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Abstract
We show that given a collection X = { f1, …, fm} of pure mapping classes on a surface
S, there is an explicit constant N, depending only on X , such that their Nth powers { f N

1 ,
…, f N

m } generate the expected right-angled Artin subgroup of MCG(S). Moreover, we show
that these subgroups are undistorted, and that each element is pseudo-Anosov on the largest
possible subsurface.
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1 Introduction

Let S be a finite-type orientable surface satisfying χ(S) < 0. By the mapping class group of
S we mean

MCG(S) := Homeo+(S)/homotopy.

The study of free subgroups of MCG(S) dates back to Klein [13], who classically showed
that the matrices

A =
[
1 2
0 1

]
and B =

[
1 0
2 1

]

generate a free subgroup of SL(2, Z). Indeed, wemay identify SL(2, Z)with MCG(T 2), the
mapping class of the torus, and these matrices correspond to the squares of the Dehn twists
about the standard meridian and longitude curves. More generally, it follows from Ivanov’s
[10] and McCarthy’s [19] proof of the Tits alternative for MCG(S) that there is in fact an
abundance of free subgroups.
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We wish to broaden our view to the larger class of right-angled Artin groups (RAAGs).
Recall that a RAAG has a presentation determined by a finite simplicial graph Γ :

A(Γ ) = 〈vi ∈ V (Γ ) | [vi , v j ] = 1 ⇐⇒ (vi , v j ) ∈ E(Γ )〉.
Regarding subgroups of MCG(S) of this form, Koberda [14] showed that they too can be
found in abundance. In the statement below, we say that a mapping class is pure if it is
either pseudo-Anosov or else fixes a multi-curve C component-wise and restricts to either a
pseudo-Anosov mapping class or the identity on the complementary components S\C . We
call a mapping class of the latter type a partial pseudo-Anosov mapping class, and we call
the components of S\C where its action is non-trivial its support; in the case of a Dehn twist
we define its support to be an annular neighborhood of the twisting curve, and the support of
a pseudo-Anosov mapping class is all of S.

Theorem 1 (Koberda, [14] Theorem 1.1) Let { f1, …, fm} be an irredundant collection of
pure mapping classes supported on connected subsurfaces S1, …, Sm ⊆ S. There exists some
N �= 0 such that for all n ≥ N,

〈 f n
1 , . . . , f n

m〉 ∼= A(Γ ),

where Γ is the co-intersection graph of the subsurfaces {Si }.
Here, irredundancy means that no pair of mapping classes have a common power, and the

co-intersection graph has as vertices the subsurfaces Si and edges between vertices whose
corresponding subsurfaces can be realized disjointly. Koberda’s proof goes by playing ping-
pong on the space of geodesic laminations on S, and it is not clear how the number N depends
on S or on the given mapping classes.

The goal of this paper is to effectivize and strengthen Koberda’s theorem. The constant in
the statement of the theorem below is explicitly computed in Sect. 4.

Theorem 2 Let { f1, …, fm} be an irredundant collection of pure mapping classes supported
on connected subsurfaces S1, …, Sm ⊆ S. There exists an explicit constant N = N ({ fi }),
depending only on certain geometric data extracted from the given collection of mapping
classes, such that for all n ≥ N,

H = 〈 f n
1 , . . . , f n

m〉 ∼= A(Γ ),

where Γ is the co-intersection graph of the subsurfaces {Si }. Moreover, increasing N in a
controlled way, we can guarantee that H is undistorted in MCG(S).

We remark that a similar statement was claimed via different means by Sun [22], though
there are some gaps in their arguments.

Computing the constant explicitly in the case that all mapping classes in question are
Dehn twists, we have the following corollary.

Corollary 1 Let {t1, …, tm} be a collection of Dehn twists about distinct curves {β1, …, βm},
and let

N = 18 + max
i, j

i(βi , β j ),

where i(·, ·) denotes geometric intersecion number. Then for all n ≥ N, we have

〈tn
1 , . . . , tn

m〉 ∼= A(Γ ),

where Γ is the subgraph of the curve graph C(S) spanned by {β1, …, βm}.

123



Geometriae Dedicata

A similar bound has been found by Seo [21] using methods from hyperbolic and coarse
geometry, and Bass-Serre theory. That these subgroups are undistorted follows from a careful
study of the construction of “admissible” embeddings of RAAGs into mapping class groups
due to Clay–Leininger–Mangahas [8].

It is worth mentioning that if there are more than two mapping classes involved, N nec-
essarily depends on the given mapping classes, as the following example illustrates. Let β1

and β2 be two non-trivially intersecting simple closed curves, and consider the Dehn twists

t1 = tβ1 , t2 = tβ2 , and t3 = t2
K

1 t2t−2K

1

for some K > 0. Then for no 1 ≤ k ≤ K is 〈t2k

1 , t2
k

2 , t2
k

3 〉 isomorphic to a free group of rank
3, even though the corresponding subgraph of C(S) is disconnected.

Using similar methods, we are also able to determine the Nielsen-Thurston type for all
elements of these subgroups.

Theorem 3 Let H be as in Theorem 2. Then every h ∈ H is pseudo-Anosov on its support.
In particular, if the support of h is all of S, then h is pseudo-Anosov.

The support of an element h ∈ H is the union of the supports of the given generators of H
appearing in a cyclically reduced representative of the conjugacy class of h. The method of
proof we employ again closely resembles that of Clay–Leininger–Mangahas.

