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Abstract

Let A be a hyperbolic triangle with a fixed area ¢. We prove that for all but countably
many ¢, generic choices of A have the property that the group generated by the  -rotations
about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast,
we show for all ¢ € (0, 7)\Qr, a dense set of triangles does afford nontrivial relations,
which in the generic case map to hyperbolic translations. To establish this fact, we study the
deformation space €y of singular hyperbolic metrics on a torus with a single cone point of
angle 6 = 2(7 — ¢), and answer an analogous question for the holonomy map p¢ of such a
hyperbolic structure £. In an appendix by Gao, concrete examples of 6 and & € €y are given
where the image of each p; is finitely presented, non-free and torsion-free; in fact, those
images will be isomorphic to the fundamental groups of closed hyperbolic 3-manifolds.
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1 Introduction

Take a geodesic triangle in the hyperbolic plane, and consider the rotations of angle 7 about
the midpoints of the three sides, which we call the side involutions. It is natural to wonder
whether or not some nontrivial compositions of the side involutions will move the triangle
exactly back to itself.

For a regular pentagon in the Euclidean plane, there are many “unexpected” coincidences
of this type [19]. On the other hand, a regular tetrahedron in R? can never be moved back to
its original position [1].

For a hyperbolic triangle the answer depends on, among other things, its area. For instance,
if the area is a rational multiple of 7, then so is the interior angle sum. In this case, a suitable
power of a composition of the three side involutions will be trivial. Even if the area is not a
rational multiple of 7, torsion relations still appear for a dense choice of hyperbolic triangles
(cf. Theorem 5.2 below). So, we are led to address the question whether or not relations that
are not “consequences” of torsion relations can still be found for a dense set of triangles; we
refer the reader to Definition 1.4 for a precise formulation.

Question A In the space of hyperbolic triangles whose area is fixed as ¢ € (0, ), what are
the necessary and sufficient conditions for the side involutions to generate the Coxeter group
Ly * Ly * Lo ? Do the involutions for a dense set of hyperbolic triangles admit relations that
are not consequences of torsion relations?

Here, the space of hyperbolic triangles A BC with fixed area ¢ is identified with its parameter
space of the interior angles:

Ty 1= {04, 05,0) € (0,7)° | 04 + 65 +6c =7 — ¢}

Our take on Question A will be via the space of marked incomplete hyperbolic structures
on a punctured torus. Throughout this paper, we let M be a torus minus a puncture p. Let
us fix an angle 8 € (0, 27). We consider the deformation space €y, called a Fricke—Klein
space [11], of marked incomplete hyperbolic structures on M having exactly one conical
singularity at the puncture p with a cone angle 6. We will also consider the Fricke—Klein
space

¢= (J ¢
0e(0,27)

of all marked hyperbolic structures with cone angles in (0, 2r) on M.
We fix an oriented meridian X and an oriented longitude Y of M, and identify 71 (M)
with a rank-two free group

F=(X,Y,Z|XYZ=1).
It is convenient to regard F> as an index-two subgroup of a free Coxeter group

W i=ZyxZpxZp=(P,0,R| P2=0>=R>=1)
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Shapes of hyperbolic triangles and once-punctured torus groups

Fig.1 Developing M to H2

using the embedding
X+ QR, Y+— RP, Z+— PQ.

Each hyperbolic structure £ € €y defines a conjugacy class of holonomy maps, a repre-
sentative of which we denote by

e : 1 (M) — PSL(2, R) = Isom (H?).

These holonomy maps are defined via the developing map M — H2. The isometries
{ps(X), ps(Y), ps(Z)} are hyperbolic elements with pairwise intersecting axes. Because
the group Im pg contains two hyperbolic elements with intersecting axes, it is always non-
elementary. Since I is Hopfian, we have that o is faithful if and only if Im pg nonabelian
and free.

As is well-known (see e.g. [8]), the space &g can be identified with its parameter space

{(x,y,2) € 2,00 | x2 +y> + 22 —xyz — 2 = —2co0s(6/2)}
by the character map

£ (rh pe (), ut pe(Y), ™t p(2)).

Here, tr*(.) is understood as the absolute value of the trace of an element in PSL(2, R).

To see the connection between €y and Question A, pick a hyperbolic structure & € €4 on
M for some fixed 6 € (0, 2m). Let yx be the simple closed geodesic realizing X € m1(M).
There exists a unique incomplete geodesic §x on M disjoint from yyx, and that starts and ends
at p. Construct the geodesics {yy, vz, dy, 6z} analogously. By cutting M along §x Uy Udz,
we obtain two isometric hyperbolic triangles whose interior angle sums are 6 /2. The shape
of this triangle determines a point in T _g 2. A lift of this picture to H? is illustrated in Fig. 1.

As in the figure, we let {Op, O, Og} denote the midpoints of the sides from one of the
triangles. We write {0g (P), pz (Q), pg (R)} for the corresponding side involutions. Then we
have that

ps(X) = p:(Q) - pe(R), p:(Y) = pe(R) - pe(P), pe(Z) = pg(P) - p(Q).
Thus pg extends to a surjection
Pe: W — (p:(P), p(Q), pe (R)),

called a Coxeter extention of pg, which is determined uniquely from the holonomy represen-
tation pg [8]. Moreover, the spaces £, _g,2 and &y are homeomorphic via a homeomorphism
which conjugates this extension (Lemma 4.2).
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Through Coxeter extensions, we will approach Question A by studying the following
closely related question.

Question B For a fixed angle 0 € (0, 2r), what are the necessary and sufficient conditions
for & € &y to yield a faithful representation pg: w1 (M) — PSL(2,R)? Is there a dense
choice of & € &g for which the representation pg admits relations that are not consequences
of torsion relations?

Let A be a topological space. We say that a certain statement holds for a very general (or,
generic) & € A if the statement holds for all £ in some dense G subset of A. If A is an open
subset of a Euclidean space, then it follows that the statement holds on a full-measure subset
of A.

In this paper, we are primarily interested in establishing the faithfulness part of Ques-
tion B for a very general point £ € €y, and in answering the density question for a suitable
interpretation of the phrase “consequences of torsion relations”.

Remark 1.1 One may also consider side reflections instead of side involutions of a hyperbolic
triangle A with angles (64, 65, 6¢), although we will not pursue this direction. We briefly
note in this case that two representations pg and pg are still well-defined on W and on
F> respectively. The representation pg is a holonomy map of an incomplete hyperbolic
three-punctured sphere Sy 3 with three conical singularities of angles (204, 20, 26¢). This
approach could be useful when one is interested in periodic billiard orbits on A.

The faithfulness question is easier when the cone angle 6 is not fixed. Namely, we have
that pg is faithful for a very general point § € € (cf. Proposition 3.1). So, we will be actually
interested in the case when 6 is fixed.

Our first main result answers the first half of Question B with probability one:

Theorem 1.2 (cf. Theorem 3.3) If 6 € (0, 21) has the property that cos 0 is transcendental,
then a very general point & in €y corresponds to a faithful holonomy map.

Note that the hypothesis holds for all but countably many values of 6. The reader may compare
Theorem 1.2 to other generic phenomena in PSL(2, R); see [5,6,15], the first two of which
deal with the faithfulness question in the case of closed surface groups. One can trace at
least back to Hausdorff [10] the idea of using the transcendency of cos 6 in order to produce
faithful group actions.

It is a well-known consequence of the Gelfond—Schneider theorem that cos 6 is transcen-
dental if 6/ is irrational and algebraic. Thus, we deduce more concrete cases when pg is
faithful as follows.

