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Abstract
Let � be a hyperbolic triangle with a fixed area ϕ. We prove that for all but countably
many ϕ, generic choices of � have the property that the group generated by the π-rotations
about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast,
we show for all ϕ ∈ (0, π)\Qπ , a dense set of triangles does afford nontrivial relations,
which in the generic case map to hyperbolic translations. To establish this fact, we study the
deformation space Cθ of singular hyperbolic metrics on a torus with a single cone point of
angle θ = 2(π − ϕ), and answer an analogous question for the holonomy map ρξ of such a
hyperbolic structure ξ . In an appendix by Gao, concrete examples of θ and ξ ∈ Cθ are given
where the image of each ρξ is finitely presented, non-free and torsion-free; in fact, those
images will be isomorphic to the fundamental groups of closed hyperbolic 3-manifolds.
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1 Introduction

Take a geodesic triangle in the hyperbolic plane, and consider the rotations of angle π about
the midpoints of the three sides, which we call the side involutions. It is natural to wonder
whether or not some nontrivial compositions of the side involutions will move the triangle
exactly back to itself.

For a regular pentagon in the Euclidean plane, there are many “unexpected” coincidences
of this type [19]. On the other hand, a regular tetrahedron in R3 can never be moved back to
its original position [1].

For a hyperbolic triangle the answer depends on, among other things, its area. For instance,
if the area is a rational multiple of π , then so is the interior angle sum. In this case, a suitable
power of a composition of the three side involutions will be trivial. Even if the area is not a
rational multiple of π , torsion relations still appear for a dense choice of hyperbolic triangles
(cf. Theorem 5.2 below). So, we are led to address the question whether or not relations that
are not “consequences” of torsion relations can still be found for a dense set of triangles; we
refer the reader to Definition 1.4 for a precise formulation.

Question A In the space of hyperbolic triangles whose area is fixed as ϕ ∈ (0, π), what are
the necessary and sufficient conditions for the side involutions to generate the Coxeter group
Z2 ∗ Z2 ∗ Z2? Do the involutions for a dense set of hyperbolic triangles admit relations that
are not consequences of torsion relations?

Here, the space of hyperbolic triangles ABC with fixed area ϕ is identified with its parameter
space of the interior angles:

Tϕ := {(θA, θB , θC ) ∈ (0, π)3 | θA + θB + θC = π − ϕ}.
Our take on Question A will be via the space of marked incomplete hyperbolic structures

on a punctured torus. Throughout this paper, we let M be a torus minus a puncture p. Let
us fix an angle θ ∈ (0, 2π). We consider the deformation space Cθ , called a Fricke–Klein
space [11], of marked incomplete hyperbolic structures on M having exactly one conical
singularity at the puncture p with a cone angle θ . We will also consider the Fricke–Klein
space

C :=
⋃

θ∈(0,2π)

Cθ

of all marked hyperbolic structures with cone angles in (0, 2π) on M .
We fix an oriented meridian X and an oriented longitude Y of M , and identify π1(M)

with a rank-two free group

F2 := 〈X , Y , Z | XY Z = 1〉.
It is convenient to regard F2 as an index-two subgroup of a free Coxeter group

W := Z2 ∗ Z2 ∗ Z2 = 〈P, Q, R | P2 = Q2 = R2 = 1〉
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Shapes of hyperbolic triangles and once-punctured torus groups

Fig. 1 Developing M to H2

using the embedding

X �→ QR, Y �→ RP, Z �→ PQ.

Each hyperbolic structure ξ ∈ Cθ defines a conjugacy class of holonomy maps, a repre-
sentative of which we denote by

ρξ : π1(M) → PSL(2, R) ∼= Isom+(H2).

These holonomy maps are defined via the developing map M̃ → H2. The isometries
{ρξ (X), ρξ (Y ), ρξ (Z)} are hyperbolic elements with pairwise intersecting axes. Because
the group Im ρξ contains two hyperbolic elements with intersecting axes, it is always non-
elementary. Since F2 is Hopfian, we have that ρξ is faithful if and only if Im ρξ nonabelian
and free.

As is well-known (see e.g. [8]), the space Cθ can be identified with its parameter space

{(x, y, z) ∈ (2,∞)3 | x2 + y2 + z2 − xyz − 2 = −2 cos(θ/2)}
by the character map

ξ �→ (
tr+ ρξ (X), tr+ ρξ (Y ), tr+ ρξ (Z)

)
.

Here, tr+(·) is understood as the absolute value of the trace of an element in PSL(2, R).
To see the connection between Cθ and Question A, pick a hyperbolic structure ξ ∈ Cθ on

M for some fixed θ ∈ (0, 2π). Let γX be the simple closed geodesic realizing X ∈ π1(M).
There exists a unique incomplete geodesic δX on M disjoint from γX , and that starts and ends
at p. Construct the geodesics {γY , γZ , δY , δZ } analogously. By cutting M along δX ∪δY ∪δZ ,
we obtain two isometric hyperbolic triangles whose interior angle sums are θ/2. The shape
of this triangle determines a point inTπ−θ/2. A lift of this picture toH2 is illustrated in Fig. 1.

As in the figure, we let {OP , OQ, OR} denote the midpoints of the sides from one of the
triangles. We write {ρ̂ξ (P), ρ̂ξ (Q), ρ̂ξ (R)} for the corresponding side involutions. Then we
have that

ρξ (X) = ρ̂ξ (Q) · ρ̂ξ (R), ρξ (Y ) = ρ̂ξ (R) · ρ̂ξ (P), ρξ (Z) = ρ̂ξ (P) · ρ̂ξ (Q).

Thus ρξ extends to a surjection

ρ̂ξ : W → 〈ρ̂ξ (P), ρ̂ξ (Q), ρ̂ξ (R)〉,
called a Coxeter extention of ρξ , which is determined uniquely from the holonomy represen-
tation ρξ [8]. Moreover, the spaces Tπ−θ/2 and Cθ are homeomorphic via a homeomorphism
which conjugates this extension (Lemma 4.2).
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Through Coxeter extensions, we will approach Question A by studying the following
closely related question.

Question B For a fixed angle θ ∈ (0, 2π), what are the necessary and sufficient conditions
for ξ ∈ Cθ to yield a faithful representation ρξ : π1(M) → PSL(2, R)? Is there a dense
choice of ξ ∈ Cθ for which the representation ρξ admits relations that are not consequences
of torsion relations?

Let A be a topological space. We say that a certain statement holds for a very general (or,
generic) ξ ∈ A if the statement holds for all ξ in some dense Gδ subset of A. If A is an open
subset of a Euclidean space, then it follows that the statement holds on a full-measure subset
of A.

In this paper, we are primarily interested in establishing the faithfulness part of Ques-
tion B for a very general point ξ ∈ Cθ , and in answering the density question for a suitable
interpretation of the phrase “consequences of torsion relations”.

Remark 1.1 Onemay also consider side reflections instead of side involutions of a hyperbolic
triangle � with angles (θA, θB , θC ), although we will not pursue this direction. We briefly
note in this case that two representations ρ̂ξ and ρξ are still well-defined on W and on
F2 respectively. The representation ρξ is a holonomy map of an incomplete hyperbolic
three-punctured sphere S0,3 with three conical singularities of angles (2θA, 2θB , 2θC ). This
approach could be useful when one is interested in periodic billiard orbits on �.

The faithfulness question is easier when the cone angle θ is not fixed. Namely, we have
that ρξ is faithful for a very general point ξ ∈ C (cf. Proposition 3.1). So, we will be actually
interested in the case when θ is fixed.

Our first main result answers the first half of Question B with probability one:

Theorem 1.2 (cf. Theorem 3.3) If θ ∈ (0, 2π) has the property that cos θ is transcendental,
then a very general point ξ in Cθ corresponds to a faithful holonomy map.

Note that the hypothesis holds for all but countablymany values of θ . The readermay compare
Theorem 1.2 to other generic phenomena in PSL(2, R); see [5,6,15], the first two of which
deal with the faithfulness question in the case of closed surface groups. One can trace at
least back to Hausdorff [10] the idea of using the transcendency of cos θ in order to produce
faithful group actions.

It is a well-known consequence of the Gelfond–Schneider theorem that cos θ is transcen-
dental if θ/π is irrational and algebraic. Thus, we deduce more concrete cases when ρξ is
faithful as follows.

Corollary 1.3 If θ ∈ (0, 2π) is an irrational algebraic multiple of π , then ρξ is faithful for a
very general point ξ ∈ Cθ .