In Sect. 2 we establish the relevant terminology and some basic notions we will need from
coarse geometry, geometric group theory (including a proof of a new ping-pong lemma for
RAAGs), and the theory of surfaces and their mapping class groups. In Sect. 3 we recall
the construction of subsurface projections and other relevant results from [18], which we
use to build our ping-pong table. The essential result in this section is a modification of the
well-known Behrstock inequality. In Sect. 4 we carry out the proofs.

2 Background

2.1 Coarse geometry

If (X1, dX1) and (X2, dX2) are metric spaces, we say a (not-necessarily-continuous) map
f : X1 → X2 is a (A, B)-quasi-isometric embedding if there are constants A ≥ 1 and
B ≥ 0 such that for all x, y ∈ X1,

1

A
dX1(x, y) − B ≤ dX2( f (x), f (y)) ≤ AdX1(x, y) + B.

If there is a constant D > 0 such that any x2 ∈ X2 is within D of f (X1), we further say f
is a quasi-isometry, and that X1 and X2 are quasi-isometric.

Recall that to a group G with generating set Y we may associate the Cayley graph
Cay(G, Y ), and that equipped with the graph metric Cay(G, Y ) is a metric space. Moreover,
if G is finitely generated, then any two metrics coming from different finite generating sets
Y and Y ′ yield quasi-isometric Cayley graphs. We may then put a (left-invariant) metric dG

on G, the word metric, defined by

dG(g, h) := dCay(G,Y )(g, h) = dCay(G,Y )(1, h−1g).

Regarding the statement of Theorem 2, we say that a finitely generated subgroup H < G is
undistorted if the inclusion of H into G is a quasi-isometric embedding with respect to their
respective word metrics.
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We say a metric space X is δ-hyperbolic if there exists a constant δ so that all geodesic
triangles are “δ-slim”, i .e. each side is contained in the union of the δ-neighborhoods of the
other two.

2.2 Right-angled artin groups

Given a finite simplicial graph Γ with vertex set V (Γ ) and edge set E(Γ ), the right-angled
Artin group on Γ is the group with the presentation

A(Γ ) := 〈vi ∈ V (Γ ) | [vi , v j ] = 1 ⇐⇒ (vi , v j ) ∈ E(Γ )〉.
We call the vi the vertex generators of A(Γ ). The standard examples of such groups are free
groups (when Γ has no edges), free abelian groups (when Γ is a complete graph), and free
and direct products of such groups (corresponding to disjoint union of graphs and join of
graphs, respectively). The following is a modification of the ping-pong lemma for RAAGs
found in [14], itself a generalization of the classical ping-pong lemma for free groups. It is
the main tool used in proving Theorem 2.

Lemma 1 (Ping-Pong) Let A(Γ ) be a right-angled Artin group acting on a set X such that
there exist non-empty subsets X ′

i ⊆ Xi ⊂ X for each vertex generator vi satsifying

1. For i �= j , if Xi ∩ X j �= ∅, then there exists xi ∈ Xi which does not belong to X j , and
vice versa

2. If u is a word in the vertex generators not containing a power of v j , wherein every vertex
generator commutes with v j , then u(X ′

j ) ⊆ X j

3. If vi and v j do not commute, then Xi and X j are disjoint and vr
i (X j ) ⊂ X ′

i for all r �= 0,
and vice versa

Then the A(Γ ) action on X is faithful.

Proof If Γ splits as a join, then A(Γ ) splits as a direct product, and we can play ping-pong on
each factor. Hence, we will assume that Γ is not a join, so that, in particular, for each vertex
generator vi there is at least one other vertex generator v j which does not commute with it.
Let w �= 1 ∈ A(Γ ) be a word in the vertex generators. We begin by putting w into a normal
form called central form, due to M. Kapovich (c f . [12] in the proof of Lemma 2.3,[14] in the
second proof of Lemma 3.1). Given a representative of w written in the vertex generators,
we can perform two operations which do not change the equivalence class of w: a shuffle,
where we replace a subword vr

i v
s
j with vs

jv
r
i if vi and v j commute, and a deletion, where we

remove subwords vr
i v

−r
i . Starting with any representative of w (in the vertex generators), we

can perform these two operations until w may be written as

w = ukv
rk
ik

uk−1v
rk−1
ik−1

· · · u1v
r1
i1

where

– each u j is a word in the vertex generators of A(Γ ), such that each generator appearing
in u j commutes with each other generator appearing in u j

– vi j commutes with each generator appearing in u j

– vi j does not commute with vi j+1 for all 1 ≤ j < k.

We call k the central-word length of w.
We now show that w acts non-trivially on X . First suppose that k = 1, so that w = u1v

r1
i1
.

By assumption there is some generator v j which does not commute with vi1 , and we choose
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x j ∈ X j . Applying (3), we have v
r1
i1

x j ∈ X ′
i1
, then applying (2) we have u1v

r1
i1

x j ∈ Xi1 .
Again by (3), since Xi1 ∩ X j = ∅, we see that wx j �= x j and we are done. Now suppose
k ≥ 2 and that w is written in central form. If vi2 and vik are distinct, then either by (1) or
(3) we can choose xi2 ∈ Xi2 which does not belong to Xik ; note that since vi2 and vi1 don’t
commute by assumption, xi2 also does not belong to Xi1 . Repeatedly applying the argument
above to this word, we have thatwxi2 ∈ Xik , so in particularwxi2 �= xi2 . Finally, if vi2 = vik ,
then we can conjugate w by v

rk
i2
, choose xi1 ∈ Xi1 , and apply the same process to

v
rk
i2

wv
−rk
i2

= ukv
2rk
i2

uk−1v
rk−1
ik−1

· · · u1v
r1
i1

v
−rk
i2

,

which is indeed in central form. ��

2.3 Surfaces and their mapping class groups

Let S be a connected, oriented finite-type surface, possibly with punctures, satisfying
χ(S) < 0. The mapping class group of S, which we denote by MCG(S), is the group
of homotopy classes of orientation-preserving homeomorphisms of S. We call elements of
MCG(S) mapping classes. An essential simple closed curve is the homotopy class of a non-
nullhomotopic and non-peripheral simple closed curve on S, and an essential subsurface
S′ ⊆ S is either a regular neighborhood of an essential simple closed curve (i .e. an annulus),
or a component of the complement of a collection of pairwise disjoint essential simple closed
curves (i .e. the complement of a multi-curve). For both essential simple closed curves and
essential subsurfaces, we will not distinguish between a representative and its homotopy
class.

