Additivity of Higher Rho Invariants
and Nonrigidity of Topological Manifolds

SHMUEL WEINBERGER
University of Chicago

ZHIZHANG XIE
Texas A&M University

AND

GUOLIANG YU
Texas A&M University

In memory of Ron Douglas, Andrew Ranicki and John Roe with a deep sense of loss.

Abstract

Let X be a closed oriented connected topological manifold of dimension n > 5.
The structure group STOP(X) is the abelian group of equivalence classes of all
pairs (f, M) such that M is a closed oriented manifold and f: M — X is an
orientation-preserving homotopy equivalence. The main purpose of this article
is to prove that a higher rho invariant map defines a group homomorphism from
the topological structure group STOP(X) of X to the analytic structure group
Kn(C} O(X)F) of X. Here X is the universal cover of X, I' = 71 X is the
fundamental group of X, and CL*,O(X )T is a certain C *-algebra. In fact, we
introduce a higher rho invariant map on the homology manifold structure group
of a closed oriented connected topological manifold, and prove its additivity.
This higher rho invariant map restricts to the higher rho invariant map on the
topological structure group. More generally, the same techniques developed in
this paper can be applied to define a higher rho invariant map on the homology
manifold structure group of a closed oriented connected homology manifold. As
an application, we use the additivity of the higher rho invariant map to study
nonrigidity of topological manifolds. More precisely, we give a lower bound for
the free rank of the algebraically reduced structure group of X by the number
of torsion elements in 71 X. Here the algebraically reduced structure group of
X is the quotient of STOP(X) modulo a certain action of self-homotopy equiv-
alences of X. We also introduce a notion of homological higher rho invariant,
which can be used to detect many elements in the structure group of a closed ori-
ented topological manifold, even when the fundamental group of the manifold
is torsion free. In particular, we apply this homological higher rho invariant to
show that the structure group is not finitely generated for a class of manifolds.
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1 Introduction

Let D be an elliptic operator on a closed manifold M of dimension 7. Sup—
pose M is the universal cover of M, and D is the lift of D onto M. Then D
defines a higher index class in K, (C* (1 M)), where w1 M is the fundamental
group of M and K, (C;(;r1 M)) is the K-theory of the reduced group C *-algebra
CX(mM). This higher index class is an obstruction to the invertibility of D. It
is a far-reaching generalization of the classical Fredholm index and plays a funda-
mental role in the studies of many problems in geometry and topology such as the
Novikov conjecture and the Gromov-Lawson-Rosenberg conjecture. Higher index
classes are often referred to as primary invariants. When the higher index class of
an elliptic operator is trivial and given a specific trivialization, a secondary index
theoretic invariant naturally arises. This secondary invariant is called the higher
rho invariant in acknowledgement of the discussion in [77, chap. 14E] of invariants
for odd-dimensional manifolds with finite fundamental group and the discussion
in [1] of invariants of odd-dimensional manifolds with flat bundles, and its connec-
tion to index theory for manifolds with boundary. It serves as an obstruction of the
locality of the inverse of an invertible elliptic operator.

In our current context, if there is an orientation-preserving homotopy equiva-
lence between two oriented closed manifolds, then the higher index of the signature
operator on the disjoint union of the two manifolds (one of them with opposite ori-
entation) is trivial with a trivialization given by the homotopy equivalence. Hence
such a homotopy equivalence naturally defines a higher rho invariant. More gener-
ally, the notion of higher rho invariants can be defined for homotopy equivalences
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between topological manifolds, and it is a powerful tool to detect whether a homo-
topy equivalence can be “deformed” into a homeomorphism. The main purpose of
this paper is to prove that the higher rho invariant defines a group homomorphism
on the structure group of a fopological manifold. As an application, we use the
higher rho invariant to detect elements in reduced structure groups of topological
manifolds.

Let X be a closed oriented connected fopological manifold of dimension 7.
The structure group STOP(X) is the abelian group of equivalence classes of all
pairs (f, M) such that M is a closed oriented manifold and f: M — X is an
orientation-preserving homotopy equivalence. In this version, the zero element
corresponds to the identity map Id: X — X . Of course, replacing X by a homotopy
equivalent manifold ¥ means that the new zero element is Id: Y — Y. Thus,
although it transpires that STOP(X) is a functor, its identification with the set of
manifolds homotopy equivalent to X is that of collapsing a torsor to a group by
choosing a base element. The main result of this article is to prove that the higher
rho invariant defines a group homomorphism from STOP(X) to K, (C 7 0()? D),
where I' = w1 X is the fundamental group of X, X is the universal cover of X,
and C E,o(f )T is a certain geometric C*-algebra. The definition of C L*,o )T is
reviewed in Section 2, and the precise definition of the higher rho invariant is given
in Section 4.6.

Perhaps the simplest interpretation of the abelian group structure on STOP(X)
can be described through a periodicity map,' which is an injection from STOP(X)
to SgOP(X x D*), where D* is the 4-D Euclidean unit ball and SgOP(X x D*) is

the rel d version of structure set of X x D* (cf. Definition 3.24 below). The set
SgOP(X x D*#) carries a natural abelian group structure by stacking (cf. Definition
3.25), hence induces an abelian group structure on ST (X). Both STOP(X) and
SaTOP(X x D*) carry a higher rho invariant map. It is not difficult to verify that

the higher rho invariant map on SgOP(X x D*) is additive, i.e., a homomorphism
between abelian groups. One possible approach to show the additivity of the higher
rho invariant map on STOP(X) is to prove the compatibility of higher rho invariant
maps on STOP(X) and SgOP (X x D*). owever, there are some essential analyt-
ical difficulties to directly prove such a compatibility, due to the subtleties of the
periodicity map. A main novelty of this paper is to give a new description of the

! The periodicity map was first given by Siebemann [48, app. C to Essay V], with a correction
by Nicas [51] (cf. the discussion after Proposition 3.29). We denote this Siebenmann periodicity
map by SP. A geometric construction of a periodicity map, denoted by GP, was given by Cappell
and the first author [14], cf. the discussion after Proposition 3.29 below. At the time when Cappell
and the first author wrote their paper, it was not known whether the map GP coincides with the
Siebenmann periodicity map SP. Later, Crowley and Macko showed that a quaternionic (resp.,
octonionic) version of GP coincides with SP? (resp., SP*) [23]. In this paper, we show that GP
indeed coincides with SP by applying the device of periodicity spaces from the work of the first
author and Yan [80, 81] (cf. Proposition 3.30 and Theorem 3.32).
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topological structure group in terms of smooth manifolds with boundary (see Def-
inition 3.4 and the discussion in Section 3.4 below). This new description uses a
broader class of objects than closed manifolds and an equivalence relation broader
than /-cobordism, which allows us to replace topological manifolds in the usual
definition of STOP(X) by smooth manifolds with boundary. Such a description
leads to a transparent group structure given by disjoint union. The main body of
the paper is devoted to proving that the new description coincides with the classi-
cal description of the topological structure group and to developing the theory of
higher rho invariants in this new setting, in which higher rho invariants are easily
seen to be additive. As a consequence, the higher rho invariant maps on STOP(X)
and S;°P(X x D*) are indeed compatible (see Proposition 9.1 below).

We point out that, in the odd-dimensional case, the higher rho invariant defined
in this paper is a refinement of the higher rho invariant for signature operators in
the literature (cf. [39, sec. 3], [54, remark 4.6], [93]). More precisely, in the odd-
dimensional case, the higher rho invariant in the literature is twice that of the higher
rho invariant of this paper (cf. Remark 6.7 and Theorem 6.9 below).

The higher rho invariant map we construct is actually defined on the homology
manifold structure group SHTOP(X) of X, where SHTOP(X) is the abelian group
of equivalence classes of all pairs ( f, M) such that M is a closed oriented ANR
homology manifold and f: M — X is an orientation-preserving homotopy equiv-
alence. This higher rho invariant map coincides with the original higher rho invari-
ant map when restricted to the topological structure group; cf. the discussion after
Theorem 3.33 below. More generally, our method can also be applied to define
a higher rho invariant map on the homology manifold structure group of a closed
oriented connected homology manifold; cf. Remark 3.36. All results of the paper
can be easily extended to the case where X has multiple connected components
by studying each component separately. For simplicity, we shall only consider the
case where X is connected.

As an application, we use our main theorem to estimate the sizes of reduced
structure groups of topological manifolds. There are two different ways for a self-
homotopy 4 of X to act on STOP(X) (cf. Section 8). One action induces a group
isomorphism of STOP(X) and is compatible with the actions of / on other terms in
the topological surgery long exact sequence of X. We denote this action by «y,. The
other action, denoted by By, only induces a set-theoretic bijection of STOP(X), and
in general is not compatible with the actions of & on other terms in the topological
surgery long exact sequence of X. Let S ;rl(g)P(X ) be the quotient group of STOP(X)
modulo the subgroup generated by elements of the form 6 — a(0) for all 8 €
STOP(X) and all orientation-preserving self-homotopy equivalences i of X (see
Definition 8.1). We call S ;gP(X ) the algebraically reduced structure group of X .
Similarly, we can define a version of reduced structure group for the other action,
which will be denoted by & geoo; (X) and called the geometrically reduced structure
group of X from now on. We apply our main theorem, combining with the work
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in [85], to give a lower bound of the free rank of S TOP

alg
suggesting that an analogue holds for S‘ge%fn (X) as well.

When the strong Novikov conjecture holds for 771 X, we introduce a homological
higher rho invariant. We call this invariant the Novikov rho invariant for obvious
reasons to be explained in Section 7. The Novikov rho invariant can be used to
detect many elements in STOP(X), even when 71 X is torsion free. In particular,
we apply this Novikov rho invariant to show that the structure group is not finitely
generated for certain manifolds.

If the Baum-Connes conjecture holds for 71 X, then the Novikov rho invariant
is equivalent to the higher rho invariant. The first author also studied a different
homological higher rho invariant for manifolds satisfying certain vanishing condi-
tions on homology in the middle dimension [79]. The higher rho invariant in the
current paper can also be generalized to those settings. For example, if M is a man-
ifold and Z /2 acts freely and homologically trivially in the sense of [78], then this
involution defines a homological higher rho invariant [79, remark 0.8(a)], which
away from the prime number 2 is realized by an element in the topological struc-
ture group of M. This plays an important role in the cobordism of homologically
trivial actions [78].

The higher rho invariant map on the structure set of a smooth manifold was first
introduced by Higson and Roe [39]. Zenobi extended the higher rho invariant map
(as a map of sets) to topological manifolds [93]. In the cyclic cohomology setting,
Lott studied the higher eta invariant (a close relative of the higher rho invariant)
under certain conditions [49].

Our approach to the higher rho invariant is very much inspired by the work
of Higson and Roe on the analytic surgery long exact sequence for smooth man-
ifolds and structure sets of smooth manifolds [37-39]. In their work, Higson
and Roe proved that in the smooth setting, the higher rho invariant establishes a
set-theoretic commutative diagram between the smooth surgery sequence and the
analytic surgery sequence. Our main result implies that in the topological set-
ting, the higher rho invariant can be used to construct a commutative diagram of
abelian groups between the topological surgery sequence and the analytic surgery
sequence. In fact, the same method also establishes a commutative diagram be-
tween the homology-manifold surgery sequence and the analytic surgery (cf. Pro-
position 6.12). Furthermore, this method can also be used to show that the Cheeger-
Gromov rho invariant [17] defines a homomorphism on the structure group.

There are other equivalent ways of studying the topological surgery sequence.
Our approach in the current paper is closer to those of Wall [77] and Quinn [57]
and is more geometric in nature. If we were to take a more algebraic approach
by using Ranicki’s algebraic surgery long exact sequence [63], then many of the
discussions in Section 3 could be avoided. In particular, if we use Ranicki’s alge-
braic surgery long exact sequence, then the techniques from [37-39] can be adapted
more directly to the topological setting. On the other hand, our geometric approach

(X). There is strong evidence
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appears to be more intuitive and directly implicates elliptic operators in the discus-
sion. We remark that the rational additivity of the higher rho invariant for finite
fundamental groups (more generally, the rational additivity after mapping the fun-
damental group to a finite group) was proved by Crowley and Macko [23, theorem
1.1].

The paper is organized as follows. In Section 2, we recall some standard defi-
nitions of geometric C *-algebras. In Section 3, we introduce a new definition of
structure groups of topological manifolds based on ideas of Wall and ideas from
controlled topology. This new definition leads to a transparent group structure of
the topological structure group, which is given by disjoint union. We prove that
the new definition of the structure group is naturally isomorphic to the classical
structure group. In Sections 4 and 5, we define the higher rho invariant map, and
prove that it is well-defined and additive. In Section 6, we compare the topolog-
ical surgery long exact sequence to the analytic surgery long exact sequence. In
particular, the topological surgery long exact sequence maps naturally to the ana-
lytic surgery long exact sequence, and they fit into a commutative diagram of exact
sequences of abelian groups (cf. Diagram (6.1)). In Section 7, we introduce the
Novikov rho invariant, which is a homological version of the higher rho invariant.
We use the Novikov rho invariant to show that the structure group is not finitely
generated for a class of manifolds. In Section 8, we give a lower bound of the free
rank of the algebraically reduced structure groups of a topological manifold under
certain mild conditions. In Section 9, we outline how to adapt the methods in this
paper to handle signature operators arising from Lipschitz structures on topological
manifolds. We also show that the higher rho invariant map defined using Lipschitz
structures is compatible with the Siebenmann periodicity map.

2 Preliminaries

In this section, we briefly recall some standard definitions of geometric C*-
algebras. We refer the reader to [30, 65, 89] for more details.

Let X be a proper metric space; i.e., every closed metric ball in X is compact.
An X-module is a separable Hilbert space equipped with a *-representation of
Co(X), the algebra of all continuous functions on X that vanish at infinity. An X-
module is called nondegenerate if the *-representation of Co(X) is nondegenerate.
An X-module is said to be standard if no nonzero function in Co(X) acts as a
compact operator.

DEFINITION 2.1. Let Hy be a X-module and 7" a bounded linear operator acting
on Hy.

(i) The propagation of T is defined to be the nonnegative real number

sup{d(x,y) | (x,y) € supp(T)},
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where supp(T) is the complement (in X x X) of the set of points (x, y) €
X x X for which there exist f, g € Co(X) suchthat g7f = Oand f(x) #

0,g(y) # 0;
(ii) T is said to be locally compact if fT and Tf are compact for all f €

Co(X);
(iii) T is said to be pseudolocal if [T, f]is compact for all f € Co(X).

DEFINITION 2.2. Let Hy be a standard nondegenerate X -module and B(Hy) the
set of all bounded linear operators on Hy.

(i) The Roe algebra of X, denoted by C*(X), is the C *-algebra generated by
all locally compact operators in B(Hy ) with finite propagation.

(i) C/(X) is the C*-algebra generated by all bounded and uniformly norm-
continuous functions f : [0,00) — C*(X) such that

propagation of f(¢) — 0ast — oo.

(iii) C I:k,O(X ) is the kernel of the evaluation map
ev:Cl(X) = C*(X), ev(f) = f(0).

In particular, C/* ,(X) is an ideal of C;(X).
(iv) If Y is a subspace of X, the C*-algebra C; (Y ; X) (resp., C; ,(Y: X)) is
defined to be the closed subalgebra of C;*(X) (resp., C; ,(X)) generated

by all elements f such that there exist ¢; > 0 satisfying lim;_oo c; = 0
and

supp(f (1)) C{(x.y) € X X X [d((x,y). Y xY) < ¢1}

for all £.

Remark 2.3. Similarly, we can also define maximal versions of C/(X), C; ,(X),
Cr(Y:X),and Cf (Y X) (cf. [30]). We point out that all the above C *-algebras
are nonunital.

Now in addition we assume that a discrete group I" acts properly on X by isome-
tries. Let Hy be a X-module equipped with a covariant unitary representation of
I". If we denote the representation of Co(X) by ¢ and the representation of I" by
7, this means

m(Y)(@(fHv) = e(fV)((y)v),
where f € Co(X),y € ', v € Hy,and f¥(x) = f(y~'x). In this case, we call
(Hx, T, @) a covariant system.
DEFINITION 2.4 ([92]). A covariant system (Hy, I, ) is called admissible if

(1) the I'-action on X is proper and cocompact;
(2) Hy is a nondegenerate standard X -module;
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(3) for each x € X, the stabilizer group I'yx acts on Hy regularly in the sense
that the action is isomorphic to the action of I'y on [?(I"y) ® H for some
infinite-dimensional Hilbert space H. Here I'y acts on /?(I"y) by transla-
tions and acts on H trivially.

We remark that for each locally compact metric space X with a proper and
cocompact isometric action of I, there exists an admissible covariant system (Hy,
I', ). Also, we point out that the condition (3) above is automatically satisfied if
I acts freely on X. If no confusion arises, we will denote an admissible covariant
system (Hy, I', ¢) by Hy and call it an admissible (X, I')-module.

DEFINITION 2.5. Let X be a locally compact metric space X with a proper and
cocompact isometric action of I'. If Hy is an admissible (X, I')-module, we denote
by C[X]F the s-algebra of all T -invariant locally compact operators with finite
propagations in B(Hy). We define C*(X)T to be the completion of C[X]' in
B(Hy).

Similarly, we can define CZ‘(X)F, C/ 0(X)F, C/(Y: X)T, and Cr oY X)L,

Remark 2.6. Up to isomorphism, C*(X) = C*(X, Hyx) does not depend on the
choice of the standard nondegenerate X -module Hy. The same holds for C/(X),
Cr o(X), CH(Y: X), Cf ((Y: X) and their I"-equivariant versions.

Remark 2.7. Note that we can also define maximal versions of all I'-equivariant
C *-algebras above. For example, we define the maximal I'-invariant Roe algebra
Ck (X)) to be the completion of C[X]T under the maximal norm:

@ llmax = sup {ll¢(@)| | ¢ : C[X]" — B(H') a *-representation}.
¢

Similarly, we can define the maximal versions of C;" (X YW, c T o(X Yo', c T X )y,
and C/ (Y. X )T, See for example [85] for more details.

3 Structure Groups of Topological Manifolds

In this section we introduce a definition of structure groups for topological man-
ifolds based on ideas of Wall and ideas from controlled topology. We shall prove
that our new definition is naturally isomorphic to the classical structure group. This
new definition is similar in spirit to the algebraic definition given by Ranicki in [63]
but has some advantages for our analytic purposes. One feature of our definition is
that elements of the structure group can be represented by smooth manifolds with
boundary, which is crucial for constructing our higher rho invariant. Another fea-
ture is that the group structure of the structure group becomes transparent. Indeed,
the group structure is given by disjoint union.

Given an oriented closed connected topological manifold X, the structure set
STOP(X) is defined to be the set of equivalence classes of orientation-preserving
homotopy equivalences f: M — X. Here M is an oriented closed connected topo-
logical manifold. Two orientation-preserving homotopy equivalences f: M — X
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and g: N — X are equivalent if there exists an s-cobordism? (W; M, N) with an
orientation-preserving homotopy equivalence

F:(W;M,N) - (X xI;X x{0}, X x{1})
suchthat F|ps = f and F|y = g. Itis known that STO?(X) has an abelian group
structure; cf. [14,48,63].

More generally, let X be a (not necessarily oriented) closed topological man-
ifold. Let w:m(X) — 7Z/2 be its orientation character. We can similarly de-
fine a group STOP(X, w) consisting of equivalence classes of orientation-character-
preserving homotopy equivalences f: (M, wys) — (X, w), where (M, wyy) is a
closed topological manifold M with its orientation character wys: miM — 7 /2.
Here a continuous map f: (M, wpr) — (X, w) is called orientation character pre-
serving if the map 7y M —> m1 X — Z/2 agrees with wys. The equivalence rela-
tion is defined similarly.

In the above definition of STOP(X, w), if we replace manifolds by ANR homol-

ogy manifolds everywhere, then we obtain the homology-manifold-structure group
SHTOP (X ‘w) of (X, w); cf. [11].

3.1 A New Definition of the Structure Group

In this subsection, we give a new definition of the structure group of a topolog-
ical manifold. Let X be a closed topological manifold. Fix a metric on X that
agrees with the topology of X. Note that such a metric always exists.

DEFINITION 3.1. Let Y be a topological space. We call a continuous map ¢: Y —
X a control map of Y.

DEFINITION 3.2. Let Y and Z be two compact Hausdorff spaces equipped with
continuous control maps ¥: Y — X and ¢: Z — X. A continuous map f:Y —
Z 1is said to be an infinitesimally controlled homotopy equivalence over X, if there
exist proper continuous maps

D:Z x[l,00) > X x[l,00), V¥:Y x[l,00) > X x[1,00),

F:Y x[1,00) > Z x[l,00), G:Z x[l,00) =Y X [1,00),

satisfying the following conditions:
(1) ®o F =V,
(@) Flyxgy = f» ®Plzxqy = ¢, and ¥y g1y = ¥;
(3) there is a proper continuous homotopy { Hs}o<s<1 between

Hy=FoG and H;=1d:Z x[1,00) > Z x[1,00)
2To be precise, M and N are identified with the corresponding boundary component of W by

some orientation-preserving homeomorphisms, which are part of the data of an s-cobordism. Fol-
lowing the usual convention, we shall omit these homeomorphisms from the notation.
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such that the diameter of the set
O(H(z,1)) = {P(Hs(z,1)) |0 <s <1}

goes uniformly (i.e., independent of z € Z) to 0 as t — o0;
(4) there is a proper continuous homotopy {Rs}o<s<1 between

Ry=GoF and Ry =1d:Y x[l,00) = Y x[1,00)
such that the diameter of the set
W(R(y.1)) = {¥(Rs(y.1)) |0 <s <1}

goes uniformly to 0 as t — oo.

We will also need the following notion of restrictions of homotopy equivalences
gaining infinitesimal control on parts of spaces. Suppose M is a topological mani-
fold with boundary dM . We define the space of M attached with a cylinder by

CM = M Uy (M x [1, 00)).

Suppose (M, oM, ¢) and (N, dN, ) are two manifold pairs equipped with contin-
uous maps ¢: M — X and ¥: N — X. Let

f:(N,ON) - (M, M)
be a homotopy equivalence with ¢ o f = . Suppose
g:(M,0M) — (N,dN)

is a homotopy inverse of f. Note that ¥ o g # ¢ in general. Let {h;}o<s<1 be a
homotopy between f o g and

Id: (M,o0M) — (M, oM).
Similarly, let {rs}o<s<1 be a homotopy between g o f and
Id: (N,0N) — (N, dN).
DEFINITION 3.3. With the above notation, we say that on the boundary f restricts

to an infinitesimally controlled homotopy equivalence f|yy:dN — IM over X if
there exist proper continuous maps

O:CM — X x[l,00) and V:CN — X x[1,00),
F:CN—-CM and G:CM — CN,
a proper continuous homotopy { Hs}o<s<1 between
Hy=FoG and H;=1d:CM — CM,
and a proper continuous homotopy { Rs}o<s<1 between
Rop=GoF and Ry =1d:CN —CN

satisfying the following conditions:

(D) @y =¢.YIn =¥, Fly = f,Glm = g, Hs|m = hs, and Rs|y = ry;
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(3) the diameter of the set
®(H(a,t)) = {P(Hs(a, 1)) |0 <s <1}

goes uniformly to 0 for all (a,t) € M x [1,00) ast — o0;
(4) the diameter of the set

V(R(D,1)) ={¥W(Rs(b,1)) |0 =5 = 1}
goes uniformly to 0 for all (b, 1) € N x [1,00), as t — o0.

In the following, we adopt the notion of manifold k-ads from Wall’s book [77,
chap. 0] to encode a total space with some number of distinguished subsets, all of
whose intersections are required to be “good”. For example, a manifold 1-ad is a
manifold with boundary.

In order to make our definition of structure groups functorial, we shall follow
Farrell and Hsiang’s modifications of Wall’s definition of L-groups [27, sec. 3].
Although Farrell and Hsiang’s modifications are for L-groups, the same idea also
applies to structure groups. Let w be a Z/2-principal bundle over X, and if no
confusion is likely to rise, denote the corresponding morphism induced on 71 (X)
(after choosing a base point in X)) also by w: w1 (X) — Z/2. Moreover, we denote
the local Z-coefficients on X associated to w by wZ.

We define S, (X, w) to be the set of equivalence classes of the following objects.

DEFINITION 3.4. An object of S, (X, w) consists of the following data (see Figure
3.1):

(1) two manifold 1-ads (M, dM) and (N,0dN) with dimM = dimN = n,
where M (resp. dN) is the boundary of M (resp., N);

S o S X

N

P
oM

FIGURE 3.1. An object 6 = (M,0M, @, N,ON,y, f) of S,(X,w),
where f|gn is an infinitesimally controlled homotopy equivalence and
f is a homotopy equivalence.
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(2) continuous maps ¢: M — X and ¥: N — X so that the pullback Z/2-
principal bundle ¢*(w) (resp., ¥ *(w)) is the orientation covering of M
(resp., N);

(3) a homotopy equivalence of manifold 1-ads

Fi(N,dN) — (M, M)

such that fx([M]) = [N] and ¢ o f = 1, where [M] (resp., [N]) is the
fundamental class of M (resp., N), an element in H, (M, OM; ¢*(w)Z)
(resp., Hy (N, ON; ¥ *(w)Z)). Moreover, on the boundary f restricts to an
infinitesimally controlled homotopy equivalence f|gn: N — 0OM over X.

Remark 3.5. We shall prove below that, if X is a closed connected topological
manifold of dimension > 5 and w is the orientation covering of X, then S, (X, w)
is naturally isomorphic to the structure group ST (X, w) of (X, w), where the
latter group is described at the beginning of this section with w being the associated
orientation character of X.

If6 = (M,dM,p, N,ON, V¥, f) is an object, then we denote by —6 the same
object but with the signs on the fundamental classes of M and N switched. For
two objects 81 and 65, we write 81 + 6, to be the disjoint union of 6, and ;. This
sum operation is clearly commutative and associative, and admits a zero element:
the object with M (hence N') empty. We denote the zero element by O.

DEFINITION 3.6. The equivalence relation for defining S, (X, w) is given as fol-
lows. Let

6 = (M,0M, ¢, N,dN, v, f)

be an object from Definition 3.4. We write 6 ~ 0 if the following conditions are
satisfied. See Figure 3.2.

(1) There exists a manifold 2-ad (W, dW) of dimension (n + 1) with a contin-
uous map ®: W — X so that the pullback Z /2-principal bundle ®* (w) is
the orientation covering of W. Here dW = M Ugys 0, W, and in partic-
ular oM = 0(d,W). In other words, W is a manifold with corners, and
its boundary is the union of M and 9, W (two manifolds with boundary)
which are glued together along their common boundary IM = d(d, W).
We also assume ®|pr = ¢.

(2) Similarly, we have a manifold 2-ad (V, V') of dimension (n + 1) with a
continuous map ¥ : V — X so that the pullback Z /2-principal bundle
W*(w) is the orientation covering of V. Moreover, dV = N Uyy 92V and
Vv =1v.

(3) There is a homotopy equivalence of 2-ads

F:(V,0V) — (W, W)

such that Fx([V]) = [W] and ¥ o F = &, where [V] (resp., [W]) is
the fundamental class of V' (resp., W), an element of H, (V, oV ; ¥*(w)Z)
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\\
0 W oM =dn,w M

FIGURE 3.2. Equivalence relation 8 ~ 0 in the definition of S, (X, w),
where F s,y is an infinitesimally controlled homotopy equivalence and
F|y = f is a homotopy equivalence. In this picture, V (resp., W)
should be viewed as a solid with boundary dV (resp., dW).

(resp., Hy (W, oW ; ®*(w)Z)). Moreover, F restricts to f on N, and F
restricts® to an infinitesimally controlled homotopy equivalence

Flap,y:02V — 0. W  over X.