Corollary 1.3 If0 € (0, 27) is an irrational algebraic multiple of 7, then pg is faithful for a
very general point & € €.

We have briefly mentioned the abundance of torsion relations at the beginning of this
introduction. Indeed, the image of pg is dense in PSL(2, R) unless p¢ is discrete (and hence
Fuchsian), as is true of all Zariski dense subgroups of simple Lie groups [14]. Since elliptic
isometries form an open subset in PSL(2, R), it is reasonable to expect that an elliptic element
in the image of pg would not have constant rotation angle under perturbations in €y near
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Shapes of hyperbolic triangles and once-punctured torus groups

&. Thus, a torsion relation would appear under small deformations of & having a fixed cone
angle 0; we direct the reader to Theorem 5.2 for a concrete formulation of this intuition.
Moreover, in the presence of torsion there are generally many more elements of ker pg that
are consequences of such torsion relations.

We aim to find relations of pz which are not “consequences’ of torsion relations. To state
the result rigorously, we make the following definition.

Definition 1.4 A word u € F; is of torsion-type if u belongs to the set

U U «m.
}

m=>2ref\{1
A word is of non-torsion-type if it is not of torsion-type.

For a word u € F», being a non-torsion-type word is a stronger condition than not equal
to a proper power. In the special case when 6 = 27 /n, the group pg (F>) is isomorphic to a
Fuchsian orbifold group

(X, Y| [X,Y]"=1)

for all choices of £ € €y; in this case, every kernel element must be of torsion-type. When
6 ¢ Qm, we can produce non-torsion-type kernel elements as addressed in the second half
of Question B.

Theorem 1.5 (cf. Theorem 5.3) If0 € (0, 2x) is an irrational multiple of 7r, thenker pg < F»
contains a palindromic non-torsion-type word for a dense choice of &€ € &g.

In particular, when ker pg contains a non-torsion-type word, the image pg(F2) can-
not be isomorphic to a one-relator group with torsion with respect to the generating set
{pe(X), ps(Y)).

We will actually produce a dense subset Sg € (2, 0o) such that each point on the coordinate
curves

x=sh {y=s} fz=s)

in &y for s € Sp corresponds to holonomy maps admitting non-torsion-type kernel elements.
The points on the intersection of any two of these coordinate curves (double points) form a
dense subset of €g with the same property.

Remark 1.6 A consequence of Theorem 1.5 is that a free indiscrete representation is alge-
braically unstable, even when restricted to €y; roughly speaking this means that such a
representation is a limit of non-free representations. In the absence of such a “relativizing”
restriction, this type of instability is well-known for non-abelian free groups, even in a much
more general setting of connected Lie groups [7]. On the other hand, Sullivan [20] established
algebraic stability of all convex-cocompact subgroups in PSL(2, C).

Let us direct our attention back to Question A. The faithfulness part has the same answer
as Question B; see Proposition 4.3(1). Regarding the density part, it is unclear to the authors
whether the non-torsion-type kernel elements in F;, found in Theorem 1.5 can still be non-
torsion-type in W. However, their additional property of being palindromic has a simple
interpretationin W: they are products of two involutions in W (Lemma 4.1). Thus we establish
the following partial answer to Question A.
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Corollary 1.7 The following conclusions hold:

(1) For all but countably many ¢ € (0, 7), the side involutions of a very general triangle
with area ¢ generates the Coxeter group W.

(2) If ¢ is an irrational multiple of 7, then for a dense choice of hyperbolic triangles with
area ¢ the side involutions admit a relation which is the product of two involutions in W.

We remark that if # € W is a product of two involutions then, for all £ € €, the image
Pg (u) s either trivial or hyperbolic (Proposition 4.3(2)). In fact, it is hyperbolic for a very
general point in €y (Remark 5.6).

As far as the authors are aware, no examples of £ € € were previously documented such
that pg (F>) is non-free and torsion-free.

Question 1.8 If 6 € (0, 27) is an irrational multiple of 7, under what conditions on £ is o
non-faithful with torsion-free image?

In the appendix written by Gao, computational heuristics for approaching Question 1.8,
together with their implementation, are given. The examples of pairs (6, §) exhibited therein
have the property that the images of pg are actually isomorphic to fundamental groups of
closed hyperbolic 3-manifolds.

2 Fricke-Klein space

Most of the material in the section is well-known; we direct the reader to [8] for a standard
reference. We adopt the standing convention that group and matrix actions are on the left,
unless stated otherwise.

The group SL(2, R) acts on H? by Mébius transforms, with kernel given by the center,
and with image

PSL(2, R) = Isom, (H?).

Let tr(A) denote the trace of a matrix A. For each word w = w(X, Y) € F» = (X, Y) there
exists a trace polynomial

gw S Z[-xa y7 Z]
such that whenever U, V € SL(2, R) we have
trwU,V)=g,trU,tr V,tr UV).

The existence of this polynomial is one of the simplest instances of invariant theory on
character varieties [18]; see also [13] for a concrete formula which computes gy, .
For example, the trace polynomial of [ X, Y] is easily seen to be

gx.y (X, ¥, 2) =k(x, y,2) ;= x>+ y2 + 22 —xyz — 2 € Zlx, y, zl.

Lemma 2.1 For each w € F\{1}, the polynomial g, (x, y, z) is not constant.

Proof Letw = w(X,Y) € F, = (X, Y).If g, were constant, we would have

Suwx,y,2) =guw?2,2,2) =trw(d,Id) =trId = 2.
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However, there exist two-generated nonelementary purely loxodromic Fuchsian groups which
are nonabelian and free, namely, Schottky groups of rank two. In particular, there are choices
of parameters defining X and Y such that the element w is loxodromic and therefore has
trace different from 2. This immediately implies g,, cannot be identically equal to 2. O

In this paper, we are mostly concerned with matrices in PSL(2, R). The trace of such a
matrix A € PSL(2, R) is only determined up to sign, so as mentioned in the introduction,
we often use the quantity

trt A= |tr A|.

Recall we let €y denote the deformation space (Fricke—Klein space) of marked incomplete
hyperbolic metrics on M with a fixed cone angle 6 € (0,2m) at p. Each point £ € €y
corresponds to a conjugacy class of a holonomy map

p:m(M)=(X,Y,Z|XYZ=1) — PSL(2,R)
so that p[X, Y] is a rotation of angle 6. The chosen representation p has a unique lift to
p: (M) — SL(2,R) (1)

which satisfies

tr p(X),tr p(Y), tr p(Z) > 2.
It turns out [8] that the lift o satisfies

trp[X, Y] = —2cos(6/2).
Using the parametrization
£ (rp(X), r p(Y), tr 5(2)) = (™ p(X), ™ p(Y), ™ p(2)),

and the results of Section 3 of [8], we can therefore identify

o ={(x,y,2) € (2, oo)3 | k(x,y,7) = —2cos(6/2)}.

Remark 2.2 The surjectivity of the above parametrization can be seen by defining a normal
form pg of & = (x,y,2) € (2, 00)3. We let ¢ > 1 be the unique real number satisfying
¢ + ¢! = z and define Pg via

_ -1
pe(X) = <’f 01), pe(Y) = <_O; gy)~

From an easy computation [9, Section 2.2.3] one readily sees that
tr pg(Z) = tr ps (XY) ") = z.

We let pg : w1 (M) — PSL(2, R) be the projection of pg. These concrete formula for p¢ and
pg are not actually needed in this paper.
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3 Very general representations are free

Recall that

C= |J G={0ry.2e@ 00 rx y.2)€(=22)
0e(0,2)

The following is well-known to experts; we include a proof as motivation for the next theorem.

Proposition 3.1 For a very general point & € €, the representation pg is faithful.

