consider the Poincaré space M [f .�N/. Although the
space M [f .�N/ is not a manifold in general, it is still a space equipped
with a Poincaré duality. In fact, since f W @N ! @M is a PL infinites-
imally controlled homotopy equivalence, we can still make sense of the
K-homology class of its “signature operator” as in Appendix B.2. Let us
denote thisK-homology class by a path of invertible elements .Us/0�s<1.
Moreover, in the current situation, we also have that f WN ! M is a ho-
motopy equivalence. Similar to the discussion following Lemma 4.35, the
homotopy equivalence f can be used to connect U0 to the identity opera-
tor through a path of invertible elements. Reparametrize the resulting new
path, and define it to be the higher rho invariant of � in Kn.C �L;0. zX/

�/.

It is not difficult to see that these two constructions define the sameK-theory class
in Kn.C �L;0. zX/

�/ Š Kn.C
�
L;0;c.

zX � Œ1;1//�/:

To summarize, we have constructed a path of invertible elements W.�/ for each
element � D .M; @M; ';N; @N; ; f / in Sn.X/.

PROPOSITION 4.37. For every element

� D .M; @M; ';N; @N; ; f / 2 Sn.X/;

we have W.�/ 2 C �L;0;c. zX � Œ1;1//
� .

PROOF. Note that the simplicial chain complex associated to the triangulation
on eCM (resp., eCN ) is a �-equivariant geometrically controlled module over eCX .
Since the map f W @M ! @N is PL infinitesimally controlled over X , it follows
that all maps F , G, H and H 0 as in Definition 3.3 are �-equivariantly geomet-
rically controlled over eCX . Therefore, our construction produces an element in
C �L;0.

�CX/� whose image under the map � from line (4.1) is precisely the element

W.�/ 2 C �L;0;c.
zX � Œ1;1//� : �

DEFINITION 4.38. When n is odd, for each element

� D .M; @M; ';N; @N; ; f / 2 Sn.X/;

we define the higher rho invariant of � to be

�.�/ D ŒW.�/� 2 Kn.C
�
L;0;c.

�X � Œ1;1//�/ Š Kn.C �L;0. zX/�/:
The definition of the higher rho invariant for the even-dimensional case (i.e., for

Sn.X/ when n even) is completely similar. We omit the details.

Remark 4.39. We point out that, in the odd-dimensional case, the higher rho invari-
ant for signature operators in the literature (cf. [39, sec. 3], [54, remark 4.6], [93])
is twice of the higher rho invariant of this paper; cf. Remark 6.7 and Theorem 6.9
below.

We have the following main theorem of our paper.
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THEOREM 4.40. The map

�WSn.X/! Kn
�
C �L;0.

zX/�
�

is a group homomorphism.

PROOF. The well-definedness of the map

�WSn.X/! Kn
�
C �L;0.

zX/�
�

will be proved in Theorem 5.8. Now the group structure on Sn.X/ is given by
disjoint union, and � is obviously additive on disjoint unions. This finishes the
proof. �

If X is a closed oriented connected topological manifold of dimension � 5,
then STOP.X/ is naturally identified with Sn.X/. Hence we have the following
immediate corollary.

COROLLARY 4.41. If X is a closed oriented topological manifold of dimension
n � 5 with �1X D � , then the higher rho invariant map

�WSTOP.X/! Kn
�
C �L;0.

zX/�
�

is a group homomorphism.

Remark 4.42. By the discussion following Theorem 3.33 and the discussion fol-
lowing Proposition 3.48, we see that, if dimX D n � 6, the higher rho invariant
map in fact defines a group homomorphism from the homology manifold structure
group SHTOP.X/ to Kn.C �L;0. zX/

�/. More generally, following Remark 3.36, the
higher rho invariant map can also be defined for the homology manifold structure
group of a closed oriented connected homology manifold of dimension � 6.

Remark 4.43. Although we have chosen to work with the reduced version of vari-
ous C �-algebras, we point out that the exact same proofs work equally well for the
maximal version of these C �-algebras. In particular, we also have a well-defined
group homomorphism:

�WSn.X/! Kn.C
�
L;0.
zX/�max/:

5 Well-Definedness of the Higher Rho Invariant Map
In this section, we prove that the higher rho invariant map

�WSn.X/! Kn
�
C �L;0.

zX/�
�

is well-defined. Our method is modeled upon Higson and Roe’s proof for the
bordism invariance of higher signature index [37, sec. 7].

The following definitions are geometrically controlled analogues of the corre-
sponding definitions in [37, sec. 7]. We refer the reader to [37, sec. 7] for more
details.
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DEFINITION 5.1. A complemented subcomplex of the geometrically controlled
complex .E; b/ is a family of complemented geometrically controlled submodules
E 0p � Ep such that b maps E 0p to E 0p�1 for all p.

For each complemented subcomplex .PE;Pb/ of .E; b/, there is a correspond-
ing geometrically controlled complement complex .P?E;P?b/. The inclusion
PE � E is a chain map from .PE;Pb/ into .E; b/, whereas the orthogonal pro-
jection E ! P?E gives a chain map from .E; b/ onto .P?E;P?b/. Note that

P?b D P?bP?:

DEFINITION 5.2. An .nC 1/-dimensional geometrically controlled Poincaré pair
is a geometrically controlled complex

E0
b1
 � E1

b2
 � � � �

bn
 � En

together with a family of geometrically controlled operators T W Ep ! EnC1�p
and a family of geometrically controlled orthogonal projections P WEp ! Ep such
that

(1) the orthogonal projections P determines a subcomplex of .E; b/, that is,
PbP D bP ;

(2) the range of the operator T b�C.�1/pbT WEp ! En�p is contained within
the range of P WEn�p ! En�p;

(3) T � D .�1/.nC1�p/pT WEp ! EnC1�p;
(4) P?T is a geometrically controlled chain homotopy equivalence from the

dual complex .E; b�/ to .P?E;P?b/.

EXAMPLE 5.3. A typical example of geometrically controlled Poincaré complexes
comes from a triangulation of a smooth manifold with boundary [38, sec. 4.2].

The following lemma is a geometrically controlled analogue of [37, lemma 7.4].

LEMMA 5.4 ([37, lemma 7.4]). Let .E; b; T; P / be an .n C 1/-dimensional geo-
metrically controlled Poincaré pair. The operators

T0 D T b
�
C .�1/pbT WEp ! En�p

satisfy the following relations:
.1/ T �0 D .�1/

.n�p/pT0WEp ! En�p;
.2/ T0 D PT0 D T0P ;
.3/ T0b

� C .�1/pbT0 D 0WPEp ! PEp;
.4/ T0 D T b

�C.�1/pbT induces a geometrically controlled chain homotopy
from .PE;Pb�/ to .PE;Pb/.

PROOF. The proof is a combination of the proof of [37, lemma 7.4] together
with [38, lemma 4.2]. We leave out the details. �

The above lemma asserts .PE;Pb; T0/ is an n-dimensional geometrically con-
trolled Poincaré complex.
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DEFINITION 5.5. The geometrically controlled Poincaré complex

.PE;Pb; T0/

is called the boundary of the geometrically controlled Poincaré pair .E; b; T; P /.

Note that there is an obvious analogous theory in the analytically controlled
category. Moreover, there are obvious equivariant theories for both geometrically
controlled Poincaré pairs and analytically controlled Poincaré pairs respectively.

The following theorem is a rephrasing of a theorem of Higson and Roe [38,
Theorem 3.18].

THEOREM 5.6 ([38, theorem 3.18]). Every geometrically controlled Poincaré pair
naturally defines an analytically controlled Poincaré pair by `2-completion.

Before we prove the well-definedness of the higher rho invariant map, let us give
a proof of the bordism invariance of the K-homology class of signature operators
(compare [68, theorem 2]). Our proof below is modeled upon Higson and Roe’s
proof for the bordism invariance of higher signature index [37, theorem 7.6]. Note
that, in the theorem below, we do not invert 2.

THEOREM 5.7 (Bordism invariance of K-homology signature). Assume V is an
.n C 1/-dimensional oriented PL manifold with boundary @V , equipped with a
continuous map  WV ! X , where X is a proper metric space. Then

IndL.@V / D 0 2 Kn
�
C �L.
zX/�

�
;

where zX is the universal cover of X with � D �1X .

PROOF. Fix a triangulation of V , together with a sequence of successive re-
finements Subn.V / as in Section 4.2. Note that, for the geometrically controlled
Poincaré pair associated to the triangulation Subn.V /, all maps appearing in Defi-
nition 5.2 are geometrically controlled, with their propagations go to 0 as n!1.

Let us denote the geometrically controlled Poincaré pair associated to the trian-
gulation Subn.V / by .E.n/; b.n/; T .n/; P .n//. Since our construction below works
for these refinements simultaneously, we shall omit the superscript .n/ from now
on. Equivalently, one can consider the direct sum

.E; b; T; P / D

1M
nD1

.E.n/; b.n/; T .n/; P .n//:

In particular, by the construction in Appendix B.1, the geometrically controlled
Poincaré complex .PE;Pb; T0/ produces a specific representative of the local in-
dex IndL.@V;  / 2 Kn.C �L.X// of the signature operator of @V (cf. Definition
B.1).

Let � be a real number and define a complex . zE; zb�/ by

zEp D Ep ˚ P
?EpC1 and zb� D

�
b 0

�P? �P?b

�
:
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This is the mapping cone complex for the chain map

�P?W .E; b/! .P?E;P?b/:

Together with the operators

zT D

�
0 TP?

.�1/pP?T 0

�
W zEp ! zEn�p;

the triple . zE; zb�; zT / is an n-dimensional geometrically controlled Poincaré com-
plex for any � (including � D 0). Of course, we need to check that zT is indeed
a geometrically controlled homotopy equivalence. This can be verified by apply-
ing [38, lemma 4.2] to the following commutative diagram:18

0 // .E; b�/ //

.�1/pP?T
��

. zE; zb�
�
/ //

zT
��

.P?E;�b�P?/

TP?

��

// 0

0 // .P?E;�P?b/ // . zE; zb�/ // .E; b/ // 0:

Note that, when � D �1, the map A.v/ D v ˚ 0 2 Ep ˚ P
?EpC1 defines a

geometrically controlled chain homotopy equivalence of geometrically controlled
Poincaré complexes

AW .PE;Pb; T0/! . zE; zb�1; zT /:

Indeed, we apply [38, lemma 4.2] to the following commutative diagram:

0 // .PE;Pb/
D //

D

��

.PE;Pb/ //

A
��

0

��

// 0

0 // .PE;Pb/
A // . zE; zb�1/

Q
// .E 0; b0/ // 0

where E 0p D P
?Ep ˚ P

?EpC1 with

b0 D

�
P?b 0

�1 �P?b

�
and Q is the obvious orthogonal projection. It is easy to see that .E 0; b0/ is geo-
metrically controlled chain homotopy equivalent to the trivial chain 0. Moreover,
we have

AT0A
�
� zT D hpC1 ı zb

�
�1 C .�1/

pzb�1 ı hpW zEp ! zEn�p;

where hp D
�
T 0
0 0

�
WEp˚P

?EpC1 ! En�pC1˚P
?En�pC2:

19 This shows that
AT0A

� and zT are geometrically controlled homotopic to each other.

18 One needs to take into account the sign convention when verifying various identities. For
example, the map .�1/pP?T carries the sign .�1/p when it maps from Ep to P?En�pC1.

19 Note that the appearance of .�1/p is due to our sign convention.
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We abuse our notation and denote by

.B C S/.B � S/�1 2
�
C �L.
zX/�

�C
the explicit representative for the local index IndL.@V;  / constructed by using
.PE;Pb; T0/ as in Appendix B (cf. Definition B.1). Then the same argument
from Section 4.6 produces a continuous path of invertible elements in .C �L. zX/

�/C

connecting .B C S/.B � S/�1 to

.B�1 C S�1/.B�1 � S�1/
�1
2
�
C �L.
zX/�

�C
;

where .B�1CS�1/.B�1 �S�1/�1 stands for the representative of the local index
constructed out of . zE; zb�1; zT / (cf. Definition B.1). To be precise, we in fact need
to stabilize .B C S/.B � S/�1 by the identity operator, and consider

.B C S/.B � S/�1 ˚ I

instead. For notational simplicity, we will omit these stabilizing steps.
On the other hand, there is a continuous path of invertible elements

.Bt C St /.Bt � St /
�1
2
�
C �L.
zX/�

�C
representing the local index class constructed out of . zE; zbt ; zT / for t 2 Œ�1; 0� (cf.
Definition B.1). Of course, it is important to appropriately control the propagations
of various terms. This can be achieved by Proposition A.3 in Appendix A. Note
that, for . zE; zb0; zT /, the duality operator zT is operator homotopic to its additive
inverse along the path

zT D

�
0 exp.is/TP?

.�1/p exp.is/P?T 0

�
with s 2 Œ0; ��. Now the same argument from Section 4.6 again shows that

.B0 C S0/.B0 � S0/
�1

is connected to the identity by a path of invertible elements in .C �L. zX/
�/C. This

finishes the proof. �

THEOREM 5.8. The higher rho invariant map

�WSn.X/! Kn
�
C �L;0.

zX/�
�

is well-defined.

PROOF. Let � D .M; @M; ';N; @N; ; f / be an element in Sn.X/. Suppose �
is cobordant to 0 in Sn.X/. Let

.W; @W;ˆ; V; @V;‰; F /

be a cobordism between � and 0 (cf. Definition 3.6). Note that F j@2V W @2V !
@2W is an infinitesimally controlled homotopy equivalence over X ; thus @2V and
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@2W will not contribute to the higher rho invariant of F j@V W @V ! @W . More
precisely,

F j@2V W @2V ! @2W

induces an infinitesimally controlled chain homotopy equivalence that is between
the Poincaré pair associated to @2V and the Poincaré pair associated to @2W . It fol-
lows that the geometrically controlled Poincaré complex associated toM [f .�N/
and its refinements are geometrically controlled equivalent to the geometrically
controlled Poincaré complex associated to @V t .�@W / and its refinements. See
Appendix B.2 for a related discussion. To summarize, we have

�.�/ D �.F j@V W @V ! @W /:

Therefore, it suffices to show that

�.F j@V W @V ! @W / D 0:

In the following, we use the reversed orientation of W . Since no confusion will
arise, let us still writeW to denote �W for the rest of the proof. Fix a triangulation
of V and of W , together with a sequence of successive refinements Subn.V / and
Subn.W / as before. Note that, for the geometrically controlled Poincaré pair asso-
ciated to the triangulation Subn.V / (resp., Subn.W /), all maps appearing in Defi-
nition 5.2 are geometrically controlled, with their propagations go to 0 as n!1.

