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Energetic Passivity Decoding of Human Hip Joint for
Physical Human-Robot Interaction

S. Farokh Atashzar , Hsien-Yung Huang , Fulvia Del Duca, Etienne Burdet , and Dario Farina

Abstract—The capacity of the biomechanics of human limbs to
absorb energy during physical human-robot interaction (pHRI)
can play an imperative role in controlling the performance of
human-centered robotics systems. Using the concept of “excess of
passivity,” we have recently designed passivity signature maps for
elbow and wrist joints. We have also shown that this knowledge
can be exploited and extrapolated during the interaction with a
robotic system by transparency-maximized algorithms. A major
application is in robotic rehabilitation systems and assistive tech-
nologies. Here, for the first time, the nonlinear energy capacitance
of the hip joint and the affecting factors are decoded. This can be
critical for maximizing the performance of wearable exoskeletons.
Knowledge regarding energy absorption behavior can significantly
help to reduce the conservatism of control algorithms. In this work,
the energetic behavior is studied for three different hip angles,
while perturbations were provided at three different interaction
speeds. The results show that the increase in agonist and antagonist
muscle contractions can consistently expand the margins of the
passivitymap. Additionally, by separating the effects of agonist and
antagonist contractions, it was identified that the passivity margins
have a correlation with the subject’s posture during interaction
with the robot and the correlation depends on the type of muscle
contraction. A preliminary design of a stabilizer is also formulated
that takes into account variable passivity behavior of the joint, in
theenergy domain, to enhance the performancewhile guaranteeing
pHRI stability.

Index Terms—Biomechanics, human-robot interaction,
rehabilitation robotics, robot control.

I. INTRODUCTION

HUMAN-CENTERED robotics (HcR) systemshave shown
great potential to enhance human sensorimotor capability.

The technology has been used for reaching beyond the natural
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competence of humans and for relaxing physiological and
pathological barriers [1]. HcR technology has also been used
for studying human sensorimotor function and the correspond-
ing learning-based characteristics [2]–[5]. Examples of HcR
systems are rehabilitation robotic modules and rehabilitative
exoskeletons [1], [6], [7]. Medical HcR (M-HcR) technology
for rehabilitation (in particular for upper-limb rehabilitation)
comprises robotic systems that are connected to the patients’
body to generate and deliver assistive (and in some cases resis-
tive) force fields while the patient performs tasks in a virtual
reality environment. Arguably, the quality of the force field is
critical for realizing an efficient therapeutic regimen. Forcefields
are designed to promote active participation and maximizing
engagement [8], [9]. To achieve this goal, robotic systems should
respond promptly to the patient’s voluntary motions [10], [11]
while inhibiting involuntary actions [12]–[16]. This imposes the
need for a large bandwidth for the response to voluntary actions.
The technical challenge is that realizing a high bandwidth of
kinesthetic assistance can increase thepossibility of approaching
instability for human robot interaction. This is caused by the fact
that the assistive behavior of robotic systems does not follow
conventional (and conservative) energy passivity assumptions.
Based on the weak passivity theorem [17]–[19] from nonlinear
control theory, a cascade interconnected system (the output of
one subsystem activates the input of the other subsystem and
vice versa) remains stable if the two subsystems (e.g. human
biomechanics and robotic force field) are passive. A systemwith
input vectorx(t), output vector y(t), and initial energy β0 is pas-
sive [18]–[22] if there exists a constant β0 such that for all t ≥ 0� t

0

x(τ)T · y(τ ) dτ ≥ β0. (1)