Proof For each w € F», let us set
Yy ={el|p:(w)=1d} C{§ € €| gy(§) = x2}.

By Lemma 2.1, we see that Y,, is contained in a proper algebraic subset of R3 whenever
w # 1. In particular, Y,, has no interior inside the open subset € of R3. It follows that

ol U r

we\{1}

is a Gs-set. ]

Remark 3.2 The above proof actually implies that a very general point § € € corresponds to
representations pg without any nontrivial parabolic elements in the image.

Theorem 3.3 If 6 € (0,2m) has the property that cos 0 is transcendental, then for a very
general point & in €y the representation pg is faithful.

Remark 3.4 Note that the conclusion of Theorem 3.3 holds for all but countably many 6.
Observe furthermore that the theorem does not extend to all & € (0, 2x). For instance, if
0 € (Q\Z)r then pg (F) has nontrivial torsion.

We let Q denote the algebraic closure of Q in C.

Proof of Theorem 3.3 Let 6 be given as in the hypothesis. Recall for w € F, we defined the
trace polynomial g, (x, y, z). The following claim is the key observation in the proof.

Claim For each w € F>\{1} and for each algebraic number c, the set
Yy(e) :={§ €y | guw(é) =c}
has empty interior in Cg.
Let us assume the claim for now. Then each & in the dense Gs-set

o\ J =2

weF\{1}

has the property that o is injective, which completes the proof.
We now establish the claim. Write

gw(x’ Yy, Z) = Zfi(x, y)Zi
=0
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for suitable f; € Z[x, y]. We first consider the case n > 1 and f,, # 0. We define

S={xy2€GN@xQxR)| fulx,y) # 0}

Since Q? is dense in RZ, the set S is dense in €. Forall & = (x, y,2) € S, we see that 7 ¢ Q
from the transcendency hypothesis on cos 6. So, we have g, (£) ¢ Q. In particular, we obtain
SNYy,(c) = . Since S is dense, the claim is proved in this case.

We now consider the case that n = 0. We have g,, = fo(x, y). By Lemma 2.1, we know
that fo is not constant. Mimicking the previous argument, we consider the following two
dense subsets of €y

Sp:={(x,y»2e€&GN@Q@xRxQ) | folx,y) #0},
S ={x, 2 GNRxQxQ) | folx,y) #0}.

Again by considering transcendency of coordinates, we obtain that g,, (S;) N Q=gfori=1
or i = 2; thatis, we have S; N'Y = &. The conclusion follows from the density of S;. O

Remark 3.5 In Proof of Theorem 3.3, we need Claim only for the case ¢ = £2. Since gy,
is an analytic function, to show that Y,,(c) has empty interior for general c, it is sufficient
to show that g,, is not constant in €g. We chose an argument different from this, imposing
an extra condition that c¢ is algebraic, to give specific points not contained in Y, (c), with a
concrete description.

If 6 is a rational multiple of 7, then the image of pg contains nontrivial torsion elements,
so that Im pg is non-free regardless of the choice of £ € €. On the other hand, if 0 is an
algebraic irrational multiple of 7 then the Gelfond—Schneider theorem implies that cos 6 is
transcendental, so that pg is faithful for a very general point § € €y (Theorem 3.3). Hence,
the only remaining case in the faithfulness part of Question B is the following.

Question 3.6 If 0 € (0, 27) is a transcendental multiple of 7, and if cos € is algebraic, then
is pg faithful for a very general point § € €y?

The general case of this question seems mysterious. For instance, one may ask whether
or not a very general point & in €yecos(1/3) correspond to a faithful holonomy map.

4 Coxeter extensions

It will be computationally convenient for us to consider an embedding from pg (F2) to a
bigger group generated by involutions (as in Question B). Such an embedding will be also
used here to see the connection between Questions A and B.

Let us begin with an algebraic discussion. We say a word w(X, Y) is palindromic in
{X, Y} if it reads the same forward and backward, that is, w(X, Y)"! = w(X~!, v~1). We
say

weF =(X,Y,Z|XYZ=1)

is palindromic if it can be expressed as being palindromic in either {X, Y}, {Y, Z} or {Z, X}.
Recall we are regarding F, = (X,Y,Z | XYZ = 1) as an index-two subgroup of
W = (P, O, R) using the embedding

X+ QOR, Y+ RP, Z+— PQ.
Note, in particular, that RXR = X land RYR=Y"L.
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Lemma 4.1 A word u € F is palindromic if and only if it is a product of two involutions in
W, with one of the two being P, Q, or R.

We remark that a similar statement can be found in [12] for the case when the ambient group
is SL(2, C).

Proof of Lemma 4.1 The word u is palindromic in {X, Y} if and only if

uX, V) ' =ux", Yy = u(RXR, RYR) = Ru(X, Y)R,

which is true if and only if (Ru)? = 1. This last expression holds if and only if Ru = glg~!

for some I € {P,Q, R} and g € W, as follows from the characterization of torsion in
right-angled Coxeter groups. It follows that u = R - gIg 1.

Similarly, one shows that u is palindromic in {Y, Z} (resp. {Z, X}) if and only if u =
P-glg ' (rtesp.u=Q-glg~ ") forsome I € {P,Q,R}andg € W. m}

Turning to the geometric side of the embedding > < W, let us fix 6 € (0,2x) and
& = (x,y,2) € €. Since k(x, y, z) # 2, the holonomy map p¢ is irreducible [9, Proposi-
tion 2.3.1]. It follows from [9, Theorem B and Theorem 3.2.2] that p¢ uniquely extends to
the Coxeter extension pg of pg as shown in the commutative diagram below:

W =(P,Q,R)
P

F=(X,Y) -2~ PSL(2, R)

Explicitly, one can define the desired extension by projecting the following formula [9] in
SL(2, R) to PSL(2, R):

Pg (X)pg (Y) — pg (Y) pg (X)
V2 —k(x,y,2)

where pg is the lift in (1). The formulae for P and Q are analogous.

From now on, we will often suppress the symbols pg and g, and simply write w € F; or
w € W for pg (w) when the meaning is clear.

We let

pe(R) =

2hyx,2hy,2hz
be the translation lengths of the hyperbolic isometries X, Y, Z € PSL(2, R), so that
x =trX =2coshhy, 2)

and similarly for y and z. In the introduction we noted that the punctured torus M can be cut
along geodesics and developed to H? as illustrated in Fig. 1.

Let us continue to use the notation from the same figure. In particular, we let {64, 65, O¢c}
be the interior angles of the triangle O4 Op Oc. We let d (resp. dp and d¢) be the length
of the geodesic segment Op O¢ (resp. Oc O4 and O4 Op). The isometry X is a hyperbolic
translation along the oriented geodesic Og O, and similar statements hold for the pairs
(Y, OpOg) and (Z, Op Op). Moreover, the three isometries

A:=QPR, B:=RQP, C:=PRQ

are (counterclockwise) rotations of angle 6/2 with centers O4, Op and Oc, respectively.
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The midpoints of the sides of this triangle are centers of the m-rotations P, O, R. The
quadrilateral R(O¢c)OpOc O 4 can be regarded as a “pseudo-fundamental domain” for the
incomplete hyperbolic structure & € €5 on M. We refer the reader to [8,9] for more details.
We have that 8/2 = 64 + 6 + 6¢, and

K =[X,Y]=(QPR)> = A?
is a rotation by an angle 6. We also record the identities
B*=1[v,Z], C?*=[Z, Xl
If we denote by d(-, -) the distances in HZ, then the three lengths
{d(Oa, Or0Og),d(Op, Or0¢),d(Oc, OrOp)}
are all equal.