We further write 67 ~ 6, if 61 + (—6,) ~ 0. It is not difficult to check that ~
is an equivalence relation. We denote the set of equivalence classes by S, (X, w).
Note that S, (X, w) is an abelian group with the addition given by disjoint union.

Remark 3.7. Let w and v be Z/2-principal bundles over X and Y, respectively.
Each bundle map A:w — v induces a group homomorphism A,:S, (X, w) —
S, (Y, v) by essentially composing* the data of an element 6 € S,, (X, w) with the
map A. This makes the definition of S, (X, w) functorial.

3 Here we are using an obvious generalization of Definition 3.3 to the case of manifold 2-ads or
manifold n-ads.

4 For example, for the element & = (M, oM, ¢, N,oN, v, f) € S(X,w), A induces a canon-
ical local coefficient isomorphism ¢*(w) — (A@)*(v), which in turn induces a map from
Hy(M,0M; * (w)Z) to Hy, (M, oM ; (A(p)*(v)Z). Then the corresponding fundamental class for
the manifold pair (M, dM) as part of the data of A(6) = (M,dM, Ao, N,dN,Aog, f) is the im-
age of [M] under this map Hy (M, M ; p*(w)Z) — Hp(M,0M: (Ap)*(v)Z). See also [27, sec. 3,
p. 103].
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3.2 Surgery Long Exact Sequences

In this subsection, we give a description of surgery long exact sequences based
on ideas of Wall. This will be used later to naturally identify S, (X, w) with the
structure group STOP(X, w).

First, let us review the definition of normal maps. Let both (M, dN) and (N, dN)
be n-dimensional manifolds with boundary. Let wys (resp., wy ) be the orientation
covering of M (resp., N). Equivalently, we think of wys and wy as elements in
HY(M;Z/2) and H'(N;Z/2), respectively.

DEFINITION 3.8. Let v be a k-dimensional vector bundle over N such that the first
Stiefel-Whitney class of v agrees with wy € H'(N;Z/2). A map

f:(M,0M) — (N,dN)
is called a normal map if the following conditions are satisfied:
(1) f preserves orientation characters, that is, wps = f*(wn);

(2) there exists an embedding M — R” *+k with its normal bundle denoted by
vy such that there is a bundle map

fivy — v
covering f that is an isomorphism on each fiber.
If in addition f maps the fundamental class [M], an element in H,(M,0M;

wp7Z), to the fundamental class [N], an element in H, (N, dN;wyZ), then we
say f has degree 1.

Now we review the following geometric definition of L-groups due to Wall [77,
chap. 9].

DEFINITION 3.9. An object of L, (w1 X, w) consists of the following data (cf.
Figure 3.3):
(1) two manifold 1-ads (M, dM) and (N,0dN) with dimM = dimN = n,
where M (resp., dN) is the boundary of M (resp., dN);
(2) continuous maps ¢: M — X and ¥: N — X so that the pullback Z/2-
principal bundles ¢*(w) (resp., ¥ *(w)) is the orientation covering of M
(resp., N);
(3) adegree 1 normal map of the 1-ads

Fi(N,dN) — (M, M)

such that ¢ o f = . Moreover, on the boundary f|gy:0N — M is a
homotopy equivalence.

DEFINITION 3.10. The equivalence relation for defining L, (71 X, w) is given as
follows. Let

0 = (M,0M,p,N,dN, v, f)
be an object from Definition 3.9 above. We write 6 ~ 0 if the following conditions
are satisfied (cf. Figure 3.4):
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\ [N . N

Slon f X

FIGURE 3.3. An object 8 = (M,dM, ¢, N,dN, v, ) in L, (71X, w),
where f is a degree 1 normal map and f|yx is a homotopy equivalence.

ON =002V
!

LW oM =ow M

FIGURE 3.4. Equivalence relation # ~ 0 for the definition of
L,(m X, w), where F|y,y is a homotopy equivalence and F|y = f
is a degree 1 normal map.

(1) There exists a manifold 2-ad (W, dW) of dimension (n + 1) with a contin-
uous map &: W — X so that the pullback Z /2-principal bundle ®* (w) is

15

the orientation covering of W. Here 0W = M Uy 02 W and @|py = ¢.

(2) Similarly, we have a manifold 2-ad (V, V') of dimension (n + 1) with a
continuous map W : V' — X so that the pullback Z/2-principal bundle
W*(w) is the orientation covering of V. Moreover, 0V = N Uyy 02V and

Yy =v.
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(3) There is a degree 1 normal map of manifold 2-ads
F:(V,0V) — (W, oW)

such that Wo F' = ®. Moreover, F restrictsto f on N, and F|y,y: 02V —
d, W is a homotopy equivalence over X .

We denote the set of equivalence classes by L, (11 X, w). Note that L, (r1 X, w)
is an abelian group with the addition given by disjoint union.

It is a theorem of Wall that the above definition of L-groups is equivalent to the
algebraic definition of L-groups Lﬁ(F, w) when n > 5 [77, chap. 9], [73]. More
precisely, Wall [77, chap. 9] dealt with the surgery theory for simple homotopy
equivalences, and the algebraic L-groups that appeared in that chapter are usually
denoted by L% (T, w), where s stands for simple and w is a group homomorphism
I' — Z/2. In the current paper, we deal with homotopy equivalences instead of
simple homotopy equivalences, hence the groups LQ(F, w) instead of L3 (T, w).
When n is even, L; (I, w) is defined as the abelian group of equivalence classes
of quadratic forms of the ring> ZT" [77, chap. 5, p. 49]. When 7 is odd, L3 (T, w)
is defined as the abelian group of equivalence classes of automorphisms on hy-
perbolic forms of the ring ZI" [77, chap. 6, p. 68]. The definition of LQ(I‘, w) is
essentially the same, once we drop the simplicity condition. In general, the groups
LT, w) and L5(T, w) are different. The same argument in Wall [77, chap. 9]
proves the following theorem.

THEOREM 3.11 ([77, chap. 9]). Let I’ = mX. Foralln > 5, Ly(mX,w) is
naturally isomorphic to the algebraic definition of Lﬁ(F, w).

The dimension restriction (n > 5) in the above theorem is necessary. If n < 5,
although this cobordism theoretic definition of L, (1 X, w) still gives an abelian
group, it is not clear what it really describes because of well-known problems of
low-dimensional surgery. Moreover, these groups (in low dimensions) could well
be dependent on the category. On the other hand, as long as n > 5, not only is
L, (71 X, w) naturally isomorphic to the algebraic definition of L,}; (m1 X, w), but
also the map xCP? (i.e., taking the direct product with CIP?) induces an isomor-
phism

Ln(JTlX, w) — Ln+4(JT1X, LU).
This motivates us to give the following definition, which makes Wall’s geometric
definition of L-groups into a 4-periodic theory in all dimensions.

DEFINITION 3.12. For each n € Z, we define £, (1 X, w) to be the direct limit of

CP? cp?
T Lk(T[lX’ w) i__% Lk+4(7[1X, w) i_‘% Lk+8(7T1X, w) —> e

where k = n (mod 4).

3 Here ZT is considered as a ring with involution, where the involution is induced by w that maps

y = wy)g™
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v, . N

Slaw f X

FIGURE 3.5. An object 6 = (M,dM, ¢, N,dN, ¥, ) of N,(X,w),
where f is a degree 1 normal map and f|yy is an infinitesimally con-
trolled homotopy equivalence.

Now we shall also introduce a controlled version of Wall’s L-group definition,
which will be identified with H.«(X;Le). Here L, is an Q2-spectrum of simplicial
sets of quadratic forms and formations over Z such that Lo ~ G/TOP; cf. [88,
sec. 3].

DEFINITION 3.13. An object of N, (X, w) consists of the following data (cf. Fig-
ure 3.5):
(1) two manifold 1-ads (M, dM) and (N,0dN) with dimM = dim N = n,
where M (resp., dN) is the boundary of M (resp., dN);
(2) continuous maps ¢: M — X and ¥: N — X so that the pullback Z/2-
principal bundles ¢*(w) (resp., ¥ *(w)) is the orientation covering of M
(resp., N) respectively;
(3) adegree 1 normal map of manifold 1-ads

F:(N,dN) — (M, M)

such that ¢ o f = . Moreover, on the boundary f|gn:dN — M is an
infinitesimally controlled homotopy equivalence over X .

DEFINITION 3.14. The equivalence relation for defining NV, (X, w) is given as fol-
lows. Let

§=(M,0M,p,N,0N, ¥, f)
be an object from Definition 3.13 above. We write £ ~ 0 if the following conditions
are satisfied (cf. Figure 3.6):

(1) There exists a manifold 2-ad (W, W) of dimension (n + 1) with a con-
tinuous map ®: W — X so that the pullback Z /2-principal bundle ®* (w)
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ON =002V
!

LW oM =ow M

FIGURE 3.6. Equivalence relation 6 ~ 0 for the definition of AV, (X, w),
where F s,y is an infinitesimally controlled homotopy equivalence and
F|ny = f is adegree 1 normal map.

is the orientation covering of W. Moreover, 0OW = M Uy 3o W and
Qlm = o.

(2) Similarly, we have a manifold 2-ad (V, dV') of dimension (n + 1) with a
continuous map ¥ : V' — X so that the pullback Z/2-principal bundle
W*(w) is the orientation covering of V. Moreover, dV = N Uyy 02V and

Uiy =¢.
(3) There is a degree 1 normal map of 2-ads

F:(V,0V) — (W,oW)
such that ¥ o F = ®. Moreover, F restricts to f on N, and
Fla,y:02V — 0. W
is an infinitesimally controlled homotopy equivalence over X .

We denote by N, (X, w) the set of equivalence classes from Definition 3.13.
Note that NV, (X, w) is an abelian group with the addition given by disjoint union.

Following the same strategy from Definition 3.12, we shall turn NV, (X, w) and
Sy (X, w) into 4-periodic theories.

DEFINITION 3.15. For each n € Z, we define O, (X, w) to be the direct limit

CPp? CP?
o= N (X, w) = Niga(Xow) —— Nirg(Xow) = -
where k = n (mod 4). Similarly, we define &, (X, w) to be the direct limit

CP? CP?
e SX W) T S (Xow) S Sppg(Xow) = -
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where k = n (mod 4).

Let us discuss a key point of our definitions of NV, (X, w) and S, (X, w). For
simplicity,’ let us focus on the oriented case, that is, w is the trivial Z /2-principal
covering of X and will be dropped from our notation during this discussion. The
L-groups (either L" or L%), besides having an algebraic definition, also have a
cobordism theoretic definition, according to Wall [77, chap. 9]. Now by ideas from
controlled topology (cf. [28], [88, sec. 3]), if we impose extra infinitesimal control
on objects in Wall’s cobordism theoretic definition of L-groups, we obtain a gen-
eralized homology theory. Indeed, a cobordism-type construction such as N, (X)
defines a generalized homology theory if it satisfies an appropriate transversality
condition (see, for example, [61]). This transversality condition is indeed satisfied
by N, (X) due to infinitesimal control. See, for example, Definition 3.41 for how
this works in the PL (i.e., piecewise linear) category.

Let us recast the above discussion in the language of spectra. In fact, based on
Wall’s cobordism theoretic definition, Quinn constructed geometric surgery spec-
tra of A-sets that realized L-groups as their homotopy groups [56]. From this
perspective, our construction Ay (X) above can be viewed as a cobordism the-
oretic representation of the generalized homology theory determined by such a
spectrum. See [61] for a more thorough discussion of some closely related top-
ics. On the other hand, based on the algebraic definition of L-groups, Ranicki
constructed quadratic L-theory spectra that also realize L-groups as their homo-
topy groups [63, chap. 13]. Consequently, Quinn’s geometric surgery spectra and
Ranicki’s quadratic L-theory spectra give rise to (homotopy) equivalent spectra. It
follows that N, (X) is naturally isomorphic to H,(X;Ls), where L, is the qua-
dratic L-theory spectrum for the trivial group e—an 2-spectrum of simplicial sets
of quadratic forms and formations over Z—such that Lo ~ G/TOP. Moreover,
the natural morphism

Ix: Np(X) = Ly(m X),
which is defined by forgetting infinitesimal control, can also be viewed as induced
by a map pu of spectra. Now the groups S«(X) are just the (stable) homotopy
groups of the homotopy fiber of this map .

Let us prove that N, (X) is naturally isomorphic to H, (X ;L) for all n >
0. This isomorphism will be used later in the surgery exact sequence to identify
Sp(X) with STOP(X) when X is a closed connected oriented topological manifold
of dimension > 5. By a standard fact from algebraic topology, it suffices to show
that there is a natural morphism between the two homolgy theories that induces an
isomorphism when X is one point. In our current case, there is a natural morphism
from NV, (X) to H,(X;1Ls) by mapping an element of A/, (X) to its corresponding
(local) algebraic Poincaré complex. It remains to identify the groups Ny, ({pt})
and H,({pt};Ls). In fact, in order to make this identification, we shall slightly

6The argument for the general case is the same, once we have used twisted L-spectra [63, app. A]
instead of the usual LL-spectrum.
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modify our definitions of L, (71 X), N, (X), and S, (X). It will become clear that
the modified version coincides with our original version above (Definitions 3.4,
3.9, and 3.13) when n # 4. In other words, the only essential change happens in
dimension n = 4.

DEFINITION 3.16. An object of L™ (mr1 X)) consists of the following data:

(1) two oriented manifold 1-ads (M, dM) and (N, dN) with dim M = dim N
= n, where dM (resp., dN) is the boundary of M (resp., IN);

(2) continuous maps p: M — X and y: N — X;

(3) adegree 1 normal map of the 1-ads

f:(N,ON) —> (M, M)
such that ¢ o f = . Moreover, on the boundary,
flon:ON — oM

is a Zm-homology equivalence.

Here f|gn is a Zm-homology equivalence, which means that it induces an iso-

morphism Hy(IN;Zn) — H«(0M;Zm) on homology with local coefficients in
Zmw, where m1 = m1(dM). Equivalently, let dM be the universal covering space
of dM and (dN), the covering space of dN, which is the pullback of oM along
the map f|oy. We say f|gn is a Zm-homology equivalence if the lifted map
f 2(ON)y — 9M induces an isomorphism on homology.

The equivalence relation for the objects in L)*" (71 X) is defined the same as in
Definition 3.10 except that we replace homotopy equivalences by Zw-homology
equivalences everywhere. Similarly, we can define AV}*V(X) and SHV(X) using
(infinitesimally controlled) Z-homology equivalences instead of (infinitesimally
controlled) homotopy equivalences.

In fact, in dimension n > 5, the modified version L)* (71 .X) is naturally iso-
morphic to the original version L, (1 X); see, for example, [34]. Following the
discussion above, from the viewpoint of spectra, we also see that NV (X) and
SpeV(X) are naturally isomorphic to Ny, (X) and S, (X), respectively, when n > 5.

With the same notation from above, observe that

Flan: N — M

is a degree 1 map, since f:(N,0N) — (M,0M) is. Whenn = Oor 1, flon
is automatically a homeomorphism. When n = 2, f|sy is a degree 1 map be-
tween circles, which is necessarily a homotopy equivalence and thus homotopic to
a homeomorphism. When n = 3, f|sn is a degree 1 map between oriented sur-
faces, in particular, it induces a surjection ( f|gn)«: 71 (ON) —> w1 (dIM) between
the fundamental groups.

Let G C m1(dN) be the kernel of this surjection. If G is trivial, then (f|gn )«
is an isomorphism, which together with Z-homology equivalence implies that f
is a homotopy equivalence. If G is nontrivial, we claim that 71 (dN)/G has to
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be finite. Indeed, if 771 (dN)/G is infinite, then IN /G is a noncompact surface,
where dN is the universal covering space of dN. It follows that G is a free group.
Note that the pullback covering space (0N ) over dN is isomorphic to the covering
space IN /G over dN. However, the first homology group of dN /G is nontrivial,
whereas the first homology group of M is always trivial. This is a contradiction
to the assumption that f|sy is a Zx-homology equivalence. Therefore, if G is
nontrivial, then 711 (N )/ G is finite. It follows that 71 (dN)/G = m1(dM) has to
be trivial, that is, dM is the 2-sphere. In this case, (JN ), = d/N, and a comparison
of homology groups shows that f |5y is a homotopy equivalence. Note that a ho-
motopy equivalence between oriented surfaces is homotopic to a homeomorphism.
To summarize, in dimensions n = 0, 1, 2, and 3, the new definitions L;*¥ (1 X),
NJ¥(X), and Sp*V(X) coincide with their original versions. Moreover, in these
dimensions, we can assume that our objects have no boundary. Indeed, for each

0 =(M,0M,p,N,ON, ¥, f) € L, (m1 X),

we can first assume [ |y is a homeomorphism by the above discussion, then glue
the element (N, dN, ¥, N, dN, ¥, 1d) to 0, that is, glue (N, dN) to (M, dM) along
the boundary and (N, dN) to (N, dN) along the boundary. Note that the element

(N, ON, ¥, N, 0N, ¥, 1d)

is equivalent to 0 in L}V (1 X); thus such a gluing does not change the class of
0 in L)* (1 X). In other words, for the trivial group e, the group L)V (e) =
Ly (e) is precisely the conventional manifold bordism group 2, (G/TOP), when
n =0,1,2, or 3. It follows from the Atiyah-Hirzebruch spectral sequence and the
homotopy groups of G/TOP that Lo(e) = L1(e) = L3(e) = 0and La(e) = Z/2
(given by the Arf invariant).

The case where n = 4 is more subtle. Ideally, we would like to realize all in-
tersection forms in the algebraic definition of Lﬁ(e) by elements in the geometric
definition of L4(e) (Definition 3.9). One standard method is to apply the Wall real-
ization (cf. [77, chap. 10]). For any orientation-preserving homotopy equivalence
between two closed 3-manifolds g: A — B, the Wall realization process applied
to A will produce a cobordism W between A and another 3-manifold C together
with a degree 1 normal map G: W — B x [ such that G|¢c:C — B = B x {1}
is a Zm-homology equivalence.” This is the reason that we need the modified
version L, (e). With this modification, every element of Lﬁ(e) can be realized
by an element of L;*¥(e). More explicitly, recall that the Poincaré homology
sphere bounds a manifold E with the Eg-quadratic form. Now consider a map
fi(E,0E) — (D*, S3) that induces a homology equivalence from dE to S3.
This defines a generator of the group L{} (e). In particular, all elements of LZ (e)
can be realized by using boundary connected sums of f: (E,dE) — (D%, S3).

7In dimensions > 4, the Wall realization will actually produce a homotopy equivalence on the
other end. However, for 3-manifolds, we only get a Zmw-homology equivalence in general.
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Remark 3.17. Forn < 4, we have only showed that L;*¥(e) is isomorphic to Lﬁ (e)
in the case of the trivial group e. This is all we need to conclude Theorem 3.18
below. We do not claim that L3*" (71 X) is isomorphic to Lﬁ(mX ) for a general
fundamental group.

THEOREM 3.18. We have a natural isomorphism
N(X) = Hp(X;L,e) foralln € Z.

PROOF. There is a natural morphism from A<V (X) to H,(X; Le) by mapping
an element of AV}*V(X) to its corresponding (local) algebraic Poincaré complex.®
This is a natural morphism of two generalized homology theories. To show this
natural morphism is an isomorphism, it suffices to show that it induces an isomor-
phism when X is a point. Now if X is a point, then any Z-homology equivalence
automatically has infinitesimal control. If n > 5, it follows from [77, chap. 9] of
Wall that

NIV({pt}) = LE™(e) — Hp(X;La) = Ll (e)

is an isomorphism. Now by the discussion before the theorem, we have

0 ifn =0,

AN @P) = L™ =3 0y i1 <n <4,

which coincides with H, ({pt};IL¢). This finishes the proof. O

Note that the new versions L2V (71 X), NV (X), and S)V(X) were only
needed to make sure that these groups indeed give us the topological surgery exact
sequence. As we have seen above, when n # 4, the new version coincides with
the original version, and in fact we shall exclusively be interested in the case where
n > 5. From now on, if no confusion is likely to arise, we will continue to write
Lp(m1X), Nu(X), and S, (X) instead of L2V (771 X ), NJV(X), and SpV(X).

Now to form the surgery long exact sequence, let us introduce the following
relative L-groups.

DEFINITION 3.19. An object
0 =(M,0LM,p,N,0LN, ¥, )

of L, (1 X, X, w) consists of the following data (see Figure 3.7):

(1) two manifold 2-ads (M,d+ M) and (N,0.LN) of dimM = dim N = n,
with OM = 04+ M U d_M (resp., IN = 0+ N U d_N) the boundary of M
(resp., dN), in particular, d(d+ M) = 0(d_M) and 3(0+N) = 3(0—N);

8 Since an object in Ny, (X) consists of two manifolds with boundary with their boundaries related
by an infinitesimal Z-homology equivalence, the (local) algebraic Poincaré complex is obtained
by gluing the two local relative Poincaré complexes along the boundary by this infinitesimal Z-
homology equivalence.
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FIGURE 3.7. An object 8§ = (M,d+M,p,N,0LN, ¥, f) of
Ly (71X, X, w), where fys, y is an infinitesimally controlled homo-
topy equivalence, f is a degree 1 normal map, and f |3, n is a homotopy
equivalence.

(2) continuous maps ¢: M — X and ¥: N — X so that the pullback Z/2-
principal bundles ¢*(w) (resp., ¥ *(w)) is the orientation covering of M
(resp., N) respectively;

(3) adegree 1 normal map of manifold 2-ads

Fi(N,dN) — (M, M)

such that g o f = ;

(4) the restriction f|y, y:d+N — 94+ M is a homotopy equivalence over X
such that fyx[0+N] = [0+ M];

(5) the restriction f|y_pn:0—N — 0_M is a degree 1 normal map over X;

(6) the homotopy equivalence f'|y, y restricts to an infinitesimally controlled
homotopy equivalence f'[3@, n): (9L N) — (0L M) over X.

DEFINITION 3.20. The equivalence relation for defining L, (;r1 X, X, w) is given
as follows. Let
0 =(M,0:M,0,N, 0N, ¥, f)
be an object from Definition 3.19 above. We write 6 ~ 0 if the following condi-
tions are satisfied (cf. Figure 3.8).
(1) There exists a manifold 3-ad (W, dW) of dimension (n + 1) with a con-
tinuous map ®: W — X so that the pullback Z /2-principal bundle ®*(w)
is the orientation covering of W. Here dW is the union of M, d,W and
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F|s,y is a homotopy equivalence

002V =903, 4V / > | 002, W =093 4+ W

-

e 4

FIGURE 3.8. Equivalence rela)tclon 6 ~ O for the definition of
L,(m X, X,w), where F |332'_V is an infinitesimally controlled homo-
topy equivalence and F |5,y is a homotopy equivalence.

d3W, and ®|pr = ¢. Moreover, we have decompositions
OM =0, M UO_M, 0(0W) =002+ W U3 _W,
(03 W) = 383,+W U 333,_W,

such that 04+ M = 002+ W,0_-M = 003,_W, and 00, W = 0903+ W.
Furthermore, we have

oM No_M = 882,+W N 382,_W = 883,+W n 883,_W

(2) Similarly, we have a manifold 3-ad (V, dV') of dimension (n + 1) with a
continuous map ¥ : V' — X so that the pullback Z/2-principal bundle
W*(w) is the orientation covering of V. Moreover, dV = N Ud,V Ud3V
satisfies similar conditions as .

(3) There is a degree 1 normal map of manifold 3-ads

F:(V,dV) — (W, W)

suchthat o F = Wand F|y = f.
(4) The map F|y,y: 02V — 92 W is a homotopy equivalence over X such that
Fi[02V] = [02W].
(5) F restricts to an infinitesimally controlled homotopy equivalence

Flag, _v:002,-V — 005 W over X.

We denote by L, (71X, X;w) the set of equivalence classes from Definition
3.19. Note that L, (71X, X;w) is an abelian group with the addition given by
disjoint union. We also can make this relative L-groups into a 4-periodic theory.
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DEFINITION 3.21. For eachn € Z, we define £, (1 X, X, w) to be the direct limit
of

xCP? xCP?
o= Lp(mX, X, w) —— Lija(m X, X, w) —— Liig(m X, X, w) = -+,

where k = n (mod 4).

Note that every element

0 =(M,oM,p, N,ON,y, ) € Lp(m X, w)
naturally defines an element in L, (w1 X, X, w) by letting - M = &. We denote
this map by

JeiLy(m X, w) — Ly(m X, X, w).
For every element
9 == (M9 a:l:Ma (p9N7 a:I:N9 w’ f) e Ln(nIX’ Xa w)?

we see that

O0_ :={0_-M,0(0_-M),,d_N,d(0_N), ¥, f}

defines an element in NV;,—1 (X, w). We call 6_ the (—)-boundary of 6.
Various groups defined above fit into the following long exact sequence. The
proof is essentially identical to that of theorem 9.6 in Wall [77, chap. 9].

THEOREM 3.22. We have the following long exact sequence:
e N (X, w) 25 Ly(mi X, w) 2> Ly (i X, X, w)

0%
— Np—1(X,w) = Lp—i(mi X, w) — -+

where i: Ny (X, w) — Ly, (w1 X, w) is the natural map defined by forgetting in-
finitesimal control, and the map 0x maps each element of L,(mw1X, X, w) to its
(—)-boundary, that is, if 0 = {M,d+M,p, N,0LN, V¥, f} € L,(m X, X, w),
then

0x(0) = 60— :={0_M,3(0_M),p,0_N,d(0_N), V¥, f}.
Consequently, we have the following 4-periodic (for all n € Z) long exact se-
quence

S My(X, w) D L X, w) D . (m X, X, w)

0
—> ‘ﬂn_l(X, w) —> Qn_l(ﬂlX, w) —> e

3.1

PROOF. It is easy to see that the map 0 is well-defined. It remains to prove the
exactness of the sequence.

An element in MVy,— (X, w) maps to 0 in L,—1 (71 X, w) if and only if its im-
age is cobordant to the empty set in L, (71 X, w). However, such a cobordism
defines an element in L, (71 X, X, w). This proves the exactness at N1 (X).

Note that 0« j« = 0 by definition. On the other hand, given an element 6 in
Ly (1 X, X, w), if 6 maps to 0 in N;,—1(X, w), then we can take a cobordism of
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04 (0) to the empty set, and glue it to 6 along 0«(6). The resulting new element is
cobordant to 6, and its (—)-boundary is empty, so it lies in the image of the map
J«. This proves the exactness at L, (1 X, X, w).

Finally, let us prove the exactness at L, (71 X, w). Suppose

§={M,0M,p, N,ON, v, [}

is an element of AV}, (X, w); then we shall show that it is cobordant to 0 in L, (71 X,
X, w). Indeed, a cobordism of & to the empty set is provided by & x I where [ is
the unit interval. More precisely, £ x I consists of the following data.

(i) W = M x I with a continuous map
O=p: W ﬂ> M — X,
where p1: W — M is the projection map onto M. Moreover,
W =M U, W UIzW
with 0, W = OM x [ and ;W = M.
(i1) Similarly, V = N x I with a continuous map
v=y:V I NS X,
where g1: V' — N is the projection map onto N. Moreover,
AV =NUV UIV,
where 0,V = ON x [ and 93V = N.

(iii) A degree 1 normal map
F = fx1d:(V,dV) — (W,0W)

suchthat o F = Wand Fly = f.

(iv) Flap,y:02V = ON x I — 0,W = 0M x I is a homotopy equivalence
such that Fi[0,V] = [02W]. This is because f:0N — dM is an in-
finitesimally controlled homotopy equivalence, thus in particular a homo-
topy equivalence.