Now the theorem follows from a combination of the proof of Theorem 5.7 above
with the construction of the higher rho invariant in Section 4.6. Indeed, let

.B@V C S@V /.B@V � S@V /
�1
2
�
C �L.
zX/�

�C
and

.B@W C S@W /.B@W � S@W /
�1
2
�
C �L.
zX/�

�C
be the representatives of the local indices for the signature operators of @V and
@W , respectively. By the proof of Theorem 5.7, we have an explicit continuous
path of invertible elements fVsg0�s�1 in .C �L. zX/

�/C connecting

V0 D .B@V C S@V /.B@V � S@V /�1

to the identity operator V1 D I . Similarly, there is an explicit continuous path of
invertible elements fWsg0�s�1 in .C �L. zX/

�/C connecting

W0 D .B@W C S@W /.B@W � S@W /
�1

to the identity operator W1 D I .
Consider the following elements at time t D 0:

Vs.0/ and Ws.0/ 2 C
�. zX/� :

Let .E; b; T /V;@V and .E 0; b0; T 0/W;@W be the geometrically controlled Poincaré
pairs associated to the triangulations of V and W , respectively. Note that we are
not taking subdivisions at the moment. Then the homotopy equivalence F WV !
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W induces a geometrically controlled chain homotopy equivalence between the
geometrically controlled Poincaré pairs

.E; b; T /V;@V and .E 0; b0; T 0/W;@W :

In fact, the homotopy equivalence F WV ! W also induces corresponding geomet-
rically controlled chain homotopy equivalences between various Poincaré com-
plexes, such as . zE; zb�; zT /V;@V and . zE; zb�; zT /W;@W , that appear in the proof of
Theorem 5.7. Consequently, the construction in Section 4.6 simultaneously pro-
duces continuous paths fUs.t/g�1�t�0 of invertible elements connecting

Vs.0/˚Ws.0/

to the identity operator for s 2 Œ0; 1�.
For each s 2 Œ0; 1�, we concatenate the path fUs.t/g�1�t�0 with the path

fVs.t/˚Ws.t/g0�t<1. This produces an element, denoted by �s , in .C �L;0. zX/
�/C

for each s 2 Œ0; 1�. Since f�sg0�s�1 is a norm continuous path of invertible ele-
ments in .C �L;0. zX/

�/C, it is clear that

Œ�0� D Œ�1� 2 K1
�
C �L;0.

zX/�
�
:

On the other hand, �0 is precisely the definition of the higher rho invariant of
F@W @V ! @W , while �1 � I is the constant map with value the identity operator.
Therefore, �.�/ D Œ�0� D 0: This finishes the proof. �

6 Mapping Surgery to Analysis
In this section, for each closed oriented topological manifold X of dimension

� 5, we prove the commutativity of the following diagram of abelian groups:

NnC1.X/
i� //

IndL
��

LnC1.�/
j�

//

Ind
��

Sn.X/ //

kn��
��

Nn.X/

kn�IndL
��

KnC1.C
�
L.
zX/�/

��
// KnC1.C

�
r .�//

// Kn.C
�
L;0.
zX/�/ // Kn.C

�
L.
zX/�/

(6.1)

where the maps Ind and IndL will be defined below, � D �1X , and

kn D

�
1 if n is even,
2 if n is odd.

In the case of smooth manifolds, a similar commutative diagram was proved by
Higson and Roe [38]. Since the structure set of a smooth manifold does not carry
a group structure, the commutative diagram of Higson and Roe is a commutative
diagram of sets in an appropriate sense [38, sec. 5]. Piazza and Schick gave a
different proof of Higson and Roe’s commutative diagram for smooth manifolds
[54]. Zenobi proved a similar commutative diagram for topological manifolds, but
only treating Sn.X/ as a set [93].
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The local index map

IndLWNn.X/! Kn
�
C �L.
zX/�

�
is defined by assigning each element in Nn.X/ the K-homology class of its signa-
ture operator. See Appendix B for more details. The well-definedness of the map
IndL follows from the bordism invariance of the K-homology class of signature
operators. See Theorem 5.7 above.

Remark 6.1. Note that the well-definedness of the map

IndLWNn.X/! Kn
�
C �L.
zX/�

�
implies Novikov’s theorem on the topological invariance of the rational Pontrjagin
classes [52]. Also see [53].

The index map
IndWLnC1.�/! KnC1.C

�
r .�//

is defined as follows. Suppose we have an element

� D .M; @M; ';N; @N; ; f / 2 LnC1.�/

satisfying the conditions in Definition 3.9. Let M [f .�N/ be the space obtained
by gluing �N with M along the boundary by the map f , where �N is the mani-
fold N with the reversed orientation. Although M [f .�N/ is not a manifold in
general, it is still a space equipped with Poincaré duality. In particular, the higher
signature index of M [f .�N/ makes sense.

DEFINITION 6.2. For each element

� D .M; @M; ';N; @N; ; f / 2 LnC1.�1X/;

we define Ind.�/ to be the higher signature index of M [f .�N/.

PROPOSITION 6.3. The map IndWLnC1.�/ ! KnC1.C
�
r .�// is a well-defined

group homomorphism.

PROOF. The well-definedness follows immediately from the bordism invariance
of the higher signature index. Moreover, the higher signature index is clearly ad-
ditive on disjoint unions; hence the index map is a group homomorphism. This
finishes the proof. �

We need some preparation before we prove the commutativity of diagram (6.1)
above. Recall that, by Proposition 3.23, there is a natural isomorphism

Sn.X/ Š LnC1.�1X;X/:
In the following, first we shall give another definition, denoted by y�, of higher
rho invariant by using the description of LnC1.�1X;X/. Then we will prove that
y� D kn�, where kn D 1 if n is even and 2 if n is odd.

Recall from Definition 3.19 that, for each element

� D .M; @˙M;';N; @N˙;  ; f / 2 LnC1.�1X;X/;
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the map f j@CN W @CN ! @CM is a homotopy equivalence, and f@CN restricts to
a PL infinitesimally controlled homotopy equivalence

f j@.@˙N/W @.@˙N/! @.@˙M/:

Let Z D M [fC .�N/ be the space obtained by gluing M and N along the
boundary @CN to @CM through the homotopy equivalence f j@CN (cf. Figure 6.1)
. Though Z is not a manifold, it is a space equipped with Poincaré duality. Note
that the “boundary” of Z is the space @�M [@fC @�.�N/, where the latter is
obtained by gluing @�M and @�N along the boundary @.@�N/ to @.@�M/ through
the infinitesimally controlled homotopy equivalence f j@.@�N/. Let us write @Z WD
@�M [@fC @�.�N/: Recall that the space obtained fromZ by attaching a cylinder
is denoted by

CZ D Z [@Z .@Z � Œ1;1//:

Let us fix a triangulation of CZ as follows. On Z, it is the original triangulation
of Z. The triangulation on @Z � Œ1;1/ is the pullback triangulation of TriX�Œ1;1/
under the map ˆ@ � IdW @Z � Œ1;1/ ! CX; where ˆ@ is the restriction of ˆ D
' [fC  on @Z. That is, for every simplex �k � CX , the inverse image .ˆ@ �
Id/�1.�k/ is a productK ��k , whereK is some triangulated submanifold of @Z.

Remark 6.4. To be precise, we should be using a sequence of spaces fZigi�1,
where eachZi DM [.fi /C .�N/ is the space obtained by gluingM andN along
the boundary @CN to @CM through the homotopy equivalence .fi /j@CN . Here fi
is the map f with the additional condition that the homotopy equivalence

f j@.@˙N/W @.@˙N/! @.@˙M/

has control � 1
i
. Since no confusion is likely to arise, we shall abuse our notation

and continue as if we were working with a single space.

Now the geometrically controlled Poincaré complex associated to CZ defines a
higher signature index in KnC1.C �c . zX � Œ1;1//

�/.

@�M@�N

MN

Z DM [fC .�N/

X
ˆ D ' [fC  

FIGURE 6.1. Picture for Z DM [fC .�N/.
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DEFINITION 6.5. With the same notation as above, for each element

� D .M; @˙M;';N; @N˙;  ; f / 2 LnC1.�1X;X/;

we define y�.�/ to be the higher signature index of CZ, which is an element of
KnC1.C

�
c .
zX � Œ1;1//�/.

The following lemma is an immediate consequence of bordism invariance of
higher signature index.

LEMMA 6.6. The map y� is a group homomorphism

y�WLnC1.�1X;X/! KnC1
�
C �c .
zX � Œ1;1//�

�
:

Recall that we have the natural isomorphism

c�WSn.X/! LnC1.�1X;X/

by taking the product with the unit interval (see Section 3.3):

� D fM; @M; ';N; @N; ; f g 7! � � I:

Moreover, by Proposition 4.4 and Corollary 4.7, we have

KnC1
�
C �c .
zX � Œ1;1//�

�
Š Kn

�
C �L;0;c.

zX � Œ1;1//�
�

Š Kn
�
C �L;0.

zX/�
�
:

It follows that the map y� can be viewed as a group homomorphism:

y�WSn.X/! Kn.C
�
L;0.
zX/�/:

Remark 6.7. In the case of smooth structure sets, it is easy to see that the definition
y� above agrees with the structure invariant of Higson and Roe [39, sec. 3].

In Theorem 6.9 below, we will prove that y� is equal to kn � �, where � is the
higher rho invariant from Definition 4.38 and kn D 1 if n is even and 2 if n is odd.
Before doing this, let us first prove a product formula for the higher rho invariant �,
which will be useful for the proof of Theorem 6.9.

Given an element

� D .M; @M; ';N; @N; ; f / 2 Sn.X/;

let � � R 2 SnC1.X � R/ be the product of � and R. Here various undefined
terms take the obvious meanings (see Section 3.3 for the definition of � � I for
example). Note that the construction in Section 4.6 also applies to � � R and
defines its higher rho invariant �.� �R/ 2 KnC1.C �L;0.

�X �R/�/. Also, there is a
natural homomorphism

˛WC �L;0.
zX/� ˝ C �L.R/! C �L;0.

zX �R/� ;

which induces an isomorphism on K-theory.
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THEOREM 6.8. With the same notation as above, we have

kn � ˛�.�.�/˝ IndL.R// D �.� �R/

inKnC1.C �L;0. zX �R/�/, where IndL.R/ is theK-homology class of the signature
operator on R, and kn D 1 if n is even and 2 if n is odd.

PROOF. The proof is elementary and will be given in Appendix D. �

To prepare for the proof of Theorem 6.9, let us introduce some notation. Con-
sider the C �-algebra A D C �L;0.

zX �R/� . Using the notation from Definition 2.2,
we define

A� D
[
n2N

C �L;0.
zX � .�1; n�I zX �R/� ;

AC D
[
n2N

C �L;0.
zX � Œ�n;1/I zX �R/� ;

A\ D
[
n2N

C �L;0.
�X � Œ�n; n�I zX �R/� :

0It is clear that A˙ and A\ are closed two-sided ideals of A . Moreover, we have
AC C A� D A and AC \ A� D A\, which gives rise to the following Mayer-
Vietoris sequence in K-theory:

K0.A\/ // K0.AC/˚K0.A�/ // K0.A /

@MV

��

K1.A /

@MV

OO

K1.AC/˚K1.A�/oo K1.A\/:oo

Similarly, consider the following ideals of C �-algebra B D C �L.R/:

B� D
[
n2N

C �L..�1; n�IR/; BC D
[
n2N

C �L.Œ�n;1/IR/;

B\ D
[
n2N

C �L.Œ�n; n�IR/:

TheseC �-algebras give rise to the following Mayer-Vietoris sequence inK-theory:

K0.B\/ // K0.BC/˚K0.B�/ // K0.B/

@MV

��

K1.B/

@MV

OO

K1.BC/˚K1.B�/oo K1.B\/:oo

Note that there is a natural homomorphism

˛WC �L;0.
zX/� ˝B ! A ;

which restricts to homomorphisms

˛WC �L;0.
zX/� ˝B˙ ! A˙ and ˛WC �L;0.

zX/� ˝B\ ! A\
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such that the following diagram commutes:

Kn.C
�
L;0.
zX/�/˝K1.B/ //

1˝@MV

��

KnC1.C
�
L;0.
zX/� ˝B/

˛�

Š
// KnC1.C

�
L;0.
zX �R/�/

@MV

��

Kn.C
�
L;0.
zX/�/˝K0.B\/ // Kn.C

�
L;0.
zX/� ˝B\/

˛�

Š
// Kn.A\/ D Kn.C

�
L;0.
zX/�/:

(6.2)

THEOREM 6.9. The following diagram commutes:

LnC1.�1X;X/
y�

// KnC1.C
�
c .
zX � Œ1;1//�/

@�
��

Sn.X/

c�

OO

kn��
// Kn.C

�
L;0;c.

zX � Œ1;1//�/ D Kn.C
�
L;0.
zX/�/;

where @� is the connecting map in the K-theory long exact sequence associated to

0! C �L;0;c.
zX � Œ1;1//� ! C �L;c.

zX � Œ1;1//� ! C �c .
zX � Œ1;1//� ! 0;

and kn D 1 if n is even and 2 if n is odd.