Lemma4.2 Let 6 € (0, 2m). Then there exists a homeomorphism ® from Ty _g /2 to €y such
that for each n € T g2, the Coxeter extension of ®(n) is precisely the representation

W — PSL(2, R)
coming from the side involutions. More precisely, we have
yz(x? +2) — (y* + 2H)x — x?
2/ (xyz —x2 = yH)(xyz — 22 — 22)

Proof Given (04, 0p,0c) € Tx_g2, it is straightforward to define ® using the hyperbolic
law of cosines: first find {d4, dp, dc}, then {hx, hy, hz} and then {x, y, z} using (2).

Now, given (x, v, z) € €y, an explicit formula of the inverse ®~! can be found as follows;
see Fig. 1. If we cut M along the images of the incomplete geodesic §x = OpO¢ and
the complete geodesic yx extending Op Og, then we obtain two cylinders with a single
common corner point O (the image of Op or Oc¢) and boundary lengths 24y and d4. By
cutting the cylinder further along the shortest path from O to the opposite boundary, we
obtain a quadrilateral with a 2-fold symmetry, which can be divided into two copies of a
tri-rectangle with a non-right angle 6 /4 and opposite edge lengths 2 x and d4 /2, so that the
edge of length d4 /2 is adjacent to the non-right angle. We remark briefly that another way
to obtain these tri-rectangles would be using a twist to be defined below. After a suitable
X-twist we may assume that the angles £0 OrOp and £LOg O Oc are both right-angles,
so that Oc O O Op is a tri-rectangle.

In this case we have a formula

cosfy =

x/2 = coshhy = cosh(da/2)sin(6/4).

See [2], for example. Once {d4, dp, dc} is found, using the hyperbolic law of cosines we
can compute

P coshdp coshdc — coshdy
cosfy = .
A sinh d sinh d¢

The remainder of the proof is straightforward. O
We now exhibit a connection between the main questions in the introduction.

Proposition 4.3 For 0 € (0, 2rw) and & € €y, we have the following.
(1) The representation pg is faithful if and only if pe is faithful.
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(2) Ifu € F»ispalindromic, then the image pg (u) € PSL(2, R) is either trivial or hyperbolic.
Proof (1) Suppose p¢ is faithful. If 1 # g € ker pg, then we have that
g% € Fy Nker ps = ker ps = (1}.

Hence g € W has order two; this implies that g is conjugate to P, Q or R. Without loss of
generality, we may assume g = P. Then we have a contradiction since p¢ (P) = 1 and thus

ps(Y?) = p:(RPRP) = pe (R*) = 1.

The converse is obvious.

(2) By Lemma 4.1 if u € F; is palindromic, then u = I I; for some involutions /1 and I,
in W. Since the only nontrivial involutions in PSL(2, R) are z-rotations, so are the images
,55 (I7) and ﬁg(lz). Thus ,(35 (n) = ,55(]1)/35(12) is trivial (if ,(35(11) = ,55(12)) or hyperbolic
Gf pe (1) # fg (1)) o

5 Density of non-faithful representations

In this section we give geometric constructions of non-faithful holonomy maps. The relations
will be torsion elements as well as non-torsion-type. The idea of construction is to consider
the Coxeter extension of F» and deform a given representation p slightly by rwist.

5.1 Twist deformations

Let us describe a deformation of a given structure £ € &g along one of the three coordinate
curves

{x =const.}, {y =const.}, {z=const.}

passing through & in €.

For this, let us fix 8 € (0,27) and & € €4. We will use the notation from Fig. 1 for the
pseudo-fundamental domain O 4 Oc O R(Oc¢) of pg. Consider the equidistance locus L to
the geodesic O O¢ containing the point O 4. Take an arbitrary point O/, on L and let

{O;z} = OAOB N OrOg, {OIQ} = OAOC N OrOg
as in Fig. 2. Then we have the following.

Lemma 5.1 Regardless of the position of O’y on L, we have that d(O%, O’Q) =d(Og, Op),
and the areas of 04 OpOc and 01’4 Op Oc¢ are the same.

We will denote the rotation of angle « at the point V € H2 as Roty (V).

Proofof Lemma5.1 Let Q' and R’ denote the r-rotations at Oy, and O respectively. The
geodesic Or O is the common invariant geodesic for the hyperbolic translations Q - R
and Q' - R/, both of which map Op to Oc¢. Thus we have Q - R = Q' - R’ and hence
d(o’,, O/Q) = d(Og, Og). Moreover, we have that

Roty2(Oc) =C=P-R-Q=P- R -Q = Roty 2(O0¢).

This implies that & = @', which is the twice of the interior angle sum of each triangle. O

@ Springer



Shapes of hyperbolic triangles and once-punctured torus groups

Fig.2 Twist deformation: X = Q- R = Q' - R’

Recall our convention that a word w € W also denotes its image pg (w) € PSL(2,R)
when & is fixed. The deformation from (P, Q, R) to (P, Q’, R’) is called an X-twist. Since
the distance 7y = d(R, Q) remains constant by the above lemma, we see from (2) that the
X-twist occurs along the coordinate curve x = const. = tr X. Moreover, such a twist occurs
inside €y since the interior angle sum is preserved.

Note that the distance d4 = d(Op, O¢) is invariant as well under X-twists. In fact, the
whole bi-infinite sequence of 6 /2-rotations { X I BX 1}, ez (as well as their various conjugates
by B, C and P) remain unchanged under X-twists. Lastly, observe that, by a suitable X -twist,
we can always increase either d(O4, Op) or d(O4, Oc¢) by an arbitrary amount.

Analogously, we define Y-twists and Z-twists.

5.2 Torsion relations

In this subsection we will show that holonomy maps containing torsion in their image are
dense in €y. For this, let us first recall the following definition due to Lobachevskii.

Let h € R. ¢ be a positive real number, and let s C H? be a geodesic segment of length
h. Choose a bi-infinite geodesic y which meets an endpoint p of s at a right angle. We then
connect the other endpoint ¢ of s with an endpoint at infinity of y via a geodesic ray §. The
parallel angle «(h) is defined as the acute angle at ¢ between s and §. It is straightforward
to check that « (%) is independent of all the choices that are made.

Theorem 5.2 Let 6 € (0, 27)\Qm. Then there exists a dense subset Sy C (2, 00) such that
every point £ € €y N (Sp x R x R) corresponds to the holonomy map pg satisfying

pe(r™) =1

for some r € m(M)\{1} and m > 2. Analogous results also hold for R x Sy x R and
R xR x Sp.

Proof of Theorem 5.2 'We use the notation in Fig. 1. Fix an arbitrary point & € €. Since
0 ¢ Qm, we can find an integer N > 0 so that the common rotation angle

N6O/2 mod 27

of BY and CV is between 0 and «(d4 /2). Consider the isosceles triangle O Op O¢ as in
Fig. 3 for which the common angle at Op and Oc¢ is N6/2. Let J, Jp, and Jc denote the
reflections along the geodesics OpOc, O Op, and O Oc, respectively. Then we have

BN = JJg,
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Op O¢
o
Fig.3 Proof of Theorem 5.2
N = Jel,

C*NB*N = JcJp = Rotg(0),

where =27 < 8 = —=24(0p, O, O¢) < 0. Since the common angle N6/2 at Og and O¢
is constant in &y, the angle B depends only on the distance d4.