(v) F restricts to an infinitesimally controlled homotopy equivalence

Flag, _y:002,-V = 0N — 30 - W = oM
over X.
This proves that j«ix = 0. Conversely, suppose an element
0 ={M,0M,p, N,oN,{, f} € L,(m1 X, w)

maps to 0 in L, (1 X, X, w); that is, 8 is cobordant to 0 in L, (71 X, X, w). Let
us use the same notation as in Definition 3.20. In our current case, we have IM =
04+M with 0_M = @, 00, W = 882,+W U 882,_W, and 003 W = 833,+W with
003 _W = @ such that

8+M = 832’+W and 32,_W = 883,+W
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Moreover, we have 002, + W N 902, W = @. Similar conditions also apply to V.
It follows that F: (V,dV) — (W, dW) is a cobordism between 6 and the element

n = (83W, 883W, (D|a3w, 83V, 833V, \If|33V, F|a3w).
Note that 7 is an element of N, (X ; w). This finishes the proof. O

3.3 Relations between Various Structure Groups

In this subsection, we prove S, (X; w) is naturally isomorphic to L, 41 (w1 X,
X, w). Moreover, when X is a closed topological manifold of dimension n > 5,
we show that STOP(X, w) is naturally isomorphic to S, (X; w).

Consider the natural homomorphism

Cx:Sp(X,w) = Lyy1(m X, X, w)
given by
0 ={M,0M,p, N,ON, V¥, f} — 0 x I,
where 6 x I consists of the following data:
(1) amanifold 2-ad (M x I,d+(M x I)) with

0+(M xI)=M =0_(M x1);

in particular, we have 004+ (M x I) = M = 00_(M x I);
(2) similarly, another manifold 2-ad (N x I,d+(N x I)) with

9+ (N x1)=N =0_(N xI);

(3) acontinuous map ¢ :==¢@po p: M x I 2L M % X such that the pullback
7 /2-principal bundle (¢ o p)*(w) M x I is the orientation covering of
M x I, where p is the projection map from M x [ to M; similarly, a
continuous map

17::1/foq:Nin>N1>X
such that the pullback Z /2-principal bundle (1 o ¢)*(w) is the orientation

covering of N x I, where ¢ is the projection map from N x [ to N;
(4) adegree 1 normal map of manifold 2-ads

fi=fxId:(N xI,0£(N x1)) - (M,0+(M x 1))

such that o f = ¥
(5) the restriction

]7|3+(Nx1):8+(N xI)=N—=>0:(MxI)=M

is a homotopy equivalence over X such that f;[N | = [M];

(6) the restriction f lo_(vx1): N — M is a degree 1 normal map over X ; here
we recall that every homotopy equivalence naturally defines a degree 1
normal map;
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@) f restricts to an infinitesimally controlled homotopy equivalence
Flaopvxny: 992N x I) = N — 304 (M x I) = M
over X.
There is also a natural homomorphism
Fa: Lp+1(m X, X, w) = Sp(X, w)
by taking the (+)-boundary of an element; that is,
0 ={M,0+M, ¢, N,0+N. V¥, f} € Lpp1(m X, X, w)
maps to
O+ ={04+M,004-M,p,04+N,d0+N, v, f} € Sp(X,w).
It is easy to see that cx and r, are well-defined.

PROPOSITION 3.23. The homomorphisms c« and ry« are inverses of each other. In
particular, we have Sy (X, w) = Ly+1(m X, X, w).
PROOF. Clearly, we have ry o ¢, = 1. Conversely, if
0 ={M,0+M,p,N,0+N, ¥, f}

isanelementin L, (w1 X, X, w), then cxor«(8) is cobordant to 6 in L, 41 (71 X,
X, w). Indeed, consider the element

O x1) g (04 x I x1)
(O xI)x{0} C Ox{1}

where (04 x I) x {0} is glued to the subset (6 x I') C 6 in 6 x {1}. This produces
a cobordism between cx o 7 (8) = (64 x I') x {1} and 8 x {0}. In other words, we
have cx o r« = 1. This finishes the proof. O

Now we shall use the surgery long exact sequence to identify S, (X;w) with

STOP(X; w). Consider the natural map
1 STP (X w) = Sp(X:w)
by
M - X0 ={M,0M = 2,9, X,0X = &,1d, f = ¢}.

It is easy to see that ¢ is a well-defined map of sets.

For notational simplicity, we will work with the case where X is oriented and
the 7 /2-principal bundle w on X is trivial. The same argument also works for the

general case. Recall that, for n = dim X > 5, we have the following geometric
surgery long exact sequence

oL (mX) — S;OP(X x DY)
(3.2) —SNFOP(X x D'y — LI (m1X) —
oL (1 X) - STP(X) - NTOP(X) — LI (7, X)

where
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(a) D' is the i-dimensional Euclidean unit ball;
(b) STOP is the rel d version® of the structure set, whose definition we shall
)
review below;
(c) NTOP is the set of normal invariants, and AV7°F is its rel d version;
a

(d) the map LZ+1(”1X) --> STOP(X) is a natural action of LZ+1(”1X) on
STOP(X).
Moreover, all terms starting from LQ +1(71X) to the left, in the sequence (3.2), are
abelian groups, and all arrows to the left of LZ 41 (711 X) are group homomorphisms.
DEFINITION 3.24. Suppose Y is an oriented compact manifold with boundary 9Y .
We define SaTOP(Y) to be the set of equivalence classes of orientation-preserving
homotopy equivalences
f:(M,oM) — (Y,3Y)
from compact manifolds with boundary such that f:dM — dY is a homeo-
morphism. Two orientation-preserving homotopy equivalences f:(M,dM) —
(Y,dY) and g: (N,dN) — (Y, dY) are equivalent if there exists a rel d-h-cobord-
ism'® (W: M, N) with an orientation-preserving homotopy equivalence
F:(W;M,N)— (Y xI;Y x{0},Y x{1})

such that F|pr = f, F|y = g, and F|jy «s is a homeomorphism, where dY x [
is the part of W that sits between dM and ON .

Similar to the definition of 14: STOP(X) — S, (X), there is a natural map
B S5O0 (X x D) = Syt (X)
for all i > 1, by mapping
{g:(M,0M) — (X x D', X x S'™1) e STOP(X x D)
to ) .
0 ={M,0M,pogp. X x D' X xS ! p, f =0} € Spyi(X)
where p: X x D! — X is the projection of X x D' onto X. When i > 1, there
is a natural group structure on SgOP (X x D*'), which is geometrically defined by
stacking. Let us revi;:w the definition of stacking (cf. ['14], [23, def. 2.4]). For
i > 1, let us denote S;:_l = {(x1,...,x;) € Sl = 9D’ | £x1 > 0}, and
SE = {(x1,...,x;) € D' | £x; > 0O}.
Fix suitable homeomorphisms
(D', Si71, 871 =~ (Di,SiT1, DR
and
(D', 871, 571 =~ (DL, s, pFY,

9 rel § means “relative to boundary.”
101 particular, )W = M Ugps 0Y x I Ugy N.
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We see that D = Di Upi-1 DL.
DEFINITION 3.25. Suppose
fi: (M1, 0M7) > (X x D', X x S'71)

and
fo: (M, dM5) — (X x D', X x S'™1)

are two elements in Sgop (X x D*). We define the sum of f; and f> to be the
following element:

f=fAUfM-—>XxD =XxD,UXxD.
where M is obtained from gluing M; and M, along
X x DY = £ (X x DY),

With respect to this group structure, the map B is in fact a group homomor-
phism.

LEMMA 3.26. Fori > 1, the map
Br: S50 (X x D') = Sp4i(X)
is a group homomorphism.

PROOF. It is easy to see that the stacking procedure gives a cobordism between
the resulting new element and the disjoint union of the two elements that we started
with. This finishes the proof. O

For i > 0, we have a natural homomorphism
ax: N3P (X x D) — Nyyi (X)),
which is defined similarly as the map S« above.

LEMMA 3.27. If X is a closed oriented connected topological manifold of dimen-
sion n > 5, then the map

ax: NTOP(X) = N, (X)
is an isomorphism.

PROOF. For eachi > 0, there is a commutative diagram

NFOP(X x D) ——— Ny (X)

T

Hy+i(X:Le) === Hp4i(X;Le)

where the vertical isomorphisms are the corresponding algebraic normal invariant
maps (cf. Theorem 3.18). This finishes the proof. U
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Remark 3.28. We remark that all explicit descriptions of normal invariants are
torsorial. While a Poincaré complex can have a normal invariant, and this is a well-
defined homotopical notion, and the description of normal invariants as lifts of the
Spivak fibration is also canonical, the description of the aggregate of these lifts in
terms of the classifying space G/CAT involves first picking a preferred lift.

Now by construction, the geometric surgery long exact sequence (3.2) and the
long exact sequence from Theorem 3.22, together with the maps a«, Bx, and i, fit
into the following commutative diagram:

NFOP(X X I) = Lyg1(m1X) -+ STP(X) — NTP(X) — L (m1 X)

3.3) a*lg H L*l a{g

Nn+1(X) — Ln+1(7T1X) —)Sn(X) —)./\/’n(X) — Ln(T[lX).

By using the action of L, 41 (1 X) on ST°P(X) and the proof of the standard five
lemma, we obtain the following proposition.

PROPOSITION 3.29. Ifdim X = n > 5, then the map
1 STOP(X) = 8p(X)
is a bijection of sets. Moreover, fori > 1, the map
Bi: S (X x D) — Syyi(X)

is a group isomorphism.

For any oriented closed topological manifold X with dim X > 5, STOP(X)
carries an abelian group structure by Siebenmann’s periodicity theorem [48, app.
C to Essay V], which makes the geometric surgery long exact sequence (3.2) into

an exact sequence of abelian groups everywhere. More precisely, Siebenmann’s
periodicity theorem states that there is an injection

STP(X) — S3OP(X x D*).

To see that the abelian group structure on SgOP(X x D*) induces an abelian group
structure on STOP(X), one needs the fact that the map o SBTOP(X x D% — 7
arising in Nicas’ correction [51] to Siebenmann’s periodicity theorem is a group
homomorphism.

The map o can be described as follows. Suppose

f:(Y,0Y) — (X x D* X xS?)
is an element of SgOP(X x D%). Let V be the transverse inverse image of {pt} x
D*, where pt is a point of X. Then V is a compact oriented manifold whose
boundary is S3. Now we glue a D* to V along S3, and obtain a closed oriented
manifold V'’ of dimension 4. The map o takes f to 1/8 of the signature of V'

(since this signature is automatically a multiple of 8). It is easy to see that o is a
group homomorphism, since the signature of a connected sum is the sum of the
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signatures. The Siebenmann’s periodicity theorem (with the above correction by
Nicas) can now be stated in terms of the following exact sequence:

0— S™P(X) - SJ(x x ) 5 Z.

As a consequence, STOP(X), viewed as the kernel of the group homomorphism o,
carries an abelian group structure.

In order to see how the map t+: STOP(X) — S, (X) behaves with respect to
the abelian group structure on STOP(X) induced by the Siebenmann periodicity
theorem, we shall in fact use a geometric periodicity map, denoted by GP, due to
Cappell and the first author [14]. A priori, it is not clear whether the map GP coin-
cides with the Siebenmann periodicity map SP. Crowley and Macko showed that
a quaternionic (resp., octonionic) version of GP coincides with SP?: STOP(X) —
STOP(X x D?¥) (resp., SP*: STP(X) — SJOP(X x D'6)) [23]. Our discussion
below will show that GP coincides with SP.

Now let us briefly review the construction of the map GP. It is a fundamental
fact that any homotopy equivalence f: M — X in STOP(X) has a unique (up to
isotopy) associated embedding M — X x D3. This is due to Browder-Casson-
Haefiger-Sulivan-Wall, which is explained in [77] in the analogous PL case, with
the topological case following from [48]. Quinn’s end theorem [58] gives a canon-
ical mapping cylinder structure on the neighborhood of M in X x D3. The same
reasoning gives a mapping cylinder approximate fibration X x D3 over M. The
map

GP:S™P(X) — STOP(X x D*)

is defined by taking the Hopf fibration S3 — S? over the mapping cylinder (away
from M) and gluing M back.

PROPOSITION 3.30. Ifn = dim X > 5, the map
: STOP(X) = Sp(X)
is a group homomorphism.

PROOF. It suffices to prove the following diagram commutes:

STOP(x) L, STOP(x x D*)

x 2
Sn(X) cP Sn+a(X)

where the map GP is the geometric Siebenmann periodicity map described above,
and x CP2 is the map induced by taking the product with CIP2. Here is the intuitive
reason why this diagram commutes. For an element f: M — X in STOP(X), the
construction of GP first looks at the boundary of the neighborhood M in X x D3,
which is homeomorphic to X x S? has a block bundle structure over M with
fiber S2. Now taking the Hopf disk bundle over S? (i.e., the unit disk bundle of
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the tautological line bundle over S = CP!) and fiberwise coning its boundary is
somehow invoking the xCP? isomorphism in surgery theory. Indeed, CIP? can be
obtained by gluing the Hopf disk bundle over S and D* along their boundaries,
both of which are S3.

Now let us give a rigorous argument using the device of “periodicity spaces”
[80, 81]. One convenient setting for our argument below is the stratified surgery
theory of Browder and Quinn [8]. The relevant periodicity space for our discussion
is the stratified space P = CP? U D3, where D3 is glued to (C; P2 along S? =
CP!, and P is a stratified space having three strata: S2, D3, and D* = CP? — S2.

In our definition (Definition 3.9) of L, (71 X), an object consists of manifolds
with boundary and some extra data. In the following, we shall enlarge the set
of objects by allowing stratified (singular) manifolds over P. Here we call ¥ a
stratified manifold (with boundary) over P if there is amap f:Y — P such that
the strata of Y are the pullbacks of the strata of P and the map is transversal to
each stratum of P.

The group L5_€4(7T1X ; P) is defined to be the cobordism of surgery problems
over X,'! except that we allow the objects to be (n + 4)-dimensional stratified
manifolds over P. Equivalently, each element of Lf_& (w1 X; P) can be thought
of as a surgery problem over X x S? with extensions over X x D3 and X x CP2,
where in the latter case we insist that the surgery problem over X x CP? restricts
transversally to the given one on X x S2. We point out that the reference space here
is still X, and P is only used as a model space to produce a stratification structure
for these objects, hence the notation Lf%(mX ; P) to distinguish the role of P

from that of X. Similarly, we define Lf_% (m1X; D* rel ), where the objects are

stratified over D* and restrict to a trivial surgery problem over S* C D*4.
We make the following key observations.

(1) Some straightforward calculations within Browder-Quinn’s stratified sur-
gery theory show that the inclusion map D*reld into P (that is, D* is
identified with the complement of a tubular neighborhood of S? in CP?)
induces an isomorphism Lf_&(mX; D*rel 9) i>L5$4(7r1X; P). The
restriction map that takes a surgery problem over P to its restriction over
CP? also induces an isomorphism

LEC, (1 X; P) = Lyta(mi X).

In terms of spectra, these maps induce homotopy equivalences of the cor-
responding spectra.

T Here we follow the usual convention of calling an element in Wall’s geometric definition (cf.
Definition 3.9) of L-groups a surgery problem.
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(2) Similar to Definitions 3.4 and 3.13, we can also define groups Sf Q (X; P)
and V, f Q (X; P), and they fit into an exact sequence:

B B B
o> LB x; P) - SBL (X P) - NS (X P)
- Lf&(mX;P) %Sf_i_QS(X;P) > een

Remark 3.31. Let Lyy4(m X; D3, S?) be the relative L-group for the pair of
spaces (X x D3, X x S?), which is trivial by Wall’s -7 theorem [77, theorem
3.3]. The composite map

P
STOP(X) 25 SBL(X; P) - Lysa(mi X; D?,S?)

is trivial because it ends in the trivial group, where the first map is taking direct
product with P and the second map is given by the restriction from P to D3, It
also has the interpretation, in the topological category, that after crossing a structure
over X with D3, it can be (approximately) fibered over X. This is essentially
the content of the embedding theorem of Browder-Casson-Haefiger-Sulivan-Wall,
which is the core of the construction of the geometric periodicity map GP.

The inclusion map D*reld into P and the restriction map from P to CP?
induce the following commutative diagram:

LEC (1 X; D*rel ) — S22, (X D*rel 8) — N2E (X D*rel ) — L22, (1 X D4 rel 9)

| | | |

LE% (i X; P) ——— SPL(X; P) —— NP2 (X: P) ——— LEC, (mi X P)

| | l |

Lpts5(m1X) ———— Spta(X) ——— Npya(X) ————— Lpta(m1X)

where all vertical maps are isomorphisms. Moreover, the same argument from
Proposition 3.29 shows that the natural map

SBTOP(X x D*) — Sf_&(}(; D% rel 9)
is an isomorphism.
Now it follows by construction that the map G’P coincides with the following
composition:'?

1
STOP(xX) 25 8,(X) 255 SPL (X P) s SBL,(X: D*rel 9) = STOP(X x D).

The map
x CP2:S,(X) = Snya(X)

12 Here the map xP:Su(X) — Sf_,_Q“(X ; P) is given by taking the direct product of an ele-
ment with P. It is an isomorphism, hence P is called a periodicity space. The fact that X P is an
isomorphism is essentially a consequence of Wall’s -7 theorem [77, theorem 3.3] (see [80,81]).
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coincides with the composition
xP B T
Su(X) =5 SPC (X P) 15 Spra(X),

and the map Bx: S3°P(X x D*) — 8,14(X) coincides with the composition

SIP(X x D*) = 8P, (X; D*reld) 5> SPL, (X P) 15> Sppa(X).

Therefore, we have the commutative diagram

STOP(x) T, STOP(x x D*)

CcP?
Sn(X)—= Sp+a(X)
This finishes the proof. O

For reference, we mention explicitly that our discussion readily implies the fol-
lowing:

THEOREM 3.32. The geometric periodicity map coincides with the Siebenmann
periodicity map, that is, GP = SP.

PROOF. The former is induced by crossing with the stratified space P and the
latter by crossing with CP2, as explained above. Hence the theorem follows from
the discussion above. g

To summarize, combining Proposition 3.29 and Proposition 3.30, we have the
following theorem.

THEOREM 3.33. If X is a closed oriented connected topological manifold with
dim X = n > 5, then the map

L STOP(X) = Sp(X)
is an isomorphism.

Remark 3.34. More generally, if X is a closed connected topological manifold of
dimension > 5 and w is the orientation covering of X, then the map

1 STOP (X, w) — Sp(X, w)
is an isomorphism.

We conclude this subsection with the following brief discussion of the 4-periodic
surgery exact sequence from line (3.1) in Theorem 3.22 and homology manifold
structure groups.

For this discussion, let us assume that X is a closed connected fopological man-
ifold of dimension > 6. If we invert CPP? and consider the 4-periodic theory as in
Definition 3.12 and 3.15, then &, (X, w) is naturally isomorphic to the homology
manifold structure group SHTOP(X, w) of X. Indeed, according to [11, corollary,
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p. 438], SHTOP(X) is isomorphic to SaTOP (X x D*), where the latter group consists
entirely of structures with manifold representatives, due to the rel 9 condition.
The 4-periodic surgery long exact sequence from line (3.1) in Theorem 3.22 gives
the surgery long exact sequence for homology manifold structures; cf. [11, Main
Theorem]. In fact, by construction, our higher rho invariant map (Definition 4.38)
is naturally defined on the homology manifold structure group; also see the dis-
cussion after Proposition 3.48. All the main results of this paper, in particular
Theorem 4.40 and Theorem 8.8, hold for both the manifold structure group and the
homology manifold structure group.

Remark 3.35. For the 4-periodic theory, the analogue of Theorem 3.18 is
MNy(X) = Hy(X;Le(0)) foralln € Z,

where L4 (0) is an 2-spectrum of simplicial sets of quadratic forms and formations
over Z such that Lo(0) >~ Z x G/TOP. In fact, the proof for this 4-periodic
analogue is easier, and the extra discussion surrounding Theorem 3.18 (such as the
modifications in dimension 4) is not needed, since after applying the periodicity
map all calculations can be done in a sufficiently high dimension.

Remark 3.36. More generally, the same method from above can be applied to the
case where X is a closed oriented connected ANR homology manifold of dimension
> 6. The analogue of the 4-periodic exact sequence from line (3.1) in Theorem
3.22 in this case is precisely the homology manifold surgery exact sequence of [11,
Main Theorem, p. 439]. Here the only essential difference from the topological
manifold case is that we do not have special low-dimensional features to correct
for the lack of realization of L¢(e) by manifolds.

3.4 Structure Group by Smooth or PL Representatives

In this subsection, we observe that the elements in our definition of the structure
group always have smooth representatives. Perhaps this is the main philosophical
point of this approach to surgery—the most naturally functorial version of struc-
tures is independent of the category, and boils down to the topological category.

Let X be a closed connected topological manifold. Consider the smooth and PL
versions of the long exact sequence from Theorem 3.22, and denote them by

o) i* o0
= NES (X w) S LS (m X w)

(3.5) . 5

25 SC (X w) 25 NET (X w) — -
and
a6 — NP (X w) S LY (X w)

% 0
Iy SPL(Xw) =5 NPE (X w) — -

13 Quinn showed that an ANR homology manifold whose boundary is a manifold can be resolved
rel boundary [59, 60].
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respectively, where the various groups are defined as follows.
DEFINITION 3.37. An element
0 = (M,d3M.¢.N,0N, f) e SC7(X;w) (resp., SPH(X; w))

consists of the following data:

(1) 0 is an element of S, (X; w) (cf. Definition 3.4);
(2) M and N are smooth (resp., PL) manifolds with boundary, and the map
f:N — M is smooth (resp., PL).

We point out that X is only a topological manifold, and the control maps ¢ and
Y are only assumed to be continuous. The groups /\/',fj C>o(X ;w), L,?oo(mX Tw),
NFL(X;w), and LEY (71 X; w) are defined similarly. There is an obvious map
from the smooth version to the PL version, which in turn can be mapped to the
topological version.

Recall that, for n > 5, the group L, (71 X, w) remains the same in all smooth,
PL, and topological categories (see, for example, [77, chap. 9] where the proof for
identifying L, (71 X, w) with the algebraic definition LZ (1 X, w) works equally
for all three categories).

‘We shall make the same modification as in Definition 3.16 for dimensions < 4
so that both Nf “(X;w) and NPL(X;w) define the same homology theory as
Nu(X;w). To be more precise, the same discussion before Theorem 3.18 works
for the PL category. While surgery is usually impossible in the smooth category,
thanks to the work of Cappell and Shaneson [13], it still works stably, that is, af-
ter taking connected sums with sufficiently many copies of S? x S?, where S?
is the standard 2-sphere. As a consequence, it follows that ./\/'nc “(X;w) is natu-
rally isomorphic to NPX(X; w) and Ny (X; w) for all n > 0. Now the following
proposition is an immediate consequence of the five lemma.

PROPOSITION 3.38. Forn > 5, we have natural isomorphisms
ST (X:w) = STH(Xw) = Sy (X w).
In particular, every element in S, (X ; w) has a smooth (resp., PL) representative.

Remark 3.39. The reader should not confuse Snc = (X; w) with the smooth struc-
ture set of a smooth manifold. The group SnC “(X; w) still characterizes topolog-
ical manifold structures on X. The novelty here is that we allow manifolds with
boundary and corners in the definition of S,f “(X:;w). Similar remarks apply to
SPL(X; w) as well.

This type of argument would fail if we restrict ourselves to only closed mani-
folds as in the classical definition of STOP(X). Moreover, we point out that our
definition S, (X) continues to make sense even if X is not a manifold. One essen-
tial point here is that with our new definition, we are forcing structure groups to be
functorial, which they do not seem to be in the case of smooth manifold structures.
In fact, the smooth manifold structure set does nof carry an abelian group structure
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that makes the smooth surgery exact sequence into an exact sequence of abelian
groups.

3.5 Piecewise Linear Control

In this subsection, we will give another definition of the structure group using
a different type of control that, we will see, can be used to obtain infinitesimal
control.

Note that our definition of S, (X) only depends on the homotopy type of X. In
other words, S, (X) is isomorphic to S, (X’) for every pair of homotopy equiva-
lent spaces X and X’. Recall that every closed topological manifold is homotopy
equivalent to a finite C W -complex (cf. [47]), and therefore homotopy equivalent
to a finite simplicial complex.'* On the other hand, every finite simplicial complex
is homotopy equivalent to a smooth manifold with boundary. Indeed, after being
embedded into a Euclidean space, a finite simplicial complex is homotopy equiv-
alent to a regular neighborhood, which is a smooth manifold with boundary."® To
summarize, every topological manifold of dimension > 5 is homotopy equivalent
to a smooth manifold with boundary. So from now on, without loss of generality,
let us assume X is a smooth manifold with boundary. In particular, let us fix a
triangulation of X throughout this subsection.

Remark 3.40. In the above discussion, when we homotope a topological manifold
Z to a smooth manifold, say X, the dimension of X is larger than that of Z in
general. However, we point out that the objects in the definition of S,(Z) and
Sn(X) are still of dimension 7, regardless of the dimension of X or Z.

In the following, we work in the PL category. In particular, all objects are
equipped with a triangulation and all morphisms are assumed to be simplicial. We
refer the reader to [69—71] for more details on PL transversality.

DEFINITION 3.41. Let Y and Z be a pair of PL manifolds equipped with certain
triangulations. A homotopy equivalence /: Y — Z is said to be PL controlled over
X via the control map ¢: Z — X if the following is satisfied.

(1) ¢ is transversal to the triangulation of X. That is, the map ¢: Z — X is
transversal to every simplex A¥ in the triangulation of X . In particular, the
inverse image of each simplex A¥ (in the triangulation of X)) is a manifold
k-ad.

(2) h restricts to a homotopy equivalence from (¢ o 1)1 (A¥) to ™1 (A¥) for
every simplex A¥ of X. More precisely, there exists a homotopy inverse
g:Z — Y of h such that

(i) the homotopy H:h o g ~ Id restricts to a homotopy on ¢! (A¥);
(ii) the homotopy H': goh ~ Id restricts to a homotopy on (¢oh)~! (Ak ).

141 fact, any manifold of dimension # 4 is homeomorphic to a CW complex.
15 Note that, in general, the dimension of this smooth manifold with boundary is larger than the
dimension of the original topological manifold we started with.
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Remark 3.42. Note that, in the above definition, for each simplex A¥ in X , the
homotopy equivalences 4 and g and the homotopies H and H’ all respect the
appropriate manifold ad structure on the inverse image <p_1(Ak ). In particular,
near various boundaries of ¢~ 1(A¥), the map h, g, H, and H' have appropriate
product structures. For example, the inverse image K = ¢~ !(A!) of a 1-simplex
Al is a manifold 1-ad, that is, a manifold with boundary 0K. In this case, the
restrictions of i, g, H, and H' on ¢~ 1(A!) maps 0K to K, and have product
structure near dK. We refer the reader to [77, chap. 0] for more details on the
notion of manifold m-ads.

Now similar to Section 3.4, we can define a new surgery long exact sequence by
using PL-control instead of infinitesimal control (Definition 3.3):

+ Ix +
= NP (X w) S LY (i X w)

0

(3.7) .
EAN S,I:L+(X;w) — N:LJF(X; W) —> - --

where the superscript PL™T stands for PL-representatives with PL-control. More
precisely, for example, for elements in SE(X; w), we replace infinitesimal control

with PL-control, and denote the new group by 85L+ (X;w).

Remark 3.43. The definition of PL-control we gave works well only when X is
a PL manifold. We point out that, when X is a PL manifold with boundary, to
define SPL7 (X w), every element 6 = (M, M. ¢, N, 3N, ¥, f) is assumed to be
disjoint from the boundary of X. Thatis, p(M)NdX = @, y(N)NJdX = @, and
all other relevant data do not intersect dX . Similar remarks apply to VP Lt (X;w)pL
and PV (7 X w).