PROOF. Recall that a standard way to construct the connecting map @� is by
lifting a projection (resp., invertible) inC �c . zX�Œ1;1//

� to an element inC �L;c. zX�
Œ1;1//� . For an element

� D fM; @˙M;';N; @˙N; ; f g 2 LnC1.�1X;X/;

there exists a lifting a� 2 C �L;c. zX � Œ1;1//
� of the element y�.�/ 2 C �c . zX �

Œ1;1//� as follows. Let
a� .n/ D �ny�.�/�n;

where �n is the characteristic function on zX � Œn;1/. We define

a� .t/ D .nC 1 � t /a� .n/C .t � n/a� .nC 1/

for all n � t � nC 1. It is clear that a� lies in C �L;c. zX � Œ1;1//
� and is a lift of

y�.�/.
On the other hand, by the discussion before Proposition 4.37, one sees that the

same a� above is also a lift of �.� �R/, for the construction of the connecting map

@MV WKnC1.C
�
L;0.
zX �R/�/! Kn.C

�
L;0.
zX/�/

in diagram (6.2). In particular, we see that

@� ı y� ı c�.�/ D @MV Œ�.� �R/�:

Now by Theorem 6.8 and the commutative diagram (6.2), it follows that

@� ı y� ı c�.�/ D kn � �.�/˝ @MV ŒIndL.R/� D kn � �.�/:

This finishes the proof.
�
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Combining the above discussion, we have the following main result of this sec-
tion.

THEOREM 6.10. We have the following commutative diagram:

NnC1.X/
i� //

IndL
��

LnC1.�/
j�

//

Ind
��

Sn.X/ //

kn��
��

Nn.X/

kn�IndL
��

KnC1.C
�
L.
zX/�/

��
// KnC1.C

�
r .�//

// Kn.C
�
L;0.
zX/�/ // Kn.C

�
L.
zX/�/:

PROOF. The commutativity of the right square and the left square follows im-
mediately from definition.

The commutativity of the middle square is an immediate consequence of The-
orem 6.9 above. Indeed, by Theorem 6.9, we have the following commutative
diagram:

Sn.X/

kn��

$$

c�
��

Ln.�1X/ //

j�

55

Ind
��

LnC1.�1X;X/

y�
��

Kn.C
�. zX/�/ // KnC1.C

�
c .
zX � Œ1;1//�/

@� // Kn.C
�
L;0.
zX/�/;

Here the commutativity of the lower left square follows from the definition of the
index map and the map y�. This finishes the proof. �

Remark 6.11. The exact same proof also applies to the maximal version, and we
have the following commutative diagram:

NnC1.X/
i� //

IndL
��

LnC1.�/
j�

//

Ind
��

Sn.X/

kn��
��

// Nn.X/

kn�IndL
��

KnC1.C
�
L.
zX/�max/

��
// KnC1.C

�
max.�//

// Kn.C
�
L;0.
zX/�max/

// Kn.C
�
L.
zX/�max/:

Moreover, the same method can also be applied to the homology manifold
surgery exact sequence of a closed oriented connected ANR homology manifold
of dimension � 6.
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PROPOSITION 6.12. Let X be a closed oriented connected ANR homology mani-
fold of dimension � 6. Suppose �1X D � . Then we have the following commuta-
tive diagram:

NnC1.X/
i� //

IndL
��

LnC1.�/
j�

//

Ind
��

Sn.X/ //

kn��
��

Nn.X/

kn�IndL
��

KnC1.C
�
L.
zX/�/

��
// KnC1.C

�
r .�//

// Kn.C
�
L;0.
zX/�/ // Kn.C

�
L.
zX/�/;

where the upper exact sequence is the 4-periodic exact sequence from line (3.1) in
Theorem 3.22 (cf. Remark 3.36).

7 Novikov Rho Invariant and Strong Novikov Conjecture
In this section, we define a homological version of the higher rho invariant from

Section 4.6. This homological higher rho invariant will be called Novikov rho in-
variant for reasons that will be explained later in this section. One important aspect
of the Novikov rho invariant is that it can be used to detect nontrivial elements in
the structure group of a closed oriented topological manifold, even when the fun-
damental group of the manifold is torsion free. In particular, we apply the Novikov
rho invariant to show that the structure group is not finitely generated for a class of
manifolds. Throughout the section, we assume n � 5.

Let X be a proper metric space with �1X D � . Suppose zX is the universal
cover of X . We have the following commutative diagram:

(7.1)

K�nC2.E�;
zX/ //

ƒ
��

K�nC1.
zX/ //

Š

��

K�nC1.E�/
//

��

��

K�nC1.E�;
zX/

ƒ
��

KnC1.C
�
L;0.
zX/�/ // KnC1.C

�
L.
zX/�/ // KnC1.C

�
r .�//

@ // Kn.C
�
L;0.
zX/�/

where K�n .E�; zX/ is the �-equivariant relative K-homology group for the pair
of spaces .E�; zX/. For example, K�n .E�; zX/ is the �-equivariant K-homology
group of the mapping cone of the map zX ! E� . Also, K�n .E�; zX/ is naturally
isomorphic to the K-theory group of the C �-algebra mapping cone associated to
the natural map C �L. zX/

� ! C �L.E�/
� . Furthermore, the K-theory of C �L;0. zX/

�

is naturally isomorphic to theK-theory of theC �-algebra mapping cone associated
to the evaluation map C �L. zX/

� ! C �r .�/; cf. [16]. In view of this mapping cone
picture, the commutativity of the above diagram is clear.
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We would like to see in what circumstances there exists a natural homomor-
phism ˇWKn.C

�
L;0.
zX/�/ ! K�nC1.E�;

zX/ such that the following diagram re-
mains commutative:

(7.2)

K�nC2.E�;
zX/ //

ƒ
��

K�nC1.
zX/ //

Š

��

K�nC1.E�/
//

��

��

K�nC1.E�;
zX/

ƒ
��

KnC1.C
�
L;0.
zX/�/ //

ˇ

TT

KnC1.C
�
L.
zX/�/ // KnC1.C

�
r .�//

@ // Kn.C
�
L;0.
zX/�/

ˇ

TT

SnC1.X/ //

�

OO

NnC1.X/ //

IndL

OO

LnC1.�/ //

Ind

OO

Sn.X/

kn��

OO

Now suppose that the strong Novikov conjecture holds for � , that is, the Baum-
Connes assembly map ��WK�nC1.E�/ ! KnC1.C

�
r .�// is injective. In fact, let

us assume a slightly stronger condition:

��WK
�
nC1.E�/! KnC1.C

�
r .�//

is a split injection. So far, in all known cases where the strong Novikov conjecture
holds, the split injectivity of the Baum-Connes assembly map is known to be true
as well; cf. [22, 32, 35, 36, 44, 46, 74, 90, 91].

In this case, let us denote the splitting map by

˛WKnC1.C
�
r .�//! K�nC1.E�/;

which induces a direct sum decomposition:

KnC1.C
�
r .�// Š K

�
nC1.E�/˚ E :

Then a routine diagram chase shows that

(1) the homomorphism ƒWK�nC1.E�;
zX/! Kn.C

�
L;0.
zX/�/ is also an injec-

tion;
(2) @.E / \ @.K�nC1.E�// D 0.

It follows that we have the following commutative diagram:

(7.3)

K�nC1.
zX/ //

Š

��

K�nC1.E�/
//

��

��

K�nC1.E�;
zX/

ƒ
��

// K�n .
zX/

Š

��

KnC1.C
�
L.
zX/�/ //

D

��

K�nC1.E�/˚ E
@ //

˛

��

Kn.C
�
L;0.
zX/�/

q

��

// Kn.C
�
L.
zX/�/

D

��

KnC1.C
�
L.
zX/�/ // K�nC1.E�/

@ // Kn.C
�
L;0.
zX/�/=@.E / // Kn.C

�
L.
zX/�/;

where q is the quotient map

qWKn.C
�
L;0.
zX/�/! Kn.C

�
L;0.
zX/�/=@.E /:
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Note that the last row in diagram (7.3) is also a long exact sequence. By the five
lemma, it follows that the composition

q ıƒWK�nC1.E�;
zX/

Š
��! Kn.C

�
L;0.
zX/�/=@.E /

is an isomorphism.
Now we define

ˇ WD .q ıƒ/�1 ı qWKn.C
�
L;0.
zX/�/! K�nC1.E�;

zX/:

By definition, ˇ makes diagram (7.2) commute.

DEFINITION 7.1. We define the Novikov rho invariant map �Nov to be the compo-
sition

�Nov
D ˇ ı .kn � �/WSn.X/! K�nC1.E�;

zX/;

where we have

kn D

�
1 if n is even,
2 if n is odd.

Remark 7.2. Note that our definition of the invariant �Nov only works when the
strong Novikov conjecture holds. This is the reason that we name this homological
higher rho invariant after Novikov. To be more precise, we have assumed a slightly
stronger condition that the Baum-Connes assembly map is split injective. As noted
before, in all known cases where the strong Novikov conjecture holds, the split
injectivity of the Baum-Connes assembly map is known to be true as well; cf.
[22, 32, 35, 36, 44, 46, 74, 90, 91].

Remark 7.3. There is also a maximal version of the Novikov rho invariant defined
above. In this case, we assume that the Baum-Connes assembly map is split injec-
tive for the maximal group C �-algebra C �max.�1X/. The Novikov rho invariant is
defined similarly. This split injectivity assumption for maximal group C �-algebras
is weaker than the split injectivity assumption for reduced group C �-algebras.

We invert 2 for the rest of this section. With some minor modifications, all
discussions in this paper work equally well for the real case. Roughly speaking,
whenever the imaginary number i D

p
�1 appears in a formula, we replace it

by the matrix
�
0 1
�1 0

�
. More precisely, for a geometrically controlled Poincaré

complex .E; b; T /, we consider the direct sum

.E; b; T /˚ .E; b; T /:

For the operator S in Definition 4.10, we define

S D

�
0 1

�1 0

�p.p�1/C`
T:

The same remark applies to various other formulas, such as the formula in line
(4.2), where complex numbers are used. In the case of dimension n D 0 or 1
mod 4, this gives rise to a signature operator that is twice the actual signature op-
erator with real coefficients. Now taking product with R2 takes care of the case
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where the dimension n D 2 or 3 mod 4. The analogue of the diagram (6.1) for
the real case involves extra powers of 2 in front of various maps. We will leave
out the details. In any case, since we have already inverted 2, we do not lose any
information by introducing these extra powers of 2.

Recall that, after inverting 2, the maps �1 and �2 in the following commutative
diagram are split injective:

KO�i .E�/Œ
1
2
�

�R
//

�1
��

Ki .C
�
r .�;R//Œ

1
2
�

�2

��

K�i .E�/Œ
1
2
�

�
// Ki .C

�
r .�//Œ

1
2
�

where the notation Œ 1
2
� means˝ZŒ 1

2
�, �R and � are Baum-Connes assembly maps

[3,4], and �1 and �2 are induced by changing the scalars from R to C. In particular,
if we assume the split injectivity of the Baum-Connes assembly map, then we also
have the Novikov rho invariant map in the real case:

�Nov
WSn.X/! KO�nC1.E�;

zX/Œ 1
2
�:

Moreover, we shall see that �Nov is surjective in this case.
Recall that, after inverting 2, the split injectivity of the Baum-Connes assembly

map implies that the split injectivity of the Farrell-Jones assembly map (cf. [50,
prop. 95, p. 758]), that is,

AWH�
i .E�IL�/Œ

1
2
�! Li .�/Œ 12 � D Li .Z�/Œ

1
2
�:

is a split injection. Denote the splitting map by


 WLi .�/Œ 12 �! H�
i .E�IL�/Œ

1
2
�:

Also, note that the natural map, which takes a KO-class to its associated (local)
Poincaré complex, induces an isomorphism

KOi .Y /Œ 12 �
Š
�! Hi .Y IL�/Œ 12 �

for any Y . Indeed, this natural map induces a map between two homology theories.
Hence it suffices to verify that it is an isomorphism for Y D fptg, which follows
from a straightforward calculation (cf. [66]). We still write 
 for the splitting map

Li .�/Œ 12 �! H�
i .E�IL�/Œ

1
2
� Š KOi .E�/Œ 12 �:

It follows that we have the following commutative diagram:

(7.4)

KO�nC2.E�;
zX/Œ 1

2
� // KO�nC1.

zX/Œ 1
2
� // KO�nC1.E�/Œ

1
2
� // KO�nC1.E�;

zX/Œ 1
2
�

SnC1.X/Œ 12 � //

�Nov

OO

H�
nC1.

zX IL�/Œ 12 � //

Š

OO

LnC1.�/Œ 12 �
@ //




OO

Sn.X/Œ 12 �

�Nov

OO
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By the splitting map 
 WLnC1.�/Œ 12 �! H�
nC1.E�IL�/Œ

1
2
�, we have the following

direct sum decomposition

LnC1.�/Œ 12 � Š KO
�
nC1.E�/Œ

1
2
�˚F

such that @.KO�nC1.E�/Œ
1
2
�/ \ @.F / D 0. It follows that commutative diagram

(7.4) above descends to the following diagram:

KO�nC2.E�;
zX/Œ 1

2
� // KO�nC1.

zX/Œ 1
2
� // KO�nC1.E�/Œ

1
2
� // KO�nC1.E�;

zX/Œ 1
2
�

SnC1.X/Œ 12 �=@F //

z�Nov

OO

H�
nC1.

zX IL�/Œ 12 � //

Š

OO

LnC1.�/Œ 12 �=F
@ //

Š

OO

Sn.X/Œ 12 �=@.F /

z�Nov

OO

(7.5)

By the five lemma, it follows that

z�Nov
WSn.X/Œ 12 �=@.F /

Š
��! KO�nC1.E�;

zX/Œ 1
2
�

is an isomorphism. In particular, it implies that

�Nov
WSn.X/Œ 12 �� KO�nC1.E�;

zX/Œ 1
2
�

is surjective.
This surjection can be used to detect many elements in Sn.X/. For example,

if KO�nC1.E�/Œ
1
2
� is not finitely generated as a module over ZŒ 1

2
�, then neither is

KO�nC1.E�;
zX/Œ 1

2
� for any closed oriented manifold X . Indeed, if X is a closed

manifold, then KO�i . zX/Œ
1
2
� is a finitely generated ZŒ 1

2
�-module for all i . By the

following exact sequence:

! KO�nC1.
zX/Œ 1

2
�! KO�nC1.E�/Œ

1
2
�

! KO�nC1.E�;
zX/Œ 1

2
�! KO�n .

zX/Œ 1
2
�!;

we see that if KO�nC1.E�/Œ
1
2
� is not finitely generated, then KO�nC1.E�; zX/Œ

1
2
� is

not finitely generated either. In this case, it follows that Sn.X/Œ 12 � is not finitely
generated.