We have briefly mentioned the abundance of torsion relations at the beginning of this
introduction. Indeed, the image of ρξ is dense in PSL(2, R) unless ρξ is discrete (and hence
Fuchsian), as is true of all Zariski dense subgroups of simple Lie groups [14]. Since elliptic
isometries form an open subset in PSL(2, R), it is reasonable to expect that an elliptic element
in the image of ρξ would not have constant rotation angle under perturbations in Cθ near
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ξ . Thus, a torsion relation would appear under small deformations of ξ having a fixed cone
angle θ ; we direct the reader to Theorem 5.2 for a concrete formulation of this intuition.
Moreover, in the presence of torsion there are generally many more elements of ker ρξ that
are consequences of such torsion relations.

We aim to find relations of ρξ which are not “consequences” of torsion relations. To state
the result rigorously, we make the following definition.

Definition 1.4 A word u ∈ F2 is of torsion-type if u belongs to the set
⋃

m≥2

⋃

r∈F2\{1}
〈〈rm〉〉.

A word is of non-torsion-type if it is not of torsion-type.

For a word u ∈ F2, being a non-torsion-type word is a stronger condition than not equal
to a proper power. In the special case when θ = 2π/n, the group ρξ (F2) is isomorphic to a
Fuchsian orbifold group

〈X , Y | [X , Y ]n = 1〉
for all choices of ξ ∈ Cθ ; in this case, every kernel element must be of torsion-type. When
θ /∈ Qπ , we can produce non-torsion-type kernel elements as addressed in the second half
of Question B.

Theorem 1.5 (cf. Theorem 5.3) If θ ∈ (0, 2π) is an irrational multiple ofπ , then ker ρξ < F2
contains a palindromic non-torsion-type word for a dense choice of ξ ∈ Cθ .

In particular, when ker ρξ contains a non-torsion-type word, the image ρξ (F2) can-
not be isomorphic to a one-relator group with torsion with respect to the generating set
{ρξ (X), ρξ (Y )}.

Wewill actually produce a dense subset Sθ ⊆ (2,∞) such that each point on the coordinate
curves

{x = s}, {y = s}, {z = s}
in Cθ for s ∈ Sθ corresponds to holonomy maps admitting non-torsion-type kernel elements.
The points on the intersection of any two of these coordinate curves (double points) form a
dense subset of Cθ with the same property.

Remark 1.6 A consequence of Theorem 1.5 is that a free indiscrete representation is alge-
braically unstable, even when restricted to Cθ ; roughly speaking this means that such a
representation is a limit of non-free representations. In the absence of such a “relativizing”
restriction, this type of instability is well-known for non-abelian free groups, even in a much
more general setting of connected Lie groups [7]. On the other hand, Sullivan [20] established
algebraic stability of all convex-cocompact subgroups in PSL(2, C).

Let us direct our attention back to Question A. The faithfulness part has the same answer
as Question B; see Proposition 4.3(1). Regarding the density part, it is unclear to the authors
whether the non-torsion-type kernel elements in F2 found in Theorem 1.5 can still be non-
torsion-type in W . However, their additional property of being palindromic has a simple
interpretation inW : they are products of two involutions inW (Lemma4.1). Thuswe establish
the following partial answer to Question A.
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Corollary 1.7 The following conclusions hold:

(1) For all but countably many ϕ ∈ (0, π), the side involutions of a very general triangle
with area ϕ generates the Coxeter group W.

(2) If ϕ is an irrational multiple of π , then for a dense choice of hyperbolic triangles with
area ϕ the side involutions admit a relation which is the product of two involutions in W.

We remark that if u ∈ W is a product of two involutions then, for all ξ ∈ C, the image
ρ̂ξ (u) is either trivial or hyperbolic (Proposition 4.3(2)). In fact, it is hyperbolic for a very
general point in Cθ (Remark 5.6).

As far as the authors are aware, no examples of ξ ∈ C were previously documented such
that ρξ (F2) is non-free and torsion-free.

Question 1.8 If θ ∈ (0, 2π) is an irrational multiple of π , under what conditions on ξ is ρξ

non-faithful with torsion-free image?

In the appendix written by Gao, computational heuristics for approaching Question 1.8,
together with their implementation, are given. The examples of pairs (θ, ξ) exhibited therein
have the property that the images of ρξ are actually isomorphic to fundamental groups of
closed hyperbolic 3-manifolds.

2 Fricke–Klein space

Most of the material in the section is well-known; we direct the reader to [8] for a standard
reference. We adopt the standing convention that group and matrix actions are on the left,
unless stated otherwise.

The group SL(2, R) acts on H2 by Möbius transforms, with kernel given by the center,
and with image

PSL(2, R) ∼= Isom+(H2).

Let tr(A) denote the trace of a matrix A. For each word w = w(X , Y ) ∈ F2 = 〈X , Y 〉 there
exists a trace polynomial

gw ∈ Z[x, y, z]
such that whenever U , V ∈ SL(2, R) we have

trw(U , V ) = gw(trU , tr V , trUV ).

The existence of this polynomial is one of the simplest instances of invariant theory on
character varieties [18]; see also [13] for a concrete formula which computes gw .

For example, the trace polynomial of [X , Y ] is easily seen to be

g[X ,Y ](x, y, z) = κ(x, y, z) := x2 + y2 + z2 − xyz − 2 ∈ Z[x, y, z].

Lemma 2.1 For each w ∈ F2\{1}, the polynomial gw(x, y, z) is not constant.

Proof Let w = w(X , Y ) ∈ F2 = 〈X , Y 〉. If gw were constant, we would have

gw(x, y, z) = gw(2, 2, 2) = trw(Id, Id) = tr Id = 2.

123



Shapes of hyperbolic triangles and once-punctured torus groups

However, there exist two-generatednonelementarypurely loxodromicFuchsiangroupswhich
are nonabelian and free, namely, Schottky groups of rank two. In particular, there are choices
of parameters defining X and Y such that the element w is loxodromic and therefore has
trace different from 2. This immediately implies gw cannot be identically equal to 2. 
�

In this paper, we are mostly concerned with matrices in PSL(2, R). The trace of such a
matrix A ∈ PSL(2, R) is only determined up to sign, so as mentioned in the introduction,
we often use the quantity

tr+ A := | tr A|.
Recall we letCθ denote the deformation space (Fricke–Klein space) of marked incomplete

hyperbolic metrics on M with a fixed cone angle θ ∈ (0, 2π) at p. Each point ξ ∈ Cθ

corresponds to a conjugacy class of a holonomy map

ρ : π1(M) = 〈X , Y , Z | XY Z = 1〉 → PSL(2, R)

so that ρ[X , Y ] is a rotation of angle θ . The chosen representation ρ has a unique lift to

ρ̃ : π1(M) → SL(2, R) (1)

which satisfies

tr ρ̃(X), tr ρ̃(Y ), tr ρ̃(Z) > 2.

It turns out [8] that the lift ρ̃ satisfies

tr ρ̃[X , Y ] = −2 cos(θ/2).

Using the parametrization

ξ �→ (tr ρ̃(X), tr ρ̃(Y ), tr ρ̃(Z)) = (tr+ ρ(X), tr+ ρ(Y ), tr+ ρ(Z)),

and the results of Section 3 of [8], we can therefore identify

Cθ = {(x, y, z) ∈ (2,∞)3 | κ(x, y, z) = −2 cos(θ/2)}.

Remark 2.2 The surjectivity of the above parametrization can be seen by defining a normal
form ρ̃ξ of ξ = (x, y, z) ∈ (2,∞)3. We let ζ ≥ 1 be the unique real number satisfying
ζ + ζ−1 = z and define ρ̃ξ via

ρ̃ξ (X) :=
(
x −1
1 0

)
, ρ̃ξ (Y ) :=

(
0 ζ−1

−ζ y

)
.

From an easy computation [9, Section 2.2.3] one readily sees that

tr ρ̃ξ (Z) = tr ρξ ((XY )−1) = z.

We let ρξ : π1(M) → PSL(2, R) be the projection of ρ̃ξ . These concrete formula for ρ̃ξ and
ρξ are not actually needed in this paper.
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3 Very general representations are free

Recall that

C :=
⋃

θ∈(0,2π)

Cθ = {(x, y, z) ∈ (2,∞)3 | κ(x, y, z) ∈ (−2, 2)}.

The following iswell-known to experts;we include a proof asmotivation for the next theorem.

Proposition 3.1 For a very general point ξ ∈ C, the representation ρξ is faithful.

Proof For each w ∈ F2, let us set

Yw := {ξ ∈ C | ρξ (w) = Id} ⊆ {ξ ∈ C | gw(ξ) = ±2}.
By Lemma 2.1, we see that Yw is contained in a proper algebraic subset of R3 whenever
w �= 1. In particular, Yw has no interior inside the open subset C of R3. It follows that

C\
⎛

⎝
⋃

w∈F2\{1}
Yw

⎞

⎠

is a Gδ-set. 
�
Remark 3.2 The above proof actually implies that a very general point ξ ∈ C corresponds to
representations ρξ without any nontrivial parabolic elements in the image.