Conventionally the operator’s limb is assumed to be passive,
considering force-velocity coupling [20], [23], [24]. The weak
passivity theorem has been used for dynamic analysis of
haptics-enabled telerobotics systems and haptics rendering
technology in which one terminal (subsystem) is the human
biomechanics, and one terminal is the simulated (or remote)
environment which generates the repulsive force field, and on
which the actions of the user are applied. In many cases, for
example, in haptics-simulators or haptics-enabled telerobotic
systems, the environment has been assumed to be passive
and often modeled using passive linear dynamics (e.g.,
mass-spring-damper models) [25], [26].
The communication and digitization time delays can result in
the non-passivebehavior of a terminal [23], [25], [27], [28].Time
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delays can result in the accumulation of energy in closed-loop
systems during the interaction, which can violate the passivity
assumption and result in instability and exponential growth
of force and velocity. Such a situation, during human-robot
interaction, is a serious safety concern and can result in soft
tissue injuries and bone fractions [29].
Several techniques and controllers have been proposed to
stabilize the behavior of interconnected systems that include
time delay, e.g. [25], [28]–[34]. In this regard, passivity-based
controllers, such as energy-based and power-based time-domain
passivity approaches (TDPA) [28]–[32], inject an adaptive
damping factor to dissipate energy and guarantee the passivity of
the interconnected system based on the weak passivity theorem
(1). The performance of these techniques has been supported in
several papers includingour publications [33], [35]. On theother
hand, wave variables controllers [19], [25], [36], [37] assume
passivity of the terminals and strictly focus on making the two-
port communication network passive (applied for telerobotics
systems).
Although there exist several controllers and algorithms to
stabilize a non-passive interconnection of subsystemswith com-
munication delay, in assistive technologies, the therapy terminal
is not (and cannot be converted to) a passive component, since the
programmed virtual therapist has to inject energy in order to as-
sist movements [34]. As a result, implementing classical deriva-
tions of controllers, such as TDPA, for assistive therapies will
result in excessively dampening of the assistance and compen-
sating for the assistive power generated by the robot [33]–[35].

II. PRELIMINARIES

It should be highlighted that the assistive force field is in-
deed the critical factor needed to realize transparent robotic
assistance and dampening it is counterproductive. As a result,
the classical design of controllers cannot be directly applied
to guarantee the safety and stability of assistive HcR tech-
nologies. This has resulted in conservative precautions in the
design of controllers, including limiting the reactive behavior of
assistive robots, along with the assistive gains, force, velocity,
and acceleration profiles. The aforementioned limitations have
saturated the expected performance and potential benefits of the
technology for many patients, such as those who require high
amplitude forces to embrace assisted rehabilitative exercises,
those with hypertonia (a common stroke symptom), and those
with heavy biomechanics. A direct consequence is that, despite
significant advances in the mechatronic design of rehabilitative
robots and exoskeletons, users cannot take the full advantage of
a potentially agile and transparent assistive force field produced
using a robotic rehabilitation system and exoskeletons.
We have recently investigated this issue and have confirmed
that the nonpassive assistive behavior of robotic systems could
indeed result in energy accumulation and instability, if and only
if a particular computational stability condition is violated [33],
[35]. We have shown that the stability condition of an assistive
system depends on the “extent” of the passivity of the use’s
biomechanics and the “aggressiveness” of the nonpassive assis-
tive forcefield. Takingadvantageof the strongpassivity theorem,

we have shown that if the excess of the passivity (EoP) of the
limb biomechanics is larger than the shortage of passivity (SoP)
of the assistive force field, the system remains stable regardless
of the absolute nonpassive behavior [33], [35] (definitions of
excess and shortage of passivity are given below). However,
if the user’s biomechanics does not guarantee sufficient EoP
and/or if the assistive force field is highly nonpassive (have a
high SoP), the interconnection of the two subsystems will tend
to be unstable. In this case, we have recently proposed novel
stabilizing algorithms that minimize the needed compensation
considering the difference between energy absorption capacity
and the delivered energy [33], [35]. Mathematical definitions of
EoP and SoP are as follows.
For the system introduced in (1), if there is a constant β0 such
that for all t ≥ 0 we have� t

0

x(τ)T · y(τ ) dτ ≥ β0 + δ ·
� t
0

x(τ)T · x(τ) dτ, (2)

and if δ ≥ 0, the system is Input Strictly Passive (ISP) and the
EoP is δ. However, if δ < 0, the system is Input Non-Passive
(INP) and the SoP is δ [18], [21], [22].
In addition, for the same system if we have� t
0

x(τ)T · y(τ ) dτ ≥ β0 + ξ ·
� t
0

y(τ )T · y(τ ) dτ, (3)