Given a discrete group � , let F� be the C-vector space of finitely supported
functions on the set of finite order elements of � . Define F 0� to be the subspace of
F� consisting of elements f such that f .
/ D f .
�1/. Similarly, define F 1�

be the subspace of F� consisting of elements f such that f .
/ D �f .
�1/.
Then we have (cf. [2, sec. 2])

(7.6) KO�n .E�/˝C Š
M
k2Z

HnC4k.�IF
0�/˚HnC2C4k.�IF

1�/:

In particular, it follows that if a group contains infinitely many distinct conjugacy
classes of finite order elements, then KO�0 .E�/˝C is not finitely generated. For
example, Grigorchuk produced a family of amenable groups that contains infin-
itely many distinct conjugacy classes of finite order elements [31]. Since each of
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these groups is amenable, its associated Baum-Connes assembly map is actually
an isomorphism, hence in particular a split injection.

Furthermore, the isomorphism (7.6) also shows that KO�n .E�/ ˝ C contains
the group homology

L
k2ZHnC4k.�IC/ as a direct summand. Therefore, to find

examples of groups � such thatKO�n .E�/˝C is not finitely generated, it suffices
to find groups whose group homology with complex coefficients has infinite rank.
Here are some examples.

(1) Stalling gave a group in [75], whose 3-dimensional homology group is
not finitely generated. Since this group is obtained from free groups of two
generators by using amalgamated products and HNN extensions, it follows
that its associated Baum-Connes assembly map is an isomorphism [55].

(2) Generalizing ideas of Stalling [75] and Bieri [5], Bridson produces the
following class of groups whose group homology is not finitely generated.
Let Fk be the free group of k-generators with k � 2, and �WFk ! Z
be any surjective homomorphism. Denote the direct product of n copies
of Fk by F .n/

k
. Then � induces a homomorphism �nWF

.n/

k
! Z that

coincides with � on each component. Let Kn be the kernel of this map
�n. Then Hn.KnIC/ has infinite rank;20 cf. [7, theorem B]. Also, the
Baum-Connes assembly map forKn is an isomorphism. This, for example,
follows from [55].

(3) For Thompson’s group F , we have Hn.F IC/ D C ˚ C for all n � 1 [9,
theorem 7.1]. Recall that Thompson’s group F is a-T-menable [26], hence
its Baum-Connes assembly map is an isomorphism [36].

Note that the examples in (1), (2), and (3) above are torsion-free. We see that
the Novikov rho invariant can detect elements in Sn.X/ even when �1X is torsion-
free. Let us summarize the above discussion as the following theorem.

THEOREM 7.4. Let X be a closed oriented topological manifold of dimension
n � 5, and � its fundamental group. Suppose the Baum-Connes assembly map
for � is split injective. IfKO�nC1.E�/Œ

1
2
� is not finitely generated as ZŒ 1

2
�-module,

then STOP.X/ is not finitely generated. Consequently, we have

.1/ if
L
k2ZHnC1C4k.�IC/ is not finitely generated, then STOP.X/ is not

finitely generated;
.2/ if n � 3 .mod 4/ and � has infinitely many distinct conjugacy classes of

finite order elements, then STOP.X/ is not finitely generated.

Remark 7.5. By the work of the first and third authors, part .2/ of the above the-
orem is actually known to hold for a large class of groups, for some of which the
strong Novikov conjecture has not yet been verified. In particular, part .2/ holds
for groups that are finitely embeddable into Hilbert space [82, theorem 1.5 and

20 In his paper [7, theorem B], Bridson proves that the integral homology Hn.KnIZ/ is not
finitely generated. The same proof shows that Hn.KnIC/ has infinite rank.
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cor. 1.6]. See Definition 8.3 below for the definition of groups that are finitely
embeddable into Hilbert space.

8 Nonrigidity of Topological Manifolds

In this section, we apply our main theorem (Theorem 4.40) to give a lower
bound of the free rank of reduced structure groups of closed oriented topologi-
cal manifolds. There are in fact two different versions of reduced structure groups,
zS TOP

alg .X/ and zSTOP
geom.X/, whose precise definitions will be given below. The group

zSTOP
alg .X/ is functorial and fits well with the surgery long exact sequence. On the

other hand, the group zSTOP
geom.X/ measures the size of the collection of closed man-

ifolds homotopic equivalent but not homeomorphic to X .
Since we will be using the maximal version of various C �-algebras throughout

this section, we will omit the subscript “max” for notational simplicity.
Let X be an n-dimensional oriented closed topological manifold. Denote the

monoid of orientation-preserving self homotopy equivalences of X by Auth.X/.
There are two different actions of Auth.X/ on Sn.X/, which induce two different
versions of reduced structure groups as follows; cf. [64] for the essentially same
discussion in the context of algebraic surgery exact sequence.

On one hand, Auth.X/ acts naturally on Sn.X/ by

˛u.�/ D .M; @M; u ı ';N; @N; u ı  ; f /

for all u 2 Auth.X/ and all

� D .M; @M; ';N; @N; ; f / 2 Sn.X/:

Recall that, the natural isomorphism STOP.X/ Š Sn.X/ maps an element � D
.f;M/ 2 STOP.X/ to

M
f

//

f   

X

Id~~

X

2 Sn.X/

:

In this case, ˛u maps

M
f

//

f   

X

Id~~

X

to

M
f

//

uıf   

X

u
~~

X

Clearly, ˛u is a group homomorphism from Sn.X/ to Sn.X/. Note that this action
˛ is compatible with the actions of Auth.X/ on other terms in the topological
surgery exact sequence.
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On the other hand, Auth.X/ also naturally acts on STOP.X/ by compositions of
homotopy equivalences, that is,

ˇu.�/ D .u ı f;M/

for all u 2 Auth.X/ and all � D .f;M/ 2 STOP.X/. In comparison with the
action ˛u above, the action ˇu on STOP.X/ maps

M
f

//

f   

X

Id~~

X

to

M
uıf

//

uıf   

X

Id~~

X

Note that the map
ˇuWSTOP.X/! STOP.X/

only defines a bijection of sets and is not a group homomorphism in general.

DEFINITION 8.1. With the same notation as above, we define the following re-
duced structure groups.

(1) Define zS TOP
alg .X/ to be the quotient group of STOP.X/ by the subgroup

generated by elements of the form � � ˛u.�/ for all � 2 STOP.X/ and all
u 2 Auth.X/.

(2) Define zS TOP
geom.X/ to be the quotient group of STOP.X/ by the subgroup

generated by elements of the form � � ˇu.�/ for all � 2 STOP.X/ and all
u 2 Auth.X/.

Recall the following definitions and theorems from [82, 85]. Let G be a count-
able group. An element g 2 G is said to have order d if d is the smallest positive
integer such that gd D e, where e is the identity element of G. If no such positive
integer exists, we say that the order of g is1.

Let us recall the notion of finite embeddability for groups in the following. We
shall first recall the notion of coarse embeddability due to Gromov.

DEFINITION 8.2 (Gromov). A countable discrete group � is said to be coarsely
embeddable into Hilbert space H if there exists a map f W � ! H such that

(1) for any finite subset F � � , there exists R > 0 such that if 
�1ˇ 2 F ,
then kf .
/ � f .ˇ/k � R;

(2) for any S > 0, there exists a finite subset F � � such that if 
�1ˇ 2
� � F , then kf .
/ � f .ˇ/k � S .

The notion of finite embeddability for groups, introduced by the first and third
authors, is more flexible than the notion of coarse embeddability.

DEFINITION 8.3. A countable discrete group � is said to be finitely embeddable
into Hilbert space H if for any finite subset F � � there exist a group � 0 that is
coarsely embeddable into H and a map � W F ! � 0 such that

(1) if 
; ˇ and 
ˇ are all in F , then �.
ˇ/ D �.
/�.ˇ/;
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(2) if 
 is a finite order element in F , then ord.�.
// D ord.
/. Here ord.
/
is the order of 
 .

The class of groups with finite embeddability into Hilbert space is quite large,
including all residually finite groups, amenable groups, Gromov’s monster groups,
virtually torsion free groups (for example, Out.Fn/), and any group of analytic
diffeomorphisms of a connected analytic manifold fixing a given point [82].

Let G be a countable group. If g 2 G has finite order d , then we can define an
idempotent in the group algebra QG by

pg D
1

d

� dX
kD1

gk
�
:

For the rest of this paper, we denote the maximal group C �-algebra of G by
C �.G/.

DEFINITION 8.4. We define the finite part Kfin
0 .C

�.G// of K0.C �.G// to be the
abelian subgroup of K0.C �.G// generated by Œpg � for all elements g ¤ e in G
with finite order.

We remark that rationally all representations of finite groups are induced from
finite cyclic groups [72]. This explains that the finite part of K-theory, rationally,
contains all K-theory elements that can be constructed using finite subgroups, de-
spite being constructed using only cyclic subgroups.

THEOREM 8.5 ([82, theorem 1.4]). Suppose � is finitely embeddable into Hilbert
space. If fg1; : : : ; gmg is a collection of elements in � with distinct finite orders
such that gi ¤ e for all 1 � i � m, then the following holds:

.1/ fŒpg1 �; : : : ; Œpgm �g generates an abelian subgroup of Kfin
0 .C

�.�// of rank
m;

.2/ any nonzero element in the abelian subgroup ofKfin
0 .C

�.�// generated by
the elements fŒpg1 �; : : : ; Œpgm �g is not in the image of the assembly map

��WK0.B�/ Š K
�
0 .E�/! K0.C

�.�//;

where E� is the universal space for proper and free �-actions.

Before we go into the main result of this section, let us recall the following
key step of constructing elements in the structure group by the finite part of K-
theory [82, theorem 3.4].

EXAMPLE 8.6. Let M be a .4k � 1/-dimensional closed oriented connected topo-
logical manifold with �1M D � . Suppose

fg1; : : : ; gmg

is a collection of elements in � with distinct finite orders such that gi ¤ e for all
1 � i � m. Recall the topological surgery exact sequence:

! H4k.M;L�/! L4k.�/
S
�! STOP.M/! H4k�1.M;L�/! :
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For each finite subgroup H of � , we have the following commutative diagram:

HH
4k
.EH;L�/

A //

��

L4k.H/

��

HG
4k
.E�;L�/

A // L4k.�/;

where the vertical maps are induced by the inclusion homomorphism fromH to � .
For each element g in H with finite order d , the idempotent pg D 1

d
.
Pd
kD1 g

k/

produces a class in L0.QH/, where L0.QH/ is the algebraic definition of L-
groups using quadratic forms and formations with coefficients in Q. Let Œqg � be
the corresponding element in L4k.QH/ given by periodicity. Recall that

L4k.H/˝Q ' L4k.QH/˝Q:

For each element g in H with finite order, we use the same notation Œqg � to denote
the element in L4k.H/˝Q corresponding to Œqg � 2 L4k.QH/ under the above
isomorphism.

We also have the following commutative diagram:

H�
4k
.E�;L�/˝Q

A //

��

L4k.�/˝Q

��

K�0 .E�/˝Q
��

// K0.C
�.�//˝Q;

where the left vertical map is induced by a map at the spectra level and the right
vertical map is induced by the inclusion map

L4k.�/! L4k.C
�.�// Š K0.C

�.�//

(see [66] for the last identification).
Now if � is finitely embeddable into Hilbert space, then the abelian subgroup of

K0.C
�.�// generated by fŒpg1 �; : : : ; Œpgm �g is not in the image of of the map

�� W K
�
0 .E�/! K0.C

�.�//:

It follows that:
(1) any nonzero element in the abelian subgroup of L4k.�/˝Q generated by

the elements fŒqg1 �; : : : ; Œqgm �g is not in the image of the rational assembly
map

A W H�
4k.E�;L�/˝Q! L4k.�/˝QI

(2) the abelian subgroup of L4k.�/˝Q generated by fŒqg1 �; : : : ; Œqgm �g has
rank m.

By the exactness of the surgery sequence, we know that the map

(8.1) S WL4k.�/˝Q! STOP.M/˝Q

is injective on the abelian subgroup ofL4k.�/˝Q generated by fŒqg1 �; : : : ; Œqgn �g.
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In fact, to prove the main result of this section (Theorem 8.8), we need to apply
the above argument not only to � but also to certain semidirect products of � with
free groups of finitely many generators.

Let � be a countable discrete group. Note that any set of n automorphisms of
� , say,  1; : : : ;  n 2 Aut.�/, induces a natural action of Fn, the free group of
n generators on � . More precisely, if we denote the set of generators of Fn by
fs1; : : : ; sng, then we have a homomorphism Fn ! Aut.�/ by si 7!  i . This
homomorphism induces an action of Fn on � . We denote by � Ìf 1;:::; ng Fn the
semidirect product of � and Fn with respect to this action. If no confusion arises,
we shall write � Ì Fn instead of � Ìf 1;:::; ng Fn.

DEFINITION 8.7. A countable discrete group � is said to be strongly finitely em-
beddable into Hilbert space H if � Ìf 1;:::; ng Fn is finitely embeddable into
Hilbert space H for all  1; : : : ;  n 2 Aut.�/ and all n 2 N.

We remark that all coarsely embeddable groups are strongly finitely embed-
dable. Indeed, if a group � is coarsely embeddable into Hilbert space, then the
group � Ìf 1;:::; ng Fn is also coarsely embeddable (hence finitely embeddable)
into Hilbert space for  1; : : : ;  n 2 Aut.�/ and all n 2 N. Moreover, if a group
� has a torsion free normal subgroup � 0 such that �=� 0 is residually finite, then �
is strongly finitely embeddable into Hilbert space; cf. [85, sec. 4]. In particular, all
residually finite groups are strongly finitely embeddable into Hilbert space.

We denote by Nfin.�/ the cardinality of the following collection of positive in-
tegers:

fd 2 NC j 9
 2 � such that 
 ¤ e and ord.
/ D dg:
Then we have the following main theorem of this section. At the moment, we are
only able to prove the theorem for zS TOP

alg .M/. We will give a brief discussion after
the theorem to indicate the difficulties in proving the version zS TOP

geom.M/.

