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Abstract

We show that given a collection X = {fi, ..., fin} of pure mapping classes on a surface
S, there is an explicit constant N, depending only on X, such that their Nth powers { le ,
oo f,fl\' } generate the expected right-angled Artin subgroup of MCG(SS). Moreover, we show
that these subgroups are undistorted, and that each element is pseudo-Anosov on the largest
possible subsurface.
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1 Introduction

Let S be a finite-type orientable surface satisfying x (S) < 0. By the mapping class group of
S we mean

MCG(S) := Homeo™ (S)/homotopy.

The study of free subgroups of M CG(S) dates back to Klein [13], who classically showed

that the matrices
12 10
A= wan= 1]

generate a free subgroup of SL(2, Z). Indeed, we may identify SL(2, Z) with MCG (T?), the
mapping class of the torus, and these matrices correspond to the squares of the Dehn twists
about the standard meridian and longitude curves. More generally, it follows from Ivanov’s
[10] and McCarthy’s [19] proof of the Tits alternative for M C G (S) that there is in fact an
abundance of free subgroups.
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We wish to broaden our view to the larger class of right-angled Artin groups (RAAGS).
Recall that a RAAG has a presentation determined by a finite simplicial graph I":

Al = (v e V(I) | [v,-,vj] =1 < (vi,vj) e E(IN)).

Regarding subgroups of M CG(S) of this form, Koberda [14] showed that they too can be
found in abundance. In the statement below, we say that a mapping class is pure if it is
either pseudo-Anosov or else fixes a multi-curve C component-wise and restricts to either a
pseudo-Anosov mapping class or the identity on the complementary components S\C. We
call a mapping class of the latter type a partial pseudo-Anosov mapping class, and we call
the components of S\ C where its action is non-trivial its support; in the case of a Dehn twist
we define its support to be an annular neighborhood of the twisting curve, and the support of
a pseudo-Anosov mapping class is all of S.

Theorem 1 (Koberda, [14] Theorem 1.1) Let {f1, ..., fu} be an irredundant collection of
pure mapping classes supported on connected subsurfaces Sy, ..., Sm € S. There exists some
N # 0 such that for alln > N,

T fn) =AW,

where I is the co-intersection graph of the subsurfaces {S;}.

Here, irredundancy means that no pair of mapping classes have a common power, and the
co-intersection graph has as vertices the subsurfaces S; and edges between vertices whose
corresponding subsurfaces can be realized disjointly. Koberda’s proof goes by playing ping-
pong on the space of geodesic laminations on S, and it is not clear how the number N depends
on S or on the given mapping classes.

The goal of this paper is to effectivize and strengthen Koberda’s theorem. The constant in
the statement of the theorem below is explicitly computed in Sect. 4.

Theorem 2 Let {f1, ..., fn} be an irredundant collection of pure mapping classes supported
on connected subsurfaces Sy, ..., Sm < S. There exists an explicit constant N = N ({ fi}),
depending only on certain geometric data extracted from the given collection of mapping
classes, such that for alln > N,

H={(f]',..., fm) EA),

where I is the co-intersection graph of the subsurfaces {S;}. Moreover, increasing N in a
controlled way, we can guarantee that H is undistorted in M C G(S).

We remark that a similar statement was claimed via different means by Sun [22], though
there are some gaps in their arguments.

Computing the constant explicitly in the case that all mapping classes in question are
Dehn twists, we have the following corollary.

Corollary 1 Let {1, ..., ty} be a collection of Dehn twists about distinct curves {B1, ..., Bm},
and let

N = 18 + maxi(B;, B;),
i,j
where i(-, -) denotes geometric intersecion number. Then for alln > N, we have
<t1na ...,t;:l) = A(I—')v

where I is the subgraph of the curve graph C(S) spanned by {1, ..., Bm}-
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A similar bound has been found by Seo [21] using methods from hyperbolic and coarse
geometry, and Bass-Serre theory. That these subgroups are undistorted follows from a careful
study of the construction of “admissible”” embeddings of RAAGs into mapping class groups
due to Clay-Leininger—Mangahas [8].

It is worth mentioning that if there are more than two mapping classes involved, N nec-
essarily depends on the given mapping classes, as the following example illustrates. Let 81
and B, be two non-trivially intersecting simple closed curves, and consider the Dehn twists

K _nK
f=tg, bh=tg, and 13 =17 nt;*

for some K > 0. Thenfornol <k < K is (tlzk, t22k, t32k) isomorphic to a free group of rank
3, even though the corresponding subgraph of C(S) is disconnected.

Using similar methods, we are also able to determine the Nielsen-Thurston type for all
elements of these subgroups.

Theorem 3 Let H be as in Theorem 2. Then every h € H is pseudo-Anosov on its support.
In particular, if the support of h is all of S, then h is pseudo-Anosov.

The support of an element 4 € H is the union of the supports of the given generators of H
appearing in a cyclically reduced representative of the conjugacy class of 4. The method of
proof we employ again closely resembles that of Clay—Leininger—Mangahas.