Theorem 3.3 If θ ∈ (0, 2π) has the property that cos θ is transcendental, then for a very
general point ξ in Cθ the representation ρξ is faithful.

Remark 3.4 Note that the conclusion of Theorem 3.3 holds for all but countably many θ .
Observe furthermore that the theorem does not extend to all θ ∈ (0, 2π). For instance, if
θ ∈ (Q\Z)π then ρξ (F2) has nontrivial torsion.

We let Q̄ denote the algebraic closure of Q in C.

Proof of Theorem 3.3 Let θ be given as in the hypothesis. Recall for w ∈ F2 we defined the
trace polynomial gw(x, y, z). The following claim is the key observation in the proof.

Claim For each w ∈ F2\{1} and for each algebraic number c, the set
Yw(c) := {ξ ∈ Cθ | gw(ξ) = c}

has empty interior in Cθ .

Let us assume the claim for now. Then each ξ in the dense Gδ-set

Cθ\
⎛

⎝
⋃

w∈F2\{1}
Yw(±2)

⎞

⎠

has the property that ρξ is injective, which completes the proof.
We now establish the claim. Write

gw(x, y, z) =
n∑

i=0

fi (x, y)z
i
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for suitable fi ∈ Z[x, y]. We first consider the case n ≥ 1 and fn �= 0. We define

S := {(x, y, z) ∈ Cθ ∩ (Q × Q × R) | fn(x, y) �= 0}.
Since Q2 is dense in R2, the set S is dense in Cθ . For all ξ = (x, y, z) ∈ S, we see that z /∈ Q̄

from the transcendency hypothesis on cos θ . So, we have gw(ξ) /∈ Q̄. In particular, we obtain
S ∩ Yw(c) = ∅. Since S is dense, the claim is proved in this case.

We now consider the case that n = 0. We have gw = f0(x, y). By Lemma 2.1, we know
that f0 is not constant. Mimicking the previous argument, we consider the following two
dense subsets of Cθ :

S1 := {(x, y, z) ∈ Cθ ∩ (Q × R × Q) | f0(x, y) �= 0},
S2 := {(x, y, z) ∈ Cθ ∩ (R × Q × Q) | f0(x, y) �= 0}.

Again by considering transcendency of coordinates, we obtain that gw(Si )∩Q̄ = ∅ for i = 1
or i = 2; that is, we have Si ∩ Y = ∅. The conclusion follows from the density of Si . 
�
Remark 3.5 In Proof of Theorem 3.3, we need Claim only for the case c = ±2. Since gw

is an analytic function, to show that Yw(c) has empty interior for general c, it is sufficient
to show that gw is not constant in Cθ . We chose an argument different from this, imposing
an extra condition that c is algebraic, to give specific points not contained in Yw(c), with a
concrete description.

If θ is a rational multiple of π , then the image of ρξ contains nontrivial torsion elements,
so that Im ρξ is non-free regardless of the choice of ξ ∈ Cθ . On the other hand, if θ is an
algebraic irrational multiple of π then the Gelfond–Schneider theorem implies that cos θ is
transcendental, so that ρξ is faithful for a very general point ξ ∈ Cθ (Theorem 3.3). Hence,
the only remaining case in the faithfulness part of Question B is the following.

Question 3.6 If θ ∈ (0, 2π) is a transcendental multiple of π , and if cos θ is algebraic, then
is ρξ faithful for a very general point ξ ∈ Cθ?

The general case of this question seems mysterious. For instance, one may ask whether
or not a very general point ξ in Carccos(1/3) correspond to a faithful holonomy map.

4 Coxeter extensions

It will be computationally convenient for us to consider an embedding from ρξ (F2) to a
bigger group generated by involutions (as in Question B). Such an embedding will be also
used here to see the connection between Questions A and B.

Let us begin with an algebraic discussion. We say a word w(X , Y ) is palindromic in
{X , Y } if it reads the same forward and backward, that is, w(X , Y )−1 = w(X−1, Y−1). We
say

w ∈ F2 = 〈X , Y , Z | XY Z = 1〉
is palindromic if it can be expressed as being palindromic in either {X , Y }, {Y , Z} or {Z , X}.

Recall we are regarding F2 = 〈X , Y , Z | XY Z = 1〉 as an index-two subgroup of
W = 〈P, Q, R〉 using the embedding

X �→ QR, Y �→ RP, Z �→ PQ.

Note, in particular, that RXR = X−1 and RY R = Y−1.
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Lemma 4.1 A word u ∈ F2 is palindromic if and only if it is a product of two involutions in
W, with one of the two being P, Q, or R.

We remark that a similar statement can be found in [12] for the case when the ambient group
is SL(2, C).

Proof of Lemma 4.1 The word u is palindromic in {X , Y } if and only if

u(X , Y )−1 = u(X−1, Y−1) = u(RXR, RY R) = Ru(X , Y )R,

which is true if and only if (Ru)2 = 1. This last expression holds if and only if Ru = gIg−1

for some I ∈ {P, Q, R} and g ∈ W , as follows from the characterization of torsion in
right-angled Coxeter groups. It follows that u = R · gIg−1.

Similarly, one shows that u is palindromic in {Y , Z} (resp. {Z , X}) if and only if u =
P · gIg−1 (resp. u = Q · gIg−1) for some I ∈ {P, Q, R} and g ∈ W . 
�

Turning to the geometric side of the embedding F2 < W , let us fix θ ∈ (0, 2π) and
ξ = (x, y, z) ∈ Cθ . Since κ(x, y, z) �= 2, the holonomy map ρξ is irreducible [9, Proposi-
tion 2.3.1]. It follows from [9, Theorem B and Theorem 3.2.2] that ρξ uniquely extends to
the Coxeter extension ρ̂ξ of ρξ as shown in the commutative diagram below:

W = 〈P, Q, R〉
ρ̂ξ

F2 = 〈X , Y 〉 ρξ

PSL(2, R)

Explicitly, one can define the desired extension by projecting the following formula [9] in
SL(2, R) to PSL(2, R):

ρ̂ξ (R) = ρ̃ξ (X)ρ̃ξ (Y ) − ρ̃ξ (Y )ρ̃ξ (X)√
2 − κ(x, y, z)

,

where ρ̃ξ is the lift in (1). The formulae for P and Q are analogous.
From now on, we will often suppress the symbols ρξ and ρ̂ξ , and simply write w ∈ F2 or

w ∈ W for ρ̂ξ (w) when the meaning is clear.
We let

2hX , 2hY , 2hZ

be the translation lengths of the hyperbolic isometries X , Y , Z ∈ PSL(2, R), so that

x = tr X = 2 cosh hX , (2)

and similarly for y and z. In the introduction we noted that the punctured torus M can be cut
along geodesics and developed to H2 as illustrated in Fig. 1.

Let us continue to use the notation from the same figure. In particular, we let {θA, θB , θC }
be the interior angles of the triangle OAOBOC . We let dA (resp. dB and dC ) be the length
of the geodesic segment OBOC (resp. OCOA and OAOB). The isometry X is a hyperbolic
translation along the oriented geodesic OROQ , and similar statements hold for the pairs
(Y , OPOR) and (Z , OQOP ). Moreover, the three isometries

A := QPR, B := RQP, C := PRQ

are (counterclockwise) rotations of angle θ/2 with centers OA, OB and OC , respectively.
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The midpoints of the sides of this triangle are centers of the π-rotations P, Q, R. The
quadrilateral R(OC )OBOCOA can be regarded as a “pseudo-fundamental domain” for the
incomplete hyperbolic structure ξ ∈ Cθ on M . We refer the reader to [8,9] for more details.
We have that θ/2 = θA + θB + θC , and

K = [X , Y ] = (QPR)2 = A2

is a rotation by an angle θ . We also record the identities

B2 = [Y , Z ], C2 = [Z , X ].
If we denote by d(·, ·) the distances in H2, then the three lengths

{d(OA, OROQ), d(OB , OROQ), d(OC , OROQ)}
are all equal.

Lemma 4.2 Let θ ∈ (0, 2π). Then there exists a homeomorphism � from Tπ−θ/2 to Cθ such
that for each η ∈ Tπ−θ/2, the Coxeter extension of �(η) is precisely the representation

W → PSL(2, R)

coming from the side involutions. More precisely, we have

cos θA = yz(x2 + 2) − (y2 + z2)x − x3

2
√

(xyz − x2 − y2)(xyz − x2 − z2)
.

Proof Given (θA, θB , θC ) ∈ Tπ−θ/2, it is straightforward to define � using the hyperbolic
law of cosines: first find {dA, dB , dC }, then {hX , hY , hZ } and then {x, y, z} using (2).