THEOREM 8.8. Let M be a closed oriented topological manifold with dimension
n D 4k � 1 (k > 1) and �1M D � . If � is strongly finitely embeddable into
Hilbert space, then the free rank of zS TOP

alg .M/ is � Nfin.�/.

PROOF. A key point of the argument below is to use a semidirect product �ÌFm
to turn certain outer automorphisms of � into inner automorphisms of � Ì Fm.

Note that every self-homotopy equivalence  2 Auth.M/ induces a homomor-
phism21 � � W K1.C �L;0. �M/�/! K1.C

�
L;0.

�M/�/:

21 The homomorphism � � W K1.C�L;0. �M/� /! K1.C
�
L;0

. �M/� / is defined as follows. The map

 WM !M lifts to a map � W �M ! �M . However, to view � as a �-equivariant map, we need to use
two different actions of � on �M . Let � be a right action of � on �M through deck transformations.
Then we define a new action � 0 of � on �M by � 0g D � �.g/, where  �W� ! � is the automorphism
induced by  . It is easy to see that � W �M ! �M is �-equivariant when � acts on the first copy of �M
by � and the second copy of �M by � 0. Let us denote the corresponding C�-algebras by C�

L;0
. �M/��

and C�
L;0

. �M/�
� 0

. Observe that, despite the two different actions of � on �M , the two C�-algebras
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Let I1.C �L;0. �M/�/ be the subgroup of K1.C �L;0. �M/�/ generated by elements of

the form Œx� � � �Œx� for all Œx� 2 K1.C �L;0. �M/�/ and all  2 Auth.M/. By the

definition of the higher rho invariant map (cf. Definition 4.38),

� W STOP.M/! K1.C
�
L;0.

�M/�/;

and we have
�.˛ .�// D � �.�.�// 2 K1.C �L;0. �M/�/

for all � 2 STOP.M/ and  2 Auth.M/. It follows that � descends to a group
homomorphism

zS TOP
alg .M/! K1.C

�
L;0.

�M/�/
ı
I1.C �L;0. �M/�/:

Now for a collection of elements f
1; : : : ; 
` j 
i ¤ eg with distinct finite or-
ders, let S .p
1/; : : : ;S .p
`/ 2 STOP.M/ be the corresponding elements from
line (8.1). To be precise, the elements S .p
1/; : : : ;S .p
`/ lie in STOP.M/˝Q.
Consequently, all abelian groups in the following need to be tensored by the ratio-
nals Q. For simplicity, we shall omit ˝Q from our notation, with the understand-
ing that the abelian groups below are to be viewed as tensored with Q. Also, let us
write

�.
i / WD �.S .p
i // 2 K1.C
�
L;0.

�M/�/:

To prove the theorem, it suffices to show that the elements

�.
1/; : : : ; �.
`/

are linearly independent in K1.C �L;0. �M/�/
ı
I1.C �L;0. �M/�/ for any collection of

elements f
1; : : : ; 
` j 
i ¤ eg with distinct finite orders.
Assume to the contrary that there exist

Œx1�; : : : ; Œxm� 2 K1.C
�
L;0.

�M/�/ and  1; : : : ;  m 2 Auth.M/

such that

(8.2)
X̀
iD1

ci�.
i / D

mX
jD1

�
Œxj � � .� j /�Œxj ��;

where c1; : : : ; c` 2 Z with at least one ci ¤ 0. In fact, we shall investigate equation
(8.2) in the groupK1.C �L;0.E.�ÌFm//

�ÌFm/ and arrive at a contradiction, where
� Ì Fm is a certain semidirect product of � with the free group of m generators
Fm, and E.� Ì Fm/ is the universal space for free and proper � Ì Fm-actions.

Let us fix a map � WM ! B� that induces an isomorphism of their fundamen-
tal groups, where B� is the classifying space of � . Suppose 'WM ! M is an

C�
L;0

. �M/�� and C�
L;0

. �M/�
� 0

are canonically identical, since an operator is invariant under the action
� if and only if it is invariant under the action � 0.
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orientation-preserving self homotopy equivalence of M . Then ' induces an au-
tomorphism of � ,22 also denoted by ' 2 Aut.�/. Now consider the semidirect
product � Ì' Z and its associated classifying space B.� Ì' Z/. Let y' be the
element in � Ì' Z that corresponds to the generator 1 2 Z. We write

ˆWB.� Ì' Z/! B.� Ì' Z/

for the map induced by the automorphism

� Ì' Z! � Ì' Z given by a 7! y'ay'�1:

Suppose �WB� ! B.� Ì' Z/ is the map induced by the inclusion � ,! � Ì' Z.
Then the map

� ı � ı 'WM
'
�!M

�
�! B�

�
�! B.� Ì' Z/

is homotopy equivalent to the map

ˆ ı � ı � WM
�
�! B�

�
�! B.� Ì' Z/

ˆ
�! B.� Ì' Z/;

since they induce the same map on fundamental groups.
Let z� W �M ! E� be the lift of the map � WM ! B� . Similarly, z'W �M ! �M is

the lift of 'WM !M , and�̂WE.� Ì' Z/! E.� Ì' Z/

is the lift of ˆWB.� Ì' Z/! B.� Ì' Z/:
SinceˆWB.�Ì'Z/! B.�Ì'Z/ is induced by an inner conjugation morphism

on � Ì' Z, the map23

�̂
�WK1.C

�
L;0.E�/

�/! K1.C
�
L;0.E�/

�/

is the identity map. It follows that for each Œx� 2 K1.C �L;0. �M/�/, we have

z��z��.z'�Œx�/ D �̂
�z��z��.Œx�/ Dz��z��.Œx�/

in K1.C �L;0.E.� Ì' Z//�Ì'Z/, where z��z�� is the composition

K1.C
�
L;0.

�M/�/
z��
�! K1.C

�
L;0.E�/

�/
z��
�! K1.C

�
L;0.E.� Ì' Z//�Ì'Z/:

The same argument also works simultaneously for an arbitrary finite number of
orientation-preserving self homotopy equivalences

 1; : : : ;  m 2 Auth.M/;

22 Precisely speaking, ' only defines an outer automorphism of � , and one needs to make a
specific choice of a representative in Aut.�/. Any such choice will work for our proof.

23 The C�-algebra C�
L;0

.E�/� is the inductive limit of C�
L;0

.Y /� , where Y ranges over all �-
cocompact subspaces of E� .
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in which case we have

z��z��..� i /�Œx�/ Dz��z��.Œx�/
in K1

�
C �L;0.E.� Ìf 1;:::; mg Fm//

�Ìf 1;:::; mg
Fm
�

for all Œx� 2 K1.C �L;0. �M/�/. In other words, .� i /�Œx� and Œx� have the same
image in

K1.C
�
L;0.E.� Ìf 1;:::; mg Fm//

�Ìf 1;:::; mg
Fm/:

For notational simplicity, let us write �ÌFm for �Ìf 1;:::; mgFm. If no confusion
is likely to arise, we shall still denote z��z��.Œx�/ in K1.C �L;0.E.� Ì Fm//

�ÌFm/

by Œx�.
If we pass equation (8.2) to K1.C �L;0.E.� Ì Fm//

�ÌFm/ under the map

K1.C
�
L;0.

�M/�/
z��
�! K1.C

�
L;0.E�/

�/
z��
�! K1.C

�
L;0.E.� Ì Fm//

�ÌFm/;

then it follows from the above discussion thatX̀
kD1

ck�.
k/ D 0 in K1
�
C �L;0.E.� Ì Fm//

�ÌFm
�
;

where at least one ck ¤ 0. By the commutative diagram (6.1), we have

(8.3) @�ÌFm

�X̀
kD1

ckŒp
k �

�
D 2 �

� X̀
kD1

ck�.
k/

�
D 0;

where @�ÌFm is the connecting map in the following long exact sequence:

(8.4)

K0.C
�
L;0.E.� Ì Fm//

�ÌFm/ // K
�ÌFm
0 .E.� Ì Fm//

�
// K0.C

�.� Ì Fm//

@�ÌFm
��

K1.C
�.� Ì Fm//

OO

K
�ÌFm
1 .E.� Ì Fm//oo K1.C

�
L;0.E.� Ì Fm//

�ÌFm/:oo

Now by assumption � is strongly finitely embeddable into Hilbert space. Hence
� Ì Fm is finitely embeddable into Hilbert space. By Theorem 8.5, we have the
following.

(i) fŒp
1 �; : : : ; Œp
` �g generates an abelian subgroup of Kfin
0 .C

�.� Ì Fm// of
rank `, since 
1; : : : ; 
` have distinct finite orders. In other words,

nX
kD1

ckŒp
k � ¤ 0 2 K
fin
0 .C

�.� Ì Fm//

if at least one ck ¤ 0.
(ii) Every nonzero element in Kfin

0 .C
�.� Ì Fm// is not in the image of the

assembly map

�WK
�ÌFm
0 .E.� Ì Fm//! K0.C

�.� Ì Fm//:



ADDITIVITY OF HIGHER RHO INVARIANTS 87

In particular, it follows that the map

@�ÌFm WK
fin
0 .C

�.� Ì Fm//! K1.C
�
L;0.
zX/�ÌFm/

is injective.
Therefore, we have

@�ÌFm

� X̀
kD1

ckŒp
k �

�
¤ 0;

which contradicts equation (8.3). This finishes the proof. �

Remark 8.9. An obvious analogue of Theorem 8.8 holds for homology manifold
structure groups. See Remark 3.36 for a discussion on homology manifold struc-
ture groups.

It is tempting to use a similar argument to prove an analogue of Theorem 8.8
above for zS TOP

geom.M/. However, there are some subtleties. First, note that (cf. [64])

˛'.�/C Œ'� D ˇ'.�/

for all � D .f;N / 2 STOP.M/ and all ' 2 Auth.M/, where Œ'� D .';M/ is the
element given by 'WM !M in STOP.M/: It follows that

�.ˇ'.�// D �.˛'.�//C �.Œ'�/ D '�.�.�//C �.Œ'�/:

In other words, in general, �.ˇ'.�// ¤ '�.�.�//, and consequently the homomor-
phism

�WSTOP.M/! K1.C
�
L;0.

�M/�/

does not descend to a homomorphism from the group zS TOP
geom.M/ to the quotient

group K1.C �L;0. �M/�/
ı
I1.C �L;0. �M/�/. New ingredients are needed to take care

of this issue. On the other hand, there is strong evidence that suggests an analogue
of Theorem 8.8 for zS TOP

geom.M/. For example, this has been verified by the first
and third authors for residually finite groups [82, theorem 3.9]. Also, Chang and
the first author gave a different lower bound of zS TOP

geom.M/ that works for all non-
torsion-free groups, although the lower bound is weaker [15, theorem 1]. In any
case, we hope to deal with this question in a separate paper.

We close this section by proving the following theorem, which is an analogue of
the theorem of Chang and the first author cited above [15, theorem 1].

THEOREM 8.10. Let X be a closed oriented topological manifold with dimension
n D 4k � 1 (k > 1) and �1X D � . If � is not torsion free, then the free rank of
zS TOP

alg .X/ is � 1.

PROOF. Recall that for any non-torsion-free countable discrete group G, if 
 ¤
e is a finite order element of G, then Œp
 � generates a subgroup of rank one in
K0.C

�.G// and any nonzero multiple of Œp
 � is not in the image of the assembly
map �WK�0 .EG/! K0.C

�.G// [82, theorem 2.3]. Using this fact, the statement
follows from the same proof as in Theorem 8.8. �
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9 Lipschitz Structures and Siebenmann Periodicity Map
In this section, we show how our approach can be adapted to deal with signature

operators arising from Lipschitz structures on topological manifolds. We also show
that the higher rho invariant map defined using Lipschitz structures is compatible
with the Siebenmann periodicity map. Throughout this section, all manifolds are
assumed to have dimension � 5.

As we have seen, for our main theorem (Theorem 4.40) and our main application
8.8, it suffices to work with the smooth or PL representatives, that is, the groups
NC1

n .X Iw/, LC
1

n .�1X Iw/, and SC1n .X;w/, or N PL
n .X Iw/, LPL

n .�1X Iw/,
and SPL

n .X;w/; cf. Section 3.4. On the other hand, our approach to the higher
rho invariant given in Section 4.6 applies essentially verbatim to signature opera-
tors associated to Lipschitz structures on topological manifolds. In particular, with
some minor modifications given below, we can directly deal with signature opera-
tors arising from Lipschitz structures as well.

There are two modifications that are needed for the construction of the higher
rho invariant in this case.

(i) We use the unbounded theory (cf. [37, sec. 5]) instead of the bounded the-
ory that is used in Section 4.6. For various properties of the signature
operator associated to a Lipschitz structure, we refer the reader to [41, 42]
and [43, sec. 3]. The higher rho invariant map can be defined by the same
formula as in Definition 4.38, and the proofs are identical.

(ii) To prove the well-definedness of the higher rho invariant map (for the Lips-
chitz case), the techniques in Section 5 do not quite apply to the unbounded
theory. Recall that, for an even-dimensional manifold Y with boundary
@Y , the restriction of the signature operator DY of Y is two times the sig-
nature operator D@Y on @Y . In order to take care of this factor of 2, we
use the results of Stern on topological vector fields [76, cor. 1.5]) and tech-
niques developed by Pedersen, Roe, and the first author in [53, sec. 4]. In
particular, these results allow us to use a vector field to split the signature
operator DY into two halves.24 The rest of the proof is similar to the proof
for the commutativity of the middle square in Theorem 6.10.

Let X be a connected oriented closed topological manifold of dimension n � 5
with �1X D � . Recall that an element of STOP.X/ is an orientation-preserving
homotopy equivalence f WM ! X , and an element of STOP

@
.X � D4/ is an

orientation-preserving homotopy equivalence gW .N; @N / ! .X � D4; X � S3/
such that g restricts to a homeomorphism on the boundary. As pointed out in
item (i) above, by using Lipschitz structures, our construction of higher rho invari-
ant from Definition 4.38 can be directly applied to elements in both STOP.X/ and

24 Technically speaking, we may need to punch out a disc in Y , replace it with an infinite cylinder,
and control this cylinder appropriately over the reference control space.
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STOP
@

.X �D4/. Let us denote the corresponding higher rho invariant map by

�Lip
WSTOP.X/! Kn.C

�
L;0.
zX/�/

and

�
Lip
s WSTOP

@ .X �D4/! Kn.C
�
L;0.
zX/�/:

The following proposition is a consequence of Theorem 4.40 and Theorem 3.33.