Remark 3.44. Using the ideas of Quinn from [61], we can generalize the above
construction to the case where X is an arbitrary finite polyhedron. In that case,
to define PL control, the conditions are not on inverse images of simplices, but
rather of their dual cones. In this more general setting, the covariant functoriality

of SEL+ (X; w) becomes clear.

In the following proposition, we prove that the above notion of PL-control in
fact implies infinitesimal control by modifying the control map ¢: Z — X if nec-
essary. More precisely, we can keep the map /: Y — Z unchanged, and homotope
the control map ¢ to another control map ¢ so that 4 becomes infinitesimally con-
trolled with respect to @.

PROPOSITION 3.45. Let X be an n-dimensional PL manifold with boundary that
is equipped with a triangulation. Suppose h:Y — Z is a PL controlled homotopy
equivalence over X via the control map ¢:Z — X. Then there exists a control
map ¢: Z — X such that

(1) @ is homotopic to ¢;



40

2

S. WEINBERGER, Z. XIE, AND G. YU

h restricts to a proper homotopy equivalence

hy U - g U

for all open subsets U C X, where = @ o h.

PROOF. The proof is by induction and uses a “dual cone” picture as described,
for example, in [61, sec. 6].

Suppose K is a simplicial complex. We take the first barycentric subdivision
of K. For every simplex o in K, we define the dual cone D(0) to be the union of
all simplices of the subdivision that intersect o in exactly the barycenter of 0. Now
the key idea of the proof is to crush all the nontrivial changes in topology of Z and
Y, and the homotopy equivalence % to small parts. More precisely, we have the
following induction construction. Let X %) be the k-skeleton of X, that is, X %) is
the union of all simplices in X of dimensions < k.

@)

(i)

INITIAL STEP. First, consider Z() = =1 (X M) the inverse image of
X@_ Note that =1 (X D) has product structure near Z© = ¢~1(x @),
Let us denote by Z éo) for such a small open neighborhood (with product
structure) of Z©@ in ZMW_ Let Zgl) =zMW_z go) be the complement of
AT WALS

We define a new control map

01: ZW =71 (xW) 5 x

by mapping each component of Z él) to the barycenter of the corresponding
I-simplex in X and stretching out Zéo) (which is of product structure)
accordingly (cf. Figures 3.9 and 3.10). Intuitively, we see that the nontrivial
changes of topology from Z ©) to ZM are all pushed to the barycenters of
1-simplices in X . In particular, for all open subsets V' C X M h restricts
to a proper homotopy equivalence h: ¥y L) —» (pl_l(V), where {1 =
@1 0 h.

INDUCTION STEP. Suppose we have defined the control map

Ok zk) — go_l(X(k)) — x &)
Now let us extend @ to a control map

§0k+1iz(k+1) _ w—l(X(k-i-l)) _ x&+1)
Intuitively, for each simplex AK*1 of X, we shall define @k +1 So that most
of ¢~ 1(A¥*1) is mapped to the barycenter of AK*1 and the remaining
part of <p_1(Ak *1) (which again has an appropriate product structure) is
stretched out accordingly.

More precisely, note that Z (k+1) has product structure near Z &) Let

us denote by Z E(k) a small open neighborhood (with product structure) of
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FIGURE 3.9. The original map ¢.

?1

FIGURE 3.10. The new map ¢;.

20 in ZzE+D Ler zKFD = 7G+1) _ 7% pe the complement of ZH
in Z®+1D_ We define a new control map

Py 20D = 7 (X D) o x

by mapping each component of Zc(,kH) to the barycenter of the corre-
sponding (k + 1)-simplex in X, and stretching out Z é") (which has a prod-
uct structure) accordingly. It is clear that this process keeps ¢y unchanged
on Z®.

In the end, we obtain a new control map ¢ = ¢,: Z — X, where n is the dimension
of X. It is clear from the construction that ¢ is homotopic to ¢. Moreover, A
restricts to a proper homotopy equivalence

hy U - g U
for all open subsets U C X, where ¥ = @ o h. This finishes the proof. U
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DEFINITION 3.46. Let Y and Z be a pair of PL manifolds equipped with trian-
gulations. A homotopy equivalence h:Y — Z is said to be PL infinitesimally
controlled over X via a control map ¢: Z — X if h is PL controlled over X via ¢
and A restricts to a proper homotopy equivalence

hy U - g U
for all open subsets U C X, where ¥ = @ o h.
The following is an immediate corollary of Proposition 3.45.

COROLLARY 3.47. Let § = (M,dM, ¢, N,ON, V¥, f) be an element in S5 (X )pL.
Then there exists a control map ¢: M — X such that ¢ is homotopic to ¢ and on
the boundary f restricts to a PL infinitesimally controlled homotopy equivalence

Flan: N — M.

In order to more directly apply the discussion above to the geometrically con-
trolled category (Section 4.4), let us state the PL infinitesimal control in terms of
triangulations. We borrow the notation from Definition 3.3. In our current situa-
tion, we can choose proper simplicial maps

®:CM — X x[l,00) and W:CN — X x [1,00),
F:CN —-CM and G:CM — CN,
and a proper simplicial homotopy { Hs}o<s<1 between
Hy=FoG and H{=1d:CM —- CM
and a proper simplicial homotopy { H{}o<s<1 between
H)y=GoF and H;=I1d:CN —CN

such that the following are satisfied:

(1) ® =@ xId: M x [1,00) — dM x [1,00), where ¢ is the new controlled
map obtained from ¢ as in Proposition 3.45 above; ¥ = v x Id: ON X
[1,00) — ON x[1,00), where ¥ = @o f;and F = f xId: 0N x[1, 00) —
dM x [1, o0) with commutative diagram

fxId

N x [1,00) oM x [1,00)
% %
X x[1,00)

(2) X x[1, 00) is equipped with a triangulation of bounded geometry (cf. Def-
inition 4.12) such that the sizes of simplices uniformly go to 0 as we ap-
proach infinity along the cylindrical direction; for example, this is can be
achieved by the standard subdivision in Section 4.2.
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(3) f xIdis PL infinitesimally controlled. More precisely, the homotopy
H:FoG~I1d:CM - CM

restricts to a homotopy on ®~1(A) for every simplex A in X x [1, 00).
The homotopy

H:GoF ~1d:CN - CN

restricts to a homotopy on W1 (A) for every simplex A in X x [, 00).
(4) All maps f xId, G, H, and H' are geometrically controlled over the cone
CX (see Definition 4.32) in the sense of Section 4.4 below.

Recall that the surgery long exact sequence built using PL transversality is
equivalent to the surgery long exact sequence built using block bundles; cf. [62],
and also [12,51]. By Proposition 3.45, we have the following commutative dia-
gram:

— NP (X w) — LI (m X w) — ST (X iw) — NP (Xw) —

o | | xkl l

—>N,f_Li_1(X;w) —>L£I:H(n1X; w) — SPH (X w) — NPH(X w) — .

Let us first prove that all vertical maps are isomorphisms when £ > dim X + 5.
We will then show how to handle the general case.

PROPOSITION 3.48. Ifk > dim X + 5, then the map
A ST (X w) — SPH(X; w)
is an isomorphism.
PROOF. Let us first prove that the maps
Olki./\/’]?]“+ X;w) —> /\/',fL(X; w)

and
Bi: L' (1 X:w) — LP (1 X w)

are isomorphisms. This, for example, can be proven by the same techniques from
[77, chap. 9]. The reason for the assumption £k > dim X + 5 comes from the
fact that, in order to apply the techniques from [77, chap. 9], the fibers of the
control maps such as ¢: M — X need to be at least 5-dimensional. So when
k > dim X + 5, we have that oy and f; are isomorphisms. Now the proof is
finished by applying the five lemma. U

Now let us consider the case of S, (X) where n = dim X. If we apply the
periodicity map xCP? twice, then we have

Su(X) = SPH(X) <> SPLo(X) = SPLE(X).

n
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So far in this subsection we have been assuming that X is a PL manifold. Now
let us consider that case where X is a topological manifold of dimension n, which
is the case that we are mainly interested in. Let X’ be a PL manifold (possibly
with dimension greater than n) that is homotopic to X (cf. the discussion at the
beginning of this subsection). Then after applying the periodicity map £ times, we
have

+
Sp(X) = Su(X) = SHX') = S 4y (X)) = S (X))

as long as n + 4¢ > dim X' + 5.
As a consequence, our definition of the higher rho invariant map (see Definition
4.38 below)

p:Sa(X) = Kn(CF o(X)T)

is in fact the composition
+ o = =
Sn(X) = 84 (X') = Kpnpae(CLo(XNT) = Kn(Cf o (D)T).
On the other hand, by the product formula for higher rho invariants, we have

p(0 x CP?) = p(6) in Kniae(C7o(XN") 2= Kypaesa(CLo(X)T)
S 5';:; (X ’). This product formula can be proved by a similar

argument as in Proposition D.3 and the fact that the signature of CP2 is equal to 1;
also see Remark 3.49 below. It follows that the higher rho invariant map above is
independent of the choices of X’ and £. From now on, if no confusion is likely to

arise, we will write S, (X) in place of S, (X).

for any element 0 €

Remark 3.49. Suppose Y{" and Y are complete Riemannian manifolds of dimen-
sion m and n. Let Dy, , Dy,, and Dy, xy, be the signature operator on Y1, Y3,
and Y7 x Y, respectively. Then the signature operator Dy, xy, = Dy, X Dy, if
m -n is even, and Dy, xy, = 2(Dy, ¥ Dy,) if m - n is odd. Here Dy, X Dy, is
the external product of Dy, and Dy, . See, for example, [68, lemma 6].

Remark 3.50. Everything in this subsection has an obvious equivalent counterpart
in terms of smooth representatives with PL-control. For example, we also have a
long exact sequence

oo I o0 Jx
58 e NET (X w)pL —> LET (11 X w)pL 2>

oo 8* o0
SET (X w)pL —> NET (X w)pL — -+

where the subscript PL stands for PL-control. That is, for example, for elements in
Snc ~ (X; w), we replace infinitesimal control with PL-control.
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4 Additivity of Higher Rho Invariants

In this section, we define the higher rho invariant for elements in S, (X) using
our new description of the structure group, where X is a closed oriented topologi-
cal manifold of dimension n. Furthermore, we prove that the higher rho invariant
defines a group homomorphism from S, (X) to K, (C I:k,o(f )T), where X is a uni-
versal coverof X andI' = 71 X.

4.1 A Hybrid C*-Algebra

In this subsection, we introduce a certain hybrid C *-algebra that is useful for
the definition of higher rho invariant.

Suppose I is a countable discrete group. Let ¥ be proper metric space equipped
with a proper I'-action.

DEFINITION 4.1. We define C*(Y)T to be the C *-subalgebra of C*(Y') generated
by elements « € C*(Y) of the following form: for any ¢ > 0, there exists a I"-
invariant I"'-cocompact subset K C Y such that the propagations of oy y _g) and
X (¥ —k)« are both less than . Here y(y —g) is the characteristic functionon Y — K.

DEFINITION 4.2. We define le,o,c(Y)F to be the C*-subalgebra of Cf’ ((Y') gen-
erated by elements « € C;' 0 (Y) of the following form: for any ¢ > 0, there exists a
[-invariant I'-cocompact subset K C Y such that the propagations of & () y (y —k)
and y(y—k)a(t) are both less than ¢ for all 7 € [0, 00).

Let X x[1, oo) be as before. We denote the universal cover of X by X and write
I' = 7 X. Itis obvious that .% = C; ((X x [L.r]: X x [1,00))T" is a two-sided
closed ideal of C;* c(f x [1, 00))T for any r > 1.

DEFINITION 4.3. Let .# be the norm closure of the union

U 7 = Gl o(X x[1.r]: X x [1.oo))T.

r>1 r>1

Note that ¢ is also a two-sided closed ideal of C;" , C()'(~ x [1,00))T'. Recall
that

Ki(Cf o(X x[1,r]: X x [1,oo)!) = Ki(Cf o(X x [1.r)T) = K;i (Cf o(X)T)
fori =0, 1. It follows that K; (_#) = Ki(C} o(X)T).

PROPOSITION 4.4. The inclusion ¢ C C} C(f x [1,00)Y induces an isomor-
phism at the level of K -theory. That is, we have

Ki(Cf o (X x[1,00)") = Ki([#) = Ki(C] o(X)")
fori =0,1.
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PROOF. For notational simplicity, let us write
o =Cf o (X x[1,00).
We have the following short exact sequence of C *-algebras:

O—>ﬂ—>;z%i>d/f—>0.
To prove the proposition, it suffices to show that
Ki(o/]7) =0

for i = 0, 1. This can be proven by an Eilenberg swindle argument as follows.

We prove the odd case, that is, K;(<7/.#) = 0; the even case is completely
similar. Suppose & is an invertible element in .27t /.# where </ is the unitization
of o/. Let a be a lift of @ in &/ . Without loss of generality, let us assume that
o — 1 € 7. For each n € N, we define an element o, € &7 T as follows:

1 if0 <t <n,
anlt) = {a(l —n) ift>n.
We define
BW) =P (1 + xnan(®) — Dixn).
n=0

where y, is the characteristic function on the set X x [, 00).
We claim that 8 is an element in ./ *. Indeed, recall that, for any ¢ > 0, there
exists a positive integer N such that:

(1) the propagation of a(¢) is < ¢, forallt > N;

(2) the propagation ofoz(t)|5(~x[N ) is < g, forall ¢ > 0.
It follows that, for any ¢ > 0, we have that

(i) the propagation of B(t) is < ¢ forall t > 2N

(ii) the propagation of ,B(t)|5‘;X[N o0y 18 < e forallz > 0.

This proves that 3 E_%—i_. 3
Let us denote by B the image of B in &7+ /.#. We show that § is in fact invertible
ina/T/.7. Letw € o7/ be the lift of (¥)~!. Define

o0

() =@ (1 + xn(@nt) = Dyn).

n=0
where w, and y, are defined similarly as above. Note that the operators
1—8()u() and 1— u(¢)B(¢t) aresupported in X x [1,n + 1]

for all ¢ € [0, n]. It follows that 1 — S and 1 — uf are in the closure of Urzl Ir.

In particular, 1 — Bu and 1 — up are in _¢# . Therefore, B is an invertible element
inat/.7.



ADDITIVITY OF HIGHER RHO INVARIANTS 47

Similarly, let us define

oo

y(0) = DU + xulen(®) = D).

n=1

The same argument from above also shows that y € &/ +. Denote by ¥ the image
of yin &/t /.#. Then y is also an invertible element in ./ t).7.

Note that y(t — 1) = B(¢). Moreover, y and B are connected by a path of
invertible elements y;, 0 < s < 1, where y5(t) = (¢t — s). Therefore, we have

[¥] = [Bl € Ki(// 7).
It follows that
[B] = @ @ [7] = [@] & [B] € Ki(//.9),
which implies that [&] = 0. This finishes the proof. O

We also introduce a hybrid version for localization C *-algebras.

DEFINITION 4.5. We define CI:"!C(Y)F to be the C*-subalgebra of C;(Y) gener-
ated by elements a € C;(Y) of the following form: for any & > 0, there exists a
[-invariant I'-cocompact subset K C Y such that the propagations of & () (v —k)
and y(y k) (t) are both less than ¢ for all 7 € [0, 00).

The analogue of Proposition 4.4 does not hold for C; c(Y)r. In fact, the fol-
lowing lemma shows that the K-theory groups of C/ C(Y)F always vanish.

LEMMA 4.6. We have K; (c;,c()'f x [1,00)T) = 0 fori =0, 1.
PROOF. It is easy to see that
Ki(Cf (X x[1,00)7) = K;i (C/(X x [1,00)T).

The latter is always 0 by a standard Eilenberg swindle argument. This finishes the
proof. O

The following corollary is an immediate consequence of the above lemma.
COROLLARY 4.7. We have the following isomorphism:
Ki(CH(X x[1,00)7) = Ki11(C/ g (X x [1,00))T).

PROOF. It follows from applying the results above to the K-theory long exact
sequence of

0— (:Z‘,O,C(jZ X [1’00))F - CZ,C(X: 2 [1700))F - Cc*()? X [1, OQ))r — 0.
Il
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4.2 Simplicial Complexes and Refinements

In this subsection, we describe a refinement procedure for a given triangula-
tion M. This refinement procedure produces a particular subdivision of M, de-
noted by Sub(M ), such that all successive refinements

Sub™(M) := Sub(Sub” "} (M))

have uniform bounded geometry, that is, uniform with respect to n € N. There
are other treatments of subdivision schemes in the literature which also achieve
the uniformity of bounded geometry [25] [29]. The following discussion is taken
from [40].

Let us first recall the notion of typed simplicial complexes.

DEFINITION 4.8 (cf. [10,45]). Suppose M is a simplicial complex of dimension .
Let M© be the set of vertices of M. A typeon M isamap ¢ : M® — {0,1,...,n}
such that for any simplex w € M, the images by ¢ of the vertices of w are pairwise
distinct. A simplicial complex equipped with a type is said to be typed.

Given any simplicial complex M of dimension n, we denote its barycentric
subdivision by Y. Then Y admits a type. Indeed, Y is the set of totally ordered
subsets of M, that is,

Yk ={(00....,00) | 0; € X and o; is a face of 074 1}.

The dimension function, which maps each barycenter of a simplex of M to the
dimension of that simplex, is a type on Y.

Now suppose M is a typed simplicial complex of dimension n. In particular,
this gives a consistent way of ordering the vertices of each simplex in X according
to the type map. Therefore, each k-simplex of M can be canonically identified
with the standard k-simplex A¥. Now to define our refinement procedure, it suf-
fices to describe certain subdivisions of the standard simplices so that the number
of simplices containing any given vertex remains uniformly bounded for all suc-
cessive subvisions. One way to achieve this is by the so-called standard subdivi-
sion [83, app. I1.4]. In the following, we briefly recall the construction of standard
subdivision, and refer the reader to [83, app. 11.4] for more details.

Let 0 = [vo,v1,..., V] be a standard simplex with its vertices given in the
order shown. Set

1 .
Uijzivi‘i'ij, 1 =]
in particular, v;; = v;. These are the vertices of the standard subdivision of o,

denoted Sub(o). Define a partial ordering on these vertices by setting
Vij < Vg ifk <iandj <I.

Now the simplices of Sub(o) are all those formed from the v;;, which are in in-
creasing order. Moreover, each simplex in Sub(o) naturally inherits an ordering
of vertices from the above partial ordering of v;;. It is not difficult to verify that
Sub(o) carries a natural type by mapping v;; = (j —i).
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To summarize, given a typed simplicial complex M of dimension n, we apply
the above standard subdivision procedure (consistently) to each n-simplex of M.
We call the resulting simplicial complex the standard subdivision of M, denoted
by Sub(M). Note that Sub(M) is also typed.

4.3 Hilbert-Poincaré Complexes

In this subsection, we recall the definition of Hilbert-Poincaré complexes, which
is fundamental for studying higher signatures of topological spaces. We refer to
[37] for more details.

Let A be a unital C*-algebra. Consider a chain complex of Hilbert modules

over A:
by b> by
E0<—E1 <—<—En

where the differentials b; are bounded adjointable operators. The 7™ homology
of the complex is the quotient space obtained by dividing the kernel of b; by the
image of b; 1. Note that, since the differentials need not have closed range, the
homology spaces are not necessarily Hilbert modules themselves.

DEFINITION 4.9. An n-dimensional Hilbert-Poincaré complex (over a C *-algebra
A) is a complex of finitely generated Hilbert A-modules

by b> by
E()(—El(—---(—En

together with adjointable operators T : £, — Ej_, such that

(1) if v € Ep, then T*v = (—1)*=PIPTy;

(2) if v € Ep, then TH*(v) + (—1)?bT (v) = 0;

(3) T is a chain homotopy equivalence'® from the dual complex
b b bt

—1
E, <= Ep_1 <—— .-« Ey

to the complex (E, b).

Now we will associate to each n-dimensional Hilbert-Poincaré complex an in-
dex class, called signature, in the K-theory group K, (A4).

DEFINITION 4.10. Let (E, b, T) be an n-dimensional Hilbert-Poincaré complex.
We denote / to be the integer such that

21 if n is even,
n =
2l +1 ifnisodd.

Define S : E — E to be the bounded adjointable operator such that
S(v) = iPP=DH ()
forv € Ep. Herei = +/—1.
16T be precise, by item (2), we need to impose appropriate signs so that 7 becomes a genuine

chain map. However, we will follow the usual convention and leave it as is, with the understanding
that appropriate signs are employed.
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It is not hard to verify that S = S* and bS + Sb* = 0. Moreover, if we define
B = b + b*, then the self-adjoint operators B + S : E — E are invertible [37,
lemma 3.5].

DEFINITION 4.11. The signature index of a Hilbert-Poincaré complex is defined
as follows.

(1) Let (E, b, T) be an odd-dimensional Hilbert-Poincaré complex. Its signa-
ture is the class in K1(A) of the invertible operator

(B4 S)(B—=S)"': Eopy = Eep

where Eey = ©pErp.

(ii) If (E, b, T) is an even-dimensional Hilbert-Poincaré complex, then its sig-
nature is the class in Ko(A) determined by the formal difference [Py] —
[ P—] of the positive projections of B + S and B — S.

4.4 Geometrically Controlled Poincaré Complexes

In this subsection, we recall the definition of geometrically controlled Poincaré
complexes [38]. They are Hilbert-Poincaré complexes in the geometrically con-
trolled category.

DEFINITION 4.12. A simplicial complex M is of bounded geometry if there is a
positive integer k such that each of the vertices of M lies in at most k different
simplices of M.

DEFINITION 4.13. Let X be a proper metric space. A complex vector space V'
is geometrically controlled over X if it is provided with a basis B C V and a
function ¢ : B — X with the following property: for every R > 0, there is an
N < oo such that if § C X has diameter less than R then ¢~ 1(S) has cardinality
less than N. From now on, we call such V' a geometrically controlled X -module,
and the function ¢ a labeling of the elements in B. In particular, we say v € B is
labeled by ¢(v) € X.

Note that each geometrically controlled vector space V' over X is assigned with
a basis B. There is a natural completion of V' into a Hilbert space V' in which the
basis B of V becomes an orthonormal basis of V.

Let V]i" = Homy (V, C) be the vector space of finitely supported linear functions

on V. Then V; is identified with V under the inner product on V.

DEFINITION 4.14. A linear map T:V — W is geometrically controlled over X
if:

(1) V and W are geometrically controlled;

(2) the matrix coefficients of 7" with respect to the given bases of V and W are
uniformly bounded;

(3) there is a constant K > O such that the (v, w)-matrix coefficients is 0
whenever d(c(v), c(w)) > K. The smallest such K is called the propaga-
tion of T'.
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It is easy to see that a geometrically controlled linear map 7:V — W has a
natural dual
T W -V
that is canonically identified with a geometrically controlled linear map, still de-
noted by 7%,
T W — V.

DEFINITION 4.15. A chain complex

b b by
Eo(—lEl <—2<—En
is called a geometrically controlled chain complex over X if each Ej is a geo-
metrically controlled X -module, and each b, is a geometrically controlled linear
map.

DEFINITION 4.16. Let f1, f2: (E,b) — (E’, b’) be geometrically controlled chain
maps between two geometrically controlled chain complexes (E, b) and (E’, b’).
We say fi and f> are geometrically controlled homotopic to each other if there
exists a geometrically controlled linear map h: (Ex,b) — (E._ ,,b’) such that

*+1°
fi— fo=bh+hb.

In this case, & is called a geometrically controlled chain homotopy between f;
and f5.

Now we give the definition of geometrically controlled Poincaré complexes.

DEFINITION 4.17. An n-dimensional geometrically controlled Poincaré complex
(with control respect to X)) is a complex of geometrically controlled X -modules
b b by
E()(—lEl <—2<—En
together with geometrically controlled linear maps 7: E, — E,—p and b: E;, —
E,—1 such that:

(1) if v € Ep, then T*v = (—1)*=PIPTy;
(2) if v € Ep, then TH*(v) + (—=1)?bT (v) = 0;
(3) T is a geometrically controlled chain homotopy equivalence from the dual
complex
b, by by
E,<«—E, 1<«— ---«— Ej
to the complex (E, b). Here we have identified the finitely supported dual

. .
Ef with E.

EXAMPLE 4.18. Our typical example of a geometrically controlled Poincaré com-
plex comes from a triangulation of a closed smooth manifold (more generally, a
triangulation of a complete Riemannian manifold without boundary, e.g., the man-
ifold CM from above); cf. [38, secs. 3 and 4].
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We introduce the following notion of geometrically controlled homotopy equiv-
alences of geometrically controlled Poincaré complexes.

DEFINITION 4.19. Given two n-dimensional geometrically controlled Poincaré
complexes (E,b,T) and (E’,b’, T'), a geometrically controlled homotopy equiv-
alence between them consists of two geometrically controlled chain maps

f:(E,b) = (E’,b") and g:(E’,b") — (E,b)
such that

(1) go f and f o g are geometrically controlled homotopic to the identity;
(2) fTf™* is geometrically controlled homotopic to 7”, where f™* is the dual
of f:

* *

b
’ n I 1 ’
E,«+"E  +—- -+ E]

I, I |
by by

1
En+——E, {+— --+——Ey.

Remark 4.20. In the above definition, it is automatic that g7”’g* is also geometri-
cally controlled homotopic to 7'. Indeed, we have

gT'g* ~g(fTf*)g* = @NHT(f*g") ~T.

There is an obvious equivariant theory of geometrically controlled Poincaré
complexes. We shall omit the details and refer the reader to [38, sec. 3] for fur-
ther reading.

4.5 Analytically Controlled Poincaré Complexes

In this subsection, we recall the definition of analytically controlled Poincaré
complexes [38]. In particular, we review a natural way to pass from the geometri-
cally controlled category to the analytically controlled category; cf. [38, sec. 3].

Recall from Section 2 that an X -module is a separable Hilbert space H equipped
with a x-representation of Co(X ), the algebra of all continuous functions on X that
vanish at infinity. To distinguish from geometrically controlled X -modules, we call
such H an analytically controlled X -module from now on.

DEFINITION 4.21. Let Hy and H» be two analytically controlled X-modules. A
linear map 7': Hy — H> is said to be analytically controlled if T is the norm limit
of locally compact and finite propagation bounded operators.

Remark 4.22. In this paper, we have chosen to work with signature operators aris-
ing from triangulations of manifolds. This is the bounded case, where all operators
are bounded. If one wants to work with unbounded signature operators arising
from L2-de Rham complexes of Riemannian manifolds, then one needs a slightly
different notion of analytical controls. See [37, sec. 5] for more details.
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The notion of geometrically controlled homotopy equivalence of geometrically
controlled chain complexes naturally passes to the following notion of analytically
controlled homotopy equivalence of analytically controlled chain complexes.

DEFINITION 4.23. A chain complex

by b> bn
E0<—E1 <—<—En
is called an analytically controlled chain complex over X if each Ej, is an analyti-
cally controlled X -module, and each b, is an analytically controlled morphism.

DEFINITION 4.24. Let f1, f>: (E,b) — (E’,b’) be analytically controlled chain
maps between two analytically controlled chain complexes (E, b) and (E’, b’). We
say f1 and f5 are analytically controlled homotopic to each other if there exists an

analytically controlled linear map : (Ex,b) — (E,_;.b’) such that

fi— f2 =b'h + hb.
Now we introduce the notion of analytically controlled Poincaré complexes.

DEFINITION 4.25. An n-dimensional analytically controlled Poincaré complex
(with control respect to X)) is a complex of analytically controlled X -modules

b b by
Eg <= Ey <= --- <~ E,
together with analytically controlled linear maps T: E, — E,—p, and b: E, —
Ep—1 such that:
(1) if v € Ep, then T*v = (—1)*=P)PTy;
(2) if v € Ep, then Th*(v) + (—1)?bT (v) = 0;
(3) T is an analytically controlled chain homotopy equivalence from the dual
complex
by, by by
E,<«—E, 1 <«— -« E)

to the complex (E, b).