Now, given (x, y, z) ∈ Cθ , an explicit formula of the inverse�−1 can be found as follows;
see Fig. 1. If we cut M along the images of the incomplete geodesic δX = OBOC and
the complete geodesic γX extending OQOR , then we obtain two cylinders with a single
common corner point O (the image of OB or OC ) and boundary lengths 2hX and dA. By
cutting the cylinder further along the shortest path from O to the opposite boundary, we
obtain a quadrilateral with a 2-fold symmetry, which can be divided into two copies of a
tri-rectangle with a non-right angle θ/4 and opposite edge lengths hX and dA/2, so that the
edge of length dA/2 is adjacent to the non-right angle. We remark briefly that another way
to obtain these tri-rectangles would be using a twist to be defined below. After a suitable
X -twist we may assume that the angles �OQOROP and �OROQOC are both right-angles,
so that OCOQOROP is a tri-rectangle.

In this case we have a formula

x/2 = cosh hX = cosh(dA/2) sin(θ/4).

See [2], for example. Once {dA, dB , dC } is found, using the hyperbolic law of cosines we
can compute

cos θA = cosh dB cosh dC − cosh dA
sinh dB sinh dC

.

The remainder of the proof is straightforward. 
�
We now exhibit a connection between the main questions in the introduction.

Proposition 4.3 For θ ∈ (0, 2π) and ξ ∈ Cθ , we have the following.

(1) The representation ρξ is faithful if and only if ρ̂ξ is faithful.
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(2) If u ∈ F2 is palindromic, then the image ρ̂ξ (u) ∈ PSL(2, R) is either trivial or hyperbolic.

Proof (1) Suppose ρξ is faithful. If 1 �= g ∈ ker ρ̂ξ , then we have that

g2 ∈ F2 ∩ ker ρ̂ξ = ker ρξ = {1}.
Hence g ∈ W has order two; this implies that g is conjugate to P, Q or R. Without loss of
generality, we may assume g = P . Then we have a contradiction since ρ̂ξ (P) = 1 and thus

ρξ (Y
2) = ρξ (RPRP) = ρ̂ξ (R

2) = 1.

The converse is obvious.
(2) By Lemma 4.1 if u ∈ F2 is palindromic, then u = I1 I2 for some involutions I1 and I2

in W . Since the only nontrivial involutions in PSL(2, R) are π-rotations, so are the images
ρ̂ξ (I1) and ρ̂ξ (I2). Thus ρ̂ξ (u) = ρ̂ξ (I1)ρ̂ξ (I2) is trivial (if ρ̂ξ (I1) = ρ̂ξ (I2)) or hyperbolic
(if ρ̂ξ (I1) �= ρ̂ξ (I2)). 
�

5 Density of non-faithful representations

In this section we give geometric constructions of non-faithful holonomymaps. The relations
will be torsion elements as well as non-torsion-type. The idea of construction is to consider
the Coxeter extension of F2 and deform a given representation ρ slightly by twist.

5.1 Twist deformations

Let us describe a deformation of a given structure ξ ∈ Cθ along one of the three coordinate
curves

{x = const.}, {y = const.}, {z = const.}
passing through ξ in Cθ .

For this, let us fix θ ∈ (0, 2π) and ξ ∈ Cθ . We will use the notation from Fig. 1 for the
pseudo-fundamental domain OAOCOB R(OC ) of ρξ . Consider the equidistance locus L to
the geodesic OROQ containing the point OA. Take an arbitrary point O ′

A on L and let

{O ′
R} = O ′

AOB ∩ OROQ, {O ′
Q} = O ′

AOC ∩ OROQ

as in Fig. 2. Then we have the following.

Lemma 5.1 Regardless of the position of O ′
A on L, we have that d(O ′

R, O ′
Q) = d(OR, OQ),

and the areas of OAOBOC and O ′
AOBOC are the same.

We will denote the rotation of angle α at the point V ∈ H2 as Rotα(V ).

Proof of Lemma 5.1 Let Q′ and R′ denote the π -rotations at O ′
Q and O ′

R respectively. The
geodesic OROQ is the common invariant geodesic for the hyperbolic translations Q · R
and Q′ · R′, both of which map OB to OC . Thus we have Q · R = Q′ · R′ and hence
d(O ′

R, O ′
Q) = d(OR, OQ). Moreover, we have that

Rotθ/2(OC ) = C = P · R · Q = P · R′ · Q′ = Rotθ ′/2(OC ).

This implies that θ = θ ′, which is the twice of the interior angle sum of each triangle. 
�
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Fig. 2 Twist deformation: X = Q · R = Q′ · R′

Recall our convention that a word w ∈ W also denotes its image ρ̂ξ (w) ∈ PSL(2, R)

when ξ is fixed. The deformation from 〈P, Q, R〉 to 〈P, Q′, R′〉 is called an X -twist. Since
the distance hX = d(R, Q) remains constant by the above lemma, we see from (2) that the
X -twist occurs along the coordinate curve x = const. = tr X . Moreover, such a twist occurs
inside Cθ since the interior angle sum is preserved.

Note that the distance dA = d(OB , OC ) is invariant as well under X -twists. In fact, the
whole bi-infinite sequence of θ/2-rotations {Xi BX−i }i∈Z (as well as their various conjugates
by B,C and P) remain unchanged under X -twists. Lastly, observe that, by a suitable X -twist,
we can always increase either d(OA, OB) or d(OA, OC ) by an arbitrary amount.

Analogously, we define Y -twists and Z -twists.

5.2 Torsion relations

In this subsection we will show that holonomy maps containing torsion in their image are
dense in Cθ . For this, let us first recall the following definition due to Lobachevskii.

Let h ∈ R>0 be a positive real number, and let s ⊆ H2 be a geodesic segment of length
h. Choose a bi-infinite geodesic γ which meets an endpoint p of s at a right angle. We then
connect the other endpoint q of s with an endpoint at infinity of γ via a geodesic ray δ. The
parallel angle α(h) is defined as the acute angle at q between s and δ. It is straightforward
to check that α(h) is independent of all the choices that are made.

Theorem 5.2 Let θ ∈ (0, 2π)\Qπ . Then there exists a dense subset Sθ ⊆ (2,∞) such that
every point ξ ∈ Cθ ∩ (Sθ × R × R) corresponds to the holonomy map ρξ satisfying

ρξ (r
m) = 1

for some r ∈ π1(M)\{1} and m ≥ 2. Analogous results also hold for R × Sθ × R and
R × R × Sθ .

Proof of Theorem 5.2 We use the notation in Fig. 1. Fix an arbitrary point ξ ∈ Cθ . Since
θ /∈ Qπ , we can find an integer N > 0 so that the common rotation angle

Nθ/2 mod 2π

of BN and CN is between 0 and α(dA/2). Consider the isosceles triangle OOBOC as in
Fig. 3 for which the common angle at OB and OC is Nθ/2. Let J , JB , and JC denote the
reflections along the geodesics OBOC , OOB , and OOC , respectively. Then we have

B2N = J JB ,
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Fig. 3 Proof of Theorem 5.2

C2N = JC J ,

C2N B2N = JC JB = Rotβ(O),

where −2π < β = −2�(OB , O, OC ) < 0. Since the common angle Nθ/2 at OB and OC

is constant in Cθ , the angle β depends only on the distance dA.
Now we perturb the representation (by a Y -twist or Z -twist, for example) in order to

increase the distance dA slightly, so that the deformed angle β ′ satisfies β ′ ∈ Qπ and thus
C2N B2N = [Z , X ]N [Y , Z ]N becomes a torsion element. Since dA is constant under X -
twists, we have just found an element s of Sθ such that every point in the X -coordinate
curve

Cθ ∩ ({s} × R × R)

yields a holonomy map with a torsion relation of the form ([Z , X ]N [Y , Z ]N )m for some
m ≥ 2. Since we found such a curve which is arbitrarily close to any given point ξ ∈ Cθ , the
set Sθ must be dense in (2,∞). 
�

5.3 Non-torsion-type kernel elements

We now establish the following theorem, which obviously implies Theorem 1.5.

Theorem 5.3 If θ ∈ (0, 2π)\Qπ , then there exists a dense subset Sθ ⊆ (2,∞) such that for
each s ∈ Sθ every point ξ on the coordinate curve

Cθ ∩ {z = s}
corresponds to a holonomy map ρξ that has a palindromic non-torsion-type word in the
kernel.

By symmetry, the conclusion z = s can be replaced by x = s or y = s.

Remark 5.4 The theorem implies that there exists a dense subset

S′
θ = Cθ ∩ ((R × Sθ × Sθ ) ∪ (Sθ × R × Sθ ) ∪ (Sθ × Sθ × R))

of Cθ , consisting of points with two coordinates from Sθ , such that each point ξ ∈ S′
θ

corresponds to a holonomy map with non-torsion-type kernel elements.