In Sect. 2 we establish the relevant terminology and some basic notions we will need from
coarse geometry, geometric group theory (including a proof of a new ping-pong lemma for
RAAGS), and the theory of surfaces and their mapping class groups. In Sect. 3 we recall
the construction of subsurface projections and other relevant results from [18], which we
use to build our ping-pong table. The essential result in this section is a modification of the
well-known Behrstock inequality. In Sect. 4 we carry out the proofs.

2 Background
2.1 Coarse geometry

If (X1,dx,) and (X2, dx,) are metric spaces, we say a (not-necessarily-continuous) map
f X1 — Xy is a (A, B)-quasi-isometric embedding if there are constants A > 1 and
B > O such that for all x, y € X1,

1
F (6. ) = B <dx, (f(x), f(y) < Adx, (x,y) + B.

If there is a constant D > 0 such that any x; € X5 is within D of f(X), we further say f
is a quasi-isometry, and that X| and X, are quasi-isometric.

Recall that to a group G with generating set ¥ we may associate the Cayley graph
Cay(G,Y), and that equipped with the graph metric Cay(G, Y) is a metric space. Moreover,
if G is finitely generated, then any two metrics coming from different finite generating sets
Y and Y’ yield quasi-isometric Cayley graphs. We may then put a (left-invariant) metric dg
on G, the word metric, defined by

dg (g, h) = dcay(G.v) (g, h) = dcayG.y)(1, h ' g).

Regarding the statement of Theorem 2, we say that a finitely generated subgroup H < G is
undistorted if the inclusion of H into G is a quasi-isometric embedding with respect to their
respective word metrics.
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We say a metric space X is §-hyperbolic if there exists a constant § so that all geodesic
triangles are “6-slim”, i.e. each side is contained in the union of the §-neighborhoods of the
other two.

2.2 Right-angled artin groups

Given a finite simplicial graph I" with vertex set V (I") and edge set E(I"), the right-angled
Artin group on I is the group with the presentation

AN =(v e V) | [vi,vj]l =1 <= (vi,vj) € EUI)).

We call the v; the vertex generators of A(I"). The standard examples of such groups are free
groups (when I" has no edges), free abelian groups (when I" is a complete graph), and free
and direct products of such groups (corresponding to disjoint union of graphs and join of
graphs, respectively). The following is a modification of the ping-pong lemma for RAAGs
found in [14], itself a generalization of the classical ping-pong lemma for free groups. It is
the main tool used in proving Theorem 2.

Lemma 1 (Ping-Pong) Let A(I") be a right-angled Artin group acting on a set X such that
there exist non-empty subsets X; C X; C X for each vertex generator v; satsifying

L. Fori # j, if X; N X # &, then there exists x; € X; which does not belong to X j, and
vice versa

2. Ifu is aword in the vertex generators not containing a power of vj, wherein every vertex
generator commutes with v, then u(X;.) CX;

3. Ifv; and vj do not commute, then X; and X ; are disjoint and v (X ;) C X| forallr # 0,
and vice versa

Then the A(I") action on X is faithful.

Proof If I" splits as a join, then A(I") splits as a direct product, and we can play ping-pong on
each factor. Hence, we will assume that I” is not a join, so that, in particular, for each vertex
generator v; there is at least one other vertex generator v; which does not commute with it.
Letw # 1 € A(I') be a word in the vertex generators. We begin by putting w into a normal
form called central form, due to M. Kapovich (cf. [12] in the proof of Lemma 2.3,[14] in the
second proof of Lemma 3.1). Given a representative of w written in the vertex generators,
we can perform two operations which do not change the equivalence class of w: a shuffle,
where we replace a subword v} v; with vji v/ if v; and v; commute, and a deletion, where we

remove subwords v v; . Starting with any representative of w (in the vertex generators), we
can perform these two operations until w may be written as

w = upvfup_ v ol
= Uk it k—1 ik 1Y

where

— each u; is a word in the vertex generators of A(I"), such that each generator appearing
in u; commutes with each other generator appearing in u ;

- v;; commutes with each generator appearing in u

- v does not commute with Vi foralll < j < k.

We call k the central-word length of w.
We now show that w acts non-trivially on X. First suppose that k = 1, so that w = ulvirl1 .
By assumption there is some generator v; which does not commute with v;,, and we choose
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xj € X;. Applying (3), we have v;'x; € X, then applying (2) we have ujv;'x; € X;,.
Again by (3), since X;; N X; = &, we see that wx; # x; and we are done. Now suppose
k > 2 and that w is written in central form. If v;, and v;, are distinct, then either by (1) or
(3) we can choose x;, € X;, which does not belong to X;, ; note that since v;, and v;; don’t
commute by assumption, x;, also does not belong to X;, . Repeatedly applying the argument
above to this word, we have that wx;, € X;, ,soin particular wx;, # x;,.Finally, if v;, = v;,,
then we can conjugate w by vg‘ , choose x;, € X;,, and apply the same process to

Ik —rk __ 2rk Fk—1
Uiz wviz = l/tkviz uk_lvikil

ry, —rk
ulvil vl-2 .