The following theorem is a rephrasing of a theorem of Higson and Roe [38,
theorem 3.14].

THEOREM 4.26 ([38, theorem 3.14]). Every geometrically controlled Poincaré
complex naturally defines an analytically controlled Poincaré complex by {*-com-
pletion.

We introduce the following notion of analytically controlled homotopy equiva-
lences of analytically controlled Poincaré complexes.

DEFINITION 4.27. Given two n-dimensional analytically controlled Poincaré com-
plexes (E,b,T) and (E’,b’, T), an analytically controlled homotopy equivalence
between them consists of two analytically controlled chain maps

f:(E,b) — (E’,b") and g:(E’,b")— (E.,b)
such that:
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(1) go f and f o g are analytically controlled homotopic to the identity;
(2) fTf* is analytically controlled homotopic to 7', where f* is the adjoint

of f.
For an analytically controlled Poincaré complex, its signature index naturally
lies in the K-theory of the Roe algebra C *(X).

DEFINITION 4.28.

(i) Let (E, b, T) be an odd-dimensional analytically controlled Poincaré com-
plex. Its signature is the class in K1(C *(X)) of the invertible operator

(B+S8)B—S8)"':Eey — Eep

where E,, = EBP Esp.

(i) If (E, b, T) is an even-dimensional analytically controlled Poincaré com-
plex, then its signature is the class in Ko(C* (X)) determined by the formal
difference [ P+] — [ P—] of the positive projections of B + S and B — S.

The following simpler notion of analytically controlled homotopy equivalence
will also be useful later.

DEFINITION 4.29. Let (E, b) be an analytically controlled chain over X. An op-
erator homotopy of analytically controlled Poincaré duality operators on (E, b) is
a norm continuous family of operators T, s € [0, 1], such that each (E, b, Ts) is
an analytically controlled Poincaré complex.

LEMMA 4.30 (cf. [37, lemma 4.6]). If a Poincaré duality operator T on an ana-
Iytically controlled Poincaré complex (E, b) is operator homotopic to —T through
a path of analytically controlled duality operator T, then the path

(B+ S)(B—S5)"!

is a norm-continuous path of analytically controlled invertible elements connecting
(B + S)(B — S)7! to the identity.

There is an obvious equivariant theory of analytically controlled Poincaré com-
plexes. We shall omit the details and refer the reader to [38, sec. 2] for further
reading.

Remark 4.31. If one prefers the exposition in terms of Hilbert C *-modules, there is
a natural way to make sense of everything in this subsection by using Roe algebras
in Section 2. More precisely, we fix an ample and nondegenerate analytically con-
trolled X -module H. Let C *(X) be the norm closure of locally compact and finite
propagation bounded linear operators from H to H. Thatis, C*(X) is the Roe al-
gebra of X associated to H. Now suppose H’ is any other analytically controlled
X-module. We define E(H, H’) to be the norm closure of locally compact and
finite propagation bounded linear operators from H to H’. Then clearly E(H, H')
carries a natural right Hilbert C*(X)-module structure. It is not difficult to see
that such a language will give an equivalent description of the discussion in this
subsection.



ADDITIVITY OF HIGHER RHO INVARIANTS 55

4.6 Higher Rho Invariant

In this subsection, we define the higher rho invariant for elements in our new
description of structure group. By Proposition 3.38, without loss of generality, it
suffices to construct the higher rho invariant and prove its additivity for smooth or
PL representatives in S, (X ). So throughout this subsection, we will be working in
the PL category unless otherwise specified.

Let6 = (M,dM, ¢, N,dN, ¥, f) be an element of S, (X). By the discussion of
Section 3.5, without loss of generality, we can assume 6 consists of the following
data:

(1) two triangulated PL. manifolds with boundary (M, dM) and (N, ON) with
dmM =dimN =n;

(2) acontrol map ¢: M — X that is PL transverse to the triangulation of X;

(3) a PL homotopy equivalence

F1(N,dN) — (M, M)

such that ¢ o f = 1. Moreover, on the boundary f restricts to a PL in-
finitesimally controlled homotopy equivalence f|yy:dN — dM over X.
See the discussion after Corollary 3.47 for more details.

Let X x[1, co) be equipped with the product metric, where the metric on [1, 00)
is the standard Euclidean metric. By using the standard subdivision of Section 4.2,
there exists a triangulation Triy x[1,00) Of X X [1, 00) such that:

(1) Trixx[1,00) has bounded geometry in the sense of Definition 4.12;
(2) the sizes!” of simplices in Trix x[1,00) uniformly go to 0 as we approach
infinity along the cylindrical direction.

Recall that every locally finite simplicial complex carries a natural path metric,
whose restriction to each n-simplex is the Riemannian metric obtained by identi-
fying the n-simplex with the standard n-simplex in the Euclidean space R”. Such
a metric is called a simplicial metric.

DEFINITION 4.32. Let X X [1, 00) be equipped with the triangulation Triy x[1,o0)
from above. We define the simplicial metric cone of X, denoted by C X, to be the
space X X [1, 00) equipped with the simplicial metric determined by Trix x[1,00)-

Remark 4.33. In order to avoid possible confusion between CX and X x [1, 00),
from now on the notation X X [1, co) will only stand for the space X x [1, 00)
equipped with the product metric.

Recall that the space of M attached with a cylinder is defined to be
CM = M Uyps (IM x [1,00)).

Let us fix a triangulation of CM as follows. On M, it is the original triangulation
of M. The triangulation on M X [1, o) is the pullback triangulation of Trix x[1, o)

7 Here the size of a simplex is measured with respect to the product metric on X x [1, 00).
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under the map
@y X Id: OM x [1,00) — CX,

where @y: dM — X is the restriction of ¢: M — X on dM. More precisely, for
every simplex AK C CX, the inverse image (g x Id) ™1 (A¥) is a product K x A,
where K is some triangulated submanifold of dM .

Let I' = 71 X. We denote by CM (resp., CN ) the corresponding I'-cover of
CM (resp., CN) induced by ®: CM — X x[1,00) (resp., ¥V:CN — X x[1, 00)).
Here we have borrowed the same notation from Definition 3.3.

Note that the simplicial decomposition of CM (resp., C N) naturally lifts to
a I'-equivariant simplicial decomposition of CM (resp., CN ). Consider the I'-
equivariant geometrically controlled Poincaré complex

~ b —~ b by —
Eo(CM) <~ E{(CM) <= --- <~ E,(CM)

associated to the above I'-equivariant simplicial decomposition of CM, where

(1) E; (6'7\2 ) is a geometrically controlled (C~X, I')-module,
(2) b; is a geometrically controlled morphism,
(3) the Poincaré duality map 7 is given by the usual cap product with the I'-
equivariant fundamental class of CM.
The £2-completion of this I'-equivariant geometrically controlled Poincaré com-
plex gives rises to a I'-equivariant analytically controlled Poincaré complex, still
denoted by (E (67\71 ), b, T'). We summarize this in the following lemma.

LEMMA 4.34, (E(é?\?) b, T) is a I'-equivariant analytically controlled Poincaré
complex.

Similarly, we have the ["'-equivariant analytically controlled Poincaré complex
(E(CN),b’,T’) associated to CN :

— b — B b, —
Eo(CN) <~ E{(CN) <= --- <~ E,(CN).

Now let us proceed to define the higher rho invariant for elements in S, (X). We
will only give the details for the odd-dimensional case, that is, the case where 7 is
odd. The even-dimensional case is completely similar.

In the following, all controls are measured with respect to the control maps

®:CM — X x[l,00) and WVY:CN — X x[1,00).

For notational simplicity, we shall drop the term “I"-equivariant” in the construc-
tion below, with the understanding that all steps below are done I'-equivariantly.
Also, we write E = E(CM) and E' = E(CN).

Let us consider the I'-equivariant analytically controlled Poincaré complex

E60.T)=(E®E b®b,T&-T).
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Let B= B @® B and S = S @ —S’ (cf. Definition 4.10). The signature index of
(£.b,T) is defined to be the class of (B+ S)(B—S)~ ! in K1(C*(CX)). Clearly,
the map

4.1) 7:CX - X x[1,00)

by t(x,t) = (x,t) is a proper continuous map that induces a C *-algebra homo-
morphism
T C*(CX) — CX(X x [1, 00)).
Similarly, we have
T CL*,O(CX) — CZO’C(X % [1, 00)).

There are also obvious I'-equivariant versions. In the following, unless otherwise
specified, all elements below are to be thought of as their corresponding images
under the map 7.

Following Higson and Roe [37, sec. 4], we shall first build an explicit path of
invertible elements connecting

B+3S)(B-S8)!

to the identity element, within the C*-algebra C*(X x [1, 00))T.
Let F: E' — E and G: E — E’ be the chain maps induced by F:CN — CM
and G:CM — CN.

LEMMA 4.35. With the same notation above, F: E' — E and G: E — E’ satisfy
the following conditions:
(1) the chain maps F:(E’,b’) — (E,b) and G:(E,b) — (E’,b’) are ana-
lytically controlled;
(2) GF and FG are analytically controlled homotopic to the identity;
(3) GTG*™ is analytically controlled homotopic to T'.

Moreover, for any ¢ > 0, there exists a positive number k such that the chain
maps F and G and the various homotopies have propagation < & away from
N U (0N x [1,k]) and M U (dM x [1,k]).

In particular, we see that the operator

T 0
0 (s—1DT'—sGTG*

implements a Poincaré duality operator for the complex (&, b) for each s € [0, 1].
This path connects the duality operator T & —T"to T & —GTG*.
Now consider the operator

=, cos(s)T sin(s)TG*
T(s) = (sin(s)GT —cos(s)GTG*)'

LEMMA 4.36. The operator f(s) implements a Poincaré duality operator for the
complex (€, b) for each s € [0, /2].
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PROOF. An analytically controlled homotopy inverse of T\(s) is given by

cos(s)o sin(s)aF
sin(s) F*a  —cos(s) F*aF

where « is an analytically controlled homotopy inverse of 7. 0
Now concatenate the two paths above and denote the resulting path by
(€,6, )

with ¢ € [0, 1]. Let (B + S;)(B— S;)~! be the invertible operator representing the
corresponding signature of (£, b, .7;) (cf. Definition 4.11).
Note that the last duality operator

0 TG*
a=(ar ')
is analytically controlled homotopic to its additive inverse along the path
0 exp(is)TG*
4.2) (exp(—is)GT 0 ’

with s € [0, 7]. By Lemma 4.30, we see that (B + S;)(B — S1)~! is connected to
the identity operator through a path of analytically controlled invertible elements.

To summarize, we have constructed a path of analytically controlled invertible
elements in C* (X x [1, 00))! connecting (B+S)(B—S)! to the identity element.
Let us reparametrize the time variable and denote this path by

Vs = (B + Ss)(B - Ss)_l

with Vo =T and V; = (B+ S)(B-S)~ L. _
Now we shall extend this path to obtain an element in C;" ; (X x [I, o0))F. In
other words, we will construct an element

W e Cf o (X x[1,00)"

so that Wy = Vi @ [ forall s € [0, 1], where [ is the identity operator.

In fact, the construction of Wy, starting at s > 1, coincides with the construction
of the K-homology class of the signature operator on CM U —CN with controls
with respect to CX. To be more precise, there are in fact two equivalent ways of
constructing the path Wj.

(i) One directly works with the geometrically controlled Poincaré complex
and its refinements associated to CM LI —CN. In particular, everything is
controlled over C X . This is what we have chosen to do for the construction
of Vs above. Note that, although CM LI —CN is not a closed PL mani-
fold, it is a complete manifold without boundary. It is easy to see that the
construction in Appendix B.1 (not Appendix B.2) applies verbatim to the
space CM LI—CN controlled over CX. As aresult, we obtain a K-theory
class (Wy)o<s<oco in Kn(CJ o (X x [1,00)D).
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(i) Alternatively, we consider the Poincaré space M Uy (—N). Although the
space M Uy (—N) is not a manifold in general, it is still a space equipped
with a Poincaré duality. In fact, since f:dN — dM is a PL infinites-
imally controlled homotopy equivalence, we can still make sense of the
K-homology class of its “signature operator” as in Appendix B.2. Let us
denote this K-homology class by a path of invertible elements (Us)o<s<oo-
Moreover, in the current situation, we also have that f: N — M is a ho-
motopy equivalence. Similar to the discussion following Lemma 4.35, the
homotopy equivalence f can be used to connect Uy to the identity opera-
tor through a path of invertible elements. Reparametrize the resulting new
path, and define it to be the higher rho invariant of 6 in K, (CZ‘,O (f)r).

It is not difficult to see that these two constructions define the same K-theory class
in Kn(C o()T) 2 Kn(Cf g (X x [1.00)T).
To summarize, we have constructed a path of invertible elements W(8) for each
element 8 = (M, dM, ¢, N,dN, ¥, f)in S, (X).
PROPOSITION 4.37. For every element
0 =(M,0M,p, N,oN, v, ) € Sp(X),
we have W(0) € Cf Oc(j(“ x [1, 00))T.

PROOF. Note that the simplicial chain complex associated to the triangulation
on CM (resp., CN ) is a I'-equivariant geometrically controlled module over CX.
Since the map f:dM — 0N is PL infinitesimally controlled over X, it follows
that all maps F, G, H and H' as in Definition 3.3 are I'-equivariantly geomet-
rically controlled over CX. Therefore, our construction produces an element in
C Z"O (CAj()F whose image under the map 7 from line (4.1) is precisely the element

W(0) € Cf o (X x [1,00)T. O
DEFINITION 4.38. When 7 is odd, for each element
0 = (M,0M,p,N,IN, v, f) € Sp(X),
we define the higher rho invariant of 6 to be
p(8) = [W(O)] € Kn(Cf 5, o(X x [1.0o)") = Kn(Cf 4(X)").

The definition of the higher rho invariant for the even-dimensional case (i.e., for
Sn(X) when n even) is completely similar. We omit the details.

Remark 4.39. We point out that, in the odd-dimensional case, the higher rho invari-
ant for signature operators in the literature (cf. [39, sec. 3], [54, remark 4.6], [93])
is twice of the higher rho invariant of this paper; cf. Remark 6.7 and Theorem 6.9
below.

We have the following main theorem of our paper.
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THEOREM 4.40. The map
p:Su(X) = Kn(Cf o(X)T)
is a group homomorphism.
PROOF. The well-definedness of the map
p:Sn(X) = Kn(Cf o(X)F)

will be proved in Theorem 5.8. Now the group structure on S,(X) is given by
disjoint union, and p is obviously additive on disjoint unions. This finishes the
proof. 0

If X is a closed oriented connected topological manifold of dimension > 5,
then STOP(X) is naturally identified with S, (X). Hence we have the following
immediate corollary.

COROLLARY 4.41. If X is a closed oriented topological manifold of dimension
n > 5withm X =T, then the higher rho invariant map

p: STP(X) — K (Cf o (X)T)
is a group homomorphism.

Remark 4.42. By the discussion following Theorem 3.33 and the discussion fol-
lowing Proposition 3.48, we see that, if dim X = n > 6, the higher rho invariant
map in fact defines a group homomorphism from the homology manifold structure
group SHTOP(X) to K,(C;} o(X)T'). More generally, following Remark 3.36, the
higher rho invariant map can also be defined for the homology manifold structure
group of a closed oriented connected homology manifold of dimension > 6.

Remark 4.43. Although we have chosen to work with the reduced version of vari-
ous C *-algebras, we point out that the exact same proofs work equally well for the
maximal version of these C *-algebras. In particular, we also have a well-defined
group homomorphism:

max) *

p:Sn(X) = Kn(C} (X1,

S Well-Definedness of the Higher Rho Invariant Map
In this section, we prove that the higher rho invariant map
p:Sn(X) = Kn(Cf o(X)F)

is well-defined. Our method is modeled upon Higson and Roe’s proof for the
bordism invariance of higher signature index [37, sec. 7].

The following definitions are geometrically controlled analogues of the corre-
sponding definitions in [37, sec. 7]. We refer the reader to [37, sec. 7] for more
details.
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DEFINITION 5.1. A complemented subcomplex of the geometrically controlled
complex (E, b) is a family of complemented geometrically controlled submodules
E, C Ep such that b maps E}, to E,,_, forall p.

For each complemented subcomplex (PE, Pb) of (E, b), there is a correspond-
ing geometrically controlled complement complex (PLE, P1b). The inclusion
PE C E is a chain map from (PE, Pb) into (E, b), whereas the orthogonal pro-
jection E — P E gives a chain map from (E, b) onto (PLE, PLb). Note that

PLh = plppL,

DEFINITION 5.2. An (n + 1)-dimensional geometrically controlled Poincaré pair
is a geometrically controlled complex

bl b2 bn
E()(—El (—(—En
together with a family of geometrically controlled operators 7" : E, — E,11—p
and a family of geometrically controlled orthogonal projections P: E, — E, such
that
(1) the orthogonal projections P determines a subcomplex of (E, b), that is,
PbP = bP,
(2) the range of the operator Tb*+(—1)?bT: E, — E,_ is contained within
therange of P: Ey—p — En—p;
(3) T* = ()" T =PPTE, — Epiyp:
(4) PLT is a geometrically controlled chain homotopy equivalence from the
dual complex (E,b*) to (PLE, PLb).

EXAMPLE 5.3. A typical example of geometrically controlled Poincaré complexes
comes from a triangulation of a smooth manifold with boundary [38, sec. 4.2].

The following lemma is a geometrically controlled analogue of [37, lemma 7.4].

LEMMA 5.4 ([37, lemma 7.4]). Let (E,b, T, P) be an (n + 1)-dimensional geo-
metrically controlled Poincaré pair. The operators

satisfy the following relations:
(1) T§ = (=)= PPTo: Ep — Ep_p;
(2) To = PTy =ToP;
(3) Tob* + (—1)?bTy = 0: PE, — PEp;
(4) To = Tb*+(—1)?bT induces a geometrically controlled chain homotopy
from (PE, Pb*) to (PE, Pb).

PROOF. The proof is a combination of the proof of [37, lemma 7.4] together
with [38, lemma 4.2]. We leave out the details. O

The above lemma asserts (PE, Pb, Tp) is an n-dimensional geometrically con-
trolled Poincaré complex.
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DEFINITION 5.5. The geometrically controlled Poincaré complex
(PE, Pb, Tp)
is called the boundary of the geometrically controlled Poincaré pair (E, b, T, P).

Note that there is an obvious analogous theory in the analytically controlled
category. Moreover, there are obvious equivariant theories for both geometrically
controlled Poincaré pairs and analytically controlled Poincaré pairs respectively.

The following theorem is a rephrasing of a theorem of Higson and Roe [38,
Theorem 3.18].

THEOREM 5.6 ([38, theorem 3.18]). Every geometrically controlled Poincaré pair
naturally defines an analytically controlled Poincaré pair by £*-completion.

Before we prove the well-definedness of the higher rho invariant map, let us give
a proof of the bordism invariance of the K-homology class of signature operators
(compare [68, theorem 2]). Our proof below is modeled upon Higson and Roe’s
proof for the bordism invariance of higher signature index [37, theorem 7.6]. Note
that, in the theorem below, we do not invert 2.

THEOREM 5.7 (Bordism invariance of K-homology signature). Assume V is an
(n + 1)-dimensional oriented PL manifold with boundary 0V, equipped with a
continuous map .V — X, where X is a proper metric space. Then

Ind, (3V) = 0 € K, (C} (X)),
where X is the universal cover of X withT = m X.

PROOF. Fix a triangulation of V', together with a sequence of successive re-
finements Sub” (V) as in Section 4.2. Note that, for the geometrically controlled
Poincaré pair associated to the triangulation Sub” (1), all maps appearing in Defi-
nition 5.2 are geometrically controlled, with their propagations go to 0 as n — oo.

Let us denote the geometrically controlled Poincaré pair associated to the trian-
gulation Sub™ (V) by (E™ p® 7@  p@) Since our construction below works
for these refinements simultaneously, we shall omit the superscript () from now
on. Equivalently, one can consider the direct sum

oo
(E.b.T.P) = PED p™ 7™ p™)
n=1
In particular, by the construction in Appendix B.1, the geometrically controlled
Poincaré complex (PE, Pb, Ty) produces a specific representative of the local in-
dex Indz (dV,¥) € K,(C; (X)) of the signature operator of 9V (cf. Definition
B.1).
Let A be a real number and define a complex (E, b 2) by

~ ~ b 0
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This is the mapping cone complex for the chain map
APL:(E,b) > (PTE, PLb).
Together with the operators

0 TP\ =~ ~
_((—I)PPJ-T 0 ).Ep—>En_p,

the triple (E , b s T) is an n-dimensional geometrically controlled Poincaré com-
plex for any A (including A = 0). Of course, we need to check that T is indeed
a geometrically controlled homotopy equivalence. This can be verified by apply-
ing [38, lemma 4.2] to the following commutative diagram: '8

T

0 ——— (E.b*) ——— (E.b}) — (PYE,—b*PL) — 0

l(—l)"PLT lf lTPJ-

0— (PLE,—P+h) — (E, b)) —— (E,b) ——— 0.

Note that, when A = —1, the map A(v) = v® 0 € E, ® PLEPH defines a
geometrically controlled chain homotopy equivalence of geometrically controlled
Poincaré complexes

A: (PE, Pb,To) — (E,b_1,T).

Indeed, we apply [38, lemma 4.2] to the following commutative diagram:

0 —— (PE, Pb) —— (PE, Pb) 0 0

R
0 —— (PE. Pb) —2 (B.b_1) —2— (E'.b') —— 0

where E}, = PLE, & PLE,; with

b — Ptb 0
-1 -Ptp
and Q is the obvious orthogonal projection. It is easy to see that (E’, b’) is geo-

metrically controlled chain homotopy equivalent to the trivial chain 0. Moreover,
we have

AToA* =T = hpg10b* ) + (—1)Pb_y o hp: Ep — En—p,
where hp = (1 9): E, ® PYEpy1 — En—pt1® PLE,_py>."° This shows that
ATyA* and T are geometrically controlled homotopic to each other.
18 One needs to take into account the sign convention when verifying various identities. For

example, the map (=1)? PLT carries the sign (—1)# when it maps from E, to PJ-E,,_I,.H.
19Note that the appearance of (—1)? is due to our sign convention.
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We abuse our notation and denote by
(B+S)(B—-S)""e(c;X)N)T
the explicit representative for the local index Indz, (dV, ) constructed by using
(PE, Pb,Tp) as in Appendix B (cf. Definition B.1). Then the same argument
from Section 4.6 produces a continuous path of invertible elements in (C;* (X I+
connecting (B + S)(B —S)" ! to
- Sy
(B_1 + S—1)(B_1 — S—1) ' e (C; ()N,

where (B_; + S_1)(B_; — S_1)~! stands for the representative of the local index
constructed out of (E, b_1, T') (cf. Definition B.1). To be precise, we in fact need
to stabilize (B + S)(B — S)~! by the identity operator, and consider

(B+S)B-S)'a1

instead. For notational simplicity, we will omit these stabilizing steps.
On the other hand, there is a continuous path of invertible elements

(Bt + S:)(B: — St)_1 € (Clik(f)r)+

representing the local index class constructed out of (E by, T) fort € [—1,0] (cf.
Definition B.1). Of course, it is important to appropriately control the propagations
of various terms. This can be achieved by Proposition A.3 in Appendix A. Note

that, for (E , 50, T), the duality operator T is operator homotopic to its additive
inverse along the path

F o 0 exp(is)TP+
“ \(=DPexp(is)P+T 0

with s € [0, ]. Now the same argument from Section 4.6 again shows that
(Bo + So)(Bo — So) ™"

is connected to the identity by a path of invertible elements in (C/' ()? )T)*. This
finishes the proof. U

THEOREM 5.8. The higher rho invariant map
p:Sn(X) = Kn(Cf o(X)F)
is well-defined.

PROOF. Let 8 = (M, 0M, ¢, N, ON, v, f) be an element in S, (X). Suppose
is cobordant to 0 in S, (X). Let

(W,dW, ®,V,dV, U, F)

be a cobordism between 6 and O (cf. Definition 3.6). Note that F|y,y: 02V —
0, W is an infinitesimally controlled homotopy equivalence over X ; thus d, V' and
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d2 W will not contribute to the higher rho invariant of Flyp: 0V — 0W. More
precisely,
Flan: 82V g 82W

induces an infinitesimally controlled chain homotopy equivalence that is between
the Poincaré pair associated to d, V' and the Poincaré pair associated to d, W. It fol-
lows that the geometrically controlled Poincaré complex associated to M Uz (—N)
and its refinements are geometrically controlled equivalent to the geometrically
controlled Poincaré complex associated to dV LI (—dW) and its refinements. See
Appendix B.2 for a related discussion. To summarize, we have

p(0) = p(Flay:dV — IW).
Therefore, it suffices to show that
p(Flagy:dV — aW) = 0.

In the following, we use the reversed orientation of W. Since no confusion will
arise, let us still write W to denote —W for the rest of the proof. Fix a triangulation
of V and of W, together with a sequence of successive refinements Sub” (V') and
Sub” (W) as before. Note that, for the geometrically controlled Poincaré pair asso-
ciated to the triangulation Sub” (V) (resp., Sub”(W)), all maps appearing in Defi-
nition 5.2 are geometrically controlled, with their propagations go to 0 as n — oo.

Now the theorem follows from a combination of the proof of Theorem 5.7 above
with the construction of the higher rho invariant in Section 4.6. Indeed, let

- S T\ +
(Bav + Sav)(Bay — Sav) ™" € (C£(X)T)
and
- S\ +
(Baw + Saw)(Baw — Saw) ™" € (CL (X))
be the representatives of the local indices for the signature operators of 1 and
dW, respectively. By the proof of Theorem 5.7, we have an explicit continuous
path of invertible elements {Vs}o<s<1 in (C; (X )T)* connecting
Vo = (Bay + Sav)(Bay — Sav) ™'
to the identity operator V; = /. Similarly, there is an explicit continuous path of
invertible elements {W;s}o<s<1 in (C; (X )T)* connecting
Wo = (Baw + Saw) (Baw — Saw) ™"

to the identity operator W; = [I.
Consider the following elements at time ¢ = 0:

V;(0) and Wi (0) € C*(X)T.

Let (E,b,T)yyy and (E',b', T")w ow be the geometrically controlled Poincaré
pairs associated to the triangulations of V' and W, respectively. Note that we are
not taking subdivisions at the moment. Then the homotopy equivalence F:V —
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W induces a geometrically controlled chain homotopy equivalence between the
geometrically controlled Poincaré pairs

(E.b,T)yyy and (E"0.Tw.ow.

In fact, the homotopy equivalence F: V' — W also induces corresponding geomet-
rically controlled chain homotopy equivalences between various Poincaré com-
plexes, such as (E, I;;L, f)y,ay and (E,EA, T)W’;;W, that appear in the proof of
Theorem 5.7. Consequently, the construction in Section 4.6 simultaneously pro-
duces continuous paths {{(?)}—1<s<o of invertible elements connecting

Vs (0) & W;(0)

to the identity operator for s € [0, 1].

For each s € [0, 1], we concatenate the path {{s(¢)}—1<s<o With the path
{Vs(t)®W;(t)}o<t<oo- This produces an element, denoted by ps, in (CL*’0 X))+
for each s € [0, 1]. Since {ps}o<s<1 is a norm continuous path of invertible ele-
ments in (CL*’0 (X)T)*, it is clear that

[po] = [p1] € K1(Cf o(X)Y).