Proof of Theorem 5.3 We use the notation from Fig. 1 and from Sect. 4. Since Z(OR) =
B−1(OR), we have that

d(OA, Z(OR)) = d(OA, B−1(OR)) = d(OA, B(OR)).
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Fig. 4 Construction of the proof of Theorem 5.3

In Fig. 4, two circles passing through Z(OR) and B(OR) are drawn (using theKlein projective
model of H2); they are centered at OA and OB , respectively.

We claim that this configuration can be deformed by a suitable arbitrarily small X -twist
so that two conjugates of the π -rotation R coincide, that is,

A2N (BRB−1)A−2N = Z RZ−1.

To see this claim, let us first recall that the angle

�(OA, OB , Z(OR)) = �(OA, OB , B(OR)) = θ/2

is constant under any deformation in Cθ . Let

β = �(Z(OR), OA, B(OR)),

and we can choose N > 0 so that the rotation angle

Nθ = (2N )(θ/2) mod 2π

of A2N is arbitrarily close to but less than β. Take a suitable small X -twist that increases the
length d(OA, OB); it will also increase the length

d(OB , OR) = d(OB , Z(OR)) = d(OB , B(OR)).

Then the angle β decreases slightly and we twist until

Nθ = β mod 2π.

(We note that this argument works for any θ ∈ (0, 2π)\Qπ .) In the end, we obtain the
relation

A2N (BRB−1)A−2N = Z RZ−1,

which is invariant under Z -twists. The proof of the claim is complete.
If we define

uN := [Z−1A2N B, R] ∈ F2,

then uN is a product of two involutions and the above relation is equivalent to ρξ (uN ) = 1.
Thus for a dense choice of s in (2,∞) there exists an integer N = N (s) > 0 such that the
holonomy map of every point ξ on the coordinate curve {z = s} satisfies uN ∈ ker ρξ .

We can write uN as a word in F2 from the computation below.

uN = (Z−1A2N B)R(B−1A−2N Z)R
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= Z−1[X , Y ]N (RQP)R(PQR)(RPQRPQ)N (PQ)R

= Z−1[X , Y ]N (RQ)(PR)(PQ)[R(RPQRPQ)N P]QR

= Z−1[X , Y ]N X−1Y−1Z [R(R)(PQRPQR)N−1(PQRPQ)P]X
= Z−1[X , Y ]N X−1Y−1Z(ZY X)N−1ZY Z−1X

= XY [X , Y ]N X−1Y−1Y−1X−1[Y−1, X−1]N−1Y−1X−1Y XY X

= XY [X , Y ]N X−1Y−2X−1[Y−1, X−1]NY X .

As can be expected from Lemma 4.1, uN is indeed palindromic (but not a proper power).
To finish the proof it suffices to have the following proposition, which is proved in the next
section. 
�
Proposition 5.5 For each N ≥ 1, we have that uN is of non-torsion-type.

Remark 5.6 In the above proof, by Proposition 4.3, the image ρξ (uN ) is trivial for ξ ∈
Cθ ∩ {z = s}, while it is a nontrivial hyperbolic translation for ξ ∈ Cθ\{z = s}.

Recall we denote by gw(x, y, z) ∈ Z[x, y, z] the trace polynomial of a word w ∈ F2.
From the above proof and the remark following it, we see for each s ∈ Sθ there exists a
positive integer N = N (θ, s) such that the coordinate curve Cθ ∩ {z = s} can be expressed
as the intersection of two surfaces

Cθ ∩ {z = s} = Cθ ∩ {guN = ±2}.
In general, two words U and V may admit the same trace polynomial. For instance, we

have gU = gV if U and V are conjugate, or if U = s1 . . . s� and V = s�s�−1 · · · s1 for
si ∈ {X±1, Y±1}. In our case, the word uN is palindromic and so, it seems rare that another
surface {gw = ±2} contains the above coordinate curve for a different word w ∈ F2 not
conjugate to uN . This raises the following question:

Question 5.7 Let θ ∈ (0, 2π)\Qπ . Does there exist a dense subset R ⊂ Sθ such that for
each r ∈ R and for N = N (θ, r) as above, a very general point ξ in the coordinate curve
Cθ ∩{z = r} corresponds to the monodromy ρξ whose image is isomorphic to the one-relator
group

〈X , Y | uN = 1〉?

6 Proof of Proposition 5.5

In this section, we prove Proposition 5.5. The proof we offer is somewhat technical by nature,
but based on a beautiful solution by Newman of the word problem in one-relator groups with
torsion (Corollary 6.2) as we describe now.

Magnus (1932) discovered that the word problem for a (general) one-relator group is
solvable. In the case of a one-relator with torsion, the following theorem due to Newman
(1968) gives a particularly simple solution. For a reduced word w in a free group, we let |w|
denote its word length and we let [w] denote its cyclic conjugacy class.
Theorem 6.1 (Newman Spelling Theorem) Let G = 〈x1, . . . , xn | rk〉 be a one-relator group
for some cyclically reduced word r in Fn := F(x1, . . . , xn), where k ≥ 2. Suppose that a
nontrivial reduced word w ∈ Fn belongs to the kernel of the natural quotient map Fn → G.

123



Shapes of hyperbolic triangles and once-punctured torus groups

Thenw contains a subword u, of length strictly larger than (k−1)|r |, such that u is a subword
of r±k .

If u is a subword of v, we write u � v. By the Newman Spelling Theorem, we have
the following solution to the word problem in two-generator one-relator group with torsion,
which we call theDehn–Newman algorithm, as it is based on the Dehn’s solution to the word
problem for surface groups. Recall our convention that F2 = 〈X , Y 〉.
Corollary 6.2 (Dehn–Newmann Algorithm) Let u and r be cyclically reduced words in F2,
and let m ≥ 2. Then the truth value of the statement u ∈ 〈〈rm〉〉 can be decided in the following
steps, within a finite time.

Step 1 If there exists a cyclic conjugation R = R1R2 of r±1 such that |R1| = 1 and such
that Rm−1R1 is a subword of u, then proceed to Step 2; otherwise, conclude that
u /∈ 〈〈rm〉〉.

Step 2 Let U be the word obtained from u by substituting R−1
2 for Rm−1R1. If U �= 1, then

repeat Step 1; otherwise, conclude that u ∈ 〈〈rm〉〉.
Let us first see a simple application of the algorithm.

Lemma 6.3 Let N ≥ 1.

(1) If r ∈ {Y , XY , [X , Y ]} and m ≥ 2, then uN /∈ 〈〈rm〉〉.
(2) If r ∈ F2 and m ≥ 3, then uN /∈ 〈〈rm〉〉.
Proof (6.3) We let G := F2/〈〈rm〉〉. Assume for contradiction that uN = 1 in G.

Suppose first that r = Y . By the Dehn–Newman Algorithm (Corollary 6.2), we should
have Y±m � uN . This implies m = 2. In G = F2/〈〈Y 2〉〉, the element uN coincides with the
word

u′ := XY [X , Y ]N X−2[Y−1, X−1]NY X .

Since Y±2 �� u′, we see that uN = u′ �= 1 in G.
Now, consider the case r = XY . Since a cyclic conjugation of a length five subword

of (XY )3 does not appear in uN as a subword, we see that m = 2. We cancel out all the
occurrences of

(XY )±2, (Y X)±2

in uN to obtain

u′ := X−1Y−1[X , Y ]N−2XYY X [Y−1, X−1]N−2Y−1X−1.

Since u′ does not contain a length three subword of

(XY )±2, (Y X)±2

we conclude from the Dehn–Newman algorithm that u′ �= 1 in G.
Finally, assume r = [X , Y ]. Writing N = mq + t for t ∈ [0,m − 1], the element uN can

be rewritten in G as

u′ := XY [X , Y ]t X−1Y−2X−1[Y−1, X−1]t Y X .

It is obvious that u′ does not contain a subword of rm with length 4(m − 1) + 1. Hence, we
see u′ �= 1 in G.
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(6.3) Suppose not. TheDehn–NewmanAlgorithm implies that for some cyclically reduced
word r that is not a proper power we have r2 � u. This consideration restricts the choices of
r to be a cyclic conjugation of a word in

{Y , XY , [X , Y ]}±1.

By part (6.3), this is impossible. 
�
We are now ready to give a proof of the proposition.

Proof of Proposition 5.5 Suppose uN ∈ 〈〈rm〉〉 for some r ∈ F2 andm ≥ 2. ByLemma 6.3, we
need only consider the case m = 2. Consider the following procedure, which takes u = uN

as an input.

(i) Pick a cyclically reduced word r = r1r2 in F2 such that |r1| = 1 and such that
r1r2r1 � u; here, we require that r1r2 is not cyclically conjugate to a word in

{Y , XY , [X , Y ]}±1.