We frequently study mapping class groups of surfaces via their action on essential simple
closed curves and subsurfaces. With respect to this action, there is a trichotomy of mapping
classes, due to work of Nielsen and Thurston (c f . [6]): given f ∈ MCG(S), f is either

1. finite order,
2. reducible, i .e. infinite order and preserves a non-empty multi-curve C set-wise, or
3. pseudo-Anosov, i .e. infinite order and no power of f preserves any multi-curve

For a reducible mapping class f , it follows from Birman–Lubotzky–McCarthy [4] that some
power f fixes a multi-curve C component-wise, and restricts to a pseudo-Anosov mapping
class or the identity on each component of S\C .We call such partial pseudo-Anosovmapping
classes, as well as pseudo-Anosov mapping classes, pure (this definition is slightly different
than the original one concerning mapping classes in the kernel of the action of MCG(S) on
the Z/3Z-homology of S, but every infinite order mapping class has a power which is pure
in either sense). The support of a pure mapping class f is all of S if f is pseudo-Anosov, an
annulus about the twisting curve if f is a Dehn twist, or the components of S\C where the
action of f is non-trivial if f is a partial pseudo-Anosov mapping class. A partial pseudo-
Anosov mapping class f could also multi-twist about its fixed multicurve - in this case we
define the support to be the components of S\C where the action of f is non-trivial together
with the annular neighborhoods of those curves in C where f is twisting. In particular, if
a partial pseudo-Anosov mapping class f exhibits such “boundary twisting”, its support is
disconnected by definition.

123



Geometriae Dedicata

Fig. 1 The projection of the red curve to the left genus two subsurface consists of the blue curves

3 Subsurface projections and theMasur-MinskyMachinery

Our ping-pong sets will be given in terms of Ivanov–Masur–Minsky’s subsurface projections
of essential simple closed curves to essential subsurfaces of S. Recall that the curve graph of
S, denoted C(S), is the graph whose vertices are essential simple closed curves, and whose
edges are spanned by vertices corresponding to pairs of essential simple closed curves which
can be realized disjointly. We equip C(S) with the graph metric. A celebrated theorem of
Masur-Minsky [17] says that with this metric, C(S) is δ-hyperbolic. Moreover, Aougab [1],
Bowditch [5], and Clay et al. [7] have shown that the hyperbolicity constant δ can be made
independent of S, and Hensel et al. [9] have shown that δ = 17 suffices. In the sequel, we will
use the notation δ instead of its explicit value to make clear the dependence on the hyperbolic
geometry of C(S).

3.1 Constructing subsurface projections

Fix a hyperbolic metric on S, and for each essential simple closed curve, take its unique
geodesic representative. Given an essential, non-annular subsurface S′ ⊂ S, we define a
coarse “projection” map πS′ : C(S) → C(S′) as follows. Let γ be an essential simple closed
curve on S. If γ is disjoint from S′ entirely, then πS′(γ ) = ∅, and if γ is properly contained is
S′ then πS′(γ ) = γ . Otherwise, γ non-trivially intersects ∂S′, and we define πS′(γ ) to be the
set of essential simple closed curves obtained by considering each arc α of γ ∩ S′ and taking
the boundary of a regular neighborhood of α ∪ ∂S′, see Fig. 1. Note that geodesic simple
closed curves are always in minimal position, so that each arc of this intersection cannot be
homotoped out of S′, and thus each simple closed curve obtained this way is essential.

Given two essential simple closed curves β and γ with non-trivial projection to S′, we
define their projection distance dS′(β, γ ) to be

dS′(β, γ ) := diamC(S ′){πS′(β) ∪ πS′(γ )}. (1)

The projection of essential simple closed curves to essential annuli is defined differently:
again fix a hyperbolic metric on S, and let β and γ be (the unique geodesic representatives
of) intersecting essential simple closed curves. Consider the (compactified) cover Sβ of S
corresponding to β. We define the projection πβ(γ ) to be the collection of lifts c of γ to the
cover Sβ which connect the two boundary components, see Fig. 2. We can assemble the set
of all homotopy (rel. boundary) classes of such arcs in Sβ into a graphA(β), the arc complex
of β, with edges representing pairs of vertices corresponding to homotopy (rel. boundary)
classes of arcs which admit representatives with disjoint interiors, and equipped with the
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Fig. 2 The annular cover of S corresponding to the red curve, with a lift of the blue curve

graph metric. Given another essential simple closed curve δ which intersects β, we define
the projection distance dβ(γ, δ) exactly as above; roughly, this distance measures how much
γ “twists” around δ relative to β. Though we chose a hyperbolic metric, it is not hard to see
that dβ(δ, γ ) ≤ i(δ, γ ) + 1.

A useful fact about these projections is that they are coarsely invariant under mapping
classes supported away from the essential subsurface we’re projecting to.