which is indeed in central form. ]

2.3 Surfaces and their mapping class groups

Let S be a connected, oriented finite-type surface, possibly with punctures, satisfying
x(S) < 0. The mapping class group of S, which we denote by MCG(S), is the group
of homotopy classes of orientation-preserving homeomorphisms of S. We call elements of
MCG(S) mapping classes. An essential simple closed curve is the homotopy class of a non-
nullhomotopic and non-peripheral simple closed curve on S, and an essential subsurface
S’ C § is either a regular neighborhood of an essential simple closed curve (i.e. an annulus),
or a component of the complement of a collection of pairwise disjoint essential simple closed
curves (i.e. the complement of a multi-curve). For both essential simple closed curves and
essential subsurfaces, we will not distinguish between a representative and its homotopy
class.

We frequently study mapping class groups of surfaces via their action on essential simple
closed curves and subsurfaces. With respect to this action, there is a trichotomy of mapping
classes, due to work of Nielsen and Thurston (cf. [6]): given f € MCG(S), f is either

1. finite order,
2. reducible, i.e. infinite order and preserves a non-empty multi-curve C set-wise, or
3. pseudo-Anosov, i.e. infinite order and no power of f preserves any multi-curve

For a reducible mapping class f, it follows from Birman-Lubotzky—McCarthy [4] that some
power f fixes a multi-curve C component-wise, and restricts to a pseudo-Anosov mapping
class or the identity on each component of S\ C. We call such partial pseudo-Anosov mapping
classes, as well as pseudo-Anosov mapping classes, pure (this definition is slightly different
than the original one concerning mapping classes in the kernel of the action of M CG(S) on
the Z/3Z-homology of S, but every infinite order mapping class has a power which is pure
in either sense). The support of a pure mapping class f is all of S if f is pseudo-Anosov, an
annulus about the twisting curve if f is a Dehn twist, or the components of S\C where the
action of f is non-trivial if f is a partial pseudo-Anosov mapping class. A partial pseudo-
Anosov mapping class f could also multi-twist about its fixed multicurve - in this case we
define the support to be the components of S\C where the action of f is non-trivial together
with the annular neighborhoods of those curves in C where f is twisting. In particular, if
a partial pseudo-Anosov mapping class f exhibits such “boundary twisting”, its support is
disconnected by definition.
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Fig. 1 The projection of the red curve to the left genus two subsurface consists of the blue curves

3 Subsurface projections and the Masur-Minsky Machinery

Our ping-pong sets will be given in terms of Ivanov—Masur—Minsky’s subsurface projections
of essential simple closed curves to essential subsurfaces of S. Recall that the curve graph of
S, denoted C(S), is the graph whose vertices are essential simple closed curves, and whose
edges are spanned by vertices corresponding to pairs of essential simple closed curves which
can be realized disjointly. We equip C(S) with the graph metric. A celebrated theorem of
Masur-Minsky [17] says that with this metric, C(S) is -hyperbolic. Moreover, Aougab [1],
Bowditch [5], and Clay et al. [7] have shown that the hyperbolicity constant § can be made
independent of S, and Hensel et al. [9] have shown that § = 17 suffices. In the sequel, we will
use the notation § instead of its explicit value to make clear the dependence on the hyperbolic
geometry of C(S).

3.1 Constructing subsurface projections

Fix a hyperbolic metric on S, and for each essential simple closed curve, take its unique
geodesic representative. Given an essential, non-annular subsurface S’ C S, we define a
coarse “projection” map wg : C(S) — C(S’) as follows. Let y be an essential simple closed
curveon S. If y is disjoint from S’ entirely, then g (y) = @, and if y is properly contained is
S’ then g (y) = y. Otherwise, y non-trivially intersects 3.5’, and we define 7 (y) to be the
set of essential simple closed curves obtained by considering each arc « of y N S and taking
the boundary of a regular neighborhood of & U 8.5, see Fig. 1. Note that geodesic simple
closed curves are always in minimal position, so that each arc of this intersection cannot be
homotoped out of §’, and thus each simple closed curve obtained this way is essential.

Given two essential simple closed curves 8 and y with non-trivial projection to S’, we
define their projection distance dg (B, y) to be

ds/ (B, y) :=diamcsning (B) Ums (y)}. (D

The projection of essential simple closed curves to essential annuli is defined differently:
again fix a hyperbolic metric on S, and let 8 and y be (the unique geodesic representatives
of) intersecting essential simple closed curves. Consider the (compactified) cover Sg of §
corresponding to 8. We define the projection 7g(y) to be the collection of lifts ¢ of y to the
cover Sg which connect the two boundary components, see Fig. 2. We can assemble the set
of all homotopy (rel. boundary) classes of such arcs in Sg into a graph A(B), the arc complex
of B, with edges representing pairs of vertices corresponding to homotopy (rel. boundary)
classes of arcs which admit representatives with disjoint interiors, and equipped with the
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Fig.2 The annular cover of S corresponding to the red curve, with a lift of the blue curve

graph metric. Given another essential simple closed curve § which intersects 8, we define
the projection distance dg(y, §) exactly as above; roughly, this distance measures how much
y “twists” around é relative to 8. Though we chose a hyperbolic metric, it is not hard to see
thatdg (8, y) <i(,y) + 1.