Proceed to Step (ii).
(ii) Replace an occurrence of r1r2r1 in u by r−1

2 to obtain a reduced word u′. Proceed to
Step (iii).

(iii) Pick a cyclic conjugation r ′
1r

′
2 of r

±1 such that |r ′
1| = 1 and such that r ′

1r
′
2r

′
1 � u′. Plug

u ← u′ and ri ← r ′
i . Repeat Step (ii).

This process is a simplified version of Dehn–Newman Algorithm. It is obvious that if the
procedure terminates at step (i) or (iii), we can conclude that uN is of non-torsion-type.

We can enumerate all the possible choices of r1r2r1 in step (i) as follows, excluding
the obvious case r1r2r1 = uN . Verifying all of the following cases, we can conclude that
uN /∈ 〈〈rm〉〉 for all r ∈ F2 and m ≥ 2.

(1) XY [X , Y ]t X for 1 ≤ t ≤ N − 1;
(2) XY [X , Y ]N X−1Y−2X−1[Y−1, X−1]t for 1 ≤ t ≤ N ;
(3) [X , Y ]s X−1Y−2X−1[Y−1, X−1]t for 1 ≤ s, t ≤ N ;
(4) [X , Y ]s X−1Y−2X−1[Y−1, X−1]NY X for 1 ≤ s ≤ N ;
(5) X [Y−1, X−1]t Y X for 1 ≤ t ≤ N − 1;
(6) X−1Y−1[X , Y ]t X−1 for 1 ≤ t ≤ N − 1;
(7) X−1Y−1[X , Y ]t X−1Y−2X−1 for 0 ≤ t ≤ N − 1;
(8) X−1Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]t Y−1X−1 for 0 ≤ s, t ≤ N − 1;
(9) X−1Y−2X−1;

(10) X−1Y−2X−1[Y−1, X−1]t Y−1X−1 for 0 ≤ t ≤ N − 1;
(11) X−1[Y−1, X−1]t Y−1X−1 for 1 ≤ t ≤ N − 1;
(12) Y [X , Y ]t XY for 1 ≤ t ≤ N − 1;
(13) Y [X , Y ]N X−1Y−2X−1[Y−1, X−1]t Y−1X−1Y for 0 ≤ t ≤ N − 1;
(14) Y [X , Y ]N X−1Y−2X−1[Y−1, X−1]NY ;
(15) Y X−1Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]t Y−1X−1Y for 0 ≤ s, t ≤ N − 1;
(16) Y X−1Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]NY for 0 ≤ s, t ≤ N − 1;
(17) Y X [Y−1, X−1]t Y for 1 ≤ t ≤ N − 1;
(18) Y−1[X , Y ]t X−1Y−1 for 1 ≤ t ≤ N − 1;
(19) Y−1[X , Y ]t X−1Y−2 for 0 ≤ t ≤ N − 1;
(20) Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]t Y−1 for 0 ≤ s, t ≤ N − 1;
(21) Y−2X−1[Y−1, X−1]t Y−1 for 0 ≤ t ≤ N − 1;
(22) Y−1X−1[Y−1, X−1]t Y−1 for 1 ≤ t ≤ N − 1.
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The following pairs of cases yield the same relator r2:

• (1) and (12);
• (6) and (18);
• (11) and (22).

So, for each of the 19 cases remaining, we verify that the above algorithm terminates.
Case (1) This case corresponds to

r1 = X , r2 = Y [X , Y ]t for 1 ≤ t ≤ N .

Replacing r1r2r1 = XY [X , Y ]t X in uN by r−1
2 = [Y , X ]t Y−1, we obtain

u′ = [Y , X ]t X−1Y−1[X , Y ]N−t−1X−1Y−2X−1[Y−1, X−1]NY X

= [Y , X ]t X−1Y−1[X , Y ]N−t−1X−1Y−2X−1(Y−1X−1)[Y , X ]t [Y , X ]N−t−1(Y X)2

We now continue with

r ′
1 = X−1, r ′

2 = Y−1X−1[Y , X ]t−1Y XY−1.

One sees that

r ′
1r

′
2r

′
1 = X−1Y−1X−1[Y , X ]t � u′.

Plug u ← u′ and ri ← r ′
i . We replace r1r2r1 in u by r−1

2 to obtain

u′ := [Y , X ]t X−1Y−1[X , Y ]N−t−1X−1Y−1X−1Y−1[X , Y ]t−1XY [Y , X ]N−t−1(Y X)2

It is then clear that Step (iii) cannot be executed for u′ and r . We conclude that u′ = u �= 1
in F2/〈〈r2〉〉.

Case (2) In this case we have

r1 = X , r2 = Y [X , Y ]N X−1Y−2X−1[Y−1, X−1]t−1Y−1X−1Y for 1 ≤ t ≤ N .

Then r−1
2 = Y−1XY [X−1, Y−1]t−1XY 2X [Y , X ]NY−1. We replace r1r2r1 in uN by r−1

2 to
obtain

u′ = Y−1XY [X−1, Y−1]t−1XY 2X [Y , X ]NY−1[Y−1, X−1]N−t Y X ,

which is reduced. It is clear that no cyclic conjugate of (r1r2)±1 occurs as a subword of u′,
as is seen from aligning [Y , X ]N in u′ with the corresponding copy in r−1

2 .
Case (3) In this case we have

r1 = X , r2 = Y X−1Y−1[X , Y ]s−1X−1Y−2X−1[Y−1, X−1]t−1Y−1X−1Y for 1 ≤ s, t ≤ N .

Then r−1
2 = Y−1XY [X−1, Y−1]t−1XY 2X [Y , X ]s−1Y XY−1. Replacing r1r2r1 by r

−1
2 gives

us

u′ = XY [X , Y ]N−sY−1XY [X−1, Y−1]t−1XY 2X [Y , X ]s−1Y XY−1[Y−1, X−1]N−t Y X .

This word is reduced unless N = s or N = t , in which case a subword X2 appears. It is clear
that no cyclic conjugate of (r1r2)±1 occurs as a subword of u′.

Case (4) In this case we have

r1 = X , r2 = Y X−1Y−1[X , Y ]s−1X−1Y−2X−1[Y−1, X−1]NY for 1 ≤ s ≤ N .

Then r−1
2 = Y−1[X−1, Y−1]N XY 2X [Y , X ]s−1Y XY−1. Replacing r1r2r1 by r

−1
2 gives us

u′ = XY [X , Y ]N−sY−1[X−1, Y−1]N XY 2X [Y , X ]s−1Y XY−1,
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which is reduced. There is exactly one occurrence of Y 2 in u′ and in (r1r2)−1, and if these
are aligned then a further reduction can be made. Clearly such an alignment cannot be made,
as is checked by reading to the left or right from Y 2 in u′. Thus, we must be able to find a
subword of u′ which is a cyclic conjugate of (r1r2)±1 and which begins and ends with the
same power of Y , that is

Y−1X−1[Y−1, X−1]NY XY X−1Y−1[X , Y ]s−1X−1Y−1

or its inverse. It is clear that this does not happen.
Case (5) In this case we have

r1 = X , r2 = [Y−1, X−1]t Y for 1 ≤ t ≤ N − 1.

Then r−1
2 = Y−1[X−1, Y−1]t . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]t X−1Y−2X−1[Y−1, X−1]Y−1X−1YY−1[X−1, Y−1]t ,
which reduces to

XY [X , Y ]t X−1Y−2X−1[Y−1, X−1]Y−1X−1[X−1, Y−1]t .
This latter word is both reduced and cyclically reduced. In order to perform further reduc-

tions, u′ must contain subwords of the form

Y X [Y−1, X−1]t or X−1Y−1[X−1, Y−1]t .
For the first of these cases to occur we would need t = 1, and then it is clear that no cyclic
permutation of u′ contains a cyclic permutation of this word. In the second case, we similarly
see that no cyclic conjugate of this word occurs as a subword of a cyclic permutation of u′.

Case (6) In this case we have

r1 = X−1, r2 = Y−1[X , Y ]t for 1 ≤ t ≤ N − 1.

Then r−1
2 = [Y , X ]t Y . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N−t−1XY [Y , X ]t Y 3X−1[Y−1, X−1]NY X ,

which is reduced. In order to perform further reductions, we must align [X , Y ]t X−1Y−1 or
Y X [Y , X ]t in u′ and (r1r2)±. By inspection, this is not possible.

Case (7) In this case we have

r1 = X−1, r2 = Y−1[X , Y ]t X−1Y−2 for 0 ≤ t ≤ N − 1.

Then r−1
2 = Y 2X [Y , X ]t Y . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N−t−1XY 3X [Y , X ]t Y [Y−1, X−1]NY X ,

which reduces to

XY [X , Y ]N−t−1XY 3X [Y , X ]t X−1Y X [Y−1, X−1]N−1Y X .