for ξ ≥ 0, the system is Output Strictly Passive (OSP) and the
EoP is ξ. If ξ < 0, the system is Output Non-Passive (ONP) and
the SoP is ξ [18], [21], [22].
As a result, a HcR system with an INP assistive force field
(nonpassive therapeutic terminal) can still remainL2 stable if the
energy generated by the assistive force field is smaller than the
energy which can be absorbed by the impeding OSP component
of the patient’s limb. To guarantee this stability condition, the
EoP of the patient’s biomechanics should be larger than the SoP
of the therapy terminal.
Motivated by the above-given notion, we have recently con-
ducted a user study to evaluate the passivity of the wrist and
elbow joint. The focus was to investigate how the passivity of
the wrist and elbow reactive dynamics changes during different
levels of co-contraction and if this information can be used
in the design of a nonlinear control system that can take into
account the patient’s EoP and changes in the corresponding
EoP to enhance the stability of HcR systems while minimizing
the conservatism. Thus, a control framework was formulated
to monitor the energy capacity of the user’s biomechanics in
real time and modify the reflected interactive energy, enough to
guarantee the safety while avoiding excessive damping of the
assistive energy, to maximize realizable transparency [33]. The
framework allows for achieving a unique performance of HcR
systems, by modifying the corresponding stabilizing behavior
based on the user-specific energy signature.
In the literature, the passivity behavior of biomechanics has
been also studied using other techniques for the ankle joint [38].
In [38], it is shown that the ankle joint represents a predominant
dissipative behavior in young, healthy subjects, which can be
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potentially used as a “quantitative knowledge of human inter-
active dynamics” for realizing a “less conservative design” of
control systems.
This paper evaluates the passivity signature of the hip joint

while considering the effect of the hip rotation angle through
three interaction velocities. This allows us to generate an energy
signature map of the hip joints of two subjects participating
in this study, and to enable predicting the energy absorption
capacity during human-robot interaction. For this purpose, we
have utilized a particular design of a perturbation system to
collect the interactive profiles and compute the signature map.
Due to the complexity of the hip joint biomechanics and the
corresponding significant role in gait, we also evaluated the
passivitybehavior in different joint angles to understandwhether
this information (potential dependency on the angle) should
be incorporated in the design of a controller which takes into
account the energy behavior of the hip joint (see the appendix).
For this, at each joint angle, we applied limb perturbations with
three velocities, which is critical considering the large variation
of hip velocity during different paces of gait. It should be noted
that the mathematical foundation for the current study does not
assume any linearity in the energetic behavior of the hip joint.

III. METHODS

A. Experimental Setup

In order to calculate the EoP of the hip joint, force and velocity
information should be collected during several iterations of an
identification trial. For this purpose, we used the dedicated Neu-
romechanics Evaluation Device (NED) that we have recently
developed (please see Fig. 1, and [39], [40] for more details).
NED is a versatile robotic interface that enables controlled leg
position perturbationswhile the subject is seated andmaintained
in an upright posture. A locking knee brace was used to maintain
the knee joint straight throughout the experiment to isolate
the hip joint biomechanics for the study. The motor, which is
securely bolted to the floor, will apply controlled motions to
the leg just above the ankle joint via the steel cable loop and
the ankle fixture. During the experiment, the robotic interface
will record the interaction force (using two load-cells located on
both sides of the ankle fixture and connected to the cables),
in addition to hip angle and rotational velocity, and muscle
activity (through electromyography recordings) simultaneously.
The pulley mechanism of the NED system is adjustable to the
participant’s leg length, and also to the desired experiment hip
angle. This allows the robot to exert accurate normal force,
also enabling accurate evaluation of the energy signature of the
joint at different angles. The developed interface includes vari-
ous safety features to track and protect the participant’s safety
throughout the experiment. This includes software limitations
(velocity, acceleration and jerk), optical systems to define the
maximum leg displacement and emergency buttons for both the
participant and the experimenters.

B. Experiment Design

The experimental protocol was approved by the Imperial Col-
lege Research Ethics Committee. Two healthy subjects without

Fig. 1. Sketch of the Neuromechanics Evaluation Device (NED) and sample
measurements. (a, b) the experiment setup. Visual feedback is provided to
the subjects based on their muscle activities and interactive forces. While the
subject tunes the interactive forces, NED provides position-domain oscillatory
perturbations. (c) A sample of position, velocity, and torque recording.