A useful fact about these projections is that they are coarsely invariant under mapping
classes supported away from the essential subsurface we’re projecting to.

Lemma 2 (Mousley [20] Lemma 3.1) Let f € MCG(S) be a pure mapping class supported
on an essential subsurface S; C S which is disjoint from an essential subsurface S;. If S;
is an annulus about a curve B, we also require that 3S; does not contain B. Let y and § be
essential simple closed curves on S. Then

|dS,' (y’ 8) - dS,' ()/7 f(g))l =< 4.

We note that it is precisely because of this coarse invariance that in the statement of the
ping-pong lemma, we required the existence of “coarsely preserved” subsets X; C X;.

3.2 The distance formula

To show that the RAAGs we generate are undistorted in MCG(S), we will need a way
to relate word length in MCG(S) to the only other available data we will have, namely
projection distances. This relationship is captured by the following “distance formula” of
Masur-Minsky [18]. Before stating it, we establish notation. A (complete clean) marking p
on S consists of a pants decomposition {5;}, called the base of u, together with a transversal
for each B; satisfying certain properties which are unnecessary for the discussion at hand.
Masur-Minsky build a graph M((S), called the marking graph of S, whose vertices correspond
to markings and whose edges are spanned by vertices corresponding to markings related by
certain elementary moves. Equipped with the graph metric, the graph M (S) is locally finite
and admits a cocompact action of MCG(S) by isometries, so that MCG(S) and /\7(5)
are quasi-isometric. We define the projection of a marking p to an essential non-annular
subsurface §' C S to be g (base(w)) and we define the projection of w to an essential
annulus to be either wg (base(w)) if the core curve of the annulus is not in base(u), and the
projection of the corresponding transversal otherwise.
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Theorem 4 (Masur-Minsky, [18] Theorem 6.10 and Theorem 7.1) There exists Ko =
Ko(S) > 0 with the following property: for all K > Ko, there exist constants A > 1
and B > 0 such that for all pairs of markings i, i’ € M(S) we have

1
& 2 lds ik — B < digsy (o 1) < A Y [lds (. )]k + B,
S'cS S'cS

where the sums are taken over all essential subsurfaces (including S itself) and where
[[x]lx = x if x = K and is O otherwise.

In particular, we can approximate the word length of a mapping class f by looking at the
subsurface projections distances between p and f(u).

3.3 A multi-scale behrstock inequality

A key idea in the proof of Theorem 2 is a modification of the following inequality due to
Behrstock [2]. A constructive proof due to Leininger can be found in [16].

Lemma 3 (Behrstock Inequality) Let S;, S;, and Sy be three pairwise intersecting essential
subsurfaces or simple closed curves. Then

ds;(0S;,08) > 10 = ds;(3S;, 98k) < 4.

If S (or Sj or Sx) is an annulus, we replace 0S; with the core curve ;. If all three are annuli,
we may further replace 4 with 3.

The modification we will make will allow us to not only consider subsurface projections,
but also nearest-point projections to geodesics in C(S) and its subgraphs C(S’) for essential
subsurfaces S’ C S. For the proof, we will need the following results concerning distance
bounds in the curve graph. The first two are straightforward computations in §-hyperbolic
geometry.

Proposition 1 Let o C C(S) be a geodesic, and x,y € C(S). Then
de(s) (o (%), T () < degs)(x, y) + 246,
where 1y is a coarse nearest-point projection map.
Lemma4 Let x € C(S) and let « C C(S) be a geodesic. Then
diam{my(x)} <46 2)

We also need a theorem of Masur-Minsky [18], known as the Bounded Geodesic Image
Theorem. The uniform statement below is due to Webb [23], and the constant was recently
shown by Jin [11] to bounded above by 44.

Theorem 5 (Bounded Geodesic Image Theorem) There exists a constant K gt with the
following property: if S C S is a subsurface and « is a geodesic in C(S) with the property
that wg (z) # @ forall 7 € a, then

diamesy{ms (@)} < Kpgir.
A different version of the lemma below was observed by Sun [22]. We provide an original

proof for the reader’s convenience and to clarify certain points of Sun’s argument.

@ Springer



Geometriae Dedicata

Lemma5 (Multi-Scale Behrstock Inequality) Let B be an essential simple closed curve on
S, and let o1 and ay be either essential simple closed curves or geodesics in C(S1) C C(S)
and C(S1) € C(S) respectively, where S| and Sy are either proper essential subsurfaces of
S or S itself. Then

mindy, (b1, a2) > Kpgir +488 = mindy, (b2, a1) < Kpgir + 488

The minima are taken over b; € my, (B) and a; € Ta; (o), where by o, we mean either the
previously defined projection to essential annuli if o; is an essential simple closed curve, or
the composition of subsurface projection to S; followed by nearest-point projection to «; if
o; is a geodesic.