There is only one power of Y of absolute value more than one in u′, and it is clear that

Y 2X [Y , X ]t Y X = (r1r2)
−1

does not occur as a subword of u′ or of its cyclic conjugates, nor do any of the cyclic
conjugates of (r1r2)−1 which keep the Y 2 intact. We therefore consider subwords of the form
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Y X [Y , X ]t Y XY and its inverse. It is immediate to verify that there are no such subwords,
even in the degenerate case where t = 0.

Case (8) In this case we have

r1 = X−1, r2 = Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]t Y−1 for 0 ≤ s, t ≤ N − 1.

Then r−1
2 = Y [X−1, Y−1]t XY 2X [Y , X ]sY . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N−t−1XY 2[X−1, Y−1]t XY 2X [Y , X ]sY 2X [Y−1, X−1]N−t−1Y X ,

which is reduced and cyclically reduced. Up to cyclic permutation, we must align subwords
of (r1r2)±1 and u′ of the form X−1Y−2X−1 or XY 2X , or we must set r ′

1 = Y and

r ′
1r

′
2r

′
1 = Y X [Y , X ]sY XY [X−1, Y−1]t XY 2.

Reading to the left or to the right in u′ from this copy of Y 2 quickly yields a contradiction.
Case (9) In this case we have

r1 = X−1, r2 = Y−2.

Then r−1
2 = Y 2. Replacing r1r2r1 by r

−1
2 gives us

u′ = XY [X , Y ]NY 2[Y−1, X−1]NY X = XY [X , Y ]N−1XY X−2Y X [Y−1, X−1]N−1Y X ,

where the latter expression is both reduced and cyclically reduced. In order to reduce further,
the word u′ must have a subword of the form Y 2 or Y−2. Indeed, such a subword would arise
from either (r1r2)±1 or (r2r1)±1 as a subword of u′, or by setting r ′

1 = Y±1 and

r ′
1r

′
2r

′
1 ∈ {Y XY 2, Y−1X−1Y−2}.

Clearly none of these cases occur.
Case (10) In this case we have

r1 = X−1, r2 = Y−2X−1[Y−1, X−1]t Y−1 for 0 ≤ t ≤ N − 1.

Then r−1
2 = Y [X−1, Y−1]t XY 2. Replacing r1r2r1 by r

−1
2 gives us

u′ = XY [X , Y ]NY [X−1, Y−1]t XY 2Y X [Y−1, X−1]N−t−1Y X ,

which reduces to

XY [X , Y ]N−1XY X−1[X−1, Y−1]t XY 3X [Y−1, X−1]N−t−1Y X ,

which is both reduced and cyclically reduced. Up to cyclic permutation, we must have that
u′ has a subword of the form X−1Y−2X−1 or XY 2X , or a cyclic permutation of a word of
the form

r ′
1r

′
2r

′
1 = Y XY [X−1, Y−1]t XY 2 or r ′

1r
′
2r

′
1 = Y−1X−1[Y−1, X−1]Y−1X−1Y−2

in order to perform further reductions. Clearly this is not the case.
Case (11) In this case we have

r1 = X−1, r2 = [Y−1, X−1]t Y−1 for 1 ≤ t ≤ N − 1.

Then r−1
2 = Y [X−1, Y−1]t . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N X−1Y−2Y [X−1, Y−1]t Y X [Y−1, X−1]N−t−1Y X ,
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which reduces to

XY [X , Y ]N X−1Y−1[X−1, Y−1]t Y X [Y−1, X−1]N−t−1Y X .

This last expression is both reduced and cyclically reduced. In order to perform further
reductions, a cyclic permutation of u′ must contain a subword which is cyclic permutation
of a word of the form XY [X−1, Y−1]t or [Y−1, X−1]t Y−1X−1. The first of these does not,
since t > 0.

Thus we are reduced to the case where

r ′
1 = Y−1, r ′

2 = X−1Y X [Y−1, X−1]t−1Y−1X−1.

Then,

r ′
1r

′
2r

′
1 = [Y−1, X−1]t Y−1X−1Y−1,

which does not occur as a subword of u′ up to cyclic permutation.
Case (13) In this case we have

r1 = Y , r2 = [X , Y ]N X−1Y−2X−1[Y−1, X−1]t Y−1X−1 for 0 ≤ t ≤ N − 1.

Then r−1
2 = XY [X−1, Y−1]t XY 2X [Y , X ]N . Replacing r1r2r1 by r−1

2 gives us

u′ = X2Y [X−1, Y−1]t XY 2X [Y , X ]N X [Y−1, X−1]N−t−1Y X ,

which reduces to

X2Y [X−1, Y−1]t XY 2X [Y , X ]N−1Y XY−1[Y−1, X−1]N−t−1Y X .

This last expression is reduced and cyclically reduced. In order to perform further reductions,
we must have that after performing a cyclic permutation, there is a subword of u′ of the form

Y [X , Y ]N X−1Y−2X−1[Y−1, X−1]t Y−1X−1 = r1r2

or its inverse. By considering the necessary alignment of product of commutators [Y , X ]N ,
we quickly obtain a contradiction.

Case (14) In this case we have

r1 = Y , r2 = [X , Y ]N X−1Y−2X−1[Y−1, X−1]N .

Then r−1
2 = [X−1, Y−1]N XY 2X [Y , X ]N . Replacing r1r2r1 by r−1

2 gives us

u′ = X [X−1, Y−1]N XY 2X [Y , X ]N X ,

which reduces to

Y−1XY [X−1, Y−1]N−1XY 2X [Y , X ]N X ,

which is both reduced and cyclically reduced. Note that the words (r1r2)± have length 4N+5
and that u′ has length 4N + 4, whence no cyclic permutation of (r1r2)± occurs as a subword
of u′.

Case (15) In this case we have

r1 = Y , r2 = X−1Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]t Y−1X−1 for 0 ≤ s, t ≤ N − 1.

Then r−1
2 = XY [X−1, Y−1]t XY 2X [Y , X ]sY X . Replacing r1r2r1 by r

−1
2 gives us

u′ = XY [X , Y ]N−s−1X2Y [X−1, Y−1]t XY 2X [Y , X ]sY X2[Y−1, X−1]N−t−1Y X ,
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which is both reduced and cyclically reduced. In order to perform further reductions, we
would require a cyclic permutation of

Y−1XY [X−1, Y−1]t XY 2X [Y , X ]sY X

or its inverse to occur as a subword of u′, which it does not.
Case (16) In this case we have

r1 = Y , r2 = X−1Y−1[X , Y ]s X−1Y−2X−1[Y−1, X−1]N for 0 ≤ s ≤ N − 1.

Then r−1
2 = [X−1, Y−1]N XY 2X [Y , X ]sY X . Replacing r1r2r1 by r

−1
2 gives us

u′ = XY [X , Y ]N−s−1X [X−1, Y−1]N XY 2X [Y , X ]sY X2,

which reduces to

XY [X , Y ]N−s−1Y−1XY [X−1, Y−1]N−1XY 2X [Y , X ]sY X2.

This last expression is reduced and cyclically reduced. In order to perform further reductions,
we must have a subword of u′ which is a cyclic permutation of

Y−1[X−1, Y−1]N XY 2X [Y , X ]sY X

or its inverse. This is not the case.
Case (17) In this case we have

r1 = Y , r2 = X [Y−1, X−1]t for 0 ≤ t ≤ N − 1.

Then r−1
2 = [X−1, Y−1]t X−1. Replacing r1r2r1 by r

−1
2 gives us

u′ = XY [X , Y ]N X−1Y−2X−1[Y−1, X−1]N−t−1Y−1X−1[X−1, Y−1]t
after one free reduction, and this word is both reduced and cyclically reduced. To perform
further reductions, we would need u′ to have a subword which is a cyclic conjugate of

[X−1, Y−1]t X−1Y−1

or its inverse

Y X [Y−1, X−1]t ,
the first of which is not the case.

The second of these does occur as a subword of u′ if N − t − 1 > t . In this case we set
r ′
1 = r1 and r ′

2 = r2 and observe that

Y X [Y−1, X−1]t Y = r ′
1r

′
2r

′
1

is not a subword of u′.
Case (19) In this case we have

r1 = Y−1, r2 = [X , Y ]t X−1Y−1 for 0 ≤ t ≤ N − 1.

Then r−1
2 = Y X [Y , X ]t . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N−t−1XY X−1Y X [Y , X ]t X−1[Y−1, X−1]NY X ,

which is both reduced and cyclically reduced. For further reductions to be possible, we would
require a subword of u′ which is a cyclic conjugate of

Y 2X [Y , X ]t
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or its inverse, which up to cyclic permutation is

Y−1[X , Y ]t X−1Y−1.