Now we perturb the representation (by a Y-twist or Z-twist, for example) in order to
increase the distance dy4 slightly, so that the deformed angle 8’ satisfies 8’ € Qn and thus
CEINBIN — (7, X1V[Y, Z]V becomes a torsion element. Since d4 is constant under X-
twists, we have just found an element s of Sy such that every point in the X-coordinate
curve

Co N ({s} x R x R)

yields a holonomy map with a torsion relation of the form ([Z, X]V[Y, Z]¥)™ for some
m > 2. Since we found such a curve which is arbitrarily close to any given point £ € &y, the
set Sp must be dense in (2, 00). m]

5.3 Non-torsion-type kernel elements

We now establish the following theorem, which obviously implies Theorem 1.5.

Theorem 5.3 If 6 € (0, 27)\Qu, then there exists a dense subset Sy C (2, 00) such that for
each s € Sy every point & on the coordinate curve

o N{z =s}

corresponds to a holonomy map pg that has a palindromic non-torsion-type word in the
kernel.

By symmetry, the conclusion z = s can be replaced by x = s or y = .

Remark 5.4 The theorem implies that there exists a dense subset
Sp=CorN (R x Sp x Sp) U(Sp x R x Sp) U(Sp x Sp x R))

of @, consisting of points with two coordinates from Sy, such that each point & € S
corresponds to a holonomy map with non-torsion-type kernel elements.

Proof of Theorem 5.3 We use the notation from Fig. 1 and from Sect. 4. Since Z(Og) =
B~1(0g), we have that

d(0a, Z(ORr)) = d(Oa, B~ (OR)) = d(O4, B(OR)).
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Fig.4 Construction of the proof of Theorem 5.3

InFig. 4, two circles passing through Z(Op) and B(Opr) are drawn (using the Klein projective
model of H?); they are centered at O 4 and Op, respectively.

We claim that this configuration can be deformed by a suitable arbitrarily small X-twist
so that two conjugates of the w-rotation R coincide, that is,

AN(BRB™HWA™N = zRrZ .
To see this claim, let us first recall that the angle
4£(04, Op, Z(OR)) = £(04, Op, B(Og)) =0/2
is constant under any deformation in €y. Let
B = 4£(Z(OR), Oa, B(Og)),
and we can choose N > 0 so that the rotation angle
N6 = (2N)(0/2) mod 27

of A2V is arbitrarily close to but less than 8. Take a suitable small X-twist that increases the
length d(O 4, Op); it will also increase the length

d(Op, Or) =d(0Op, Z(OR)) = d(Op, B(OR)).
Then the angle 8 decreases slightly and we twist until
N6 =B mod 27.

(We note that this argument works for any 6 € (0,27)\Qrn.) In the end, we obtain the
relation

AN (BRB™HWA™N = zZRz !,

which is invariant under Z-twists. The proof of the claim is complete.
If we define

uy :=[Z'A>MB,R] € F»,

then u y is a product of two involutions and the above relation is equivalent to pg (uy) = 1.
Thus for a dense choice of s in (2, co) there exists an integer N = N(s) > 0 such that the
holonomy map of every point £ on the coordinate curve {z = s} satisfies uy € ker ps.

We can write uy as a word in F> from the computation below.

uy = (Z'APNBYR(BT'ATN Z)R
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=Z'[X, YIY(RQP)R(PQR)(RPQRP Q)" (PQ)R
=Z'[X. YIV(RQ)(PR)(PQ)[R(RPQRP Q)" PIOR

=z X, YINXx 'Yy~ Z[R(R(PQRPOR)N "' (PQRPQ)P]X
=z7'x,yiINx 'y lzzyx)Nlzvz~'x

=xy[x, Y)Vx 'y ly - tx iy x WV ly iy xy x
=xy[x,YI"x 'y 2x" 'y, x Vrx.

As can be expected from Lemma 4.1, uy is indeed palindromic (but not a proper power).
To finish the proof it suffices to have the following proposition, which is proved in the next
section. O

Proposition 5.5 For each N > 1, we have that uy is of non-torsion-type.

Remark 5.6 In the above proof, by Proposition 4.3, the image pg(uy) is trivial for £ €
¢y N {z = s}, while it is a nontrivial hyperbolic translation for £ € €y\{z = s}.

Recall we denote by g, (x, y,z) € Z[x, y, z] the trace polynomial of a word w € F;.
From the above proof and the remark following it, we see for each s € Sy there exists a
positive integer N = N (@, s) such that the coordinate curve €9 N {z = s} can be expressed
as the intersection of two surfaces

Co N{z =5} =&y N{gyy = £2}.

In general, two words U and V may admit the same trace polynomial. For instance, we
have gy = gy if U and V are conjugate, or if U = s1...5¢ and V = spsp_1--- 51 for
si € {X £l y+l }. In our case, the word u y is palindromic and so, it seems rare that another
surface {g,, = %2} contains the above coordinate curve for a different word w € F; not
conjugate to u . This raises the following question:

Question 5.7 Let 0 € (0, 27)\Qm. Does there exist a dense subset R C Sy such that for
eachr € R and for N = N(0, r) as above, a very general point £ in the coordinate curve
€9 N{z = r} corresponds to the monodromy ps whose image is isomorphic to the one-relator

group
(X,Y |uy = 1)?

6 Proof of Proposition 5.5

In this section, we prove Proposition 5.5. The proof we offer is somewhat technical by nature,
but based on a beautiful solution by Newman of the word problem in one-relator groups with
torsion (Corollary 6.2) as we describe now.

Magnus (1932) discovered that the word problem for a (general) one-relator group is
solvable. In the case of a one-relator with torsion, the following theorem due to Newman
(1968) gives a particularly simple solution. For a reduced word w in a free group, we let |w|
denote its word length and we let [w] denote its cyclic conjugacy class.

Theorem 6.1 (Newman Spelling Theorem) Let G = (x1, ..., x, | ¥X) be a one-relator group
for some cyclically reduced word r in F, := F(xy,...,x,), where k > 2. Suppose that a
nontrivial reduced word w € F, belongs to the kernel of the natural quotient map F,, — G.
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Then w contains a subword u, of length strictly larger than (k — 1)|r|, such that u is a subword
+k
of r=~.

If u is a subword of v, we write u < v. By the Newman Spelling Theorem, we have
the following solution to the word problem in two-generator one-relator group with torsion,
which we call the Dehn—Newman algorithm, as it is based on the Dehn’s solution to the word
problem for surface groups. Recall our convention that F, = (X, Y).

Corollary 6.2 (Dehn—Newmann Algorithm) Let u and r be cyclically reduced words in F,
and letm > 2. Then the truth value of the statement u € {(r"™)) can be decided in the following
steps, within a finite time.

Step 1 If there exists a cyclic conjugation R = R\ Ry of r*! such that |R;| = 1 and such
that R™~'R| is a subword of u, then proceed to Step 2; otherwise, conclude that
ud (.

Step 2 Let U be the word obtained from u by substituting RQ_1 for R"'Ry. IfU # 1, then
repeat Step 1; otherwise, conclude that u € {(r'™)).

Let us first see a simple application of the algorithm.
Lemma6.3 Let N > 1.
) Ifrel{Y,XY, [X,Yl}andm > 2, thenuy ¢& {(r'").
) Ifr e Foandm > 3, thenuy ¢ {(r'")).

Proof (6.3) We let G := F,/{(r"™)). Assume for contradiction that uy = 1 in G.

Suppose first that r = Y. By the Dehn—Newman Algorithm (Corollary 6.2), we should
have Y*" < uy. This impliesm =2.In G = Fz/((Yz)), the element u y coincides with the
word

u = XY[IX, YV XAy x TV x.

Since Y*? £ u’, we see that uy = u’ # 1in G.