Proof We break the proof into cases depending on the type of each «; and the configuration
of the §; within S. The game will be to show that if one of the quantities is suitably large,
the other is bounded. In the arguments below there is repeated implicit use of Proposition 1
and Lemma 4.

Casel: o1 and o are both essential simple closed curves.
In this case, we can use the Behrstock Inequality.

Case2: o is an essential simple closed curve and o5 is a geodesic in C(S2).

We first consider the case that S, = S. If mind,, (b1, a2) > Kpgir, then by the contra-
positive of the Bounded Geodesic Image Theorem, a geodesic connecting B to 74, (8) passes
through the 1-neighborhood of «. If 7 is the vertex on this geodesic which is adjacent to «q,
then we have

mindg, (b2, a1) < da, (B, 1)

< dgy (B, 2) +dey (2, 1)

By construction, the nearest-point projections of 8 and z to oz overlap. Also, by Proposition
1 either dy, (z, a1) < 88 + 2 or else dy, (z, 1) < 1 4 24. Hence,
mindy, (b2, a1) < 88 + (1 4 246)
=14326

‘We now suppose that S5 is a proper essential subsurface of S and that mindy, (b1, az) >
11. Since each vertex in «y represents a curve which is disjoint from 95, we then have
dy, (B, 0S2) > 10. Applying the Behrstock inequality yields dg, (8, @1) < 4, and so

mindy, (b2, a1) < da, (B, a1)
<4+245

Case 3: o1 and o, are both geodesics in their respective curve complexes

We first consider the case that S| = S>. Assume mindy, (by, a;) > 86 + 2, so that in
particular

doy (B, oy (e (B))) = 88 +2

By hyperbolicity (cf. [18], Lemma 7.5), a geodesic in S, between B and 7y, (B) passes
within 2§ of the geodesic subsegment of oy connecting their projections. Let z be a point on
the geodesic segment between 8 and 74, (B) that is at most a distance 2§ from a point y on
. Then we have

mindy, (b1, az) < da, (B, y)
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<dy (B, 2) +du (2, y)
< 85 + (26 + 2496)
= 346

Next, if Sy is nested in S> and we assume min dy, (b2, a1) > 3446, then each vertex on the
geodesic between B and 74, (B) has distance at least 2 from 0.5;. Hence, dg, (v, 74, (¥)) <
Kpgit, and thus

mindy, (b1, a2) < do, (B, Ta, (B))
< Kpgir + 246

Finally, we consider the case that .51 and 9.5, intersect. Suppose that
mindy, (b1, az) > 11 4 4848, and let z be any vertex on «. Then

ds, (B, 382) > do, (B, 0S82) — 244
> dy, (B, 7) — dy, (z,082) — 245
> (11 + 488) — (1 + 248) — 248
=10

Hence, by the Behrstock inequality, we have ds, (8, 9S1) < 4, and so, choosing y on a1,

mindo, (b2, a1) < du, (B, y)
< duy, (B, 0S81) + du, (051, y)
< (ds, (B, 051) + 246) + (1 + 245)
=54486

Thus K g1 + 486 suffices for all cases. ]

3.4 The action on the curve graph

The following are a set of results of Masur-Minsky from [17] and [18] concerning the action
on the curve graph of pseudo-Anosov mapping classes. The first tells us that they act on C(S)
like hyperbolic isometries.

Proposition 2 ([17], Prop. 3.6) There exists a constant ¢ = c(S) > 0 such that, for any
pseudo-Anosov mapping class f € MCG(S), any simple closed curve y, and anyn € Z\{0},
we have

ds(f"(y).v) = clnl.

Masur-Minsky proved the above for the “non-sporadic” surfaces. For sporadic cases, namely
S1.1 and So,4, we redefine the curve graph in such a way that we obtain the Farey graph,
where it is noted by Mangahas [15] that the same result follows by considering the action of
hyperbolic isometries on the Farey graph embedded in H?. It is easy to show that Proposition
2 implies that for any essential simple closed curve y and any pseudo-Anosov mapping class
f, the bi-infinite sequence of curves {f"*(y)|n € Z} is an f-invariant quasi-geodesic. By
restricting a pure mapping class to a pseudo-Anosov component S’ C S, we obtain such a
lower bound for the action of f on C(S") C C(S), and for a power of a Dehn twist acting on
its corresponding arc complex, the quantity ¢ can be taken to be 1.
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As noted above, any pseudo-Anosov mapping class f preserves many quasi-geodesics in
C(S). However, the Multi-scale Behrstock Inequality was stated in terms of projections to
geodesics. In order to apply the Multi-scale Behrstock Inequality, we will need the following
proposition of Masur-Minsky.

Proposition 3 ([18],Prop.7.6) Let f € MCG(S) be pseudo-Anosov. There exists a bi-infinite
geodesic o in C(S) such that for all j, o and f7 () are 28 fellow travelers.