PROPOSITION 9.1. The higher rho invariant map is compatible with the Sieben-
mann periodicity map. More precisely, we have

�Lip
D �

Lip
s ı GP WSTOP.X/! Kn.C

�
L;0.
zX/�/;

where GP is the geometric periodicity map25 due to Cappell and the first author.

PROOF. Consider the following commutative diagram from Proposition 3.30:

STOP.X/
� � GP

//

��

��

STOP
@

.X �D4/

ˇ�
��

Sn.X/ � � �CP2 // SnC4.X/:

Since every element in Sn.X/ is equivalent to a smooth representative, it follows
that the higher rho invariant map �Lip for STOP.X/ (resp., STOP

@
.X �D4/) defined

using Lipschitz structures above coincides with our definition of the higher rho
invariant for Sn.X/ in Definition 4.38. Similarly, the higher rho invariant map �Lip

s

for STOP
@

.X �D4/ defined using Lipschitz structures coincides with our definition
of the higher rho invariant for SnC4.X/. On the other hand, by the product formula
for higher rho invariants (cf. the discussion before Remark 3.49), the higher rho
invariant remains unchanged under the map �CP2. By the commutative diagram
above, this finishes the proof. �

Remark 9.2. We point out that, if one is only interested in the well-definedness of
the higher rho invariant map after inverting 2, that is, if one only wants to prove the
map

�WSn.X/! Kn.C
�
L;0.
zX/�/˝ ZŒ 1

2
�

is well-defined, then there is a simpler argument than the one outlined in item (ii)
above. Indeed, in this case, an argument similar to the proof for the commutativity
of the middle square in Theorem 6.10 suffices.

25 See the discussion before Proposition 3.30 and Theorem 3.32.
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Appendix A Uniform Control and Uniform Invertibility
In this part of the appendix, we show that a uniform family of geometrically con-

trolled Poincaré complexes gives rise to a uniform family of analytically controlled
Poincaré complexes.

First, let us introduce the notion of uniform families of geometrically controlled
Poincaré complexes.

DEFINITION A.1. A uniform family of geometrically controlled Poincaré com-
plexes over X is a family of geometrically controlled Poincaré complexes over X

f.E�; b�; T�/g�2ƒ

such that the following conditions are satisfied:
(1) the propagations of b� and T� are uniformly bounded;
(2) the propagations of the chain homotopy inverses T 0

�
of T� are uniformly

bounded;
(3) the propagations of the chain homotopies between T 0

�
ı T� and 1 are uni-

formly bounded, and the propagations of the chain homotopies between
T� ı T

0
�

and 1 are uniformly bounded;
(4) the matrix coefficients of all maps above (including the chain homotopies)

are uniformly bounded.

There is a natural counterpart of the above notion of uniform families in the an-
alytically controlled category. Recall from Definition 4.10 that, for an analytically
controlled Poincaré complex .E; b; T /, we have

B D b C b� and S D ip.p�1/ClT:

DEFINITION A.2. A uniform family of analytically controlled Poincaré complexes
over X is a family of analytically controlled Poincaré complexes over X

f.E�; b�; T�/g�2ƒ

such that the following conditions are satisfied:
(1) the norms of b� and T� are uniformly bounded;
(2) the norms of the chain homotopy inverses T 0

�
of T� are uniformly bounded;

(3) there exist " > 0 and C > 0 such that

" < kB� ˙ S�k < C:

PROPOSITION A.3. Suppose f.E�; b�; T�/g�2ƒ is a uniform family of geometri-
cally controlled Poincaré complexes over X . Then their `2-completions give rise
to a uniform family of analytically controlled Poincaré complexes over X . In par-
ticular, there exists " > 0; C > 0 such that

" < kB� ˙ S�k < C

for all � 2 ƒ.
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PROOF. Note that
L
�E� is a geometrically controlled Poincaré complex overF

�X . Let E be the `2 completion of
L
�E�. Then by the discussion in Sections

4.4 and 4.5, the operatorsM
�2ƒ

.B� C S�/ and
M
�ƒ

.B� � S�/

are bounded and invertible [37, lemma 3.5]. In particular, there exist " > 0 and
C > 0 such that

" <


M
�2ƒ

.B� C S�/



E < C and " <



M
�2ƒ

.B� � S�/



E < C:

It follows that " < kB�˙S�kE� < C for all � 2 ƒ, where Ej is the `2-completion
of E�. �

Appendix B K -Homology Class of Signature Operator
In this appendix, we give a detailed construction of the K-homology classes of

signature operators on PL manifolds. The material of this section is very much
inspired by [40]. We will only give the details for the odd case. The even case is
similar.

B.1 Special Case: Closed PL Manifolds
In this subsection, we construct the K-homology classes of signature operators

on closed PL manifolds. The construction for the more general case of elements in
Nm.X/ will be considered in the next subsection.

Let M be a closed oriented PL manifold of dimension m. Assume that M
is equipped with a triangulation that has bounded geometry. Suppose there is a
control map 'WM ! X . Let Sub.M/ be the subdivision from Section 4.2. Here
is an outline of the construction of the K-homology class of the signature operator
on M .

(1) Consider the vector space
L
k C

�
k
.M/, where C�

k
.M/ is the complex

vector space of simplicial k-chains in the triangulation of M . It carries
a natural geometrically controlled X -module structure, where the basis of
H consists of simplices of Sub.M/ and each basis element is labeled by
the image of its barycenter under the control map '. Similarly, we have
geometrically controlled X -modules

L
k C

�
k
.Subj .M//:

(2) Based on the geometrically controlled X -module E.j /, we obtain a geo-
metrically controlled Poincaré complex ofM for each j 2 N (cf. Example
4.18), whose propagation approaches 0 as j goes to1.

(3) We connect these geometrically controlled Poincaré complexes in a canon-
ical way to form a continuous family of geometrically controlled Poincaré
complexes parametrized by t 2 Œ0;1/ such that the propagation of each
Poincaré complex goes to 0 as t goes to 1. The K-homology signature
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class of M will be an element of Km.C �L.X// that is naturally determined
by this family.

Let us first carry out the details for connecting the geometrically controlled
Poincaré complexes on

Q0 D
M
k

C�k .M/ and Q2 D
M
k

C�k .Sub.M//:

Note that Q0 is naturally a vector subspace of Q2, but Q0 is not a geometrically
controlled X -submodule of Q2, since the natural basis of Q0 is not a subbasis of
the natural basis of Q2, and furthermore their labelings are not compatible either.
In order to fix this issue, we shall introduce an auxiliary geometrically controlled
X -module structure on

L
k C

�
k
.Sub.M// as follows.

(ya) For a simplex � D �k 2 M , suppose Sub.�/ is the union of distinct k-
simplices f!ig. Instead of the usual basis f!ig for the vector space V� D
C�
k
.Sub.�//, we shall construct a new basis that contains � D

P
i !i as

one of the basis elements. For example, start with the vector
P
i !i 2 V� ,

and linear-independently choose any other vectors to form a basis of V� .
(yb) All basis elements of V� from part (a) are labeled by the image of the

barycenter of � under the control map '.
(yc) We apply the same construction to each simplex of M , and obtain a basis

of
L
k C

�
k
.Sub.M// with the corresponding labeling.

Let us write �Q1 for
L
k C

�
k
.Sub.M// with this new geometrically controlled X -

module structure. In fact, to make our exposition more transparent, we shall intro-
duce another geometrically controlled X -module structure on

L
k C

�
k
.Sub.M//

as follows.

(a) For a simplex � D �k 2M , suppose Sub.�/ is the union of some distinct
k-simplices f!ig, which in particular forms a basis for the vector space
V� D C

�
k
.Sub.�//.

(b) All basis elements !i of V� are labeled by the image of the barycenter of �
under the control map '.

(c) We apply the same construction to each simplex of M , and obtain a basis
of
L
k C

�
k
.Sub.M// with the corresponding labeling.

We denote the resulting geometrically controlled X -module by Q1.
Clearly, Q0 is a geometrically controlled X -submodule of �Q1. Moreover, �Q1

andQ1 are isomorphic as geometrically controlledX -modules through an isomor-
phism that has zero propagation.

Let b and S be the differential and duality operator of the simplicial chain com-
plex (with its X -module structure �Q1)

� � �
b
�! C�kC1.Sub.M//

b
�! C�k .Sub.M//

b
�! C�k�1.Sub.M//

b
�! � � � ;
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which contains

� � � ! C�kC1.M/! C�k .M/! C�k�1.M/! � � �

as a chain subcomplex, where the X -module structure of the latter is Q0.
We endow �Q1 (resp., Q0, Q1, and Q2) with the inner product for which the

basis elements are orthonormal. From now on, we shall identify the dual space
of �Q1 (resp., Q0, Q1, and Q2) with �Q1 (resp., Q0, Q1, and Q2) by this inner
product. With respect to the orthogonal decomposition of �Q1 D Q0 ˚ Q

?
0 , we

have

b D

�
b11 b12
0 b22

�
and S D

�
S11 S12
S21 S22

�
;

where b11 and S11 are the differential and duality operator of the chain complex

� � � ! C�kC1.M/! C�k .M/! C�k�1.M/! � � � :

In particular, b11S11 D S11b
�
11 and bS D Sb�. If no confusion is likely to arise,

we shall denote these geometrically controlled Poincaré complexes by .Q0; b11;
S11/ and .�Q1; b; S/.

Now let us define

bt D

�
b11 tb12
0 b22

�
and St D

�
S11 tS12
tS21 S22

�
where t 2 Œ0; 1�. A straightforward calculation shows that

btSt D Stb
�
t :

Consider the short exact sequence

0! .Q0; b11/
�
�! .�Q1; b/! .Q?0 ; b22/! 0:

Because � is a quasi-isomorphism (i.e., an isomorphism on homology), it follows
that .Q?0 ; b22/ is acyclic (i.e., with zero homology). Hence the short exact se-
quence

0! .Q0; b11/
�
�! .�Q1; bt /! .Q?0 ; b22/! 0

implies that .Q0; b11/
�
�! .�Q1; bt / is a quasi-isomorphism for all t 2 Œ0; 1�.

Therefore, in the following commutative diagram, the vertical maps are quasi-
isomorphisms:

.Q0; b
�
11/

S11 // .Q0; b11/

�

��

.�Q1; b�t /
OO

St // .�Q1; bt /
It follows that St is a quasi-isomorphism for all t 2 Œ0; 1�, since S11 is a duality
operator and thus a quasi-isomorphism. In fact, by localizing the calculation at
stars of simplices and using a Mayer-Vietoris argument as in [38, sec. 4], it is not
difficult to show that the maps �W .Q0; b11/ ! .�Q1; bt / and St are geometrically
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controlled chain equivalences, and f.�Q1; bt ; St /gt2Œ0;1� form a uniform family of
geometrically controlled Poincaré complexes in the sense of Definition A.1.

Now let us turn to the geometrically controlled Poincaré complexes .Q1; b; S/
and .Q2; b; S/. HereQ1 andQ2 carry the same differential b and duality operator
S . The only difference between the two complexes is their geometrically controlled
X -module structures. We shall introduce a new family of geometrically controlled
X -module structures on the underlying space

L
k C

�
k
.Sub.M// that will connect

.Q1; b; S/ and .Q2; b; S/. For a simplex � D �k in M , suppose Sub.�/ is the
union of distinct k-simplices f!ig. Let 
i W Œ1; 2� ! M be the unique linear path
that starts with the barycenter of � and ends with the barycenter of !i . Now for
each t 2 Œ1; 2�, we introduce the following geometrically controlled X -module onL
k C

�
k
.Sub.M//:

(It) For a simplex � D �k 2 M , suppose Sub.�/ is the union of some dis-
tinct k-simplices f!ig, which forms a basis for the vector space V� D
C�
k
.Sub.�//.

(IIt) All basis elements !i of V� are labeled by the image of 
i .t/ under the
control map 'WM ! X .

(IIIt) We apply the same construction to each simplex of M , and obtain a basis
of
L
k C

�
k
.Sub.M// with the corresponding labeling.

We denote the resulting geometrically controlled X -module by Qt . Note that,
when t D 1 or 2, the definition of Qt is consistent with the definition of Q1 or
Q2 above. Again, it is not difficult to see that f.Qt ; b; S/gt2Œ1;2� form a uniform
family of geometrically controlled Poincaré complexes in the sense of Definition
A.1.

To summarize, we have constructed a uniform family of geometrically con-
trolled Poincaré complexes f.Qt ; bt ; St /gt2Œ0;2�, where

(B.1) .Qt ; bt ; St / D

(
.�Q1; bt ; St / if 0 � t � 1;
.Qt ; b; S/ if 1 � t � 2:

We shall explain our notation. On one hand, when t D 1, we have identified
.�Q1; b; S/ with .Q1; b; S/ by an isomorphism with zero propagation. On the other
hand, when t D 0, there appears to be a conflict of notation. Indeed, .�Q1; b0; S0/
is not a chain complex modeled on the vector spaceQ0, but rather a chain complex
modeled on �Q1 with

b0 D

�
b11 0

0 b22

�
and S0 D

�
S11 0

0 S22

�
:

However, .�Q1; b0; S0/ is geometrically controlled chain equivalent to .Q0; b11;
S11/. Indeed, we have that

.�Q1; b0; S0/ D .Q0; b11; S11/˚ .Q?0 ; b22; S22/;
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and .Q?0 ; b22; S22/ is acyclic. In other words, in terms of K-theory, .�Q1; b0; S0/
is equivalent to .Q0; b11; S11/; and .�Q1; b0; S0/ can be viewed as a stabilization
of .Q0; b11; S11/. More precisely, let B0 D b0 C b

�
0 , B11 D b11 C b

�
11, and

B22 D b22 C b
�
22. Then we have

B0 ˙ S0 D .B11 ˙ S11/˚ .B22 ˙ S22/:

Since .Q?0 ; b22; S22/ is acyclic, uS22 is a duality operator for .Q?0 ; b22/ for all
u 2 Œ0; 1�. It follows that the invertible element (cf. Definition 4.11)

.B0 C S0/.B0 � S0/
�1
D

 
B11CS11
B11�S11

B22CS22
B22�S22

!
is connected to the invertible element�

B11CS11
B11�S11

1

�
through the following path of invertible elements: 

B11CS11
B11�S11

B22CuS22
B22�uS22

!
:

Therefore, .�Q1; b0; S0/ is just aK-theoretic stabilization of the geometrically con-
trolled Poincaré complex .Q0; b11; S11/. If no confusion is likely to arise, we shall
continue this slight abuse of notation and say that the uniform family of geometri-
cally controlled Poincaré complexes f.Qt ; bt ; St /gt2Œ0;2� connects .Q0; b11; S11/
and .Q2; b; S/. We shall implicitly assume this type of stabilization throughout the
following discussion.