Lemma 2 (Mousley [20] Lemma 3.1) Let f ∈ MCG(S) be a pure mapping class supported
on an essential subsurface S j ⊂ S which is disjoint from an essential subsurface Si . If Si

is an annulus about a curve β, we also require that ∂S j does not contain β. Let γ and δ be
essential simple closed curves on S. Then

|dSi (γ, δ) − dSi (γ, f (δ))| ≤ 4.

We note that it is precisely because of this coarse invariance that in the statement of the
ping-pong lemma, we required the existence of “coarsely preserved” subsets X ′

i ⊂ Xi .

3.2 The distance formula

To show that the RAAGs we generate are undistorted in MCG(S), we will need a way
to relate word length in MCG(S) to the only other available data we will have, namely
projection distances. This relationship is captured by the following “distance formula” of
Masur-Minsky [18]. Before stating it, we establish notation. A (complete clean) marking μ

on S consists of a pants decomposition {βi }, called the base of μ, together with a transversal
for each βi satisfying certain properties which are unnecessary for the discussion at hand.
Masur-Minsky build a graphM̃(S), called themarking graph of S, whose vertices correspond
to markings and whose edges are spanned by vertices corresponding to markings related by
certain elementary moves. Equipped with the graph metric, the graph M̃(S) is locally finite
and admits a cocompact action of MCG(S) by isometries, so that MCG(S) and M̃(S)

are quasi-isometric. We define the projection of a marking μ to an essential non-annular
subsurface S′ ⊆ S to be πS′(base(μ)) and we define the projection of μ to an essential
annulus to be either πS′(base(μ)) if the core curve of the annulus is not in base(μ), and the
projection of the corresponding transversal otherwise.
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Theorem 4 (Masur-Minsky, [18] Theorem 6.10 and Theorem 7.1) There exists K0 =
K0(S) > 0 with the following property: for all K ≥ K0, there exist constants A ≥ 1
and B ≥ 0 such that for all pairs of markings μ,μ′ ∈ M̃(S) we have

1

A

∑
S′⊆S

[[dS′(μ,μ′)]]K − B ≤ dM̃(S)(μ, μ′) ≤ A
∑
S′⊆S

[[dS′(μ,μ′)]]K + B,

where the sums are taken over all essential subsurfaces (including S itself) and where
[[x]]K = x if x ≥ K and is 0 otherwise.

In particular, we can approximate the word length of a mapping class f by looking at the
subsurface projections distances between μ and f (μ).

3.3 Amulti-scale behrstock inequality

A key idea in the proof of Theorem 2 is a modification of the following inequality due to
Behrstock [2]. A constructive proof due to Leininger can be found in [16].

Lemma 3 (Behrstock Inequality) Let Si , S j , and Sk be three pairwise intersecting essential
subsurfaces or simple closed curves. Then

dSi (∂S j , ∂Sk) ≥ 10 �⇒ dS j (∂Si , ∂Sk) ≤ 4.

If Si (or S j or Sk) is an annulus, we replace ∂Si with the core curve βi . If all three are annuli,
we may further replace 4 with 3.

The modification we will make will allow us to not only consider subsurface projections,
but also nearest-point projections to geodesics in C(S) and its subgraphs C(S′) for essential
subsurfaces S′ ⊂ S. For the proof, we will need the following results concerning distance
bounds in the curve graph. The first two are straightforward computations in δ-hyperbolic
geometry.

Proposition 1 Let α ⊂ C(S) be a geodesic, and x, y ∈ C(S). Then

dC(S)(πα(x), πα(y)) ≤ dC(S)(x, y) + 24δ,

where πα is a coarse nearest-point projection map.

Lemma 4 Let x ∈ C(S) and let α ⊂ C(S) be a geodesic. Then

diam{πα(x)} ≤ 4δ (2)

We also need a theorem of Masur-Minsky [18], known as the Bounded Geodesic Image
Theorem. The uniform statement below is due to Webb [23], and the constant was recently
shown by Jin [11] to bounded above by 44.

Theorem 5 (Bounded Geodesic Image Theorem) There exists a constant K BG I T with the
following property: if S′ ⊂ S is a subsurface and α is a geodesic in C(S) with the property
that πS′(z) �= ∅ for all z ∈ α, then

diamC(S′){πS′(α)} ≤ K BG I T .

A different version of the lemma below was observed by Sun [22]. We provide an original
proof for the reader’s convenience and to clarify certain points of Sun’s argument.
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Lemma 5 (Multi-Scale Behrstock Inequality) Let β be an essential simple closed curve on
S, and let α1 and α2 be either essential simple closed curves or geodesics in C(S1) ⊆ C(S)

and C(S1) ⊆ C(S) respectively, where S1 and S2 are either proper essential subsurfaces of
S or S itself. Then

min dα1(b1, a2) ≥ K BG I T + 48δ �⇒ min dα2(b2, a1) < K BG I T + 48δ

The minima are taken over bi ∈ παi (β) and ai ∈ πα j (αi ), where by παi we mean either the
previously defined projection to essential annuli if αi is an essential simple closed curve, or
the composition of subsurface projection to Si followed by nearest-point projection to αi if
αi is a geodesic.

Proof We break the proof into cases depending on the type of each αi and the configuration
of the Si within S. The game will be to show that if one of the quantities is suitably large,
the other is bounded. In the arguments below there is repeated implicit use of Proposition 1
and Lemma 4.

Case1: α1 and α2 are both essential simple closed curves.
In this case, we can use the Behrstock Inequality.