The geodesic « and its f-translates are referred to as a quasi-axis for f. A straightforward
computation shows that the nearest point projections of any vertex x in C(S) to any two
geodesics in a quasi-axis are at most 10§ apart. Applying Proposition 2 to the action of f on
its quasi-axis, we have

Lemma 6 ([18], Lemma 7.7) Given A > 0, let N be the smallest integer such that c(S)N >
A + 106, where c(S) is the constant from Proposition 2. Then for alln > N,

de(sy(m(x), m(f"(x))) = A.

where T denotes a coarse nearest-point projection to the quasi-axis of f.

4 The proofs

The goal of this section is to prove the following, which is the statements of Theorems 2
and 3 combined.

Theorem 6 Let {fi, ..., fin} be an irredundant collection of pure mapping classes supported
on connected subsurfaces Sy, ..., Sy C S. Let
_ 5KpGir +2008 + My + M) + 4

min c(S;)
1<i<m

N

)

where c(S;) is as in Proposition 2 and M| and M, are defined below. Then for alln > N,
H={(f]',..., fm) EA),

where I is the co-intersection graph of the subsurfaces {S;}. After increasing N in a con-
trolled way, we can guarantee that H is undistorted in M C G (S). Moreover, each h € H is
pseudo-Anosov on its support.

We break the proof into three parts, first proving that H is indeed the desired RAAG, then
proving that A is undistorted in MCG(S), and finally proving that each element is pseudo-
Anosov on its support.

4.1 Theorem 6 Part 1: generation

We first show that the group generated by { f{', ..., fy} is the expected RAAG.

Proof Let{f1, ..., fm} € MCG(S) be an irredundant collection of pure mapping classes with
connected supporting subsurfaces {Sj, ..., S;,}. Foreach 1 <i < m, let o; be a geodesic in
the quasi-axis for f; in C(S;) € C(S) or the core curve of S; if S; is an essential annulus. As in
the proof of the ping-pong lemma, we assume that the co-intersection graph of the collection
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{Si} is not a non-trivial join, so that for each f; there is some f; which does not commute
with it. We will explicitly construct a constant N and a group action so that for alln > N,
{f{' ..., fin} satisfy the criteria for ping-pong. To this end, set

X = {B | B an essential simple closed curve in S},
and foreach 1 <i < m, set

X; ={B | mindy,;(b;,a;) > Kpgir +485 forall j suchthat S; NS; # ¥},
X, ={8 | mindy, (bj, a;) > Kpgir +485 +4 forall j suchthat §; NS; # @},

where the minima are taken over b; € g, (8) and a; € 7y, (arj). Observe that if S; and S;
intersect, then by the Multi-scale Behrstock Inequality their corresponding sets X; and X ;
are disjoint. Moreover, since we assumed the mapping classes were irredundant, i.e. no two
have a common power, no two preserve the same ending lamination in the Gromov boundary
dC(S). Hence, no chosen «; fellow travels another chosen «, and so these geodesics have
bounded diameter projections to one another..

Let w be a word in the abstract RAAG generated by { f', ..., f,;}. We begin by putting w
into central form as in the proof of the ping-pong lemma: using only shuffles and deletions,
we may write w as

W = Ur8kUk—18k—1 """ U181,

where each g; represents some power of some f", and each u; is a word in the generators
satisfying the necessary properties of the central form. We possibly make one further mod-
ification to this representative. For each g; which is a power of a Dehn twist, if a power
of a generator appearing in the corresponding u ; is supported on a subsurface containing
the twisting curve as a boundary component, we may shuffle u; g; to u’jg;., where g;. is the
aforementioned power of a generator and u’; contains the original g; instead. To see that this
modification does not violate the central form, note that since g;_; and g ;| don’t commute
with g, their supports intersect the twisting curve of g j, which is the boundary of the support
of g;.. Hence the supports of g1 and g4 both intersect that of g}.

We may now play ping-pong. Up to relabelling, we assume g; = 1" n

nr‘/-

g =f,  and g = f; ! for some j. Choose B € X»\(X2 N X ); either g and g don’t
commute, so their corresponding sets X, and X ; are disjoint, or they commute and their
supports are disjoint, and we can choose a 8 which intersects > but not S;. If gi is also a
power of f;', conjugate w by gx, choose 8 € X1, and run the same argument below. Since g;
and g7 don’t commute, their corresponding sets X and X, are disjoint. In particular, since
B € X», it satisfies

mindy, (b1, a2) < Kpgir +485.
For each ¢ such that S, N S7 # &, we have

mindy, (b1, ag) < dy, (B, ag)
< dy, (B, a2) + dy, (a2, )
< (Kpgit + 483 + diam{my, (B)} + diam{rmy, (2)}) + M)
= Kpgir + 488 + 48 + My + M,
= KpgitT + 528 + My + My,
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where
M = max dy (a, as)
1<il,s<m
My = max diam{my, (a))}.
I<i,j<m

Choosing b’ € m,,(B) and aé € 1y, () which realize min dy, (b1, a¢), we have

doy (Y (B)), @) = do (Y (), b)) = oy (B, )
> doy (Y (0)), b)) = (Kpgrr + 528 + Mz + M))
Hence, if
do, (FN W), b') = 2KpGrr + 1108 + My + My + 4
+diam{ma, (f{" (")) + diam{ma, (b))
=2Kpgir + 1185 + My + M + 4,
we will have £ (»') € X{. Invoking Lemma 6, we set

_ 5Kpgir +2008 + My, + M| + 4

min c(S;)
1<i<m

N

)

which is in fact much larger than we need here, but will be useful later. Thus, g1(8) € X1,
and by Lemma 2, u1g1(8) € X;.Running this process until it terminates after the application
of uy gr, we see that w(p) € X, and we are done. O

If we restrict Theorem 6 to the case where all the f; are Dehn twists, the constant N
simplifies quite a bit.