Let us write Q2j D
L
k C

�
k
.Subj .M//. We can apply the same construction

above to form a uniform family of geometrically controlled Poincaré complexes
connecting Q2j to Q2.jC1/. Denote this uniform family of geometrically con-
trolled Poincaré complexes by f.Qt ; bt ; St /gt2Œ2j;2jC2�. In fact, it is not difficult
to see that the union of these families

f.Qt ; bt ; St /gt2Œ0;1/

is a uniform family of geometrically controlled Poincaré complexes. By Proposi-
tion A.3, there exist " > 0 and C > 0 such that

" < kBt ˙ Stk < C

for all t 2 Œ0;1/, where Bt D bt C b�t .
Let p.x/ be a polynomial on Œ"; C � [ Œ�C;�"� such that

sup
x2Œ";C �

jp.x/ � x�1j <
1

C
:
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Then kp.Bt � St / � .Bt � St /�1k < 1
kBt�Stk

, which implies that p.Bt � St / is
invertible. Moreover, the element

Ut WD .Bt C St / � p.Bt � St /

has finite propagation. Since the propagations of Bt and St go to 0 as t goes to1,
it follows that the propagation of .Bt C St / � p.Bt � St / goes to 0 as t goes to1.

To summarize, we obtain a norm-bounded and uniformly continuous path of
invertible elements

U W Œ0;1/! C �.X/C

such that the propagation of Ut goes to 0 as t !1. Here C �.X/C is the unitiza-
tion of C �.X/.

DEFINITION B.1. The local index IndL.M; '/ of the signature operator of M
under the control 'WM ! X is defined to be the K-theory class of the path U in
K1.C

�
L.X//.

The even-dimensional case is similar. We omit the details.

B.2 General Case: Elements in Nm.X/

In this subsection, we construct the K-homology classes of signature operators
for elements in Nm.X/. See Definition 3.13 for a description of Nm.X/.

Let � D .M; @M; ';N; @;N; f / 2 Nm.X/ (cf. Definition 3.13). In this case, we
consider the spaceM [f .�N/ obtained by gluingM and �N along the boundary
by the map f W @N ! @M . Although M [f .�N/ is not a manifold, it is still
a space equipped with a Poincaré duality. In fact, since f W @N ! @M is a PL
infinitesimally controlled homotopy equivalence, we can still make sense of the
K-homology class of its “signature operator.”

More precisely, let�
E
.n/
M ; b

.n/
M ; T

.n/
M ; P

.n/
M

�
; resp.,

�
E
.n/
N ; b

.n/
N ; T

.n/
N ; P

.n/
N

�
,

be the geometrically controlled Poincaré pair that is associated to the triangulation
Subn.M/ (resp., Subn.N /). Define .E.n/; b.n// to be the quotient complex of the
inclusion�

P
.n/
N E

.n/
N ; P

.n/
N b

.n/
N

� f .n/P
.n/
N ˚P

.n/
N

�����������!
�
E
.n/
M ; b

.n/
M

�
˚
�
E
.n/
N ; b

.n/
N

�
where f .n/ is a chain homotopy equivalence

f .n/W
�
P
.n/
N E

.n/
N ; P

.n/
N b

.n/
N ; T

.n/
0;N

�
!
�
P
.n/
M E

.n/
M ; P

.n/
M b

.n/
M ; T

.n/
0;M

�
induced by the PL infinitesimally controlled homotopy equivalence f W @N ! @M .
Here T .n/0;N and T .n/0;M are the Poincaré duality operators on the boundary as defined
in Lemma 5.4. Note that
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(1) the natural inclusion

�nW
�
E
.n/
M ; b

.n/
M ; T

.n/
M ; P

.n/
M

�
!
�
E
.nC1/
M ; b

.nC1/
M ; T

.nC1/
M ; P

.nC1/
M

�
is a geometrically controlled homotopy equivalence of Poincaré pairs;

(2) since f W @N ! @M is a PL infinitesimally controlled homotopy equiva-
lence, f .n/ can be chosen so that the propagation of f .n/ goes to 0, as n
approaches infinity;

(3) under the above inclusion �n, the map f .n/ is geometrically controlled
chain homotopic to f .nC1/; moreover, the propagation of the homotopy
goes to 0, as n goes to infinity.

In particular, it follows that the maps T .n/M and T .n/N induce a natural Poincaré
duality operator T .n/ on .E.n/; b.n//. To summarize, .E.n/; b.n/; T .n// is a geo-
metrically controlled Poincaré complex such that the propagations of all relevant
maps go to 0 as n goes to infinity.

Now essentially the same construction from Section B.1 above can be applied to
f.E.n/; b.n/; T .n//gn�1 and “connect them together” to produce a uniform family
of geometrically controlled Poincaré complexes. Technically speaking, some ex-
tra care is needed for the chain equivalences ff .n/g. We need to specify how to
connect f .n/ to f .nC1/. Let us define g.n/ D ��n ı f

.nC1/ ı �n, which fits into the
commutative diagram�

P
.n/
N E

.n/
N ; P

.n/
N b

.n/
N ; T

.n/
0;N

� �n //

g.n/

��

�
P
.nC1/
N E

.nC1/
N ; P

.nC1/
N b

.nC1/
N ; T

.nC1/
0;N

�
f .nC1/

���
P
.n/
M E

.n/
M ; P

.n/
M b

.n/
M ; T

.n/
0;M

� �
P
.nC1/
M E

.nC1/
M ; P

.nC1/
M b

.nC1/
M ; T

.nC1/
0;M

���noo

where ��n is the adjoint of �n. We observe that for each t 2 Œ0; 1�, the map

ht WD .1 � t /f
.n/
C tg.n/W�
P
.n/
N E

.n/
N ; P

.n/
N b

.n/
N ; T

.n/
0;N

�
!
�
P
.n/
M E

.n/
M ; P

.n/
M b

.n/
M ; T

.n/
0;M

�
is a geometrically controlled chain equivalence of Poincaré complexes. The family
fhtg0�t�1 provides a natural way to deform f .n/ into g.n/. Now consider the
orthogonal decompositions

P
.nC1/
N E

.nC1/
N D P

.n/
N E

.n/
N ˚ .P

.n/
N E

.n/
N /?

and
P
.nC1/
M E

.nC1/
M D P

.n/
M E

.n/
M ˚ .P

.n/
M E

.n/
M /?:

If we write f .nC1/ as a matrix with respect to these decompositions, then the map

g.n/W
�
P
.n/
N E

.n/
N ; P

.n/
N b

.n/
N ; T

.n/
0;N

�
!
�
P
.n/
M E

.n/
M ; P

.n/
M b

.n/
M ; T

.n/
0;M

�
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becomes a matrix entry of f .nC1/. Now the construction in Section B.1 above
goes through in a straightforward way.

Consequently, for each � 2 Nm.X/, we obtain aK-theory class inKm.C �L.X//.
We denote this class by IndL.�/, and call it the K-homology class of signature
operator associated to � or simply the local index of � .

Appendix C Tensor Products of Poincaré Complexes
In this section, we briefly review tensor products of Poincaré complexes. The

discussion below works simultaneously for geometrically controlled or analytically
controlled Poincaré complexes. We will not specify which category, and simply
call them Poincaré complexes.

Let .E; d; T / and .F; b;R/ be two Poincaré complexes of dimensions n and m,
respectively. Recall that the tensor product of two chain complexes is naturally
a double complex. The total complex .E ˝ F; @/ of this double complex can be
described as follows:

(1) the kth term of the total chain complex is

.E ˝ F /k D
M

kDpCq

Ep ˝ FqI

(2) the differential is defined as

@.x ˝ y/ D dx ˝ y C .�1/jxjx ˝ by

in .Ep�1˝ Fq/˚ .Ep ˝ Fq�1/ for all x ˝ y 2 Ep ˝ Fq , where jxj D p
if x 2 Ep.

Roughly speaking, @ D d y̋ 1C 1 y̋ b, where y̋ stands for graded tensor products.
The sign convention is that a sign .�1/j˛j�jˇ j is introduced whenever a symbol ˛ (a
chain element or a map) passes over another symbol ˇ (a chain element or a map).
Now it is easy to verify that

@�.x ˝ y/ D d�x ˝ y C .�1/jxjx ˝ b�y

in .EpC1 ˝ Fq/˚ .Ep ˝ FqC1/ for all x ˝ y 2 Ep ˝ Fq .
The Poincaré duality operators T and R also naturally induce a Poincaré duality

operator T y̋R on .E ˝ F; @/ as follows.

DEFINITION C.1. We define

.T y̋R/.x ˝ y/ WD .�1/.n�jxj/�jyjT x ˝Ry:

The following lemma shows that T y̋R satisfies the conditions in Definition 4.9,
and hence implements a Poincaré duality operator for .E ˝ F; @/.

LEMMA C.2. We have
.1/ .T y̋R/@�v C .�1/k@.T y̋R/v D 0 for all v 2 .E ˝ F /k;
.2/ .T y̋R/�v D .�1/.nCm�k/k.T y̋R/v for all v 2 .E ˝ F /k .
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PROOF. Let x ˝ y 2 Ep ˝ Fq with p C q D k. Then we have

@.T y̋R/.x ˝ y/ D .�1/.n�jxj/�jyj@.T x ˝Ry/

D .�1/.n�jxj/�jyj
�
dT x ˝Ry C .�1/jTxjT x ˝ bRy

�
and

.T y̋R/@�.x ˝ y/ D .T y̋R/
�
d�x ˝ y C .�1/jxjx ˝ b�y

�
D .�1/.n�jxj�1/�jyjTd�x ˝Ry

C .�1/jxj.�1/.n�jxj/�.jyjC1/T x ˝Rb�y

D .�1/.n�jxj�1/�jyjTd�x ˝Ry

C .�1/n.�1/.n�jxj/�jyjT x ˝Rb�y:

It follows that

.T y̋R/@�.x ˝ y/C .�1/k@.T y̋R/.x ˝ y/ D 0

since Td�x C .�1/jxjdT x D 0 and Rb�y C .�1/jyjbRy D 0. This proves part
.1/.

The calculation for Part .2/ is similar. We leave out the details. �

Appendix D Product Formula for Higher Rho Invariants
In this section, we prove Theorem 6.8, which gives a product formula for higher

rho invariants.
Given

� D .M; @M; ';N; @N; ; f / 2 Sn.X/;
let � � R 2 SnC1.X � R/ be the product of � and R. Here various undefined
terms take the obvious meanings (see Section 3.3 for the definition of � � I for
example). Note that the construction in Section 4.6 also applies to � � R and
defines its higher rho invariant �.� �R/ 2 KnC1.C �L;0.

zX �R/�/. Also,there is a
natural homomorphism

˛WC �L;0.
zX/� ˝ C �L.R/! C �L;0.

zX �R/� ;

which induces an isomorphism of K-theory.

THEOREM D.1. With the same notation as above, we have

kn � ˛�
�
�.�/˝ IndL.R/

�
D �.� �R/

inKnC1.C �L;0. zX �R/�/, where IndL.R/ is theK-homology class of the signature
operator on R, and kn D 1 if n is even and 2 if n is odd.

PROOF. We will prove the even case and the odd case separately.
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Even case. Let us first consider the case where n is even. We use the unbounded
theory to define theK-homology class of the signature operator on R. The Hilbert-
Poincaré complex .F; d;R/ associated to the signature operator on R is

�0
L2
.R/

d
 � �1

L2
.R/

where d is the adjoint of the de Rham differential map and the duality operator R
is the Hodge star operator. See [37, sec. 5] and [38, sec. 5].

Let .E; b; T / be the analytically controlled Poincaré complex associated to the
space M [f .�N/ as in the definition of �.�/. See Section 4.6 and Appendix B.
Then the tensor product

.E ˝ F; @; T y̋R/

gives rise to a specific representative of the Hilbert-Pioncaré complex associated to
� �R. See Appendix C for more details on tensor products of Poincaré complexes.
It is straightforward to verify that the self-adjoint duality operator ST y̋R (as in
Definition 4.10) associated to T y̋R is precisely ST ˝R. For notational simplicity,
let us write S D ST . Note that we have

@ D b ˝ 1C 1˝ d WEeven ˝ F1 ! Eodd ˝ F1 ˚Eeven ˝ F0:

@� D b� ˝ 1 � 1˝ d�WEodd ˝ F0 ! Eeven ˝ F0 ˚Eodd ˝ F1:

Let us identify F1 D �1L2.R/ with F0 D �0L2.R/ by h dt 7! h. With this identifi-
cation, d is skew-adjoint, that is, d� D �d . Moreover, we have the following:

(i)

.E ˝ F /odd D .Eeven ˝ F1/˚ .Eodd ˝ F0/

Š .Eeven ˚Eodd/˝ F0 D E ˝ F0I

(ii)

.E ˝ F /even D .Eeven ˝ F0/˚ .Eodd ˝ F1/

Š .Eeven ˚Eodd/˝ F0 D E ˝ F0I

(iii)

@C @� ˙ S ˝R D B ˝ 1 � 1˝ iD ˙ S ˝ 1WE ˝ F0 ! E ˝ F0;

where B D b C b� and D D i � d with i D
p
�1.