Case2: α1 is an essential simple closed curve and α2 is a geodesic in C(S2).
We first consider the case that S2 = S. If min dα1(b1, a2) ≥ K BG I T , then by the contra-

positive of the Bounded Geodesic Image Theorem, a geodesic connecting β to πα2(β) passes
through the 1-neighborhood of α1. If z is the vertex on this geodesic which is adjacent to α1,
then we have

min dα2(b2, a1) ≤ dα2(β, α1)

≤ dα2(β, z) + dα2(z, α1)

By construction, the nearest-point projections of β and z to α2 overlap. Also, by Proposition
1 either dα2(z, α1) < 8δ + 2 or else dα2(z, α1) ≤ 1 + 24. Hence,

min dα2(b2, a1) ≤ 8δ + (1 + 24δ)

= 1 + 32δ

We now suppose that S2 is a proper essential subsurface of S and that min dα1(b1, a2) ≥
11. Since each vertex in α2 represents a curve which is disjoint from ∂S2, we then have
dα1(β, ∂S2) ≥ 10. Applying the Behrstock inequality yields dS2(β, α1) ≤ 4, and so

min dα2(b2, a1) ≤ dα2(β, α1)

≤ 4 + 24δ

Case3: α1 and α2 are both geodesics in their respective curve complexes
We first consider the case that S1 = S2. Assume min dα2(b2, a1) ≥ 8δ + 2, so that in

particular

dα2(β, πα2(πα1(β))) ≥ 8δ + 2

By hyperbolicity (c f . [18], Lemma 7.5), a geodesic in S2 between β and πα1(β) passes
within 2δ of the geodesic subsegment of α2 connecting their projections. Let z be a point on
the geodesic segment between β and πα1(β) that is at most a distance 2δ from a point y on
α2. Then we have

min dα1(b1, a2) ≤ dα1(β, y)
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≤ dα1(β, z) + dα1(z, y)

≤ 8δ + (2δ + 24δ)

= 34δ

Next, if S1 is nested in S2 and we assume min dα2(b2, a1) ≥ 34δ, then each vertex on the
geodesic between β and πα2(β) has distance at least 2 from ∂S1. Hence, dS1(γ, πα2(γ )) ≤
K BG I T , and thus

min dα1(b1, a2) ≤ dα1(β, πα2(β))

≤ K BG I T + 24δ

Finally, we consider the case that ∂S1 and ∂S2 intersect. Suppose that
min dα1(b1, a2) ≥ 11 + 48δ, and let z be any vertex on α2. Then

dS1(β, ∂S2) ≥ dα1(β, ∂S2) − 24δ

≥ dα1(β, z) − dα1(z, ∂S2) − 24δ

≥ (11 + 48δ) − (1 + 24δ) − 24δ

= 10

Hence, by the Behrstock inequality, we have dS2(β, ∂S1) ≤ 4, and so, choosing y on α1,

min dα2(b2, a1) ≤ dα2(β, y)

≤ dα2(β, ∂S1) + dα2(∂S1, y)

≤ (dS2(β, ∂S1) + 24δ) + (1 + 24δ)

= 5 + 48δ

Thus K BG I T + 48δ suffices for all cases. ��

3.4 The action on the curve graph

The following are a set of results of Masur-Minsky from [17] and [18] concerning the action
on the curve graph of pseudo-Anosov mapping classes. The first tells us that they act on C(S)

like hyperbolic isometries.

Proposition 2 ([17], Prop. 3.6) There exists a constant c = c(S) > 0 such that, for any
pseudo-Anosov mapping class f ∈ MCG(S), any simple closed curve γ , and any n ∈ Z\{0},
we have

dS( f n(γ ), γ ) ≥ c|n|.
Masur-Minsky proved the above for the “non-sporadic” surfaces. For sporadic cases, namely
S1,1 and S0,4, we redefine the curve graph in such a way that we obtain the Farey graph,
where it is noted by Mangahas [15] that the same result follows by considering the action of
hyperbolic isometries on the Farey graph embedded inH

2. It is easy to show that Proposition
2 implies that for any essential simple closed curve γ and any pseudo-Anosov mapping class
f , the bi-infinite sequence of curves { f n(γ )|n ∈ Z} is an f -invariant quasi-geodesic. By
restricting a pure mapping class to a pseudo-Anosov component S′ ⊂ S, we obtain such a
lower bound for the action of f on C(S′) ⊂ C(S), and for a power of a Dehn twist acting on
its corresponding arc complex, the quantity c can be taken to be 1.
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As noted above, any pseudo-Anosov mapping class f preserves many quasi-geodesics in
C(S). However, the Multi-scale Behrstock Inequality was stated in terms of projections to
geodesics. In order to apply the Multi-scale Behrstock Inequality, we will need the following
proposition of Masur-Minsky.

Proposition 3 ([18], Prop. 7.6)Let f ∈ MCG(S) be pseudo-Anosov. There exists a bi-infinite
geodesic α in C(S) such that for all j , α and f j (α) are 2δ fellow travelers.

The geodesic α and its f -translates are referred to as a quasi-axis for f . A straightforward
computation shows that the nearest point projections of any vertex x in C(S) to any two
geodesics in a quasi-axis are at most 10δ apart. Applying Proposition 2 to the action of f on
its quasi-axis, we have

Lemma 6 ([18], Lemma 7.7) Given A > 0, let N be the smallest integer such that c(S)N >

A + 10δ, where c(S) is the constant from Proposition 2. Then for all n ≥ N,

dC(S)(π(x), π( f n(x))) ≥ A.

where π denotes a coarse nearest-point projection to the quasi-axis of f .