TABLE I
BIOGRAPHICAL INFORMATION OF THE SUBJECTS

known history of neurological or musculoskeletal injury were
recruited, who were informed about the robotic interface and
experimental procedure, and provided a signed consent prior to
participating. Demographic subjects data are provided in Table I.
The leg length was measured from the anterior superior iliac
spine to the lateral malleolus.
Bipolar electromyography (EMG) electrodeswere positioned
on the Rectus Femoris (RF) and Biceps Femoris (BF) muscles.
TheEMGelectrodeswere connected to a signal amplifier (EMG-
USB2+, OT Bioelettronica) to monitor muscle activation. EMG
signals were baseline corrected, filtered with a [5, 500] Hz
bandpass 2nd order Butterworth filter, rectified, and processed
for extraction of the envelope. A locking knee brace was used
to maintain the knee joint straight throughout the experiment
(Fig. 1), and to isolate the hip joint biomechanics for the study.
The participants were asked to sit in the NED system with
the leg relaxed while supporting their body weight using the
handle (Fig. 1). A harness was placed around the ankle, and was
connected to the cable-driven perturbation system providing the

Authorized licensed use limited to: New York University. Downloaded on May 29,2021 at 20:31:55 UTC from IEEE Xplore.  Restrictions apply. 



5956 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

oscillatory motions for identification. To calibrate the safety,
the software limitations and optical safety system were tuned
while the subject’s leg was slowly moved around the allowable
workspace. An emergency button was always within the sub-
ject’s reach in case of discomfort.

C. Maximum Voluntary Contraction (MVC) Phase

Each experiment cycle at a given hip angle started with an
MVC test to benchmark the maximum force and EMG values
at the tested posture. The participant was verbally encouraged
to pull the cable with the maximum comfortable leg strength
for approximately three seconds. Then ten seconds of rest were
given, and the MVC test was conducted again. This sequence
was repeated twice for both flexion and extension of the hip
joint. The maximum EMG magnitude of both muscle groups
was then used to define the 15% MVC level for conducting the
rest of the experiment.

D. Posture Perturbation Phase

After theMVC test and a fiveminute break, for one chosen hip
angle, the subject was randomly assigned to one of the following
tests: relax, leg flexion (with a 15% MVC muscle contraction
level), and leg extension (with a 15% MVC muscle contraction
level). The participant controlled the EMG activity based on the
provided visualization of the commanded target and realtime
feedback. The cable-driven system then provided a cyclic leg
displacement at a specified speed for 2 min. Measurement was
repeated at three speeds 70, 150, 230 mm/s, and in combination
with three muscle contraction levels relaxed, flexion 15%MVC,
extension 15%MVC. After testing the above-mentioned 9 com-
binations of tests, the participant was given a ten minute rest,
and then the same protocol was repeated for another hip angle.
The three tested initial angles were {15◦, 35◦, 55◦}. EMG data
collection was at 2048 Hz, and the force and kinematics were
measured at 1000 Hz.

E. Data Analysis and EoP Estimation Phase

Given the definition of EoP in the OSP model of reactive
dynamics (3), the general equation to estimate the EoP of the hip
(at a given condition of hip joint angle of θ, muscle contraction
level of i, and perturbation speed of s) is:

ξθ,i,s =

� Te
Ts

τT (t) · ω(t)
ωT (t) · ω(t)dt. (4)

In (4), ξθ,i,s is the identified EoP value at the respective condi-
tions (θ, i and s), τ the interaction torque, ω the hip joint angular
velocity, Ts and Te the start and ending time of the oscilla-
tion stimulation. The linear displacement velocity measured by
sensors was converted to the angular velocity of the hip joint
(ω). Also, the interaction torque (τ ) measured at the ankle was
calculated from the difference between the force measurements
of two load-cells placed on both sides of the ankle fixture.
In order to extract the EoP, we should isolate the reactive
and active components of dynamics and force generation by
the user during interaction with the robot [33]. The reactive