Now, consider the case r = XY. Since a cyclic conjugation of a length five subword
of (XY)? does not appear in uy as a subword, we see that m = 2. We cancel out all the
occurrences of

(XY)iz, (YX):I:2
in uy to obtain
u =Xy IV 2 xyyxpy T xRy x
Since u’ does not contain a length three subword of
(XY)22, (Y X)*2

we conclude from the Dehn—Newman algorithm that u” # 1in G.
Finally, assume r = [X, Y]. Writing N = mq + t for ¢t € [0, m — 1], the element u  can
be rewritten in G as

u = XY[X, YYxly2x iy x Ty x.
It is obvious that u” does not contain a subword of r” with length 4(m — 1) + 1. Hence, we

seeu’ #1in G.
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(6.3) Suppose not. The Dehn—Newman Algorithm implies that for some cyclically reduced
word r that is not a proper power we have > < u. This consideration restricts the choices of
r to be a cyclic conjugation of a word in

v, Xy, [X, Y.
By part (6.3), this is impossible. O
We are now ready to give a proof of the proposition.

Proof of Proposition 5.5 Supposeuy € (r™)) forsomer € F andm > 2. By Lemma 6.3, we
need only consider the case m = 2. Consider the following procedure, which takes u = uy
as an input.

(i) Pick a cyclically reduced word r = riry in F> such that |ri| = 1 and such that
rirary < u; here, we require that ryr; is not cyclically conjugate to a word in

(Y, XY, [X, Y]

Proceed to Step (ii).

(ii) Replace an occurrence of rir2ry in u by ry ! to obtain a reduced word u’. Proceed to
Step (iii).

(iii) Pick a cyclic conjugation {7} of r*! such that |r|| = 1 and such that r{r}r| < u’. Plug
u < u' and r; < r]. Repeat Step (ii).

This process is a simplified version of Dehn—Newman Algorithm. It is obvious that if the
procedure terminates at step (i) or (iii), we can conclude that uy is of non-torsion-type.

We can enumerate all the possible choices of rjrory in step (i) as follows, excluding
the obvious case r1rar; = uy. Verifying all of the following cases, we can conclude that
uy ¢ (r'"™) forallr € F> and m > 2.

(1) XY[X,Y)'Xforl <t <N -1,
Q) XY[X, YIVxly2x-y-!, x forl <r<N;
Q) X, YPX 'y 22Xy, X forl <s,t <N;
@ X, YPx 'y 2x- 1y, x "WYX forl <s < N;
G) X[y, X" "f'yXforl<r<N—1;
6 X'y Ix,v'Xx 'forl <t <N-1;
D X'y X, vrx-ly 22X for0<t <N —1;
@ X'y x, yprx-ly2x iy x 'y lx " for0< s, < N—1;
9 x'y2x-1;
10) x ty=2x- iy~ x~Yy-lx"lfor0<r <N —1;
ay x- 'yt xyy-'x'fori<r<N-—1;
(12) Y[X,Y]'XY forl <t <N —1;
13) YIx, YINxty2x- iy x 1y !Xy forO<t <N —1;
14 Y[X,Y)VNxly2x-iy-!, x 1Ny,
a5 rx-'vyUx, ypx-ly2x-1iy-L, x- 1y 1'Xx"ly for0O<s,t <N —I;
a6) Yx'y-lix, yprx-ly2x- iy, x "1y for0O<s,t <N —1;
a7 yxiy-", xYyforl<r<N-—1;
18 Y lx,yI'xy-'forl<t<N-1;
19) Y 'X, YI'X 'y 2for0<tr<N-—1;
Qo) Y X, yrxly2x iy L Xy forO<s,t <N —1;
@D Y 2x iy L xy-lfor0<r<N—1;
@ vy lx iy ', x 1Yy lfori<r<N-1.
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The following pairs of cases yield the same relator r2:

e (1)and (12);
e (6) and (18);
e (11) and (22).

So, for each of the 19 cases remaining, we verify that the above algorithm terminates.
Case (1) This case corresponds to

rn=X, rmn=Y[X,Y]"forl <t <N.
Replacing rirpry = XY[X, Y] X inuy by ”2_] =[Y, X]'Y !, we obtain
W =1y, XXy x, vV ty 2 x iy x Vv x
=y, xI'x 'y 'x, )V ix -y 2 x -ty xhy, Xy, xiIV v x)?
We now continue with
r=x"1 =y 'x 'y, x) lyxy.
One sees that
riryry = Xy Iy, X sl
Plug u < u’ and r; < r/. We replace ryrpry in u by rz_l to obtain
W =Y, XXy X Y e ly T ey i x vy ey, X1V (v x)?

It is then clear that Step (iii) cannot be executed for u” and r. We conclude that u’ = u # 1
in Fa/((r?).
Case (2) In this case we have

=X, =YX, YINx ly2x iy, x 1 ly1x "y for1 <t < N.

Thenry ' = Y= IXY[X~', Y11 XY2X[Y, X]NY~". We replace rirary in uy by ry ' to
obtain

W =Yy xyix Ly v xpy, xiIVy iy x Vv,

which is reduced. It is clear that no cyclic conjugate of (7] rg)il occurs as a subword of u’,
as is seen from aligning [V, X]V in u’ with the corresponding copy in rz_l.
Case (3) In this case we have

=X, n=Yxy Ux, yr'xly2xiy-!, x 'Yy "X 'y for1 <s,t < N.

Thenry ! = Y 'XY[X~', Y"1 XY2X[Y, X)* 'Y XY ~'. Replacing rror by ry ' gives
us

= XY YNy Ty XLy T XXy Xp v xy Ty x vy X

This word is reduced unless N = s or N = ¢, in which case a subword X? appears. It is clear
that no cyclic conjugate of (rlrz)il occurs as a subword of u’.
Case (4) In this case we have

n=X, n=vx"yUx, yPIxly2x 'y "L, x "YVy for1 <s < N.
Then r;l =y ' x Ly " "Wxyix(y, xlvxy-1. Replacing r1rr by r{l gives us

W = XYIX, YNy x L y N xR Xy, X1ty xy L
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which is reduced. There is exactly one occurrence of Y2 in ' and in (r172) "L, and if these
are aligned then a further reduction can be made. Clearly such an alignment cannot be made,
as is checked by reading to the left or right from Y2 in u’. Thus, we must be able to find a
subword of 1’ which is a cyclic conjugate of (r12)*! and which begins and ends with the
same power of Y, that is

Y 'x— iy, x YWyxyx- 'y x, vp-ix -ty !

or its inverse. It is clear that this does not happen.
Case (5) In this case we have

rn=X, n=Y"'" X yYforl<r<N-1.
Then rz_1 =Y~ ![x~!, Y~!T. Replacing r1ror| by rz_1 gives us
W = XY[X, v x Ty 2x iy x Ay x -ty x -t vy
which reduces to
Xyix, vrxy2x iy xhy - xx vy

This latter word is both reduced and cyclically reduced. In order to perform further reduc-
tions, ' must contain subwords of the form

yxir=U x 1 oor X'y 'ix vyl

For the first of these cases to occur we would need r = 1, and then it is clear that no cyclic

permutation of u” contains a cyclic permutation of this word. In the second case, we similarly

see that no cyclic conjugate of this word occurs as a subword of a cyclic permutation of .
Case (6) In this case we have

=X, =YX, Y forl<t<N-—1.
Then r{l =[Y, X]'Y. Replacing riror| by r;l gives us
u = XY[X, YV vy, xry3x iy xYVrv x,

which is reduced. In order to perform further reductions, we must align [X, Y]’ X “ly=-lor
YX[Y, X1 inu and (r1r2)*. By inspection, this is not possible.
Case (7) In this case we have