On the other hand, pg is precisely the definition of the higher rho invariant of
Fy: 0V — 0W, while p; = I is the constant map with value the identity operator.
Therefore, p(6) = [po] = 0. This finishes the proof. O

6 Mapping Surgery to Analysis

In this section, for each closed oriented topological manifold X of dimension
> 5, we prove the commutativity of the following diagram of abelian groups:

N1 (X) —2s Ly (1) — 25 S,(X) Ny (X)

(6.1) IndLl Indl k,,-pl k,,-IndLl

Kn41(CF(X)T) 5 K1 (CF (1) — Kn(Cf o(X)T) — Kn(CF()D)

where the maps Ind and Ind;, will be defined below, I' = 7; X, and
1 ifniseven,
" %2 if n 1s odd.

In the case of smooth manifolds, a similar commutative diagram was proved by
Higson and Roe [38]. Since the structure set of a smooth manifold does not carry
a group structure, the commutative diagram of Higson and Roe is a commutative
diagram of sets in an appropriate sense [38, sec. 5]. Piazza and Schick gave a
different proof of Higson and Roe’s commutative diagram for smooth manifolds
[54]. Zenobi proved a similar commutative diagram for topological manifolds, but
only treating S, (X) as a set [93].
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The local index map
Indy: Ny (X) = Kn(CF(X)T)

is defined by assigning each element in A, (X) the K-homology class of its signa-
ture operator. See Appendix B for more details. The well-definedness of the map
Ind;, follows from the bordism invariance of the K-homology class of signature
operators. See Theorem 5.7 above.

Remark 6.1. Note that the well-definedness of the map
Indz: Ny (X) — Kn(CF (X))
implies Novikov’s theorem on the topological invariance of the rational Pontrjagin

classes [52]. Also see [53].

The index map
Ind: Ly11(T) = Knt1(C(I))
is defined as follows. Suppose we have an element
0 =(M,0M,p,N,OIN, v, f)e Lor1(I)

satisfying the conditions in Definition 3.9. Let M Uy (—N) be the space obtained
by gluing —N with M along the boundary by the map f, where —N is the mani-
fold N with the reversed orientation. Although M Us (—N) is not a manifold in
general, it is still a space equipped with Poincaré duality. In particular, the higher
signature index of M Uy (—N) makes sense.

DEFINITION 6.2. For each element
0 =(M,0M,p,N,ON, v, f) € Lpt+1(m1X),
we define Ind(6) to be the higher signature index of M Uy (—N).

PROPOSITION 6.3. The map Ind: L,4+1(I') — Ku+1(CX(T")) is a well-defined
group homomorphism.

PROOF. The well-definedness follows immediately from the bordism invariance
of the higher signature index. Moreover, the higher signature index is clearly ad-
ditive on disjoint unions; hence the index map is a group homomorphism. This
finishes the proof. U

We need some preparation before we prove the commutativity of diagram (6.1)
above. Recall that, by Proposition 3.23, there is a natural isomorphism

Sn(X) = Lyt1(mi X, X).

In the following, first we shall give another definition, denoted by p, of higher
rho invariant by using the description of L, (1 X, X). Then we will prove that
0 = knp, where k, = 1if n is even and 2 if n is odd.

Recall from Definition 3.19 that, for each element

0 =M. 0+M,9,N, 0N+, V¥, f) € Lpt1(m1 X, X),
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the map [y, ny:94+N — 94+ M is a homotopy equivalence, and fj, y restricts to
a PL infinitesimally controlled homotopy equivalence

Sfla@yny:0(0£N) — 3(dLM).
Let Z = M Uy, (—N) be the space obtained by gluing M and N along the
boundary 04 N to d4+ M through the homotopy equivalence f |3, y (cf. Figure 6.1)
. Though Z is not a manifold, it is a space equipped with Poincaré duality. Note
that the “boundary” of Z is the space d—_M Uyr, 3d—(—N), where the latter is
obtained by gluing d— M and d_ N along the boundary d(d—N) to d(d— M) through
the infinitesimally controlled homotopy equivalence f'|3(5_n). Let us write Z =
d-M Uyy, 0—(—N). Recall that the space obtained from Z by attaching a cylinder
is denoted by
CZ =7 Uyz (0Z x [1,00)).

Let us fix a triangulation of C Z as follows. On Z, it is the original triangulation
of Z. The triangulation on 0Z x [1, 00) is the pullback triangulation of Triy x[1,c0)
under the map @y x Id: 3Z x [1,00) — CX, where ®j is the restriction of ® =
@ Ug, ¥ on 0Z. That is, for every simplex A¥ ¢ CX, the inverse image (®y x

Id)~! (A¥) is a product K x A¥, where K is some triangulated submanifold of 9Z.
Remark 6.4. To be precise, we should be using a sequence of spaces {Z;};i>1,
where each Z; = M U(y,), (—N) is the space obtained by gluing M and N along

the boundary d+ N to 4+ M through the homotopy equivalence ( /)|y, - Here f;
is the map f with the additional condition that the homotopy equivalence

Sfla@iny:0(0+£N) — 3(dL M)
1

has control < 7 Since no confusion is likely to arise, we shall abuse our notation

and continue as if we were working with a single space.

Now the geometrically controlled Poincaré complex associated to C Z defines a
higher signature index in K, +1(CS (X x [1, o0))D).

0_N 0—-M

qD:(pr_,’_W

Z=MUys (—N)

FIGURE 6.1. Picture for Z = M Uy, (—=N).
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DEFINITION 6.5. With the same notation as above, for each element
0=(M,0.M,p, N,oONL, V¥, f) € Lpyy1(m X, X),

we define p(0) to be the higher signature index of C Z, which is an element of
Kn+1(CX(X x [1,00)D).

The following lemma is an immediate consequence of bordism invariance of
higher signature index.

LEMMA 6.6. The map p is a group homomorphism
p: L1 (1 X, X) = Kpy1(CX(X x [1,00)).
Recall that we have the natural isomorphism

cx:Sn(X) = Lpy1(m X, X)

by taking the product with the unit interval (see Section 3.3):
0 ={M,0M,p, N,oN, ¢, f} — 0 x I.
Moreover, by Proposition 4.4 and Corollary 4.7, we have
Knt1(CHX x [1,00)T) = Ku(Cf oo (X x [1,00)T)
>~ Ku(Cf o(X)T).

It follows that the map p can be viewed as a group homomorphism:

p:Sn(X) = Kn(C} o(X)D).

Remark 6.7. In the case of smooth structure sets, it is easy to see that the definition
p above agrees with the structure invariant of Higson and Roe [39, sec. 3].

In Theorem 6.9 below, we will prove that p is equal to &k, - p, where p is the
higher rho invariant from Definition 4.38 and k, = 1 if n is even and 2 if n is odd.
Before doing this, let us first prove a product formula for the higher rho invariant p,
which will be useful for the proof of Theorem 6.9.

Given an element

0 =(M,0M,p, N,ON, v, ) € Sp(X),

let 0 x R € S,41(X x R) be the product of 8 and R. Here various undefined
terms take the obvious meanings (see Section 3.3 for the definition of 8 x I for
example). Note that the construction in Section 4.6 also applies to 6§ x R and
defines its higher rho invariant p(6 x R) € K, +1 (C]’f’0 (fx R)T). Also, there is a
natural homomorphism

a:Cf ()T ® CF(R) > Cf (X xR)T,

which induces an isomorphism on K-theory.
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THEOREM 6.8. With the same notation as above, we have

kn - ax(p(8) ® IndL(R)) = p(6 x R)
in Knt1(Cf O()? xR)), where Ind, (R) is the K -homology class of the signature
operator on R, and k, = 1 if n is even and 2 if n is odd.

PROOF. The proof is elementary and will be given in Appendix D. g

To prepare for the proof of Theorem 6.9, let us introduce some notation. Con-
sider the C*-algebra &7 = C; (X x R)T'. Using the notation from Definition 2.2,
we define

o = U CZ:O()?X (—oo,n]; X xR)T,

neN

Ay = U le,o()? X [-n,00); X x R)T,
neN

= U CZ:O(YX [—n,n];fo)F.
neN

OIt is clear that 27+ and @ are closed two-sided ideals of .»7. Moreover, we have
Ay + A_ = of and 4 N o/_ = o, which gives rise to the following Mayer-
Vietoris sequence in K-theory:

Ko(n) — Ko(1) & Ko(F-) — Ko()
] o
Ki() «—— Ki(#4) & Ki(F-) «—— Ki(9n).
Similarly, consider the following ideals of C *-algebra # = C/(R):

B = | ) Cf(—c0.n]:R), %y = | C}([—n.c0):R).
neN neN

B =) Cf([-n.nl:R).
neN
These C *-algebras give rise to the following Mayer-Vietoris sequence in K -theory:

Ko(#n) — Ko(#+) @ Ko(#-) —— Ko(F)
] o
K1(B) «——— K1(B1) ® K1(B-) «— K1(%n).
Note that there is a natural homomorphism
@:Cf (N ® B > o,
which restricts to homomorphisms

a:CZ’O(f)F ® By — o+ and oz:CL*’O()’(V)F ® Bn — An
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such that the following diagram commutes:
Kn(CF y()T) ® K1(B) — Kn1(Cf ()T @ B) = Kn1 (Cf o(X x R)T)

(6.2) 1®awl law
Kn(CF o(X)F) ® Ko(#n) — Kn(Cf o(X)F ® Zn) =r Knlan) = Kn(C o(X)T).

THEOREM 6.9. The following diagram commutes:

Lyp1(mX. X) — K1 (CH(X x [1,00))F)

N |~

52 (X) — 22 Kn(CF .o (X x [Loo)T) = Kn(C 4(X)T),
where 04 is the connecting map in the K-theory long exact sequence associated to
0— le,o,c(f x [1, 00)T — C,f,c()? x [1,00)T = C*(X x [1,00))F — 0,

and k, = 1 if n is even and 2 if n is odd.

PROOF. Recall that a standard way to construct the connecting map 0 is by
lifting a projection (resp., invertible) in C* (X x[1,00)) to an elementin C L* C(X X
[1,00))T. For an element

0 ={M,0:M,0,N,0LN, V¥, [} € Lnt1(m1 X, X),
there exists a lifting ag € CZ‘C()? x [1,00))T of the element p(f) € CC*()? X
[1, 00))T as follows. Let
ag(n) = xnp(0)xn.
where y,, is the characteristic function on X x [, 00). We define
ag(t) =m+1—1t)ag(n) + (t —n)ag(n + 1)

foralln <t <n 4 1. Itis clear that ag lies in C;' c()’(v x [1,00))! and is a lift of

p(0).
On the other hand, by the discussion before Proposition 4.37, one sees that the
same ag above is also a lift of p(6 x R), for the construction of the connecting map

v Knt1(Cf o(X xR)T) - K (Cf o(X)T)
in diagram (6.2). In particular, we see that
dx 0 pocx(f) = dmv[p(d x R)].
Now by Theorem 6.8 and the commutative diagram (6.2), it follows that
dx 0 pocx(t) =kp - p(6) ® dpy[IndL (R)] = kn - p(6).
This finishes the proof.
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Combining the above discussion, we have the following main result of this sec-
tion.

THEOREM 6.10. We have the following commutative diagram:

No1(X) — 2 Ly (D) — 5 S, (X) ———— NG(X)

IndLl Indl k,ypl kn -lndLl

Knt1(CHIDT) =5 K1 (CFHI)) — Kn(CF o(X)F) — Kn(CFX)D).

PROOF. The commutativity of the right square and the left square follows im-
mediately from definition.

The commutativity of the middle square is an immediate consequence of The-
orem 6.9 above. Indeed, by Theorem 6.9, we have the following commutative
diagram:

Sn(X)

Ly(miX) ———— Lpt+1(m X, X)

- ]

Kn(C* (X)) —— Kn1 (CH(X x [1.00)T) —2 Kn(CF o (D)D),

knp

Here the commutativity of the lower left square follows from the definition of the
index map and the map p. This finishes the proof. U

Remark 6.11. The exact same proof also applies to the maximal version, and we
have the following commutative diagram:

N1 (X) — s Ly (N —— 1 8,(X) ————— Ny(X)

IﬂdLl Indl kmpl kn -IndLl

Kn1(CF ()80 = Knt1(Criae (1) — Kn(CF (X)) — Kn(CFE)E,).
Moreover, the same method can also be applied to the homology manifold
surgery exact sequence of a closed oriented connected ANR homology manifold

of dimension > 6.
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PROPOSITION 6.12. Let X be a closed oriented connected ANR homology mani-
fold of dimension > 6. Suppose w1 X = I'. Then we have the following commuta-
tive diagram:

My 1(X) — s €11 (I) — L &, (X) ——— My (X)

IndLl IndJ/ kn'pl kn'IndLl

Knt1(CFE)T) 25 K11 (CHI)) — Kn(CF o(X)T) — Ku(CF(X)D),

where the upper exact sequence is the 4-periodic exact sequence from line (3.1) in
Theorem 3.22 (cf. Remark 3.36).

7 Novikov Rho Invariant and Strong Novikov Conjecture

In this section, we define a homological version of the higher rho invariant from
Section 4.6. This homological higher rho invariant will be called Novikov rho in-
variant for reasons that will be explained later in this section. One important aspect
of the Novikov rho invariant is that it can be used to detect nontrivial elements in
the structure group of a closed oriented topological manifold, even when the fun-
damental group of the manifold is torsion free. In particular, we apply the Novikov
rho invariant to show that the structure group is not finitely generated for a class of
manifolds. Throughout the section, we assume n > 5.

Let X be a proper metric space with 71X = I'. Suppose X is the universal
cover of X. We have the following commutative diagram:

Kl ,(ET.X) —— KF, (X) —— K}, | (ET) — K[ | (ET. X)

a4 J= [

Kns1(CF o(T) = Kn1 (CFEDT) = Kn1 (CFHI)) -2 Kn(CF (X))

where K,F (ET, X ) is the I'-equivariant relative K-homology group for the pair
of spaces (ET, X). For example, KL (ET, X) is the ['-equivariant K-homology
group of the mapping cone of the map X - ET'. Also, K,l; (ET, X ) is naturally
isomorphic to the K-theory group of the C *-algebra mapping cone associated to
the natural map C;' T > T (ET)T'. Furthermore, the K-theory of C 7 0 )T
is naturally isomorphic to the K-theory of the C *-algebra mapping cone associated
to the evaluation map C; )T - CX(T); cf. [16]. In view of this mapping cone
picture, the commutativity of the above diagram is clear.
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We would like to see in what circumstances there exists a natural homomor-
phism 8: K, (C]f 0(X)F) — K _H(EF X) such that the following diagram re-
mains commutative:

T (EDNX) —— KI, (X) —— KL, | (ET) — K[ | (ET. X)

x x
T S
(72) Ku1(Cf o)) = Kn1 (CFET) = K1 (CHI) 5 Kn(CF o(X))
Tp TIndL Tlnd Tkmo
Snt1(X) ——— Ny 1 (X) ——— L1 () ——— Sy(X)

Now suppose that the strong Novikov conjecture holds for I, that is, the Baum-
Connes assembly map [L«: K£+1 (ET) = Ku4+1(C}(I)) is injective. In fact, let
us assume a slightly stronger condition:

pw: Ky 1 (ET) — K1 (C(T))

is a split injection. So far, in all known cases where the strong Novikov conjecture
holds, the split injectivity of the Baum-Connes assembly map is known to be true
as well; cf. [22,32,35,36,44,46,74,90,91].

In this case, let us denote the splitting map by

a: Kp11(CF(T)) = Ky (ED),
which induces a direct sum decomposition:

Knt1(C(I)) = Ky (ET) @ 6.
Then a routine diagram chase shows that

(1) the homomorphism A: KX . (ET, X) — K, (& 0()’(V)F) is also an injec-

tion; "
(2) (&) NI(K, le(EF)) =0.

It follows that we have the following commutative diagram:

Kl (X)) —— KL (ET) ——— K, (ET. X) ——— K} (X)

= | | J;

(73)  Knp1(CFE)T) = KL, (ED) @ & — Kn(Cf o(X)T) —— Kn(CFE))
|- | I -
Kn1(CH(X)T) — KE, (ET) 2 K (CF o (D)) /0(8) = Kn(CF(E)T),
where ¢ is the quotient map

q: Kn(C7 o(X)T) = Kn(Cf o()1)/8(6).
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Note that the last row in diagram (7.3) is also a long exact sequence. By the five
lemma, it follows that the composition

go A KL, ((ET, X) = Ku(Cy o(X)D)/0(6)

is an isomorphism.
Now we define

B=(qo A)_l 0q: Kn(Cz,o(f)F) - KE-H@F» f)
By definition, § makes diagram (7.2) commute.

DEFINITION 7.1. We define the Novikov rho invariant map pN°" to be the compo-
sition _
PN = B o (kn - p): Su(X) — KL (ET, X),

where we have o
1 ifniseven,

kn =15 it is odd.

Remark 7.2. Note that our definition of the invariant pN°" only works when the

strong Novikov conjecture holds. This is the reason that we name this homological
higher rho invariant after Novikov. To be more precise, we have assumed a slightly
stronger condition that the Baum-Connes assembly map is split injective. As noted
before, in all known cases where the strong Novikov conjecture holds, the split
injectivity of the Baum-Connes assembly map is known to be true as well; cf.
[22,32,35,36,44,46,74,90,91].

Remark 7.3. There is also a maximal version of the Novikov rho invariant defined
above. In this case, we assume that the Baum-Connes assembly map is split injec-
tive for the maximal group C *-algebra C.% (71X ). The Novikov rho invariant is
defined similarly. This split injectivity assumption for maximal group C *-algebras

is weaker than the split injectivity assumption for reduced group C *-algebras.

We invert 2 for the rest of this section. With some minor modifications, all
discussions in this paper work equally well for the real case. Roughly speaking,
whenever the imaginary number i = /—1 appears in a formula, we replace it
by the matrix (_(1) (1)) More precisely, for a geometrically controlled Poincaré

complex (E, b, T), we consider the direct sum
(E,b,T)® (E,b,T).
For the operator S in Definition 4.10, we define
p(p—1)+L
S = 01 T.
-1 0

The same remark applies to various other formulas, such as the formula in line
(4.2), where complex numbers are used. In the case of dimension n = 0 or 1
mod 4, this gives rise to a signature operator that is twice the actual signature op-
erator with real coefficients. Now taking product with R? takes care of the case
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where the dimension n# = 2 or 3 mod 4. The analogue of the diagram (6.1) for
the real case involves extra powers of 2 in front of various maps. We will leave
out the details. In any case, since we have already inverted 2, we do not lose any
information by introducing these extra powers of 2.

Recall that, after inverting 2, the maps t; and 7, in the following commutative
diagram are split injective:

KON (ED)[4] % Ki (CH(T.R))[4]

KiF (ED)[4] LN K;(Cx(IM)[1]

where the notation [{] means ®Z[1], ur and u are Baum-Connes assembly maps
[3,4], and 77 and 75 are induced by changing the scalars from R to C. In particular,
if we assume the split injectivity of the Baum-Connes assembly map, then we also
have the Novikov rho invariant map in the real case:

pNOV:Sn(X) - KO,I;_H(ER }F)[%]

Moreover, we shall see that pN° is surjective in this case.

Recall that, after inverting 2, the split injectivity of the Baum-Connes assembly
map implies that the split injectivity of the Farrell-Jones assembly map (cf. [50,
prop. 95, p. 758]), that is,

A: HY (ET:Lo[3] — Li(D)4] = Li(ZD)[4].
is a split injection. Denote the splitting map by
y:Li(D)3] > H (ET; La)[3].

Also, note that the natural map, which takes a KO-class to its associated (local)
Poincaré complex, induces an isomorphism

KO:i(Y)[3] = Hi(Y:La)[4]

for any Y. Indeed, this natural map induces a map between two homology theories.
Hence it suffices to verify that it is an isomorphism for ¥ = {pt}, which follows
from a straightforward calculation (cf. [66]). We still write y for the splitting map

Li(D)[3] — Hf (ET:La)[4] = KO;(ET)[4].
It follows that we have the following commutative diagram:

KO ,(ET. X)[}] — KOL, , (X)[4] — KOL, | (ED)[}] » KOL, |(ET. X)[4]

(7.4) [ E [ I

Sut1(X)[3] — HE, [ (X La)[4] — Lns1 (T)[3] —2— Su(X)[4]
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By the splitting map y: L, +1(I')[] — H{_H(EF; Le)[4], we have the following
direct sum decomposition

Loy1i(D)[}] = KO, ((ED)[}] @ F

such that d(K 0,1; L (ED)[3]) N a(F) = 0. It follows that commutative diagram

(7.4) above descends to the following diagram:

KOI' ,(ET, X)[}] — KO, | (X)[4] — KO, [ (ED)[}] - KOF | (ET. X)[1]

(1.5) } ]; % T o

Snt1(OUB)/0F — HE (R L[] = Lap1(D]/F 5 Sa(X)[)/0(F)
By the five lemma, it follows that

P S, (X)[3]/0(F) —> KOy, (ET, X)[3]
is an isomorphism. In particular, it implies that
PN S (X)[4] = KOI. (ET, X)[4]

is surjective.
This surjection can be used to detect many elements in S, (X). For example,
if K O{ +1(E£D)[4] is not finitely generated as a module over Z[1], then neither is

K 0,1; 11 (ET, X )[4] for any closed oriented manifold X. Indeed, if X is a closed

manifold, then K Ol.F (X )[4] is a finitely generated Z[1]-module for all i. By the
following exact sequence:

— KO (X)[1] — KOF, 1 (ET)[4]
— KO& {(ET. X)[}] = KOy (X)[}] -,

we see that if KO};_H (ET)[4] is not finitely generated, then KO{H (ET, f)[%] is
not finitely generated either. In this case, it follows that S, (X)[1] is not finitely
generated.

Given a discrete group I', let .#T be the C-vector space of finitely supported
functions on the set of finite order elements of I'. Define .% °T to be the subspace of
ZT consisting of elements f such that f(y) = f(y~!). Similarly, define .Z1T"
be the subspace of .ZT consisting of elements f such that f(y) = —f(y™1).
Then we have (cf. [2, sec. 2])

(716)  KOJ(ED) ® C = P Hyyar (T F°T) & Hyyrpaic(T: Z'T).
keZ

In particular, it follows that if a group contains infinitely many distinct conjugacy
classes of finite order elements, then K Og (ET) ® C is not finitely generated. For
example, Grigorchuk produced a family of amenable groups that contains infin-
itely many distinct conjugacy classes of finite order elements [31]. Since each of
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these groups is amenable, its associated Baum-Connes assembly map is actually
an isomorphism, hence in particular a split injection.

Furthermore, the isomorphism (7.6) also shows that K O,l; (ET) ® C contains
the group homology @ cz Hn+4k (I'; C) as a direct summand. Therefore, to find
examples of groups I" such that K O,f (ET) ® C is not finitely generated, it suffices
to find groups whose group homology with complex coefficients has infinite rank.
Here are some examples.

(1) Stalling gave a group in [75], whose 3-dimensional homology group is
not finitely generated. Since this group is obtained from free groups of two
generators by using amalgamated products and HNN extensions, it follows
that its associated Baum-Connes assembly map is an isomorphism [55].

(2) Generalizing ideas of Stalling [75] and Bieri [5], Bridson produces the
following class of groups whose group homology is not finitely generated.
Let Fj be the free group of k-generators with k > 2, and ¢: Fj, — Z
be any surjective homomorphism. Denote the direct product of n copies
of Fj by Fk("). Then ¢ induces a homomorphism ¢;: Fk(") — /7 that
coincides with ¢ on each component. Let K, be the kernel of this map
¢n. Then H,(K,;C) has infinite rank:?0 cf. [7, theorem B]. Also, the
Baum-Connes assembly map for K, is an isomorphism. This, for example,
follows from [55].

(3) For Thompson’s group F, we have H,(F;C) = C @ C foralln > 1[9,
theorem 7.1]. Recall that Thompson’s group F' is a-T-menable [26], hence
its Baum-Connes assembly map is an isomorphism [36].

Note that the examples in (1), (2), and (3) above are torsion-free. We see that
the Novikov rho invariant can detect elements in S, (X') even when 771 X is torsion-
free. Let us summarize the above discussion as the following theorem.

THEOREM 7.4. Let X be a closed oriented topological manifold of dimension
n > 5, and U its fundamental group. Suppose the Baum-Connes assembly map
for T is split injective. IfKO,F_ir1 (ET)[1] is not finitely generated as Z[L]-module,
then STOP(X) is not finitely generated. Consequently, we have

(1) if @rez Ho+1+4x(T; C) is not finitely generated, then STOP(X) is not
finitely generated,

(2) ifn = 3 (mod 4) and I has infinitely many distinct conjugacy classes of
finite order elements, then STOY(X) is not finitely generated.

Remark 7.5. By the work of the first and third authors, part (2) of the above the-
orem is actually known to hold for a large class of groups, for some of which the
strong Novikov conjecture has not yet been verified. In particular, part (2) holds
for groups that are finitely embeddable into Hilbert space [82, theorem 1.5 and

2014 his paper [7, theorem B], Bridson proves that the integral homology Hj(Kj;Z) is not
finitely generated. The same proof shows that Hy (Kj; C) has infinite rank.
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cor. 1.6]. See Definition 8.3 below for the definition of groups that are finitely
embeddable into Hilbert space.

8 Nonrigidity of Topological Manifolds

In this section, we apply our main theorem (Theorem 4.40) to give a lower
bound of the free rank of reduced structure groups of closed oriented topologi-
cal manifolds. There are in fact two different versions of reduced structure groups,
STOP(x) and STOP (X), whose precise definitions will be given below. The group

alg geom
EgP(X ) is functorial and fits well with the surgery long exact sequence. On the

other hand, the group nggfn(X ) measures the size of the collection of closed man-
ifolds homotopic equivalent but not homeomorphic to X.

Since we will be using the maximal version of various C *-algebras throughout
this section, we will omit the subscript “max” for notational simplicity.

Let X be an n-dimensional oriented closed topological manifold. Denote the
monoid of orientation-preserving self homotopy equivalences of X by Auty (X).
There are two different actions of Auty(X) on S, (X), which induce two different
versions of reduced structure groups as follows; cf. [64] for the essentially same
discussion in the context of algebraic surgery exact sequence.

On one hand, Auty (X) acts naturally on S, (X) by

ay(0) = (M,0M,uo@, N,ON,uo, f)
for all u € Aut(X) and all
0 = (M,0M,p,N,IN, v, f) € Sp(X).

Recall that, the natural isomorphism STOP(X) =~ S,(X) maps an element =

(f. M) € ST(X) to
Mm—r x .
f\, A € Su(X)
X

In this case, a, maps
M —> X

\/t\/

Clearly, oy, is a group homomorphism from S, (X)) to S, (X). Note that this action
« is compatible with the actions of Auty(X) on other terms in the topological
surgery exact sequence.
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On the other hand, Auty, (X) also naturally acts on ST°P(X) by compositions of
homotopy equivalences, that is,

Pu(0) = (o f, M)
forall u € Autp(X) and all 6 = (f, M) € STOP(X). In comparison with the
action a,, above, the action 8, on STOP(X) maps

M—)X M—>X

NS N A

Bu: STOP(X) — ST (X)
only defines a bijection of sets and is not a group homomorphism in general.

Note that the map

DEFINITION 8.1. With the same notation as above, we define the following re-
duced structure groups.

(1) Define Sa{gP(X ) to be the quotient group of STOP(X) by the subgroup

generated by elements of the form 6 — o, (9) for all § € STOP(X) and all
u € Auty(X).
(2) Define STOP (X) to be the quotient group of STOP(X) by the subgroup

geom

generated by elements of the form 6 — B,,(0) for all § € STP(X) and all
u € Auty(X).

Recall the following definitions and theorems from [82, 85]. Let G be a count-
able group. An element g € G is said to have order d if d is the smallest positive
integer such that g¢ = e, where e is the identity element of G. If no such positive
integer exists, we say that the order of g is oo.