CLAIM D.2. �.� �R/ is represented by a path of invertibles:

(D.1) Vt D
B ˝ 1 � 1˝ iDt C S ˝ 1

B ˝ 1 � 1˝ iDt � S ˝ 1
WE ˝ F0 ! E ˝ F0;

where Dt D .1C t /�1D is the operator D rescaled by .1C t /�1 for 0 � t <1.
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PROOF OF CLAIM D.2. We point out that, when defining Vt , we should in fact
use refinements Bj of B and Sj of S , respectively, such as in Appendix B. For
notational simplicity, we will leave out the details and continue writing B and
S instead. Note that there exists ı > 0 such that .Bj ˙ Sj /

2 > ı for all j .
Furthermore, we have

(D.2)

B ˝ 1 � 1˝ iDt C S ˝ 1

B ˝ 1 � 1˝ iDt � S ˝ 1

D

�
.B C S/˝ 1 � 1˝ iDt

��
.B � S/˝ 1C 1˝ iDt

�
.B � S/2 ˝ 1C 1˝D2t

D 1C

�
2S.B � S/˝ 1C 2S ˝ iDt

�
.B � S/2 ˝ 1C 1˝D2t

:

Clearly, we have

.B � S/2 ˝ 1C 1˝D2t D
�
.B � S/2 � ı

�
˝ 1C 1˝

�
ı CD2t

�
;

where both .B � S/2 � ı and .ı CD2t / are invertible. It follows that�
.B � S/2 ˝ 1C 1˝D2t

��1
D
�
1˝

�
ı CD2t

��1��
..B � S/2 � ı/˝

�
ı CD2t

��1
C 1˝ 1

��1
:

Now one can use an argument similar to the discussion in [84, pp. 841–843] to
show that all terms in line (D.2) can be approximated arbitrarily well operator-
norm-wise by elements with arbitrary small propagations. Alternatively, we can
argue as follows. Recall the following functional calculus by using the Fourier
transform and wave operator:

f .Dt / D
1

2�

Z 1
�1

ei�Dt yf .�/d�;

where yf is the Fourier transform of f . Now by the propagation estimate of the
wave operator ei�Dt , there exists Gt such that

�ı CD2t ��1 �Gt


is sufficiently small for all t and the propagation of Gt goes to 0 as t goes to1. A
similar statement holds for Dt .ı CD2t /

�1.
Now approximate�

..B � S/2 � ı/˝
�
ı CD2t

��1
C 1˝ 1

��1
by

Œ..B � S/2 � ı/˝Gt C 1˝ 1�
�1:

Note that there exist "0 > 0 and C > 0 such that

"0 < k..B � S/
2
� ı/˝Gt C 1˝ 1k < C
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uniformly for all t . Now use a polynomial to approximate the function h.x/ D x�1

on the interval Œ"0; C �. We see that there exists Kt that approximates�
..B � S/2 � ı/˝

�
ı CD2t

��1
C 1˝ 1

��1
sufficiently well, and the propagation of Kt goes to 0 as t goes to1.

To summarize, for any " > 0, a path of invertible elements .V "t /0�t<1 exists
such that

(1) V "0 D 1;
(2) kVt � V "t k < � for all t 2 Œ0;1/;
(3) the propagation of V "t goes to 0 as t goes to1.

It follows that the path .Vt /0�t<1 is a representative of the K-theory class

�.� �R/ 2 KnC1.C
�
L;0.
zX �R/�/:

This finishes the proof of the claim. �

Now we return to the proof of the theorem. Recall that B ˙ S is a self-adjoint
invertible operator. Therefore, B ˙ S is homotopic to P˙ �Q˙ through a path of
invertible elements, where P˙ is the positive projection of B ˙ S and Q˙ is the
negative projection of B ˙ S . Note that P˙ CQ˙ D 1. We see that the path

B ˝ 1 � 1˝ iDt ˙ S ˝ 1 D .B ˙ S/˝ 1 � 1˝ iDt

is homotopic to the path

.P˙ �Q˙/˝ 1 � .P˙ CQ˙/˝ iDt

D P˙ ˝ .1 � iDt /CQ˙ ˝ .�iDt � 1/:

To be precise, again we need to approximate P˙ and Q˙ by elements with appro-
priate propagations, and use these approximations instead of P˙ and Q˙. This is
straightforward. In particular, the calculation below can be easily modified to work
for these approximations of P˙ andQ˙ as well. For notational simplicity, we will
leave out the details and continue using P˙ and Q˙.

A routine calculation shows that�
P˙ ˝ .�iDt C 1/CQ˙ ˝ .�iDt � 1/

��1
D P˙ ˝ .�iDt C 1/

�1
CQ˙ ˝ .�iDt � 1/

�1:

It follows that, at the K-theory level, the path .Vt /0�t<1 is equivalent to�
PC ˝ .�iDt C 1/CQC ˝ .�iDt � 1/

�
�
�
P� ˝ .�iDt C 1/

�1
CQ� ˝ .�iDt � 1/

�1
�

D PCP� ˝ 1C PCQ� ˝ .iDt � 1/.iDt C 1/
�1

CQCP� ˝ .iDt C 1/.iDt � 1/
�1
CQCQ� ˝ 1 D
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D
�
PC ˝ .iDt � 1/.iDt C 1/

�1
C .1 � PC/˝ 1

�
�
�
P� ˝ .iDt C 1/.iDt � 1/

�1
C .1 � P�/˝ 1

�
D .ŒPC� � ŒP��/˝

�
.Dt C i/.Dt � i/

�1
�

where the last term is precisely �.�/ ˝ IndL.R/. To summarize, when n is even,
we have proved that

˛�
�
�.�/˝ IndL.R/

�
D �.� �R/:

Odd case. Now we consider the case where n is odd. Note that we have the
following commutative diagram:

Kn.C
�
L;0.
zX/�/˝K1.C

�
L.R//˝K1.C

�
L.R//

˛�˝1

Š
//

1˝ˇ� Š

��

KnC1.C
�
L;0.
zX �R/�/˝K1.C �L.R//

Š 
�

��

Kn.C
�
L;0.
zX/�/˝K0.C

�
L.R

2//
��

Š
// Kn.C

�
L;0.
zX �R2/�/:

(D.3)

where various isomorphisms are induced by the following natural homomorphisms:

˛WC �L;0.
zX/� ˝ C �L.R/! C �L;0.

zX �R/� ;

ˇWC �L.R/˝ C
�
L.R/! C �L.R

2/;


 WC �L;0.
zX �R/� ˝ C �L.R/! C �L;0.

zX �R2/� ;

� WC �L;0.
zX/� ˝ C �L.R

2/! C �L;0.
zX �R2/� :

In Proposition D.3 below, we will show that

��
�
�.�/˝ IndL.R2/

�
D �.� �R2/;

where IndL.R2/ is the K-homology class of the signature operator on R2. As-
suming this for the moment, by the commutativity of diagram (D.3), it follows
that


�Œ�.� �R/˝ IndL.R/� D �.� �R2/

D 2 � ��
�
�.�/˝ ˇ�

�
IndL.R/˝ IndL.R/

��
D 2 � 
�

�
˛�
�
�.�/˝ IndL.R/

�
˝ IndL.R/

�
;

where the first equality is a consequence of the even case. Here we have used the
fact that

IndL.R2/ D 2 � ˇ�
�
IndL.R/˝ IndL.R/

�
:

Therefore, we have

�.� �R/˝ IndL.R/ D 2 � ˛�
�
�.�/˝ IndL.R/

�
˝ IndL.R/;

which implies that �.��R/ D 2 �˛�.�.�/˝IndL.R//: This finishes the proof. �

PROPOSITION D.3. We have ��.�.�/˝ IndL.R2// D �.� �R2/; where IndL.R2/
is the K-homology class of the signature operator on R2.
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PROOF. The proof is similar to the even case above, but the details are more
involved. Here again the precise details of the proof would involve a discussion
about approximations by finite propagation elements. Since this is very similar to
the even case above, we will leave out the details.

Let .F; d;R/ be the Hilbert-Poincaré complex associated to R2:

�0
L2
.R2/

d
 � �1

L2
.R2/

d
 � �2

L2
.R2/

where d is the dual of the de Rham differential and R is the Hodge star operator.
Let us write

Feven D �
0
L2
.R2/˚�2

L2
.R2/ and Fodd D �

1
L2
.R2/:

Let .E; b; T / be the analytically controlled Poincaré complex associated to the
space M [f .�N/ as in the definition of �.�/. See Section 4.6 and Appendix B.
Then the tensor product

.E ˝ F; @; T y̋R/

gives rise to a specific representative of the Hilbert-Poincaré complex associated to
� �R2. Let ST y̋R, ST , and SR be the self-adjoint operators (as in Definition 4.10)
associated to T y̋R, T , and R, respectively. Now a straightforward calculation
shows that

(1) ST y̋R D ST ˝ SR on E ˝ Feven, and ST y̋R D �ST ˝ SR on E ˝ Fodd;
(2) @ D b ˝ 1C 1˝ d on Eeven ˝ F and @ D b ˝ 1 � 1˝ d on Eodd ˝ F .

It follows that

@C @� ˙ ST y̋R D B ˝ 1 � 1˝D ˙ ST ˝ SR

on Eodd ˝ Feven, and

@C @� ˙ ST y̋R D B ˝ 1C 1˝D � ST ˝ SR;

on Eeven ˝ Fodd where B D b C b� and D D d C d�. Let F˙ be the eigenspace
of SR belonging to the eigenvalue˙1. We make the following identifications:

Eodd ˝ F D

Eodd ˝ F
C
odd

˚

Eodd ˝ F
�
odd

˚

Eodd ˝ F
C
even

˚

Eodd ˝ F
�
even

�.BCST /˝1
˚

.B�ST /˝1

�������������!
˚
1˝1
˚
1˝1

Eeven ˝ F
C
odd

˚

Eeven ˝ F
�
odd

˚

Eodd ˝ F
C
even

˚

Eodd ˝ F
�
even

D .E ˝ F /odd;

and

.E ˝ F /even D

Eeven ˝ F
C
even

˚

Eeven ˝ F
�
even

˚

Eodd ˝ F
C
odd

˚

Eodd ˝ F
�
odd

1˝1
˚

�1˝1
�������������!

˚
�.B�ST /˝1

˚
�.BCST /˝1

Eeven ˝ F
C
even

˚

Eeven ˝ F
�
even

˚

Eeven ˝ F
C
odd

˚

Eeven ˝ F
�
odd

D Eeven ˝ F:
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With these identifications, we have

@C @� C ST y̋R D

8̂̂̂<̂
ˆ̂:
.B C ST /˝ 1C .B C ST /˝D on Eodd ˝ F

C
even;

.B � ST /
2.B C ST /˝ 1C .B C ST /˝D on Eodd ˝ F

C
odd;

�.B � ST /˝ 1C .B � ST /˝D on Eodd ˝ F
�
even;

�.B C ST /
2.B � ST /˝ 1C .B � ST /˝D on Eodd ˝ F

�
odd:

Note that
.B ˙ ST /

2
WEeven

B˙ST
����! Eodd

B˙ST
����! Eeven

are positive invertible operators. It follows that the invertible element

@C @� C ST y̋R

is homotopic to

(D.4)
�
B C ST

B � ST

�
SR C

�
B � ST

B C ST

�
DW

Eodd ˝ F ! Eeven ˝ F:

Here the matrix form is written with respect to the decomposition F D FC˚F�.
Note thatD is off-diagonal in this case. Now the invertible element from line (D.4)
in turn is homotopic to the invertible element

V D

�
B C ST

B � ST

�
SRf .D/C

�
B � ST

B C ST

�
g.D/

where g.x/ D x.1C x2/�1=2 and

f .x/ D

q
1 � g2.x/ D .1C x2/�1=2:26

Similarly, @C @� � ST y̋R is homotopic to

U D

�
B � ST

B C ST

�
SRf .D/C

�
B � ST

B C ST

�
g.D/

Note that we have

U�1 D
�
SRf .D/C g.D/

��.B � ST /�1
.B C ST /

�1

�
since

�
SRf .D/C g.D/

�2
D 1.

Similarly, if we replace D by Dt D .1C t /�1D, we have

Vt D

�
B C ST

B � ST

�
SRf .Dt /C

�
B � ST

B C ST

�
g.Dt /

and

Ut D

�
B � ST

B C ST

�
SRf .Dt /C

�
B � ST

B C ST

�
g.Dt /:

26 In fact, any normalizing function g and f .x/ D
p
1 � g2.x/ will work.
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It follows that the path of invertibles .VtU�1t /0�t<1 is a representative of the
K-theory class �.� �R2/. Now note that

VtU
�1
t D

�
B ˝ 1C ST ˝

�
SR.f

2.Dt / � g
2.Dt //C 2f .Dt /g.Dt /

��
�

�
.B � ST /

�1

.B C ST /
�1

�
:

Following the notation of [38, sec. 5.2.1], let us denote

S1 D SR and .S2/t D g.Dt /C SRf .Dt /:

We immediately see that

SR.f
2.Dt / � g

2.Dt //C 2f .Dt /g.Dt / D .S2/tS1.S2/t :

Let us denote the latter by St WD .S2/tS1.S2/t . Note that St is a symmetry for
each t . We define a projection Pt WD .St C 1/=2. To summarize, �.� � R2/ is
represented by the path of invertibles

.B ˝ 1C ST ˝St /

��
.B � ST / 0

0 0

�
C

�
0 0

0 .B C ST /

���1
D
�
.B C ST /˝ Pt C .B � ST /˝ .1 � Pt /

�
�

��
.B � ST /

�1 0

0 0

�
C

�
0 0

0 .B C ST /
�1

��
D

�
BCST
B�ST

0

0 1

�
˝ Pt C

�
1 0

0 B�ST
BCST

�
˝ .1 � Pt /

D

" 
BCST
B�ST

0

0 BCST
B�ST

!
˝ Pt C

�
1 0

0 1

�
˝ .1 � Pt /

#
�

�
1 0

0 B�ST
BCST

�
D Œ.B C ST /.B � ST /

�1� �

�
ŒPt � �

��
0 0

0 1

���
;

which is precisely ��.�.�/˝ IndL.R2//.27 This finishes the proof. �
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