4 The proofs

The goal of this section is to prove the following, which is the statements of Theorems 2
and 3 combined.

Theorem 6 Let { f1, …, fm} be an irredundant collection of pure mapping classes supported
on connected subsurfaces S1, …, Sm ⊆ S. Let

N = 5K BG I T + 200δ + M2 + M1 + 4

min
1≤i≤m

c(Si )
,

where c(Si ) is as in Proposition 2 and M1 and M2 are defined below. Then for all n ≥ N,

H = 〈 f n
1 , . . . , f n

m〉 ∼= A(Γ ),

where Γ is the co-intersection graph of the subsurfaces {Si }. After increasing N in a con-
trolled way, we can guarantee that H is undistorted in MCG(S). Moreover, each h ∈ H is
pseudo-Anosov on its support.

We break the proof into three parts, first proving that H is indeed the desired RAAG, then
proving that H is undistorted in MCG(S), and finally proving that each element is pseudo-
Anosov on its support.

4.1 Theorem 6 Part 1: generation

We first show that the group generated by { f n
1 , . . . , f n

m} is the expected RAAG.
Proof Let { f1, …, fm} ∈MCG(S) be an irredundant collection of pure mapping classes with
connected supporting subsurfaces {S1, …, Sm}. For each 1 ≤ i ≤ m, let αi be a geodesic in
the quasi-axis for fi in C(Si ) ⊆ C(S) or the core curve of Si if Si is an essential annulus. As in
the proof of the ping-pong lemma, we assume that the co-intersection graph of the collection
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{Si } is not a non-trivial join, so that for each fi there is some f j which does not commute
with it. We will explicitly construct a constant N and a group action so that for all n ≥ N ,
{ f n

1 , …, f n
m} satisfy the criteria for ping-pong. To this end, set

X = {β | β an essential simple closed curve in S},
and for each 1 ≤ i ≤ m, set

Xi = {β | min dαi (bi , a j ) > K BG I T + 48δ for all j such that S j ∩ Si �= ∅},
X ′

i = {β | min dαi (bi , a j ) > K BG I T + 48δ + 4 for all j such that S j ∩ Si �= ∅},
where the minima are taken over bi ∈ παi (β) and a j ∈ παi (α j ). Observe that if Si and S j

intersect, then by the Multi-scale Behrstock Inequality their corresponding sets Xi and X j

are disjoint. Moreover, since we assumed the mapping classes were irredundant, i .e. no two
have a common power, no two preserve the same ending lamination in the Gromov boundary
∂C(S). Hence, no chosen αi fellow travels another chosen α j , and so these geodesics have
bounded diameter projections to one another..

Letw be a word in the abstract RAAG generated by { f n
1 , . . . , f n

m}. We begin by puttingw

into central form as in the proof of the ping-pong lemma: using only shuffles and deletions,
we may write w as

w = uk gkuk−1gk−1 · · · u1g1,

where each g j represents some power of some f n
i , and each u j is a word in the generators

satisfying the necessary properties of the central form. We possibly make one further mod-
ification to this representative. For each g j which is a power of a Dehn twist, if a power
of a generator appearing in the corresponding u j is supported on a subsurface containing
the twisting curve as a boundary component, we may shuffle u j g j to u′

j g
′
j , where g′

j is the
aforementioned power of a generator and u′

j contains the original g j instead. To see that this
modification does not violate the central form, note that since g j−1 and g j+1 don’t commute
with g j , their supports intersect the twisting curve of g j , which is the boundary of the support
of g′

j . Hence the supports of g j−1 and g j+1 both intersect that of g′
j .

We may now play ping-pong. Up to relabelling, we assume g1 = f nr1
1 ,

g2 = f nr2
2 , and gk = f

nr j
j for some j . Choose β ∈ X2\(X2 ∩ X j ); either g2 and gk don’t

commute, so their corresponding sets X2 and X j are disjoint, or they commute and their
supports are disjoint, and we can choose a β which intersects S2 but not S j . If gk is also a
power of f n

2 , conjugatew by gk , choose β ∈ X1, and run the same argument below. Since g1
and g2 don’t commute, their corresponding sets X1 and X2 are disjoint. In particular, since
β ∈ X2, it satisfies

min dα1(b1, a2) ≤ K BG I T + 48δ.

For each 
 such that S
 ∩ S1 �= ∅, we have

min dα1(b1, a
) ≤ dα1(β, α
)

≤ dα1(β, α2) + dα1(α2, α
)

≤ (K BG I T + 48δ + diam{πα1(β)} + diam{πα1(α2)}) + M1

= K BG I T + 48δ + 4δ + M2 + M1

= K BG I T + 52δ + M2 + M1,
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where

M1 = max
1≤i,
,s≤m

dαi (α
, αs)

M2 = max
1≤i, j≤m

diam{παi (α j )}.

Choosing b′ ∈ πα1(β) and a′

 ∈ πα1(α
) which realize min dα1(b1, a
), we have

dα1( f N
1 (b′), a
′) ≥ dα1( f N

1 (b′), b′) − dα1(b
′, a′


)

≥ dα1( f N
1 (b′), b′) − (K BG I T + 52δ + M2 + M1)

Hence, if

dα1( f N
1 (b′), b′) ≥ 2K BG I T + 110δ + M2 + M1 + 4

+ diam{πα1( f N
1 (b′))} + diam{πα1(b

′)}
= 2K BG I T + 118δ + M2 + M1 + 4,

we will have f N
1 (b′) ∈ X ′

1. Invoking Lemma 6, we set

N = 5K BG I T + 200δ + M2 + M1 + 4

min
1≤i≤m

c(Si )
,

which is in fact much larger than we need here, but will be useful later. Thus, g1(β) ∈ X1,
and by Lemma 2, u1g1(β) ∈ X1. Running this process until it terminates after the application
of uk gk , we see that w(β) ∈ X j , and we are done. ��

If we restrict Theorem 6 to the case where all the fi are Dehn twists, the constant N
simplifies quite a bit.