=X n=v X, vI'X 'y 2for0<r<N -1

Then r2_1 = Y2X[Y, X]'Y. Replacing r{rari by rz_1 gives us
W = XY[IX, YV Xy, xrviy ! x TNy x,

which reduces to

XY[X, VIV Ixy3xpy, xr x Ty xpy -t x TV y x.
There is only one power of Y of absolute value more than one in «’, and it is clear that

Y2X[Y, X)'YX = (rira)”!

does not occur as a subword of u” or of its cyclic conjugates, nor do any of the cyclic

conjugates of (r1r2) ! which keep the Y? intact. We therefore consider subwords of the form
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YX[Y, X]"Y XY and its inverse. It is immediate to verify that there are no such subwords,
even in the degenerate case where t = 0.
Case (8) In this case we have

n=X" n=y'X,vrx 'y 2x iy ", x Yy 'for0<s,t <N —1.
Then rz_1 =y[x ',y lrxy2x(y, xXp°y. Replacing r1rr1 by rz_1 gives us
W = XYIX, VIV y xRy, X Py Xy x N vy,

which is reduced and cyclically reduced. Up to cyclic permutation, we must align subwords
of (rir2)*! and u’ of the form X 'Y ~2X~! or X¥Y2X, or we must set ry =Y and

rirkrl = YX[Y, XPYXY[X Lyl Xy

Reading to the left or to the right in «’ from this copy of Y2 quickly yields a contradiction.
Case (9) In this case we have

ry = Xﬁl, rn = Y2
Then rz_1 = Y2. Replacing r1rpr by r2_1 gives us
o = XY[IX, YIVY Yy x Ny x = xy(x, iV xyx Py xy ! x Ny x,

where the latter expression is both reduced and cyclically reduced. In order to reduce further,
the word &’ must have a subword of the form Y2 or Y ~2. Indeed, such a subword would arise
from either (r172)*! or (rpr)*! as a subword of u’, or by setting rp = Y*! and

rirbry e (YXY?, y~lx—ly =2y

Clearly none of these cases occur.
Case (10) In this case we have

n=X" =YXy X Y for0 < < N — 1.
Thenr, ' = Y[X~', Y~') XY2. Replacing rirory by r; ' gives us

W =XY[IX, YNy v x vty xpy !t x NV lyx,
which reduces to

xy[X, vV xyxx Ly x iyt x vl x,

which is both reduced and cyclically reduced. Up to cyclic permutation, we must have that
u’ has a subword of the form X 'Y ~2X~! or XY2X, or a cyclic permutation of a word of
the form

rrr = YXY[XTL Yy XY? or rjrhrp =y ix Ty x Tyt ixly 2

in order to perform further reductions. Clearly this is not the case.
Case (11) In this case we have

=X m=Lx Yy lforl<r<N-1.
Then r{l =Y[x-L vy Replacing ryrar; by r;l gives us

W =XYX, VIV Xy v xc Ly Yy xy T x iV rx,
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which reduces to
XyYx,YIVNx— 'y I x-L vy Wyxy ! x WV ly x.

This last expression is both reduced and cyclically reduced. In order to perform further
reductions, a cyclic permutation of u” must contain a subword which is cyclic permutation
of a word of the form XY[X !, Y~ or [Y~!, X~!17'Y 1 X~!. The first of these does not,
since t > 0.

Thus we are reduced to the case where

=y h=x"lyxy ! xly T ix L
Then,
rrer =y L x Ty iy

which does not occur as a subword of &’ up to cyclic permutation.
Case (13) In this case we have

n=Y, rn=[XYIVx 'y 2x 'y L x Yy 'x Tfor0<r <N —1.
Then rz_1 =xy[x 'y "1rxy2xy, xjV. Replacing r1rary by rz_1 gives us
W = XPvix Ly xR xpy, xiVxy - x TNy x,
which reduces to
Xyix—Ly rxyrxy, x(Vlyxy -y x V- ly x,

This last expression is reduced and cyclically reduced. In order to perform further reductions,
we must have that after performing a cyclic permutation, there is a subword of #’ of the form

Y[X, Y]NX71Y72X71[Y71, Xﬁl]tYilxil =rirn

or its inverse. By considering the necessary alignment of product of commutators [¥, XV,
we quickly obtain a contradiction.
Case (14) In this case we have

=Y, n=[XY\¥Nxly2x "yt x V.
Thenry ' = [X~1, YN XY2X[Y, X]". Replacing rirory by ry ' gives us
o =X x Ly WV xyrxpy, x1Vx,
which reduces to
Yy 'xyix—Ly "V lxy2xpy, x1Vx,

which is both reduced and cyclically reduced. Note that the words (r172)* have length 4N +5
and that u’ has length 4N + 4, whence no cyclic permutation of (r1r2)* occurs as a subword
of u'.

Case (15) In this case we have

=Y, =Xy 'Xx, yrPx 'y 2x 'y, x Yy 'x for0<s,r <N —1.
Then r2_1 = XY[X~ ', Y~ XY2X[Y, X]°Y X. Replacing riryr| by r2_1 gives us

W = XYIX, VIV Xy Ly xRy, X Py Ay x TV x,
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which is both reduced and cyclically reduced. In order to perform further reductions, we
would require a cyclic permutation of

Yy'xyix—' vy xy2x(y, XIP'rYx

or its inverse to occur as a subword of u’, which it does not.
Case (16) In this case we have

n=Y, n=Xxy "X, yPxly2x iy L, x "V foro<s <N —1.
Thenry ' = [X~1, YN XY2X[Y, XY X. Replacing rror1 by r; ' gives us
W = XY[X, VIV T x L y O XY XY, XY X2,
which reduces to
xXy[x, yiIV=s—ly-txyx =ty "WV Ixy2x(y, Xy x2.

This last expression is reduced and cyclically reduced. In order to perform further reductions,
we must have a subword of u” which is a cyclic permutation of

Yy 'Ux—Ly N XY2X[Y, XY X

or its inverse. This is not the case.
Case (17) In this case we have

=Y, rn=XY "X "foro<t<N-1.
Thenry ' = [X~1, ¥~11' X!, Replacing rirary by ry ' gives us
M/ — XY[X, Y]NX71Y72X71[Y71, X*l]N*l‘*ly*lel[Xfl’ Y*l]t

after one free reduction, and this word is both reduced and cyclically reduced. To perform
further reductions, we would need u’ to have a subword which is a cyclic conjugate of

[Xil, Y71]1X71Y71
or its inverse
Yxry=lx',

the first of which is not the case.
The second of these does occur as a subword of ' if N —t — 1 > t. In this case we set
r{ = ry and r5 = r; and observe that

YX[y—', X 'y =rjrhr|

is not a subword of u’.
Case (19) In this case we have

=Y m=[X.YI'X 'Y 'for0<sr<N—1.
Then r{l = YX[Y, XI'. Replacing ryror| by r{l gives us
W = XY[IX, VIV xyxlyxpy, xirx iy xYVr x,

which is both reduced and cyclically reduced. For further reductions to be possible, we would
require a subword of «’ which is a cyclic conjugate of

Y2Xx[y, xy
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or its inverse, which up to cyclic permutation is
ylUx,yrx—ty =l

Clearly this is not the case if t > 1.
If + = 0 then

W =xyix, vV 'xyxlyxx iy x YWy x,
which reduces to
xyix, YIV-"'xyx2rxir~', x V- lrx,

which is both reduced and cyclically reduced. Now, rir; = Y~1X~1y—1, which does not
appear as a subword of u’ up to cyclic permutation, but its inverse Y XY does. In order to

perform further reductions, we would have to either set ri = Y and r{ rér{ = YXY?or

ri = X and r{ryr| = XY?X. Neither of these words appear, even after cyclic permutation.