component, which is responsible for absorbing mechanical en-
ergy during the interaction, is part of the dynamics that results
in impeding force regardless of the direction of interaction.
It is generated in response to the external perturbation and
plays a critical role in the stability condition of the interaction
between human and robot. However, the active component of
force, which results in targeting andmotion, is mainly generated
voluntarily to promote/ initiate/ continue motion in a particular
direction and should be treated as an external input to the
system (in the context of strong passivity theory). The active
dynamical component does not affect the closed-loop behavior
of the system and energy absorption capacity. This isolation
of the reactive dynamics is straightforward when working on
upper limb due to the simpler actions of biomechanics. In our
previous work which was conducted on the upper-limb energy
behavior, we have isolated the reactive component by asking the
participants not to initiate motions during perturbation and to
allow the robot to perturb their limbwhile they generated various
levels of co-contraction through various grasping levels. The
corresponding co-contraction changes the impeding behavior
of the biomechanics, which modulates the reactive dynamics.
This, however, is not as straightforward for the hip joint, since
voluntary co-contraction of muscles activating the hip is not
intuitive for all. As a result, a different protocol was needed to
assess the capacity of energy absorption of the hip joint and
the changes in the impeding reactive dynamics by flexion and
extension of the joint.
In this study, to generate different levels of consistent muscle
activation, while studying the nonlinear and asymmetric imped-
ing energetic behavior, we have asked the subjects to keep a
particular flexion/extension level of force andmuscle activation,
while the robot perturbed their limb. For this, participants were
asked to “push” at an instructed direction in order to activate
different hip muscle groups. This was intuitive for participants.
During this period, we collected data to evaluate the correspond-
ing effect of the particular muscle contraction on the energetic
behavior of the joint.
As a result, to isolate reactive and active dynamics, in the
calculation, we extracted and evaluated parts of data that were
related to the impeding/opposing periods during which the
contraction generated by the user opposes the direction of per-
turbation. During the mentioned periods of time, the reactive
component plays the major role in the interaction dynamics.
However, during the period in which the robot skips away from
the user’s current position (which means that the motion of the
robot and the user are in the same direction), the interactive
dynamics ismore activatedby its active (not reactive) component
since the user should also execute controlled motion for keeping
the prescribed flexion or extension level. In order to incorporate
this into the calculation, Eq. (4) was modified as follows:

ξθ,i,s =

� Te
Ts

τT (t) · ω(t)
ωT (t) · ω(t) · Z(t)dt (5)

In (5), Z(t) is an additional imposed condition that turns
the integral on and off during the cycle of perturbation for
proper calculation of EoP, depending on the contraction state,
and to isolate active and reactive components of dynamics. The
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Fig. 2. Sample EMG recording. The muscle activities at the relaxed condition
show a low contraction, while both at the hip flexion and extension cases they
oscillate around the targeted contraction at respective muscle groups.

Z(t) condition is imposed with considering the relationship
between the direction of displacement pθ,i,s(t) and the direction
of contraction kpθ,i,s(t), at each time instant t as given below.

Z(t) =


1, if pθ,i,s(t) �= kpθ,i,s
1, ∀t if kpθ,i,s = 2
0, otherwise.

(6)

where kpθ,i,s is an integer number indicating the leg contraction
direction, where k = 1 during muscle flexion state, k = −1
during extension state and k = 2 during relaxed state. Also
pθ,i,s(t) is an integer which is equal to 1 if the leg is displaced by
the robot into hip flexion, and is−1 if the leg is displaced into hip
extension. In other words, the imposed condition Z(t) allows us
to compare the direction of contraction and direction of motion
to activate the integral in a way that extracts the component of
interaction which is mainly influenced by reactive component
of dynamics.
To analyze the results, data from all three speeds were con-

catenated at each condition {hip angle and contraction level},
and the concatenated data was used to estimate the EoP, this time
not for one single perturbation velocity but for a larger range of
perturbation frequencies.

IV. RESULTS

Fig. 2 shows representative EMG recordings measured at
different contraction levels. As expected, in most experiments
both subjects were able to follow the target muscle activation
level. Additionally, the average antagonist muscle contraction
levels were lower than 5% MVC value, which indicates the
subjects’ consistency in independent control of flexion versus
extension during the course of the experiment. The average ag-
onist contraction and the antagonist opposite-contraction levels
of all subjects of different experiment conditions are listed in
Table II. In an ideal case the targeted muscle contraction level
should be 15% and the opposite muscle contraction level should
be 0%. The results in Table II show a good agreement with this
ideal case.

TABLE II
AVERAGE MUSCLE CONTRACTION LEVELS

Fig. 3. Sample EoP measured at three different speeds.