Corollary 2 1 Let {t1, …, tm} be a collection of Dehn twists about distinct essential simple
closed curves {β1, …, βm} on S, and let

N = 18 + max
i, j

i(βi , β j ).

Then for all n ≥ N, we have

〈tn
1 , . . . , tn

m〉 ∼= A(Γ ),

where Γ is the subgraph of C(S) spanned by the curves {βi }.

Proof As we are dealing only with essential annuli, we don’t need to account for the constant
c(Si ) fromProposition 2 (since forDehn twists, c = 1), andwe can use the original Behrstock
inequality. Following the proof of Theorem 2, for each 1 ≤ i ≤ m we set

Xi = {γ | dβi (γ, β j ) ≥ 10 for all j such that β j ∩ βi �= ∅},
X ′

i = {γ | dβi (γ, β j ) ≥ 14 for all j such that β j ∩ βi �= ∅},

and we write w = uk gk · · · u1g1, where each g j is a power of some tn
i , in central form;

relabelling, we assume g1 = tnri
1 , g2 = tnr2

2 , and gk = tnrk
j for some j . Choose β ∈

X2\(X2∩ X j ), or in the case that gk is also a power of tn
2 , conjugatew by gk , choose γ ∈ X1,

and run the same argument below.
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Since γ ∈ X2, we have dβ1(γ, β2) ≤ 3. For any 
 such that i(β1, β
) �= 0, we then have

dβ1(γ, β
) ≤ dβ1(γ, β2) + dβ1(β2, β
)

≤ 3 + M1.

Then

dβ1(t
N
1 (γ ), β
) ≥ dβ1(t

N
1 (γ ), γ ) − dβ1(γ, β
)

≥ N − 3 − M1.

Hence, setting N = 17 + M1 suffices to finish the proof. But we previously noted that

M1 = max
1≤i,
,s≤m

dβi (β
, βs)

≤ max
1≤
,s≤m

i(β
, βs) + 1,

so we set N = 18 + max
1≤
,s≤m

i(β
, βs) so that the constant is independent of any choice of

hyperbolic metric. ��
This should be compared to the main theorem of [21], where a similar (quadratic) bound was
computed. As an easy application, we state the following.

Corollary 3 Let {β1, . . . , βm} be a collection of essential simple closed curves such that no
three curves pairwise intersect. Then the 19th powers of the corresponding Dehn twists
generate a RAAG.

Proof Since no three curve pairwise intersect, the projection distances dβi (β j , βk) are uni-
formly bounded above by 1.

4.2 Theorem 6 Part 2: undistortion

We now show that the subgroups generated in the previous section are undistorted in
MCG(S), after increasing the power N by a controlled amount. To do this, we will bor-
row the following theorem from [8]. Though we use projections to geodesics instead of just
subsurface projections, the proof is nearly identical, so we only provide a sketch highlighting
the necessary modifications that need to be made.

Theorem 7 Let H be as above, μ ∈ M̃(S) be a marking on S, and let

N = 5K BG I T + K0 + 200δ + 2M3 + M2 + M1 + 4

min
1≤i≤m

c(Si )
,

where

M3 = max
1≤i, j≤m

dαi (μ, α j ),

and where K0 is as in the Masur-Minsky distance formula. Let w = g1 · · · gk ∈ H, where
gi = ( f n

j )ei for n ≥ N. Then

dg1···gi−1α j (μ,wμ) ≥ (K0 + K BG I T + 48δ)|ei |.

123



Geometriae Dedicata

Proof (sketch) First, we remark that while the set of mapping classes considered in [8]
explicitly excludes Dehn twists, pseudo-Anosovs, and mapping classes with the same or
nested supports, the Multi-scale Behrstock Inequality allows us to consider them. The proof
goes by induction on k, the (minimal) number of “syllables” of w (note that we are not using
central form). The base case is simply the claim that

dα j (μ, g1(μ)) = dα j (μ, ( f n
j )e1(μ))

≥ (K0 + K BG I T + 48δ)|ei |,
which is true by construction of N . For the induction, we break w into subwords:

w = (g1 · · · g
)(g
+1 · · · gi−1)gi (gi+1 · · · gk)

= abgi c.

Via repeated applications of the triangle inequality, using Lemma 2 where necessary, the
claim reduces to the statement that the distances

dα j (a
−1(μ), μ) , dα j (c(μ), μ)

are both bounded in terms of the constants appearing in the numerator of N . This is also
shown via the triangle inequality, using Lemma 2 where necessary, as well as the Multi-scale
Behrstock Inequality. ��

The proof of undistortion below is nearly identical to that of [8].

Proof Via the quasi-isometry between MCG(S) and M̃(S), it suffices to show that there are
constants A ≥ 1 and B ≥ 0 such that for all w ∈ H

1

A
dM̃(S)(μ,wμ) − B ≤ dH (1, w) ≤ AdM̃(S)(μ,wμ) + B.

For any group G acting by isometries on a metric space (X , dX ), we always have

dX (x, gx) ≤ AdG(1, g),

where A ≥ max dX (x, si x), and si is a generator for G. Hence, we need only to find A and
B so that for all w ∈ H

dH (1, w) ≤ AdM̃(S)(μ,wμ) + B.