Case (20) In this case we have
=Y =X YPX ly2x Ny L x 1 for0<s,t <N —1.
Then r{l =[xy lYxyix[y, xX). Replacing ryror; by r{l gives us
W = XY[X, YV iy x T x vy x v Xy, xprx Ty xy T x Vv x,

which is both reduced and cyclically reduced. To perform further reductions, we must have
a subword of u’ which is a cyclic permutation of

Yix— Ly xy2xry, xy°

or its inverse, which is not the case.
Case (21) In this case we have

rn=Y"1 p=vxy ' xYWfro<r<nN-1.
Then rz_1 =[xy lyxy. Replacing r1ryr1 by rz_l gives us
W =XY[X, YV x U x L y Y xyx Tty xy ! x TVl x,

which is both reduced and cyclically reduced. Supposing the possibility of further reductions,
we would need a subword which is a cyclic permutation of

x-Ly '17xy?
or its inverse, which up to cyclic permutation is given by
y'x~ iy xyy L
We easily see that this is not the case. O
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Appendix A: A computational approach, by Xinghua Gao

As mentioned in the introduction, it was not known whether there exist points & € € such that
p¢ has anon-free torsion-free image. In this section, we provide and implement computational
heuristics that can find such examples of pg, which turn out to have closed hyperbolic 3-
manifold groups as images.

A.1 An arithmetic formulation of the problem

The starting point is a hyperbolic 3-manifold 7 with a single cusp, whose fundamental group
G is generated by two elements a and b. As an explicit example, one can take a hyperbolic
2-bridge knot complement. Then, consider a hyperbolic Dehn filling 7, of T for some g € Q,
and a number field Q(«) such that

G = (a,b) = m(Ty) = PSL(2, Q(a)).

We abuse language slightly and also write G = (a, b) for a lift of G to SL(2, Q(«)) (cf. [3,
16)).

Question A.1 Under what conditions on 7' and ¢ do the following conclusions hold?

(i) There is a Galois automorphism o : o +— B with 8 € R.
() {tra?,trb?,tr(ab)’} Cc R\[-2,2];
(iii) tr[a, b]° € (—2,2).

Computationally, Question A.1 suggests that we enumerate such possible 7" and ¢, and
verify all of the above three conditions. As we have the hyperbolic structure of 7, and the
algebraic number o € C, the verification step should be computationally straightforward up
to the computation of Galois conjugates. Once we have such an example of T and ¢, then
the resulting point

&= (tra’,trb?, tr(ab)?)
is a point in the character variety of &y for 6 satisfying
—2co0s(0/2) = tr[a, b]°.
Moreover, the image of the monodromy p; is isomorphic to 71 (7;) as we desire.

Remark A.2 Note that a parabolic generator of 1(7) will remain parabolic after Galois
conjugation.
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A.2 An algorithm for producing explicit examples

Examples of (T, g) with the desired properties can be produced using SnapPy [4,21]. In
order to construct a representation with the image in PSL(2, R), we will need the following
fact.

LemmaA.3 [17, Corollary 3.2.5] If T is a nonelementary subgroup of SL(2, C) such that
Q(tr ) is a subset of R, then T is conjugate to a subgroup of SL(2, R).

Let 7, be a closed hyperbolic 3-manifold obtained by applying Dehn filling to one-cusped
hyperbolic 3-manifold 7 along a curve of slope r. We fix a triangulation of 7 by ideal
tetrahedra, which also gives an ideal triangulation of 7. Then the edge gluing equations of T’
together with the Dehn filling equation determine the hyperbolic structure of 7;.. The solution
to the this system of equations is a set of complex numbers, which parameterize the shape of
tetrahedra in 7,.. These parameters generate the tetrahedral field K of T,. We want to find a
real embedding o of the number field K so that all the tetrahedra of 7" have real shapes after
applying o. The associated holonomy representation then gives a faithful representation

pr: i (T;) — PSL(2, C)

with all matrices in the image having real trace. Therefore by Lemma A.3, the group
pr(1(T,)) is conjugate into PSL(2, R). Since a conjugacy leaves the trace unchanged,
we obtain a desired hyperbolic 3-manifold 7, giving an affirmative answer to Question A.1.

The process of finding a suitable 7 and corresponding tetrahedral field can be formulated
with the following steps:

Step (1) Let T be a hyperbolic knot complement with the default triangulation in SnapPy
and apply Dehn filling of slope r. Compute the tetrahedral field K of 7, using
the SnapPy manifold class tetrahedra_field_gens (). We can then use the
SageMath number field class find_field () to find the defining polynomial of
K.

Step (2) Find a real embedding o of K, if there exits one, using the SageMath number field
class real_embeddings ().

Step (3) Apply the real embedding o and set up the new triangulation with real shape param-
eters, using the SnapPy manifold class set_tetrahedra_shapes ().

Step (4) Computes the associated holonomy representation pr and the image of a, b, ab and
[a, b] under pg, using the SnapPy fundamental group classes SL2C (). Finally,
compute the resulting traces.

A.3 Explicit examples

Here we produce several examples giving affirmative answer to Question A.1. The traces are
truncated to four places after the decimal point.

In this table, a and b are the generators of the corresponding fundamental group, with the
default triangulation in SnapPy. Presentations of the fundamental group of 7¢(0) and 8;3(0)
are included below, as well as the matrix representatives of @ and b. Presentations of the
fundamental groups of the other three manifolds are unwieldy due to their size, so we have
omitted them. The interested readers may use the manifold class fundamental_group ()
to verify our claims.

For the first manifold,

71(76(0)) = (a, b |abABBAbABabbaBabbaBAbABBAbaBabbaB,
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trpR (@) troR (b) trpg (ab) trpr ([a, b])
76(0) 2.4509 2.0881 2.4509 1.8307
813(0) 2.1258 2.7610 2.4523 1.7623
912(0) 2.0382 — 2.4497 — 2.4497 1.9249
915(0) —2.2535 2.1399 —2.2535 1.8686
1019(0) —3.7588 —3.0575 9.0343 —0.7349

aaaaabABBAbABabbaBabAbaBabbaBAbABBAD) ,

@~ (05171 0 () — (10881 01319
PRU =1 _03455 1.9338)° PRV =loees2 1 )

Here, upper case and lower case versions of a letter are inverses of each other. Again, we
truncate matrix entries to four places. We note however that they are all algebraic numbers
in a real embedding of the tetrahedra field K of 76(0), with the defining polynomial

p(x) = x'2 = 2xM —2x10 4 14x% — 2548 4+ 3247
—35x% +38x% — 38x* +30x3 — 17x% + 6x — 1.

For the second manifold,

71(813(0)) = (a, b |aaabABBAAABabbaaabABBAbaaabbaBAAABBAbaaabbaBAAABabb,
aaabABBAAABabbaaabABBAbABBAbaaabbaBAAABBAbaaabABAD) ,

@ (11258 035471 () — 28986 —2.4657i
PRU) = _0.3547i 1) PRYI=A 056730 —0.1376 )

Note that these two matrices are not in PSL(2, R), but they are simultaneously conjugate into
PSL(2, R), according to Lemma A.3. The defining polynomial of the tetrahedra field K of 813(0)
is

px) = xl o 13 512 gl + 10x10 + 14x° — 10x8
—29x7 —5x0 +29x5 + 19x* — 11x% — 1722 = 7x — 1.

For now, we are only able to produce closed hyperbolic 3-manifolds via 0-Dehn filling to two-
bridge knot complements as examples.
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