Fig. 3 shows an example of estimated EoP during the three
different perturbation speeds, before concatenating the corre-
sponding data. As can be seen in the figure, the EoP value
may also change depending on the perturbation speeds and fre-
quencies. In order to estimate the most representative energetic
behavior, we utilize the concatenating approach for the three per-
turbation speeds to enhance the richness of information for the
estimation process. Fig. 4 illustrates the estimated EOP values
of both subjects at different postures and different contraction
levels and at different perturbation angles, after concatenating
the data. The estimated EoP values related to both flexion and
extension are compared individually with the relaxed condition
using a radar plot (Fig. 4a). It is shown that both leg flexion
and extension resulted in a significant increase in the EoP value
in all posture angles, in comparison to the relaxed condition.
Additionally, after normalization (Fig. 4b), the EoP values are
found to correlate with changes in the hip posture. By linear
regressing the estimated EOP values, it is found that the EOP
value increases with posture while performing hip extension
(with a slope of 0.0082/deg, R2 = 0.89) and decrease when
conducting hip flexion (with a slope of−0.01/deg, R2 = 0.75).
In the case of a forward contraction (flexion), the highest EoP
was found at 15◦ hip angle and the lowest EoP is observed at
55◦ hip angle. Inversely, the backward contraction (extension)
resulted in a highestEoP value at thehip angle 55◦ and the lowest
value at 15◦.
Results above show that the energy absorption ability of the
hip joint consistently changes by muscle contractions, geometry
and posture of interaction. The aforementioned dependencies
can be computationally identified and modeled using energetic
passivity maps. The results show that the passivity maps are
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Fig. 4. Panel (a) shows the estimated EOP values of both subjects at different
contraction level and hip angle. The distance from the center to the corners of
the triangular radar plot indicates the magnitude of the estimated EOP values.
Each corner of the radar plots represents the estimation at a different hip angle.
The color blue shows the EOP values identified in the relaxed condition, while
the hip flexion and extension are represented by red and green, respectively.
Panel (b) shows the posture dependency of the EOP values. By linear regressing
the estimated EOP values, it is found that the EoP value increases with posture
while performing hip extension (with a slope of 0.0082/deg, R2 = 0.89) and
decrease when conducting hip flexion (with a slope of −0.01/deg, R2 = 0.75).

(a) asymmetric (varies in different directions and posture), (b)
muscle group dependent, (c) posture-dependent, and (d) user-
dependent. Indeed, the radar plots show the “signature” of thehip
joint in terms of the absorption capacity for interactive energy.
The map may be directly used to assess changes in dynami-
cal behavior of the joint biomechanics with respect to energy
absorption ability. In addition, identifying the map and then
extrapolating it during interaction with a robotic system (based
on the measured contraction level, type of contracted muscle,
current posture, and the direction of contraction) can allow an
intelligent controller/stabilizer to provide the minimum needed
damping for stabilizing the system. In otherwords, the controller
of the robot can adaptively tune the stabilizing behavior (which
defines the performance and system transparency) based on
the current states of the interaction (mentioned above) and the
pre-identified knowledge of the hip joint regarding the energetic
passivity behavior. Thus, the stabilizer (see the appendix) can
take advantage of energy reservoirs in human biomechanics to
minimize performance distortion and maximize transparency.
Thus, if a user shows a significant increase in the energy

absorption ability at one specific direction, one specific muscle
contraction level and type, the controller will not distort the
delivered assistive energy.

V. CONCLUSION

This paper evaluates the energy absorption capacity of the
human hip joint during interaction with robotic systems. The
outcome is critical for wearable robotic technologies, including
exoskeletons. In this paper, for thefirst time,wehavedecoded the
energetic signature of the human hip and have shown if and how
it changes based on muscle contraction, depending on muscle
groups, direction, and posture of interactions. The results show a
consistent energetic behavior of hipwith respect to the posture of
perturbation. The results also show that the EoP can significantly
change by increasing muscle contraction and that the change is
asymmetric depending on the direction of interaction, posture,
andmuscle group.These results canbedirectly used to (a) design
a nonlinear controller ensuring “minimal stability” based on
strong passivity control theory (see Appendix) and (b) to design
a representative atlas of energy signaturemaps of the hip joint by
collecting data from more participants, to allow for predicting
the passivity behavior, based on minimum available knowledge.
In this paper, the result of experimental validation on two partic-
ipants is provided. A clinical direction of the future work of this
study will be focused on the evaluation of the passivity-based
signature of human biomechanics (in particular the hip joint) for
a larger population, as a new tool to objectively characterize the
lower-limb neuromechanical impairments caused by neurolog-
ical diseases and musculoskeletal disorders.