Let us recall the notion of finite embeddability for groups in the following. We
shall first recall the notion of coarse embeddability due to Gromov.

DEFINITION 8.2 (Gromov). A countable discrete group I' is said to be coarsely
embeddable into Hilbert space H if there exists amap f : ' — H such that
(1) for any finite subset F C T, there exists R > 0 such that if y~!18 € F,

then || f(y) = f(B)I = R;

(2) for any S > 0, there exists a finite subset F C T such that if y~18 ¢

['— F, then [| f(y) — f(B)Il = S.

The notion of finite embeddability for groups, introduced by the first and third
authors, is more flexible than the notion of coarse embeddability.

DEFINITION 8.3. A countable discrete group I' is said to be finitely embeddable
into Hilbert space H if for any finite subset F C T there exist a group I'’ that is
coarsely embeddable into H and a map ¢ : F — T/ such that

(1) if y, B and yp are all in F, then ¢ (yf) = ¢(y)¢(B);
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(2) if y is a finite order element in F, then ord(¢(y)) = ord(y). Here ord(y)
is the order of y.

The class of groups with finite embeddability into Hilbert space is quite large,
including all residually finite groups, amenable groups, Gromov’s monster groups,
virtually torsion free groups (for example, Out(Fy)), and any group of analytic
diffeomorphisms of a connected analytic manifold fixing a given point [82].

Let G be a countable group. If g € G has finite order d, then we can define an
idempotent in the group algebra QG by

1 d
Pg = E(Z gk)-
k=1

For the rest of this paper, we denote the maximal group C *-algebra of G by
C*(G).

DEFINITION 8.4. We define the finite part Ki"(C*(G)) of Ko(C*(G)) to be the
abelian subgroup of Ko(C*(G)) generated by [pg] for all elements g # e in G
with finite order.

We remark that rationally all representations of finite groups are induced from
finite cyclic groups [72]. This explains that the finite part of K-theory, rationally,
contains all K-theory elements that can be constructed using finite subgroups, de-
spite being constructed using only cyclic subgroups.

THEOREM 8.5 ([82, theorem 1.4]). Suppose U is finitely embeddable into Hilbert
space. If {g1,...,8m} is a collection of elements in I" with distinct finite orders
such that g; # e for all 1 <i < m, then the following holds:

(1) {[pg.]. ... [Pgm]} generates an abelian subgroup of Kg“(C*(F)) of rank

n;
(2) any nonzero element in the abelian subgroup of Kg“(C *(T")) generated by
the elements {[pg,].....[Pg,]} is not in the image of the assembly map

pix: Ko(BT) = K§(ET) — Ko(C*(I)),
where ET is the universal space for proper and free T"-actions.

Before we go into the main result of this section, let us recall the following
key step of constructing elements in the structure group by the finite part of K-
theory [82, theorem 3.4].

EXAMPLE 8.6. Let M be a (4k — 1)-dimensional closed oriented connected topo-
logical manifold with 71 M = I'. Suppose

{81, &m}

is a collection of elements in I" with distinct finite orders such that g; # e for all
1 <i < m. Recall the topological surgery exact sequence:

— Hyp(M. L) — Lag(T) 2> STP(M) — Hyp_y(M.La) — .
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For each finite subgroup H of I', we have the following commutative diagram:

A
H[(EH,Ls) —= Lax(H)

| |

A
H7 (ET, Le) —== Ly (D),

where the vertical maps are induced by the inclusion homomorphism from H to I'.
For each element g in A with finite order d, the idempotent pg = %(Z,‘;l g5
produces a class in Lo(QH ), where Lo(QH) is the algebraic definition of L-
groups using quadratic forms and formations with coefficients in Q. Let [g¢] be
the corresponding element in L4 (Q H) given by periodicity. Recall that

Lap(H) @ Q ~ Lyk (QH) ® Q.
For each element g in A with finite order, we use the same notation [¢¢] to denote
the element in L4z (H) ® Q corresponding to [qg] € L4x(QH) under the above

isomorphism.
We also have the following commutative diagram:

HL(ET.L)®Q — 24— Ly(T) ® Q

| |

K§(ET) ® Q —— Ko(C*(I)) ® Q.

where the left vertical map is induced by a map at the spectra level and the right
vertical map is induced by the inclusion map
Lax(T) = Lgg(CH(T)) = Ko(CH(T))

(see [66] for the last identification).
Now if I" is finitely embeddable into Hilbert space, then the abelian subgroup of
Ko(C*(I')) generated by {[pg,].....[pg,]} is not in the image of of the map

s s K§(ET) = Ko(C*(I)).
It follows that:

(1) any nonzero element in the abelian subgroup of L% (I") ® Q generated by
the elements {[gg,]. . ... [qg,,]} is not in the image of the rational assembly
map

A:HL(ET. L) ® Q > Lgg (D) ® Q;

(2) the abelian subgroup of L4 (I') ® Q generated by {[gg,].....[qg,,]} has

rank m.

By the exactness of the surgery sequence, we know that the map
(8.1 S LT ®@Q - STP(M)®Q
is injective on the abelian subgroup of L 4% (I') ® Q generated by {[qg,]. .. .. [qg,]}-
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In fact, to prove the main result of this section (Theorem 8.8), we need to apply
the above argument not only to I" but also to certain semidirect products of I" with
free groups of finitely many generators.

Let I' be a countable discrete group. Note that any set of n automorphisms of
I, say, ¥1,...,¥, € Aut(I'), induces a natural action of F;, the free group of
n generators on I'. More precisely, if we denote the set of generators of Fj by
{$1,...,5n}, then we have a homomorphism F, — Aut(T") by s; +— ;. This
homomorphism induces an action of F; on I'. We denote by I" gy, . .y Fy the
semidirect product of I and F}, with respect to this action. If no confusion arises,
we shall write I x Fy, instead of T" Xy, w1 Fa.

DEFINITION 8.7. A countable discrete group I is said to be strongly finitely em-
beddable into Hilbert space H if I' Xy, 4,1 Fpn is finitely embeddable into
Hilbert space H for all ¥q,..., ¥, € Aut(I') and all n € N.

We remark that all coarsely embeddable groups are strongly finitely embed-
dable. Indeed, if a group I' is coarsely embeddable into Hilbert space, then the
group I' gy, 4.y Fp is also coarsely embeddable (hence finitely embeddable)
into Hilbert space for ¥q,...,v%, € Aut(I') and all n € N. Moreover, if a group
[ has a torsion free normal subgroup I'” such that I'/ T' is residually finite, then T’
is strongly finitely embeddable into Hilbert space; cf. [85, sec. 4]. In particular, all
residually finite groups are strongly finitely embeddable into Hilbert space.

We denote by Ng,(I7) the cardinality of the following collection of positive in-
tegers:

{d € N4 |3y € I" such that y # e and ord(y) = d}.

Then we have the following main theorem of this section. At the moment, we are
only able to prove the theorem for S, TOP (M). We will give a brief discussion after

the theorem to indicate the dlfﬁcultles in proving the version S ge(gf; (M).

THEOREM 8.8. Let M be a closed oriented topological manifold with dimension
n=4k—1(k > 1)and nyM = T'. If T is strongly finitely embeddable into
Hilbert space, then the free rank OfSTOP(M) is > Ngn(T).

PROOF. A key point of the argument below is to use a semidirect product I" x Fy,
to turn certain outer automorphisms of I" into inner automorphisms of I" x Fy,.
Note that every self-homotopy equivalence ¢ € Auty (M) induces a homomor-
phism?!
«  Ki(CLo(M)T) — Ki(Cf o (M)T).

21 The homomorphism Y : K cr 0(1\7)1‘) — K1(Cf 0(1\7)1‘) is defined as follows. The map

Y: M — M lifts to a map J :M — M. However, to view ;ﬂ as a ["-equivariant map, we need to use
two different actions of ' on M. Let  be a nght action of T" on M through deck transformations.
Then we define a new action ¢/ of I" on M by r = Ty, (g)> Where ¥5: ' — T’ is the automorphism
induced by . It is easy to see that 1// M — M isT- -equivariant when I" acts on the first copy of M
by 7 and the second copy of M by t’. Let us denote the corresponding C *-algebras by CL,O(M)E

and C Z‘ O(M )5. Observe that, despite the two different actions of I on M, the two C *-algebras



84 S. WEINBERGER, Z. XIE, AND G. YU

Let 7, (C/ 0(1\7 )T') be the subgroup of K;(C 7 0(1\7 )') generated by elements of
the form [x] — J* [x] for all [x] € K{(C} O(M)F) and all ¥ € Aut,(M). By the
definition of the higher rho invariant map (cf. Definition 4.38),

p: STP(M) — K, (Cf,o(ﬂ)r)»

and we have _
p(ary(0)) = Y (p(0)) € K1(Cf o(M)T)

for all @ € STOP(M) and ¥ € Aut,(M). It follows that p descends to a group
homomorphism

Sad (M) — Ky(Cf o(M)T) /Ty (CF o (M)D).

Now for a collection of elements {y1,...,y¢ | ¥i # e} with distinct finite or-
ders, let 7 (py,), ..., (py,) € STOP(M) be the corresponding elements from
line (8.1). To be precise, the elements . (py,), . . ., (py,) lie in STP (M) ® Q.
Consequently, all abelian groups in the following need to be tensored by the ratio-
nals Q. For simplicity, we shall omit ® Q from our notation, with the understand-
ing that the abelian groups below are to be viewed as tensored with Q. Also, let us
write

p(ri) = p(7 (py) € K1(CL (M),
To prove the theorem, it suffices to show that the elements
p(y1)s - p(ve)

are linearly independent in K1 (C; 0(1\7 1) / i(C} O(Mv )T') for any collection of
elements {y1,...,y¢ | yi # e} with distinct finite orders.
Assume to the contrary that there exist

[¥1l..... [xm] € K1(Cf o(M)Y) and  Y1..... Ym € Aut, (M)

such that

£ m
(8.2) > eip(yi) =Y (51— @)slxs).
i=1 ji=1
where ¢y, ..., cy € Z with atleastone ¢; # 0. In fact, we shall investigate equation

(8.2) in the group K4 (CL*’O(E(F X Fp,))T>Fm) and arrive at a contradiction, where
I' x F,y, is a certain semidirect product of I' with the free group of m generators
Fy,, and E(T" x Fy,) is the universal space for free and proper I' x Fy,-actions.
Let us fix amap 0: M — BT that induces an isomorphism of their fundamen-
tal groups, where BT is the classifying space of I'. Suppose ¢: M — M is an

C Z 0(1\7 ){ and C L* o M )E are canonically identical, since an operator is invariant under the action
7 if and only if it is invariant under the action z’.
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orientation-preserving self homotopy equivalence of M. Then ¢ induces an au-
tomorphism of I',?? also denoted by ¢ € Aut(I"). Now consider the semidirect
product T" X, Z and its associated classifying space B(I" %, Z). Let ¢ be the
element in I' X, Z that corresponds to the generator 1 € Z. We write

®: B(I' 1y Z) — B(I' %y Z)
for the map induced by the automorphism
[ %y, Z — T %, Z givenby a > gad~".

Suppose t: BI' — B(I" xy Z) is the map induced by the inclusion I' < I" %, Z.
Then the map

tocop: M5 M S BT S B(I' %, 7)
is homotopy equivalent to the map
o
®oio0:M > BT = B(I %, Z) — B(T %, Z),

since they induce the same map on fundamental groups.
Leto: M — ET be the lift of the map o: M — BT'. Similarly, p: M — M is
the lift of o: M — M, and

&: E(T %y Z) — E(T x, Z)

is the lift of ®: B(I" x4 Z) — B(I" Xy Z).
Since ®: B(I'xyZ) — B(I'xyZ) is induced by an inner conjugation morphism
onI" x4 Z, the map>?

@4 K1(C o(ED)T) — K1 (CF o(ET)D)
is the identity map. It follows that for each [x] € K1 (C}' 0(1\7 )T, we have
TG (Palx]) = BT (Ix]) = Tudu([x])

in K1(CJ (E(T g 7))T*0Z) where 7,5+ is the composition

Ki(CFo(FD)T) 25 Ky (CF (ETIT) 5 Ki(CF o (E(T g 2))T6),

The same argument also works simultaneously for an arbitrary finite number of
orientation-preserving self homotopy equivalences

Vi, .. Um € Auty (M),

2 Precisely speaking, ¢ only defines an outer automorphism of I', and one needs to make a
specific choice of a representative in Aut(I"). Any such choice will work for our proof.
23 The C*-algebra cr O(EF)F is the inductive limit of C}* O(Y)F, where Y ranges over all I'-

cocompact subspaces of ET.
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in which case we have

TG (Y1) [X]) = TG ([x])

for all [x] € K; (CZ‘,O(]VI)F). In other words, (%)*[x] and [x] have the same
image in

Ky(CF (BT Xy, yy Fn))T 701w oy,
For notational simplicity, let us write I' X Fy, for I' Xy, 4 1 Fp. If no confusion
is likely to arise, we shall still denote 740« ([x]) in K3 (CZ"O(E(F X Fpy))T2Fm)

by [x].
If we pass equation (8.2) to K1(C} ((E(I" x Fp))'>Fm) under the map

Kl(cik,o(ﬂ)r) =K (CZ"O(EF)F) = Ki (C} o(E(I" % Fy)) T2 Fm),

then it follows from the above discussion that
V4

D cxp(ye) =0 in Ky (Cf o(E(T % Fpp)) > Fm),
k=1

where at least one ¢ # 0. By the commutative diagram (6.1), we have

¢ ¢
(8.3) IrxF,, (Z Ck[Pyk]) =2 ( > Ckp()/k)) =0,
k=1

k=1
where drxF,, is the connecting map in the following long exact sequence:

Ko(Cf o(E(T % Fp))TFm) — K§*F(E(T % Fy)) —— Ko(C*(T % F))

(8.4) | Ja
KI(C*(F X Fm)) — K{XFm(E(F i Fm)) P KI(CZ:O(E(F M Fm))FXFm),
Now by assumption I is strongly finitely embeddable into Hilbert space. Hence

I'" x Fy, is finitely embeddable into Hilbert space. By Theorem 8.5, we have the
following.

() {[py.].--..[py.]} generates an abelian subgroup of KS“(C*(F X Fp)) of
rank £, since y1, ..., y¢ have distinct finite orders. In other words,

D cklpy] # 0 € Kg™(C*(T % Fp))
k=1

if at least one ¢ # 0. i
(i) Every nonzero element in Kgn(C *(T" x Fp,)) is not in the image of the
assembly map

j: Ko Fm (E(T % Fp)) = Ko(C*(T % Fyy)).
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In particular, it follows that the map
0T Fy: KEN(C* (T % Fp)) — K1(Cf o(X)TFm)
is injective.
Therefore, we have

L
OrxF,, ( Z Ck[p)/k]) # 0,
k=1

which contradicts equation (8.3). This finishes the proof. U

Remark 8.9. An obvious analogue of Theorem 8.8 holds for homology manifold
structure groups. See Remark 3.36 for a discussion on homology manifold struc-
ture groups.

It is tempting to use a similar argument to prove an analogue of Theorem 8.8
above for STOP (M). However, there are some subtleties. First, note that (cf. [64])

geom
ay(0) + [¢] = By(0)

forall = (f.N) € STOP(M) and all ¢ € Aut, (M), where [¢p] = (¢, M) is the
element given by ¢: M — M in STOP(M). It follows that

p(Bp(8)) = p(ay(9)) + p([@]) = @x(p(0)) + p([¢]).

In other words, in general, p(By(0)) # ¢«(0(0)), and consequently the homomor-
phism
prSTOP(M) — K1(CLo(M)Y)

does not descend to a homomorphism from the group & gTeoorP; (M) to the quotient

group K; (Cik’0 (M)F)/Il (CI:",O(M)F). New ingredients are needed to take care
of this issue. On the other hand, there is strong evidence that suggests an analogue
of Theorem 8.8 for gge%g(M ). For example, this has been verified by the first
and third authors for residually finite groups [82, theorem 3.9]. Also, Chang and
the first author gave a different lower bound of Sgor (M) that works for all non-
torsion-free groups, although the lower bound is weaker [15, theorem 1]. In any
case, we hope to deal with this question in a separate paper.

We close this section by proving the following theorem, which is an analogue of

the theorem of Chang and the first author cited above [15, theorem 1].

THEOREM 8.10. Let X be a closed oriented topological manifold with dimension
n=4k —1(k > 1)and m1 X = T. If T is not torsion free, then the free rank of

SaoP(X) is = 1.

PROOF. Recall that for any non-torsion-free countable discrete group G, if y #
e is a finite order element of G, then [p,] generates a subgroup of rank one in
Ko(C*(G)) and any nonzero multiple of [p,] is not in the image of the assembly
map ju: Kg (EG) — Ko(C*(G)) [82, theorem 2.3]. Using this fact, the statement
follows from the same proof as in Theorem 8.8. U
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9 Lipschitz Structures and Siebenmann Periodicity Map

In this section, we show how our approach can be adapted to deal with signature
operators arising from Lipschitz structures on topological manifolds. We also show
that the higher rho invariant map defined using Lipschitz structures is compatible
with the Siebenmann periodicity map. Throughout this section, all manifolds are
assumed to have dimension > 5.

As we have seen, for our main theorem (Theorem 4.40) and our main application
8.8, it suffices to work with the smooth or PL representatives, that is, the groups
N,,COO(X; w), L,?OO(mX; w), and SEOO(X, w), or N,fL(X; w), LEL(mX; w),
and SPL(X, w); cf. Section 3.4. On the other hand, our approach to the higher
rho invariant given in Section 4.6 applies essentially verbatim to signature opera-
tors associated to Lipschitz structures on topological manifolds. In particular, with
some minor modifications given below, we can directly deal with signature opera-
tors arising from Lipschitz structures as well.

There are two modifications that are needed for the construction of the higher
rho invariant in this case.

(i) We use the unbounded theory (cf. [37, sec. 5]) instead of the bounded the-
ory that is used in Section 4.6. For various properties of the signature
operator associated to a Lipschitz structure, we refer the reader to [41,42]
and [43, sec. 3]. The higher rho invariant map can be defined by the same
formula as in Definition 4.38, and the proofs are identical.

(i) To prove the well-definedness of the higher rho invariant map (for the Lips-
chitz case), the techniques in Section 5 do not quite apply to the unbounded
theory. Recall that, for an even-dimensional manifold ¥ with boundary
dY, the restriction of the signature operator Dy of Y is two times the sig-
nature operator Dyy on dY. In order to take care of this factor of 2, we
use the results of Stern on topological vector fields [76, cor. 1.5]) and tech-
niques developed by Pedersen, Roe, and the first author in [53, sec. 4]. In
particular, these results allow us to use a vector field to split the signature
operator Dy into two halves.?* The rest of the proof is similar to the proof
for the commutativity of the middle square in Theorem 6.10.

Let X be a connected oriented closed topological manifold of dimension n > 5
with 71X = T'. Recall that an element of STOP(X) is an orientation-preserving
homotopy equivalence f: M — X, and an element of SgOP(X x D*) is an
orientation-preserving homotopy equivalence g: (N,dN) — (X x D% X x S3)
such that g restricts to a homeomorphism on the boundary. As pointed out in
item (i) above, by using Lipschitz structures, our construction of higher rho invari-
ant from Definition 4.38 can be directly applied to elements in both STOP(X) and

24 Technically speaking, we may need to punch out a disc in Y, replace it with an infinite cylinder,
and control this cylinder appropriately over the reference control space.
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S(;rop (X x D#). Let us denote the corresponding higher rho invariant map by
pHP: STOP(X) — K (Cf o (X))
and
PP STOP(X x D*) — Kn(Cf o(X)D).
The following proposition is a consequence of Theorem 4.40 and Theorem 3.33.

PROPOSITION 9.1. The higher rho invariant map is compatible with the Sieben-
mann periodicity map. More precisely, we have

PHP = g™ 0 GP: STOP(X) — Kn(CF o(X)D),
where GP is the geometric periodicity map® due to Cappell and the first author:

PROOF. Consider the following commutative diagram from Proposition 3.30:

STOP(x)—2__, STOP(y x D¥)

x 2
Su(X) B Spra(X).

Since every element in S, (X) is equivalent to a smooth representative, it follows
that the higher rho invariant map p"P for STOP(X) (resp., SgOP (X x D*)) defined
using Lipschitz structures above coincides with our definition of the higher rho
invariant for S, (X) in Definition 4.38. Similarly, the higher rho invariant map p]s“lp
for Sgop (X x D*) defined using Lipschitz structures coincides with our definition
of the higher rho invariant for S, +4(X). On the other hand, by the product formula
for higher rho invariants (cf. the discussion before Remark 3.49), the higher rho
invariant remains unchanged under the map xCIP2. By the commutative diagram
above, this finishes the proof. O

Remark 9.2. We point out that, if one is only interested in the well-definedness of
the higher rho invariant map after inverting 2, that is, if one only wants to prove the
map

piSn(X) — Kn(c]f,o()’(v)r) ® Z[%]

is well-defined, then there is a simpler argument than the one outlined in item (ii)
above. Indeed, in this case, an argument similar to the proof for the commutativity
of the middle square in Theorem 6.10 suffices.

25 See the discussion before Proposition 3.30 and Theorem 3.32.
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Appendix A Uniform Control and Uniform Invertibility

In this part of the appendix, we show that a uniform family of geometrically con-
trolled Poincaré complexes gives rise to a uniform family of analytically controlled
Poincaré complexes.

First, let us introduce the notion of uniform families of geometrically controlled
Poincaré complexes.

DEFINITION A.1. A uniform family of geometrically controlled Poincaré com-
plexes over X is a family of geometrically controlled Poincaré complexes over X

{(Ex by, TH) b aen

such that the following conditions are satisfied:

(1) the propagations of by and T}, are uniformly bounded;

(2) the propagations of the chain homotopy inverses T)’L of T are uniformly
bounded;

(3) the propagations of the chain homotopies between Ti o T and 1 are uni-
formly bounded, and the propagations of the chain homotopies between
T, o T/{ and 1 are uniformly bounded;

(4) the matrix coefficients of all maps above (including the chain homotopies)
are uniformly bounded.

There is a natural counterpart of the above notion of uniform families in the an-
alytically controlled category. Recall from Definition 4.10 that, for an analytically
controlled Poincaré complex (E, b, T'), we have

B=b+b* and S =iPP-DHT

DEFINITION A.2. A uniform family of analytically controlled Poincaré complexes
over X is a family of analytically controlled Poincaré complexes over X

{(Ex by, TH) b aen

such that the following conditions are satisfied:

(1) the norms of by and T are uniformly bounded;
(2) the norms of the chain homotopy inverses T)’L of T, are uniformly bounded;
(3) there exist ¢ > 0 and C > 0 such that

e<|By£S, <C.

PROPOSITION A.3. Suppose {(Ey, by, Ty)}rea is a uniform family of geometri-
cally controlled Poincaré complexes over X. Then their {*>-completions give rise
to a uniform family of analytically controlled Poincaré complexes over X. In par-
ticular, there exists € > 0, C > 0 such that

&< ||B,1:|:SA|| <C
forall A € A.
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PROOF. Note that @@, E; is a geometrically controlled Poincaré complex over
LI, X. Let £ be the €2 completion of 1 Ea. Then by the discussion in Sections
4.4 and 4.5, the operators

DB+ Sy and (B - Sy)

AEA AN

are bounded and invertible [37, lemma 3.5]. In particular, there exist ¢ > 0 and
C > 0 such that

e<|EPBr+S)|s<C and &< | @PBL-SV| <C.
A€A A€A

It follows that e < || By & S, ||, < C forall A € A, where &; is the £2-completion
of EA. [

Appendix B K -Homology Class of Signature Operator

In this appendix, we give a detailed construction of the K-homology classes of
signature operators on PL manifolds. The material of this section is very much
inspired by [40]. We will only give the details for the odd case. The even case is
similar.

B.1 Special Case: Closed PL Manifolds

In this subsection, we construct the K-homology classes of signature operators
on closed PL manifolds. The construction for the more general case of elements in
N (X) will be considered in the next subsection.

Let M be a closed oriented PLL manifold of dimension m. Assume that M
is equipped with a triangulation that has bounded geometry. Suppose there is a
control map ¢: M — X. Let Sub(M) be the subdivision from Section 4.2. Here
is an outline of the construction of the K-homology class of the signature operator
on M.

(1) Consider the vector space Py, CkA (M), where CkA(M ) is the complex
vector space of simplicial k-chains in the triangulation of M. Tt carries
a natural geometrically controlled X-module structure, where the basis of
H consists of simplices of Sub(M) and each basis element is labeled by
the image of its barycenter under the control map ¢. Similarly, we have
geometrically controlled X -modules B, C kA (Sub’ (M)).

(2) Based on the geometrically controlled X -module E), we obtain a geo-
metrically controlled Poincaré complex of M foreach j € N (cf. Example
4.18), whose propagation approaches 0 as j goes to oo.

(3) We connect these geometrically controlled Poincaré complexes in a canon-
ical way to form a continuous family of geometrically controlled Poincaré
complexes parametrized by ¢ € [0, 00) such that the propagation of each
Poincaré complex goes to 0 as ¢ goes to co. The K-homology signature
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class of M will be an element of K, (C; (X)) that is naturally determined
by this family.

Let us first carry out the details for connecting the geometrically controlled
Poincaré complexes on

Qo= CcfM) and Qr =D CL(Sub(M)).
k k

Note that Qg is naturally a vector subspace of Q», but Qg is not a geometrically
controlled X -submodule of Q», since the natural basis of Q¢ is not a subbasis of
the natural basis of 05, and furthermore their labelings are not compatible either.
In order to fix this issue, we shall introduce an auxiliary geometrically controlled
X -module structure on Py CkA (Sub(M)) as follows.

(3) For a simplex 0 = AK € M, suppose Sub(o) is the union of distinct k-
simplices {w;}. Instead of the usual basis {w;} for the vector space V; =
CkA (Sub(0)), we shall construct a new basis that contains ¢ = ) ; w; as
one of the basis elements. For example, start with the vector Zi w; € Vg,
and linear-independently choose any other vectors to form a basis of V.

(6) All basis elements of V; from part (a) are labeled by the image of the
barycenter of o under the control map ¢.

(¢) We apply the same construction to each simplex of M, and obtain a basis
of P, C kA (Sub(M)) with the corresponding labeling.

Let us write Q 1 for @ C kA (Sub(M)) with this new geometrically controlled X -
module structure. In fact, to make our exposition more transparent, we shall intro-
duce another geometrically controlled X -module structure on B, C kA (Sub(M))
as follows.

(a) For a simplex o = Ak eMm, suppose Sub(o) is the union of some distinct
k-simplices {w;}, which in particular forms a basis for the vector space
Vo = C£(Sub(0)).

(b) All basis elements w; of V; are labeled by the image of the barycenter of o
under the control map ¢.

(c) We apply the same construction to each simplex of M, and obtain a basis
of P, C A(Sub(M )) with the corresponding labeling.

We denote the resulting geometrically controlled X -module by Q1

Clearly, Qg is a geometrically controlled X -submodule of Q1 Moreover, Q1
and Q1 are isomorphic as geometrically controlled X -modules through an isomor-
phism that has zero propagation.

Let b and S be the differential and duality operator of the simplicial chain com-

plex (with its X -module structure Q 1)

2 A (sub(M)) D CASub(M)) B CA  (Sub(M)) S -
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which contains
= i (M) = CR(M) — Gy (M) — -+

as a chain subcomplex, where the X -module structure of the latter is Q.
We endow Q; (resp., Qo, Q1, and Q») with the inner product for which the
basis elements are orthonormal. From now on, we shall identify the dual space

of Ql (resp., Qo, Q1, and Q») with Ql (resp., Qo, Q1, and Q») by this inner
product. With respect to the orthogonal decomposition of Q1 = Q¢ @ Q(J,-, we

have
. b11 b12 _ Sll S12
b_(o b2 and 5 = S21 Sx2)’
where b11 and S1; are the differential and duality operator of the chain complex
o> CEL (M) = CE(M) > CE (M) — -+ .