Let H be as above and let N be as in Theorem 5. Let w = ( f n

k

)ek · · · ( f n

1

)e1 , n ≥ N and set
g j = ( f n


 j
)ei . Then

dH (1, w) =
k∑

i=1

|ei |

≤
k∑

i=1

K0|ei |

≤
k∑

i=1

dg1···gi−1α
i
(μ,wμ).
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By Proposition 1, each term in the last sum satisfies

dg1···gi−1α
i
(μ,wμ) ≤ dg1···gi−1S
i

(μ,wμ) + 24δ.

Thus,

k∑
i=1

dg1···gi−1α
i
(μ,wμ) ≤

k∑
i=1

(dg1···gi−1S
i
(μ,wμ) + 24δ)

≤
∑
S′⊆S

[[dS′(μ,wμ)]]K

≤ AdM̃(S)(μ,wμ) + B,

where K ≥ K0, and the last inequality follows from the Masur-Minsky distance formula. ��

4.3 Theorem 6 Part 3: Nielsen-Thurston type

Finally, we show that each w ∈ H is pseudo-Anosov on its support. This will follow from
showing that for any w, we can find an essential simple closed curve whose orbit goes off to
infinity in C(S). We begin by stating a lemma of Bestvina–Bromberg–Fujiwara [3].

Lemma 7 ([3], Lemma 4.20) Let {βi }k
i=0 be a sequence of essential simple closed curves in

C(S) such that each consecutive triple of curves satisfies

dSi (βi−1, βi+1) ≥ 3K BG I T ,

where Si is an essential subsurface with βi ∈ ∂Si . Then

dC(S)(β0, βk) =
k∑

i=1

dC(S)(βi−1, βi ) − 2k

We will construct such a sequence so that consecutive curves are distance at least 3 apart,
which by the above lemma must go off to infinity.

Proof Let H be as in Theorem 6 with N as in Theorem 7. Without loss of generality, we
assume that the support of w ∈ H is all of S (the same argument holds restricting to the
curve graph of the support in the case that the support is a proper subsurface). Write w =
u1g1 · · · uk gk in central form, where each gi is a power of some generator f n

j , n ≥ N , of H .
If each gi is a pseudo-Anosov mapping class, then by Theorem 7, there is a generator such

that the appropriate translate of its axis “witnesses” a large distance between any essential
simple closed curve β and its image wβ, i .e. for some j ,

du1g1···u j−1g j−1α j (β,wβ) ≥ K0 + K BG I T + 48δ.

In this case, since w and β were arbitrary, we have that no power of w fixes any essential
simple closed curve, i .e. w is pseudo-Anosov.

Now assume that at least one gi is reducible with support S′; up to conjugation, we may
assume that g1 is a power of this reducible. We first claim that β ∈ ∂S′ and wβ fill S, i .e.
have distance at least 3 in C(S). As is noted in ([8], Lemma 6.2), the subsurfaces supporting
the gi fill S if and only if the subsurfaces u1g1 · · · u j−1g j−1S j , where 1 ≤ j ≤ k and S j

is the support of g j , also fill S. This implies that β and wβ fill S. Indeed, suppose γ is
another essential simple closed curve. As the subsurfaces u1g1 · · · u j−1g j−1S j fill S, γ has
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non-trivial projection to at least one of them. But in this subsurface, β and wβ have large
projection, so γ cannot be disjoint from both simultaneously. Hence, β and wβ fill S, i .e.
dC(S)(β,wβ) ≥ 3, and the same is true of w
β and w
+1β for all 
 ∈ Z.

It remains to show that the sequence {w
β} satisfies
dw
S′(w
−1β,w
+1β) ≥ 3K BG I T

which by equivariance of projections is equivalent to

dS′(w−1β,wβ) ≥ 3K BG I T

Using the given expression for w and the triangle inequality, we have

dS′(u1g1 · · · uk gkβ, u−1
k g−1

k · · · u−1
1 g−1

1 β) ≥ dS′(u1g1 · · · uk gkβ, u2g2 · · · uk gkβ)

− dS′(u2g2 · · · uk gkβ, u−1
k g−1

k · · · u−1
2 g−1

2 β).

The subtracted term on the right-hand side satisfies

dS′(u2g2 · · · uk gkβ, u−1
k g−1

k · · · u−1
2 g−1

2 β) ≤ dS′(u2g2 · · · uk gkβ, α j ) + dS′(α j , αi )

+ dS′(αi , u−1
k g−1

k · · · u−1
2 g−1

2 β),

where g2 = ( f n
j )e2 and gk = ( f n

i )ek . Setting

R = dS′(u1g1 · · · uk gkβ, u2g2 · · · uk gkβ),

what we are trying to show reduces to

R ≥ dS′(u2g2 · · · uk gkβ, α j ) + M1 + dS′(αi , u−1
k g−1

k · · · u−1
2 g−1

2 β) + 3K BG I T

By the construction of N , R is at least {numerator of N} − 4. Moreover, the first and third
terms on the right-hand side are both bounded above by

K BG I T + 48δ (the bound from the Multi-scale Behrstock Inequality)—indeed, we have
by Theorem 7 that

dα j (u2g2 · · · uk gkβ, β) ≥ K BG I T + 48δ

and so

dS′(u2g2 · · · uk gkβ, α j ) < K BG I T + 48δ

by the Multi-scale Behrstock Inequality; the same argument holds for the other term. Thus
the inequality we are trying to show is

{numerator of N} − 4 ≥ 5K BG I T + 96δ + M1

which is true by construction. ��
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