Corollary 2 ] Let {t1, ..., tm} be a collection of Dehn twists about distinct essential simple
closed curves {B1, ..., Bn} on S, and let

N = 18 + maxi(B;, B;).
i
Then for alln > N, we have
(tf, ... 1) = A,
where I is the subgraph of C(S) spanned by the curves {B; }.

Proof As we are dealing only with essential annuli, we don’t need to account for the constant
¢(S;) from Proposition 2 (since for Dehn twists, ¢ = 1), and we can use the original Behrstock
inequality. Following the proof of Theorem 2, for each 1 <i < m we set

X; ={y | dg;(y,B;) = 10 forall j suchthat 8; N B; # 0},
X; ={y | dg,(y,B;) = 14 forall j suchthat B; N B; # B},

and we write w = ugg ---u181, where each g; is a power of some #/, in central form;
relabelling, we assume gy = 1", g» = 5%, and g = ¢'* for some j. Choose B €
X>\(X2NX ), orin the case that g is also a power of £}, conjugate w by g, choose y € X1,
and run the same argument below.
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Since y € X5, we have dg, (y, B2) < 3. For any £ such that i (81, B¢) # 0, we then have

dﬁ] (V’ ﬁ[) =< dﬁl ()/7 :32) + dﬂ| (ﬂZv ;Bf)
<3+ M.

Then

dp, (1Y (), Bo) = dp, (1Y (), v) — dp, (v, Be)
>N-—-3—M,.

Hence, setting N = 17 + M suffices to finish the proof. But we previously noted that

max  dg, (Be, Bs)

1<i,l,s<m

max (B, fs) + 1,

1<t,s<m

M,

IA

soweset N = 18 + . r?ax i(Be, Bs) so that the constant is independent of any choice of
<t,s<m

hyperbolic metric. o

This should be compared to the main theorem of [21], where a similar (quadratic) bound was
computed. As an easy application, we state the following.

Corollary 3 Let {By, ..., Bm} be a collection of essential simple closed curves such that no
three curves pairwise intersect. Then the 19th powers of the corresponding Dehn twists
generate a RAAG.

Proof Since no three curve pairwise intersect, the projection distances dg, (8;, By) are uni-
formly bounded above by 1.

4.2 Theorem 6 Part 2: undistortion

We now show that the subgroups generated in the previous section are undistorted in
MCG(S), after increasing the power N by a controlled amount. To do this, we will bor-
row the following theorem from [8]. Though we use projections to geodesics instead of just
subsurface projections, the proof is nearly identical, so we only provide a sketch highlighting
the necessary modifications that need to be made.

Theorem 7 Let H be as above, 1 € /\7(5) be a marking on S, and let

N = SKpGir + Ko +2008 +2M3 + My + My + 4

min ¢(S;)
1<i<m

where

M3 = max dgy, (i, a;),
m

I<i,j<

and where K is as in the Masur-Minsky distance formula. Let w = g1 --- g € H, where
gi = (f;')e" forn > N. Then

dg]-ug,',lotj (/‘La LU[L) = (KO + KpGit + 488)|el|
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Proof (sketch) First, we remark that while the set of mapping classes considered in [8]
explicitly excludes Dehn twists, pseudo-Anosovs, and mapping classes with the same or
nested supports, the Multi-scale Behrstock Inequality allows us to consider them. The proof
goes by induction on k, the (minimal) number of “syllables” of w (note that we are not using
central form). The base case is simply the claim that

doj (1 81(1)) = do; (i, (f)1 (1))
> (Ko + Kpgir +488)leil,

which is true by construction of N. For the induction, we break w into subwords:

w= (81" -8)(8e+1" " &i-1)8i (Gi+, " 8k)
= abgic.

Via repeated applications of the triangle inequality, using Lemma 2 where necessary, the
claim reduces to the statement that the distances

do; (@™ (), 1) day (c(p), )

are both bounded in terms of the constants appearing in the numerator of N. This is also
shown via the triangle inequality, using Lemma 2 where necessary, as well as the Multi-scale
Behrstock Inequality. O

The proof of undistortion below is nearly identical to that of [8].

Proof Via the quasi-isometry between M C G (S) and M (8), it suffices to show that there are
constants A > 1 and B > 0 such that forall w € H

1

n M(s)(ﬂ» wp) — B <dpg(l,w) < Adﬂ(g)(l/h wi) + B.