In particular, b11S11 = S11b7; and bS = Sb*. If no confusion is likely to arise,
we shall denote these geometrically controlled Poincaré complexes by (Qo, b11,
S11) and (01,5, S).

Now let us define

(b1 thr2 _ (S tSi2
be = ( 0 b2 and 5 = 1821 S22
where ¢ € [0, 1]. A straightforward calculation shows that
tht - Stb;k

Consider the short exact sequence

0 — (Qo,b11) > (01,b) = (O b2z) — 0.

Because ¢ is a quasi-isomorphism (i.e., an isomorphism on homology), it follows
that (Q(J)-, ba2) is acyclic (i.e., with zero homology). Hence the short exact se-
quence

0 — (Qo.b11) > (01.b1) = (O bxa) — 0

implies that (Qg, b11) 5 (Ql,b,) is a quasi-isomorphism for all ¢ € [0, 1].
Therefore, in the following commutative diagram, the vertical maps are quasi-
isomorphisms:

(Qo. b7} S, (Qo.b11)

T |
~ S; ~
(Ql’bt) (lebt)
It follows that S; is a quasi-isomorphism for all ¢ € [0, 1], since S is a duality
operator and thus a quasi-isomorphism. In fact, by localizing the calculation at

stars of simplices and using a Mayer-Vietoris argument as in [38, sec. 4], it is not
difficult to show that the maps ¢: (Qo,b11) — (Q1,b;) and S; are geometrically
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controlled chain equivalences, and {(Q 1.b¢.8t)}1€[0,1] form a uniform family of
geometrically controlled Poincaré complexes in the sense of Definition A.1.

Now let us turn to the geometrically controlled Poincaré complexes (Q1, b, S)
and (03, b, S). Here O and Q5 carry the same differential b and duality operator
S. The only difference between the two complexes is their geometrically controlled
X -module structures. We shall introduce a new family of geometrically controlled
X -module structures on the underlying space @, C kA (Sub(M)) that will connect
(01.b,S) and (Q2,b,S). For a simplex 0 = A¥ in M, suppose Sub(o) is the
union of distinct k-simplices {w;}. Let y;:[1,2] — M be the unique linear path
that starts with the barycenter of o and ends with the barycenter of w;. Now for
each ¢ € [1, 2], we introduce the following geometrically controlled X -module on

P CA (Sub(M)):

(Iy) For a simplex o0 = A¥ e M, suppose Sub(o) is the union of some dis-
tinct k-simplices {w;}, which forms a basis for the vector space Vy =
C£ (Sub(0)).
(II;) All basis elements w; of V, are labeled by the image of y;(¢) under the
control map p: M — X.
(III;) We apply the same construction to each simplex of M, and obtain a basis
of B, C kA (Sub(M)) with the corresponding labeling.

We denote the resulting geometrically controlled X-module by Q;. Note that,
when ¢t = 1 or 2, the definition of Q; is consistent with the definition of Q; or
Q> above. Again, it is not difficult to see that {(Q¢, b, S)}e[1,2] form a uniform
family of geometrically controlled Poincaré complexes in the sense of Definition
A.l.

To summarize, we have constructed a uniform family of geometrically con-
trolled Poincaré complexes {(Q¢, bs, St)}se[0,2), Where

01.b;.S;) if0O<r<1,
(B.1) (0r.br. S = ) Q10050
(Q¢,b,S) ifl <t <2,
We shall explain our notation. On one hand, when + = 1, we have identified

(Q 1,b,S) with (Q1, b, §) by an isomorphism with zero propagation. On the other
hand, when ¢ = 0, there appears to be a conflict of notation. Indeed, (Q 1,bo, So)
is not a chain complex modeled on the vector space (¢, but rather a chain complex
modeled on Q 1 with

_ (b1 O _(S11 O
bo—(() b22) and SO_(O S22 .
However, (Q 1, bo, So) is geometrically controlled chain equivalent to (Qo, b11,
S11). Indeed, we have that

(01.b0.S0) = (Q0.b11.511) ® (OF . b2z, S2).
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and (Q(J)-, bz, S27) is acyclic. In other words, in terms of K-theory, (Ql ,bo, So)
is equivalent to (Qg, b11,S11); and (Q 1, bo, So) can be viewed as a stabilization
of (Qo.b11,S11). More precisely, let By = bg + b;, Bi1 = b1 + by, and
Bay = byy + b3,. Then we have

Bo £ So = (B11 £ S11) ® (B2 £ S22).

Since (QOL, bas, S22) is acyclic, uSp, is a duality operator for ( Qé, by5) for all
u € [0, 1]. It follows that the invertible element (cf. Definition 4.11)

B11+S811
(Bo + So)(Bo — SO)_1 = (BII_SH 322+522)

B2>—S82

18 connected to the invertible element

B11+S11
B11—S511
1

through the following path of invertible elements:

13;11+§11
11511
Bor+uS>» |-

Bo—uS>;

Therefore, (Q 1, bo, So) is just a K-theoretic stabilization of the geometrically con-
trolled Poincaré complex (Qg, b11, S11)- If no confusion is likely to arise, we shall
continue this slight abuse of notation and say that the uniform family of geometri-
cally controlled Poincaré complexes {(Q¢, bz, St)}se[0,2] connects (Qo,b11. S11)
and (Q», b, §). We shall implicitly assume this type of stabilization throughout the
following discussion.

Let us write Q2; = @y CkA (Sub’ (M)). We can apply the same construction
above to form a uniform family of geometrically controlled Poincaré complexes
connecting Qz; to Q5(;+1). Denote this uniform family of geometrically con-
trolled Poincaré complexes by {(Q¢,bs, St)}se[2),2j+2)- In fact, it is not difficult
to see that the union of these families

{(Qt, bt, St)}te[o,oo)

is a uniform family of geometrically controlled Poincaré complexes. By Proposi-
tion A.3, there exist £ > 0 and C > 0 such that

e< ||Bt:|:St” <C

forall ¢ € [0, 00), where B; = b; + b}.
Let p(x) be a polynomial on [¢, C] U [-C, —¢] such that

_ 1
sup |p(x)—x 1| < rok
x€le,C]
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Then || p(B; — S;) — (B, — S;) 71| < m, which implies that p(B; — S;) is
invertible. Moreover, the element

U= (B: +St) - p(Br — St)

has finite propagation. Since the propagations of B; and S; go to 0 as ¢ goes to oo,
it follows that the propagation of (B; + S;) - p(B; — St) goes to 0 as ¢ goes to 0o.

To summarize, we obtain a norm-bounded and uniformly continuous path of
invertible elements

U:[0,00) —» C*(X)*

such that the propagation of U; goes to 0 as ¢t — oo. Here C*(X)™ is the unitiza-
tion of C*(X).

DEFINITION B.1. The local index Indy (M, ¢) of the signature operator of M
under the control ¢: M — X 1is defined to be the K-theory class of the path U in
K1(C/(X).

The even-dimensional case is similar. We omit the details.

B.2 General Case: Elements in NV, (X)

In this subsection, we construct the K-homology classes of signature operators
for elements in Ny, (X). See Definition 3.13 for a description of Ny, (X).

Leté = (M,0M,¢,N,d, N, f) € Ny (X) (cf. Definition 3.13). In this case, we
consider the space M Ur (—N) obtained by gluing M and —N along the boundary
by the map f:90N — dM. Although M Uy (—N) is not a manifold, it is still
a space equipped with a Poincaré duality. In fact, since f:9dN — dM is a PL
infinitesimally controlled homotopy equivalence, we can still make sense of the
K-homology class of its “signature operator.”

More precisely, let

be the geometrically controlled Poincaré pair that is associated to the triangulation
Sub™ (M) (resp., Sub™(N)). Define (E®™, ™) to be the quotient complex of the
inclusion

(n) (n)
f(n)PN QBPN
_—>

(P P (5 0 (£

where ™ is a chain homotopy equivalence
A p@ ) pm)y @) () () p(n) pn), () (n)
f(n)'(PN EN’ Py by ’TO,N) — (Ppr Epp - Pag by ’TO,M)

induced by the PL infinitesimally controlled homotopy equivalence f:dN — dM.

Here TO(’"A), and To(,nl\)/l are the Poincaré duality operators on the boundary as defined
in Lemma 5.4. Note that
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(1) the natural inclusion

is a geometrically controlled homotopy equivalence of Poincaré pairs;

(2) since f:dN — M is a PL infinitesimally controlled homotopy equiva-
lence, f™ can be chosen so that the propagation of £ goes to 0, as n
approaches infinity;

(3) under the above inclusion t,, the map f™ is geometrically controlled
chain homotopic to f@+1: moreover, the propagation of the homotopy
goes to 0, as n goes to infinity.

In particular, it follows that the maps TA(; ) and T]f;1 ) induce a natural Poincaré
duality operator 7™ on (E™,»™). To summarize, (E™,b™ T™) is a geo-
metrically controlled Poincaré complex such that the propagations of all relevant
maps go to 0 as n goes to infinity.

Now essentially the same construction from Section B.1 above can be applied to
{(E™ p() T(”))}nzl and “connect them together” to produce a uniform family
of geometrically controlled Poincaré complexes. Technically speaking, some ex-
tra care is needed for the chain equivalences { f ™}. We need to specify how to
connect £ to £+ Let us define g™ = ¢ o f*+D o, which fits into the
commutative diagram

(n) p(n) pr)y(n) 4 (n) tn (n+1) p(n+1) pnr+1); (r+1) (n+1)
(PN EN Py by Toly) —— (Py " Ey " Py by 7 Tyl )
|
Ig(") lf(n+1)
+ *
(n) () p®)y(n) —(n) ‘n (n+1) p(n+1) pnr+1); (r+1) (n+1)
(Pag Eng > Pag bag’ > Toog) < (Pag - Eng” o Pag hag” 2 Tolhy )

where ¢ is the adjoint of t,. We observe that for each ¢ € [0, 1], the map

he=—1)f® +1g™:
(n) ;(n) p)y(n) () (n) ;(n) p)y(n) ()
(PN EN" Py by Toly) = (Pag" Eag'» Pag"bag - Tolpr)

is a geometrically controlled chain equivalence of Poincaré complexes. The family
{ht}o<r<1 provides a natural way to deform f ™) into g, Now consider the
orthogonal decompositions

(n+1) (n+1) _ p@) -(n) () -(n)\ L
Py UENT T =Py EN @ (P ENT)

and
(n+1) p(n+1) _ p®) (1) ) p(n)\ L
Py VEy =Py Epyy @ (Py Epp )

If we write f ™1 as a matrix with respect to these decompositions, then the map

(P g™ pm, 1) 7 ) g p) ) ()
g (PYEN PO YY) = (P Exp Pagbap - Tolur)
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becomes a matrix entry of f (»+1) Now the construction in Section B.1 above
goes through in a straightforward way.

Consequently, for each £ € N, (X), we obtain a K-theory class in K, (C}(X)).
We denote this class by Indy, (£), and call it the K-homology class of signature
operator associated to £ or simply the local index of £.

Appendix C Tensor Products of Poincaré Complexes

In this section, we briefly review tensor products of Poincaré complexes. The
discussion below works simultaneously for geometrically controlled or analytically
controlled Poincaré complexes. We will not specify which category, and simply
call them Poincaré complexes.

Let (E,d,T) and (F, b, R) be two Poincaré complexes of dimensions n and m,
respectively. Recall that the tensor product of two chain complexes is naturally
a double complex. The total complex (E ® F, d) of this double complex can be
described as follows:

(1) the k™ term of the total chain complex is
(E®QF)= @ E,® Fy:
k=p+q
(2) the differential is defined as
x®y)=dx®y+ (—D*x @by
in(Ep—1 @ Fy)) ®(Ep ® Fy—1) forallx ® y € E, ® Fy, where x| = p
if x € Ep.
Roughly speaking, d = d®1 + 1 ® b, where & stands for graded tensor products.
The sign convention is that a sign (—1)@81 js introduced whenever a symbol o (a
chain element or a map) passes over another symbol § (a chain element or a map).
Now it is easy to verify that
"x®y)=d*x®y + (—1)|x|x ®b*y

The Poincaré duality operators 7" and R also naturally induce a Poincaré duality
operator T®&R on (E ® F, d) as follows.

DEFINITION C.1. We define
(T&R)(x ® y) := (=)= DTy @ Ry,

The following lemma shows that 7 ® R satisfies the conditions in Definition 4.9,
and hence implements a Poincaré duality operator for (£ ® F, d).

LEMMA C.2. We have
(1) (TRR)I*v + (—=1)KHTRR)v = 0 forallv € (E @ F)i;
() (T®&R)*v = (—=1)n+tm=Rk(TQR)v forall v € (E ® F)y.
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PROOF. Letx ® y € E, ® Fy with p + g = k. Then we have
ITRR)(x ® y) = (=) DWIy(Tx @ Ry)
= () PD@Tx @ Ry + (—)IT*ITx @ bRY)
and
(T&R)*(x ® y) = (TRR)(d*x @ y + (—1)*lx @ b*y)
— (=)= =DDITg* . @ Ry
+ ()R O=RDWHD T @ Rp*y
— (_1)(n—IXI—1)~|yITd*x ® Ry
+ (=)*"(=)= DT x @ RH*y.
It follows that
(TR&R)I*(x ® y) + (D ITBR)(x ® y) =0

since Td*x + (—1)*ldTx = 0 and Rb*y + (=1)*!bRy = 0. This proves part
(D).

The calculation for Part (2) is similar. We leave out the details. O

Appendix D Product Formula for Higher Rho Invariants

In this section, we prove Theorem 6.8, which gives a product formula for higher
rho invariants.
Given

9 = (M’aMs(p’N’aN7w7f) ESH(X)v

let 0 x R € S,41(X x R) be the product of 8 and R. Here various undefined
terms take the obvious meanings (see Section 3.3 for the definition of 8 x I for
example). Note that the construction in Section 4.6 also applies to 6§ x R and
defines its higher rho invariant p(6 x R) € Kn+1(CZ,0 (X x R)T). Also,there is a
natural homomorphism

a:Cf (N ® CF(R) = Cf (X xR)T,
which induces an isomorphism of K-theory.
THEOREM D.1. With the same notation as above, we have
k- s (p(6) ® Indi,(R)) = p(6 x R)

in Ky+1(C/ 0()? xR)T), where Indy, (R) is the K -homology class of the signature
operator on R, and k, = 1 if n is even and 2 if n is odd.

PROOF. We will prove the even case and the odd case separately.
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Even case. Let us first consider the case where 7 is even. We use the unbounded
theory to define the K-homology class of the signature operator on R. The Hilbert-
Poincaré complex (F, d, R) associated to the signature operator on R is

d
ng (R) < Q1142 (R)

where d is the adjoint of the de Rham differential map and the duality operator R
is the Hodge star operator. See [37, sec. 5] and [38, sec. 5].

Let (E, b, T) be the analytically controlled Poincaré complex associated to the
space M Uy (—N) as in the definition of p(6). See Section 4.6 and Appendix B.
Then the tensor product

(E® F,3, T®R)

gives rise to a specific representative of the Hilbert-Pioncaré complex associated to
0 xR. See Appendix C for more details on tensor products of Poincaré complexes.
It is straightforward to verify that the self-adjoint duality operator S;g p (as in

Definition 4.10) associated to T ® R is precisely ST ® R. For notational simplicity,
let us write S = S7. Note that we have

0=bR1+1®d:Ecyen ® F1 = Eodd ® F1 @ Ecyen ® Fo.

a*Zb*®1—1®d*3Eodd®F0_>Eeven®FO®E0dd®Fl-

Let us identify F1 = Q] ,(R) with Fp = Q9,(R) by /i dt > h. With this identifi-
cation, d is skew-adjoint, that is, d* = —d. Moreover, we have the following:

()
(E ® F)odd = (Eeven ® F1) @ (Eoaa ® Fo)
= (Eeven ® Eoad) ® Fo = E ® Fo;
(ii)
(E ® F)even = (Eeven ® Fo) ® (Eoaa ® F1)
> (Eeven @ Eoda) ® Fo = E Q Fo;

2

(iii)
0+0*"+S®R=BR1-1iD+SQ®1:EQ® Fy—> E ® Fy,
where B=b +b*and D =i -d withi = +/—1.
CLAIM D.2. p(8 x R) is represented by a path of invertibles:

_ B®1-1QiD;/+S5S®1
CB®1-1Q®iD;—S®1

(D.1) v, 'E® Fy — E ® Fo,

where D; = (1 4+ )1 D is the operator D rescaled by (1 4 ¢)~! for 0 < ¢ < oo.



ADDITIVITY OF HIGHER RHO INVARIANTS 101

PROOF OF CLAIM D.2. We point out that, when defining V;, we should in fact
use refinements B; of B and S; of S, respectively, such as in Appendix B. For
notational simplicity, we will leave out the details and continue writing B and
S instead. Note that there exists § > 0 such that (B; £ S;)? > § for all j.
Furthermore, we have

B1-1®iD;/+S®I1
B1-1®iD,—S®1
(B+S)®1-1®iD;)((B—S)®1+1®iD;)
(B-5)?2®1+1® D?
(2S(B—S)®1+2S ®iD;)
(B-S2®1+1®D?

D.2) =

Clearly, we have
(B-S?®1+1®D?=((B-5)?-8)®1+1® (§+ D?).
where both (B — §)? — § and (§ + D?) are invertible. It follows that
(B-S’®1+1® D)
—(10@B+D) Y(B-S2-8)®@E+DY)  +101] "

Now one can use an argument similar to the discussion in [84, pp. 841-843] to
show that all terms in line (D.2) can be approximated arbitrarily well operator-
norm-wise by elements with arbitrary small propagations. Alternatively, we can
argue as follows. Recall the following functional calculus by using the Fourier
transform and wave operator:

f0 =5 [ et feee.

where f is the Fourier transform of f. Now by the propagation estimate of the
wave operator ¢€D¢  there exists G, such that

|6+ D7) ~Gif

is sufficiently small for all ¢ and the propagation of G; goes to 0 as ¢ goes to co. A
similar statement holds for D,(§ + D?)~!.
Now approximate

[(B=$?-&)@(E+D}) " +181]"
by
[(B-S)Y-8)®G, +1aI1]"".
Note that there exist &g > 0 and C > 0 such that
o <|(B=5)P?-8Q®G +1®1|| <C
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uniformly for all #. Now use a polynomial to approximate the function s (x) = x~!

on the interval [¢g, C]. We see that there exists K; that approximates

[(B-$)?-8)®(5+D2) ' +101]"

sufficiently well, and the propagation of K; goes to 0 as ¢ goes to oo.
To summarize, for any ¢ > 0, a path of invertible elements (V;)o<s<oo €Xists
such that

1 Vg =1,
(2) Ve = VE|| <eforallt € [0, 00);
(3) the propagation of V/ goes to 0 as ¢ goes to co.

It follows that the path (V;)o<s<oo is a representative of the K-theory class
p(0 X R) € Kn41(Cf (X x R)).
This finishes the proof of the claim. U
Now we return to the proof of the theorem. Recall that B £ § is a self-adjoint
invertible operator. Therefore, B £ S is homotopic to P+ — Q4+ through a path of

invertible elements, where Py is the positive projection of B £+ S and Q1 is the
negative projection of B £+ S. Note that Py + Q1+ = 1. We see that the path

BR1-1®iD;£S®1=(B£S)®1-1®QiD;
is homotopic to the path
(P+—04)®1—-(P++ 0Q1+)®iD;
=P ®(—iD)+ Qx®(—iD; —1).

To be precise, again we need to approximate P+ and Q4+ by elements with appro-
priate propagations, and use these approximations instead of P+ and Q. This is
straightforward. In particular, the calculation below can be easily modified to work
for these approximations of P4 and Q4 as well. For notational simplicity, we will
leave out the details and continue using P4+ and Q.

A routine calculation shows that

(PL ® (—iD; + 1)+ Q4 ® (—iD; — 1))
= Pr®(—iD;+ )71+ Qe ® (—iD, — )7
It follows that, at the K-theory level, the path (V};)o<s<oo is equivalent to
(P+ ® (=iD; + 1) + 0+ ® (=iD, — 1))
(P-® (=D + 1)+ Q- & (=iD,— 1))
=P P-®1+4+PLQ_® (D, —1)(iD, + 1)
+04P_ QD+ 1)(ID;—1) '+ 0,0_-®1=
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= (P+ ® (iD; — )(iD; + ) + (1- Py ® 1)
(P-® D+ 1D~ D)7+ (1= P) @ 1)
= ([P+]—[P-) ® (D¢ +i)(D; —i)7")

where the last term is precisely p(6) ® Indy (R). To summarize, when 7 is even,
we have proved that

o (p(6) ® IndL.(R)) = p(6 x R).

Odd case. Now we consider the case where n 1s odd. Note that we have the
following commutative diagram:

Kn(Cf o)D) ® K1(CE(R)) ® K1(CF(R)) 25 Kny1 (CF o (X x R)T) ® K1(CF(R))

(D.3) 1®ﬂ*J(z ;Jy*
Kn(CF o(X)T) ® Ko(Cf (R?) ———————— Kn(Cf o(X x RAT).
where various isomorphisms are induced by the following natural homomorphisms:
a: Cf o) ® CFR) — Cf o(X xR)T,
B:CER) ® Cf (R) > Cf (R?),
y:Cfo(X xR ® CF(R) — Cf o(X x RH)T,
t:Cf ()T ® CFR?) — CF (X xRH)T.
In Proposition D.3 below, we will show that
7 (p(0) ® Indz (R?)) = p(6 x R?),

where Ind; (R?) is the K-homology class of the signature operator on R?. As-
suming this for the moment, by the commutativity of diagram (D.3), it follows
that

y«[p(0 x R) ® Ind (R)] = p(6 x R?)
=2 7.[p(0) ® B (IndL (R) ® Ind (R))]
=2 y«[ax(p(f) ® Indz (R)) ® Indz (R)],

where the first equality is a consequence of the even case. Here we have used the
fact that

Ind (R?) = 2 - B« (Ind (R) ® Indf, (R)).
Therefore, we have
p(0 x R) ® Indz (R) = 2- a4 (p(0) ® Ind (R)) ® Indz (R),
which implies that p(0 X R) = 2-a«(p(0) ® Indz (R)). This finishes the proof. [

PROPOSITION D.3. We have t4(p(0) ® Indy (R?)) = p(8 x R?), where Indy, (R?)
is the K-homology class of the signature operator on R?.
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PROOF. The proof is similar to the even case above, but the details are more
involved. Here again the precise details of the proof would involve a discussion
about approximations by finite propagation elements. Since this is very similar to
the even case above, we will leave out the details.

Let (F,d, R) be the Hilbert-Poincaré complex associated to R?:

d d
Q7,(R?) < Q},(R?) < Q7,(R?)
where d is the dual of the de Rham differential and R is the Hodge star operator.
Let us write
Foven = Q0,(R*) @ Q7,(R?) and  Fogg = Q},(R?).

Let (E, b, T) be the analytically controlled Poincaré complex associated to the
space M Uy (—N) as in the definition of p(6). See Section 4.6 and Appendix B.
Then the tensor product

(E® F.0,T®R)
gives rise to a specific representative of the Hilbert-Poincaré complex associated to
0 xR2. Let Sr &R’ ST, and Sg be the self-adjoint operators (as in Definition 4.10)

associated to T®R, T, and R, respectively. Now a straightforward calculation
shows that

(1) S;opr = ST ® SRON E @ Feven, and Sy p = —ST ® Spon E @ Foqd;
R2)0=bQR1+1Q@dmnEeyey ® Fandd=b®1—1Rd on Epqq ® F.

It follows that
0+ 0"+ S5, =B®1—-1® D+ ST ® Sk
on Eogq ® Feyen, and
8+8*iST®R=B®1+1®D:FST®SR,

on Eeyen ® Fogq Where B = b + b* and D = d + d*. Let F* be the eigenspace
of Sk belonging to the eigenvalue =1. We make the following identifications:

Eodd ® Fo-gd —(B+S7)®1 Eeven ® Fojde
g B E’a ®1 @ -
Eodd X Fodd (B—S7) Eeven ® Fodd
Eoa ® F = & o = (E ® F)odd,
Eoua ® F, even 1%1 Eoda ® F, even
® @ & _
EOdd ® Feven 1®1 EOdd ® Feven
and
Eeven ® F e—\i/_en E even ® Fe—\i/_en
o 181 ®
Eeen ® F_, _ Eeen ® F_,
(E ® F)even = o @ e o1 o o e = Eeven @ F.

+ +
Eodd ® Fodd —(B—%T)le even & Fodd

E
® S e
Eoad ® Foaa —B+5r)@1  Eeven ® Fogq
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With these identifications, we have

B+S1)®1+B+S1)®D on Equq ® Fil,.
59 4 S = (B—S7)*(B+S1)®1+(B+S7)®D  on Eea ® Foly,
T®R —~B-Sr)®1+(B—Sr)®D on Eogd ® Fiep

—(B+S7)* (B—S7)®1+(B—Sr)®D on Eoq ® Fjgy.

Note that
B+S B+S
(B + ST)Z: Ecven d Eoad d Eecven
are positive invertible operators. It follows that the invertible element
0+0" + Srgp

is homotopic to

B+ St B — St .
(D.4) ( 5 —ST)SR + ( 5 ST)D'

EOdd® F —> Eeven@F.

Here the matrix form is written with respect to the decomposition F = F* @ F~.
Note that D is off-diagonal in this case. Now the invertible element from line (D.4)
in turn is homotopic to the invertible element

(B oo B—ST)SRf(D) * (B_ST B +ST)g(D)

where g(x) = x(1 4+ x2)7'/2 and

F0) = 1 —g2() = (14 2771220

Similarly, d 4+ 0* — S5 » is homotopic to

v= (B_ST B +ST)SRf(D) - (B_ST B +ST)g(D)

Note that we have

U' = (Skf(D) + g(D))(

V =

(B—S7)7!
(B + S7)~!

since (Sg f(D) + g(D))* = 1.
Similarly, if we replace D by D, = (1 +¢)~! D, we have

_(B+ ST B — St
= (P g )ser@o+ (P g g )en
and

O I VAR N FU5!

261 fact, any normalizing function g and f(x) = /1 — g2(x) will work.
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It follows that the path of invertibles (V;U; !)o<;<oo is a representative of the
K -theory class p(6 x R?). Now note that

VU7 = [B® 1+ St ® (SR(f2(Ds) — g%(D1) + 2£(D1)g(Dy))]

(B—Sr)7!
' ( (B + ST)—I)'

Following the notation of [38, sec. 5.2.1], let us denote
S1=Sr and (82); = g(Dy) + SrRSf(Dy).
We immediately see that
SR(f2(D1) = g*(D1)) + 2 (D1)g(Ds) = (52):51(S2)s-

Let us denote the latter by .7 = (52);S51(52);. Note that .%; is a symmetry for
each . We define a projection P; := (.%; + 1)/2. To summarize, p(6 x R?) is
represented by the path of invertibles

-1
(B®1+ St ®54)[((B _oST) 8) " (8 (B J?ST))]

=[(B+S1)® P+ (B—S1)® (1— Py)]

B-Sp)™t 0\ (0 0
' 0 o) T\o B+sp)!
B+St 0 1 0
=757 Vert(o gy )ea-r

Fse 0 10 N
[ et oo ¢ o)
— 1@+ sn@ -5 (171 -{ (g 1)])

which is precisely 74(p(f) ® Indz (R?)).?” This finishes the proof. O
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