Clearly this is not the case if t ≥ 1.
If t = 0 then

u′ = XY [X , Y ]N−1XY X−1Y X X−1[Y−1, X−1]NY X ,

which reduces to

XY [X , Y ]N−1XY X−2Y X [Y−1, X−1]N−1Y X ,

which is both reduced and cyclically reduced. Now, r1r2 = Y−1X−1Y−1, which does not
appear as a subword of u′ up to cyclic permutation, but its inverse Y XY does. In order to
perform further reductions, we would have to either set r ′

1 = Y and r ′
1r

′
2r

′
1 = Y XY 2 or

r ′
1 = X and r ′

1r
′
2r

′
1 = XY 2X . Neither of these words appear, even after cyclic permutation.

Case (20) In this case we have

r1 = Y−1, r2 = [X , Y ]s X−1Y−2X−1[Y−1, X−1]t for 0 ≤ s, t ≤ N − 1.

Then r−1
2 = [X−1, Y−1]t XY 2X [Y , X ]s . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N−s−1XY X−1[X−1, Y−1]t XY 2X [Y , X ]s X−1Y X [Y−1, X−1]N−t−1Y X ,

which is both reduced and cyclically reduced. To perform further reductions, we must have
a subword of u′ which is a cyclic permutation of

Y [X−1, Y−1]t XY 2X [Y , X ]s
or its inverse, which is not the case.

Case (21) In this case we have

r1 = Y−1, r2 = Y−1X−1[Y−1, X−1]t for 0 ≤ t ≤ N − 1.

Then r−1
2 = [X−1, Y−1]t XY . Replacing r1r2r1 by r−1

2 gives us

u′ = XY [X , Y ]N X−1[X−1, Y−1]t XY X−1Y X [Y−1, X−1]N−t−1Y X ,

which is both reduced and cyclically reduced. Supposing the possibility of further reductions,
we would need a subword which is a cyclic permutation of

[X−1, Y−1]t XY 2

or its inverse, which up to cyclic permutation is given by

Y−1X−1[Y−1, X−1]t Y−1.

We easily see that this is not the case. 
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Appendix A: A computational approach, by Xinghua Gao

Asmentioned in the introduction, it was not knownwhether there exist points ξ ∈ C such that
ρξ has a non-free torsion-free image. In this section,we provide and implement computational
heuristics that can find such examples of ρξ , which turn out to have closed hyperbolic 3-
manifold groups as images.

A.1 An arithmetic formulation of the problem

The starting point is a hyperbolic 3-manifold T with a single cusp, whose fundamental group
G is generated by two elements a and b. As an explicit example, one can take a hyperbolic
2-bridge knot complement. Then, consider a hyperbolic Dehn filling Tq of T for some q ∈ Q,
and a number field Q(α) such that

G = 〈a, b〉 = π1(Tq) ≤ PSL(2, Q(α)).

We abuse language slightly and also write G = 〈a, b〉 for a lift of G to SL(2, Q(α)) (cf. [3,
16]).

Question A.1 Under what conditions on T and q do the following conclusions hold?

(i) There is a Galois automorphism σ : α �→ β with β ∈ R.
(ii) {tr aσ , tr bσ , tr(ab)σ } ⊂ R\[−2, 2];
(iii) tr[a, b]σ ∈ (−2, 2).

Computationally, Question A.1 suggests that we enumerate such possible T and q , and
verify all of the above three conditions. As we have the hyperbolic structure of Tq and the
algebraic number α ∈ C, the verification step should be computationally straightforward up
to the computation of Galois conjugates. Once we have such an example of T and q , then
the resulting point

ξ := (tr aσ , tr bσ , tr(ab)σ )

is a point in the character variety of Cθ for θ satisfying

−2 cos(θ/2) = tr[a, b]σ .

Moreover, the image of the monodromy ρξ is isomorphic to π1(Tq) as we desire.

Remark A.2 Note that a parabolic generator of π1(T ) will remain parabolic after Galois
conjugation.
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A.2 An algorithm for producing explicit examples

Examples of (T , q) with the desired properties can be produced using SnapPy [4,21]. In
order to construct a representation with the image in PSL(2, R), we will need the following
fact.

Lemma A.3 [17, Corollary 3.2.5] If � is a nonelementary subgroup of SL(2, C) such that
Q(tr �) is a subset of R, then � is conjugate to a subgroup of SL(2, R).

Let Tr be a closed hyperbolic 3-manifold obtained by applying Dehn filling to one-cusped
hyperbolic 3-manifold T along a curve of slope r . We fix a triangulation of T by ideal
tetrahedra, which also gives an ideal triangulation of Tr . Then the edge gluing equations of T
together with the Dehn filling equation determine the hyperbolic structure of Tr . The solution
to the this system of equations is a set of complex numbers, which parameterize the shape of
tetrahedra in Tr . These parameters generate the tetrahedral field K of Tr . We want to find a
real embedding σ of the number field K so that all the tetrahedra of T have real shapes after
applying σ . The associated holonomy representation then gives a faithful representation

ρR : π1(Tr ) → PSL(2, C)

with all matrices in the image having real trace. Therefore by Lemma A.3, the group
ρR(π1(Tr )) is conjugate into PSL(2, R). Since a conjugacy leaves the trace unchanged,
we obtain a desired hyperbolic 3-manifold Tr giving an affirmative answer to Question A.1.

The process of finding a suitable T and corresponding tetrahedral field can be formulated
with the following steps:

Step (1) Let T be a hyperbolic knot complement with the default triangulation in SnapPy
and apply Dehn filling of slope r . Compute the tetrahedral field K of Tr using
the SnapPy manifold class tetrahedra_field_gens(). We can then use the
SageMath number field class find_field() to find the defining polynomial of
K .

Step (2) Find a real embedding σ of K , if there exits one, using the SageMath number field
class real_embeddings().

Step (3) Apply the real embedding σ and set up the new triangulation with real shape param-
eters, using the SnapPy manifold class set_tetrahedra_shapes().

Step (4) Computes the associated holonomy representation ρR and the image of a, b, ab and
[a, b] under ρR, using the SnapPy fundamental group classes SL2C(). Finally,
compute the resulting traces.

A.3 Explicit examples

Here we produce several examples giving affirmative answer to Question A.1. The traces are
truncated to four places after the decimal point.

In this table, a and b are the generators of the corresponding fundamental group, with the
default triangulation in SnapPy. Presentations of the fundamental group of 76(0) and 813(0)
are included below, as well as the matrix representatives of a and b. Presentations of the
fundamental groups of the other three manifolds are unwieldy due to their size, so we have
omitted them. The interested readersmay use themanifold classfundamental_group()
to verify our claims.

For the first manifold,

π1(76(0)) = 〈a, b |abABBAbABabbaBabbaBAbABBAbaBabbaB,
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trρR(a) trρR(b) trρR(ab) trρR([a, b])
76(0) 2.4509 2.0881 2.4509 1.8307
813(0) 2.1258 2.7610 2.4523 1.7623
912(0) 2.0382 − 2.4497 − 2.4497 1.9249
915(0) − 2.2535 2.1399 − 2.2535 1.8686
1010(0) − 3.7588 − 3.0575 9.0343 − 0.7349

aaaaabABBAbABabbaBabAbaBabbaBAbABBAb〉 ,

ρR(a) =
(

0.5171 0
−0.3455 1.9338

)
, ρR(b) =

(
1.0881 0.1319
0.6682 1

)
.

Here, upper case and lower case versions of a letter are inverses of each other. Again, we
truncate matrix entries to four places. We note however that they are all algebraic numbers
in a real embedding of the tetrahedra field K of 76(0), with the defining polynomial

p(x) = x12 − 2x11 − 2x10 + 14x9 − 25x8 + 32x7

− 35x6 + 38x5 − 38x4 + 30x3 − 17x2 + 6x − 1.

For the second manifold,

π1(813(0)) = 〈a, b |aaabABBAAABabbaaabABBAbaaabbaBAAABBAbaaabbaBAAABabb,
aaabABBAAABabbaaabABBAbABBAbaaabbaBAAABBAbaaabABAb〉 ,

ρR(a) =
(

1.1258 0.3547i
−0.3547i 1

)
, ρR(b) =

(
2.8986 −2.4657i

−0.5673i −0.1376

)
.

Note that these two matrices are not in PSL(2, R), but they are simultaneously conjugate into
PSL(2, R), according to Lemma A.3. The defining polynomial of the tetrahedra field K of 813(0)
is

p(x) = x14 − x13 − 5x12 − 4x11 + 10x10 + 14x9 − 10x8

− 29x7 − 5x6 + 29x5 + 19x4 − 11x3 − 17x2 − 7x − 1.

For now, we are only able to produce closed hyperbolic 3-manifolds via 0-Dehn filling to two-
bridge knot complements as examples.
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