VI. APPENDIX: ENERGY DOMAIN STABILITY USING A
VARIABLE STRUCTURE PASSIVITY CONTROLLER

In this Appendix, we provide a new design of a nonlinear
controller, which can guarantee the stability of physical human-
robot interaction using variable excess of the passivity of the
limb and can be used in various robotic interfaces. The particular
design allows for incorporating the “variability of EoP” in the
design of the variable structure controller. As explained earlier,
there are several factors (contraction level of different muscle
groups, the direction of interaction, posture angle) that result in
the variation of EoP of the hip joint.Measuring those factors, we
can estimate the EoP in realtime. In this Appendix, we answer
this question: “how the estimated EoP can be encoded in the
design of a nonlinear controller that can utilize the knowledge
on EoP.”
The theoretical developments are based on our recent
work [33] for the upper limb, in which we have designed a
power-domain stabilizer considering the grasp condition. Such
a stabilizer may be conservative, in general, since it does
not consider the energetic history of interaction and aim for
guaranteeing passivity at the power level. This can result in
excessivemodificationof the reflected force duringhuman-robot
interaction since any non-positive power packet will be treated
as a potential source of instability. However, to guarantee the
passivity, the integral should be positive. In other words, al-
though the positiveness of every interactional power packet is
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a sufficient condition for the positiveness of the corresponding
integral (energy of interaction), this is not a necessary condition.
In this appendix, our recently designed power-domain stabiliza-
tion [33] ismodified to take into account the passivity behavior of
the biomechanics in the energy domain. In [33] we have shown
that for physical human-robot interaction, the interconnected
systemwill bepassive (and thus stable) if the following condition
is held.� t

0

freact(τ)
T · vp(τ) + fp(τ)T · vp(τ) dτ ≥ 0. (7)

In (7), freact is the reactive response (force/torque) of the user’s
biomechanics, vp is the velocity of the user’s limb, and fp is
the therapeutic force to be delivered to the patient’s limb (for
assistance or rehabilitation). In the presence of a stabilizer which
adaptively modulates the reflected forces to the patient’s limb,
the new stability condition is as follows, in which fp−mod is the
modified reflected force.� t

0

freact(τ )
T · vp(τ ) + fp−mod(τ)T · vp(τ) dτ ≥ 0. (8)

The above stability condition can be rewritten as

Ep−react(t) ≥ −Ep−mod(t). (9)

In (9), Ep−react =
� t
0 freact(τ )

T · vp(τ ) dτ is the energy that
can be absorbed by the biomechanics of the patient’s limb,
while Ep−mod(t) =

� t
0 fp−mod(τ )

T · vp(τ ) dτ is the therapeu-
tic energy delivered to the patient’s limb after the modification
(explained below) by the nonlinear stabilizer.
In order to design the stabilizer, the question is how to induce

the modification into fp to satisfy the given passivity condition.
For this, the main challenge is that freact would be needed.
However, freact is neither accessible nor measurable because
the measurable force is mixed with the voluntary exogenous
force generated by the user’s muscles for producing motion.
This has been shown in the literature [33], [35] by decomposing
the human force into exogenous component f∗p(t) and reactive
component of the biomechanics, freact(t), as shown in (10)
(details can be found in [33]):

fp(t) = f
∗
p(t)− freact(t), where freact = zp(vp, t) (10)

In (10) zp(vp, t) is the generalized nonlinear impedance model
of the reactive dynamics of the user’s biomechanics. Thus a
force/torque sensor at the interaction point during human-robot
interactions can measure fp(t). However, freact(t) is needed for
calculating

� t
0 freact(τ )

T vp(τ) dτ to be used in a power modifi-
cation or energy modification scheme through force modulation
for guaranteeing passivity. The answer is the use of excess of
passivity in realtimeconsidering the corresponding variability as
discussed. This is to estimate and utilize a variable lower bound
for the amount of energy which can be absorbed by the user
biomechanics during interaction, i.e.,

� t
0 ξp(τ )vp(τ)

T vp(τ) dτ .
The proposed controller will work as follows:

fp−mod(t) =

 fp(t) if
� t
0

fτ (t)
T · vp(τ) dτ ≥ 0,

Ψ(t) otherwise.
(11)

In (11), we have

Ψ(t) =


fp(t) if

� t
0 ξp(τ )vp(τ)

T vp(τ) dτ ≥
− � t0 fp(τ)T · vp(τ) dτ,

||ξp(t)vp(t)||2 · fp(t)||fp(t)||2 otherwise.
(12)

As can be seen in Eqs. (11) and (12), the variable excess of
passivity is used in the design of a nonlinear controller which
scales down the force (a) when the energy cannot be absorbed
by the patients’ limb biomechanics, and (b) just enough to
normalize the reflected force in the range which can be absorbed
by the biomechanical passivity to satisfy the passivity condition
and guarantee stability.
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