For any group G acting by isometries on a metric space (X, dy), we always have
dx(x, gx) < Adg(1, 8),

where A > maxdy (x, s;x), and s; is a generator for G. Hence, we need only to find A and
B so that forall w € H

du(1,w) < Adgys)(n, win) + B.
Let H be as above and let N be as in Theorem 5. Let w = (fﬁ )k .- (f[”I)E‘ ,n > N and set
gj = (f¢))". Then

k
du(1,w) = el
i=1

k
<Y Koleil

i=1
k

<Y gy, (1 wH).
i=1

@ Springer



Geometriae Dedicata

By Proposition 1, each term in the last sum satisfies

dg].i.gl.fl% (u, wp) < d’l"'é’i—lsi,- (u, wi) + 244.
Thus,

k k
ngl'~gi—1w,- (, wp) < Z(dgl'~gi—1sz,- (v, wi) + 248)
i=1 i=1
< Y lds (u, w)llx

S'cS
< Ad s (m, wp) + B,

where K > K, and the last inequality follows from the Masur-Minsky distance formula. O

4.3 Theorem 6 Part 3: Nielsen-Thurston type

Finally, we show that each w € H is pseudo-Anosov on its support. This will follow from
showing that for any w, we can find an essential simple closed curve whose orbit goes off to
infinity in C(S). We begin by stating a lemma of Bestvina—Bromberg—Fujiwara [3].

Lemma7 ([3], Lemma 4.20) Let {B; }f.‘zo be a sequence of essential simple closed curves in
C(S) such that each consecutive triple of curves satisfies

ds; (Bi-1, Bi+1) = 3Kpgir,

where S; is an essential subsurface with B; € 0S;. Then

k
des)(Bo, Br) = Y decs)(Bim1, Bi) — 2k

i=1

We will construct such a sequence so that consecutive curves are distance at least 3 apart,
which by the above lemma must go off to infinity.

Proof Let H be as in Theorem 6 with N as in Theorem 7. Without loss of generality, we
assume that the support of w € H is all of S (the same argument holds restricting to the
curve graph of the support in the case that the support is a proper subsurface). Write w =
ui1g1 - - - ur gk in central form, where each g; is a power of some generator f;‘, n>N,of H.

If each g; is a pseudo-Anosov mapping class, then by Theorem 7, there is a generator such
that the appropriate translate of its axis “witnesses” a large distance between any essential
simple closed curve 8 and its image wp, i.e. for some j,

dulglmuj_lgj_lotj (/37 UJﬂ) = KO + KBGIT +485.

In this case, since w and  were arbitrary, we have that no power of w fixes any essential
simple closed curve, i.e. w is pseudo-Anosov.

Now assume that at least one g; is reducible with support S’; up to conjugation, we may
assume that g; is a power of this reducible. We first claim that 8 € 35" and wp fill S, i.e.
have distance at least 3 in C(S). As is noted in ([8], Lemma 6.2), the subsurfaces supporting
the g; fill S if and only if the subsurfaces u1gy---uj_1g;-1S5;, where 1 < j < k and §;
is the support of g;, also fill S. This implies that 8 and wp fill S. Indeed, suppose y is
another essential simple closed curve. As the subsurfaces u1gy ---u;—1g;-1S; fill S, y has
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non-trivial projection to at least one of them. But in this subsurface, 8 and wpg have large
projection, so y cannot be disjoint from both simultaneously. Hence, 8 and wp fill S, i.e.
desy(B, wB) > 3, and the same is true of w'B and w't! g forall £ € Z.

It remains to show that the sequence {w! B} satisfies

dyeg (W' B, w1 B) > 3K pgir
which by equivariance of projections is equivalent to
ds(w™'B, wh) = 3KpGr7

Using the given expression for w and the triangle inequality, we have

ds (uigr---ukgeBoui gyt uy gy B) = dy (wign - ukgeB. uage - - ukgB)

—dy (uaga - ugioug g 1y g5 ).

The subtracted term on the right-hand side satisfies

ds(uagr - megeBou; gt uy ' gy ' B) < dy(uaga gk o)) + dy (@), )

+dy (g gy gy ),

where g = (f;’)e2 and gr = (f/")%. Setting

R=dg(uig1 - ukgkP, u282 - ukgkP).
what we are trying to show reduces to
R>ds(urgy - ukgiB, aj) + My +dg (e, up 'gg ' - u5 ' g5 ' B) + 3Kpair

By the construction of N, R is at least {numerator of N} — 4. Moreover, the first and third
terms on the right-hand side are both bounded above by

Kpgir + 486 (the bound from the Multi-scale Behrstock Inequality)—indeed, we have
by Theorem 7 that

do; (U282 - - uk kB, B) = Kpcirr + 489
and so
ds/(urgy -+ - urgkP, o) < Kpgir + 488

by the Multi-scale Behrstock Inequality; the same argument holds for the other term. Thus
the inequality we are trying to show is

{numerator of N} —4 > 5Kpgir + 966 + M,
which is true by construction. O
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