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Small C 1 actions of semidirect products
on compact manifolds
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Let T be a compact fibered 3–manifold, presented as a mapping torus of a compact,
orientable surface S with monodromy  , and let M be a compact Riemannian
manifold. Our main result is that if the induced action  � on H 1.S;R/ has no
eigenvalues on the unit circle, then there exists a neighborhood U of the trivial action
in the space of C 1 actions of �1.T / on M such that any action in U is abelian. We
will prove that the same result holds in the generality of an infinite cyclic extension
of an arbitrary finitely generated group H provided that the conjugation action of
the cyclic group on H 1.H;R/ ¤ 0 has no eigenvalues of modulus one. We thus
generalize a result of A McCarthy, which addressed the case of abelian-by-cyclic
groups acting on compact manifolds.

37C85, 57M60; 20E22, 37D30, 57M50, 57R35

1 Introduction

We consider smooth actions of finitely generated-by-cyclic groups on compact mani-
folds, motivated by the study of fibered hyperbolic 3–manifold groups. We let S be a
compact, orientable surface of negative Euler characteristic, possibly with boundary.
Thus, the fundamental group �1.S/ is either a finitely generated free group or the
fundamental group of a closed surface of genus g for some g � 2. If � 2 Homeo.S/
is a (possibly orientation-reversing) homeomorphism, then we may form T D T� , the
mapping torus of � . We have that the fundamental group �1.T / fits into a short exact
sequence of the form

1! �1.S/! �1.T /! Z! 1;

where the conjugation action of Z on �1.S/ is by the induced action of � . It is well
known that, up to an inner automorphism of �1.S/, this action depends only on the
homotopy class of � , and is therefore an invariant of the (extended) mapping class
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of � . It follows that the isomorphism type of �1.T / depends only on the mapping
class of � .

We will be particularly interested in the action �� on the real cohomology of the fiber,
and especially in the case where the induced map ��W H 1.S;R/!H 1.S;R/ is hy-
perbolic. Here, the induced automorphism �� is said to be hyperbolic if H 1.S;R/¤ 0

and if every eigenvalue of  � has modulus different from one. More generally, an
automorphism of a nonzero, finite-dimensional real vector space is hyperbolic if it has
no eigenvalues of modulus one.

Examples of fibered 3–manifolds with hyperbolic monodromies include all compact
3–manifolds admitting sol geometry, as well as many fibered hyperbolic manifolds.
For example, the figure eight knot complement fibers over the circle with a punctured
torus as the fiber, and the monodromy given by an automorphism acting hyperbolically
on the homology of the torus.

Fibered 3–manifold groups arising from mapping classes acting hyperbolically on the
homology of the fiber fall into a much larger class of groups which we will be able
to investigate with our methods. Here and throughout, we will let M be a compact
Riemannian manifold. Recall that a short exact sequence of finitely generated groups

1!H !G! Z! 1

naturally determines  2Out.H /, and hence induces a unique linear automorphism  �

of H 1.H;R/. Abstractly as groups, we have that G is isomorphic to the semidirect
product

G ŠH Ì Z;

where the outer automorphism  is given by the conjugation action of Z Š G=H

on H. We will study Hom.G;Diff1.M //, the space of C 1 actions of G on M, in the
case that  � is hyperbolic.

1.1 Main result

We will use the symbol 1 to mean the identity map, the trivial group, the identity group
element or the real number 1 depending on the context, as this will not cause confusion.
The principal result of this paper is the following:

Theorem 1.1 Suppose we have a short exact sequence of finitely generated groups

1!H !G! Z! 1
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which induces a hyperbolic automorphism  � of H 1.H;R/. Then there exists a
neighborhood U �Hom.G;Diff1.M // of the trivial representation such that �.H /D1

for all representations � 2 U .

Thus, sufficiently small actions of G on compact manifolds necessarily factor through
cyclic groups provided the automorphism defining the extension G is hyperbolic on
cohomology. The reader is directed to Section 2.1 for a discussion of the topology
on Hom.G;Diff1.M //. Theorem 1.1 may be viewed as an analogue of a result of
A McCarthy [37], who proved a statement with the same conclusion for abelian-by-
cyclic groups (the fundamental groups of compact 3–manifolds admitting sol geometry
fall in this class).

For certain manifolds and with certain natural hypotheses, abelian-by-cyclic group
actions by diffeomorphisms enjoy rather strong rigidity properties; see Hurtado and
Xue [28].

Note that if H is a left-orderable group then it is not difficult to find faithful actions
of G by homeomorphisms of the interval Œ0; 1� which are arbitrarily C 0 –close to the
identity, so the C 1 regularity assumption in Theorem 1.1 is essential.

By applying Theorem 1.1 to the above short exact sequence for a fibered 3–manifold
group, we obtain the following result.

Corollary 1.2 Let S, � and T be as above. If � induces a hyperbolic automorphism
of H 1.S;R/, then there exists a neighborhood U of the trivial representation in
Hom.�1.T /;Diff1.M // such that �.H /D 1 for all representations � 2 U .

The hypotheses in Theorem 1.1 may be contrasted with the following result of Bonatti
and Rezaei [8], which generalizes some work of Farb and Franks [19] and Jorquera [29],
and is closely related to results of Navas [40] and Parkhe [41].

Theorem 1.3 (Bonatti and Rezaei) Every finitely generated, residually torsion-free
nilpotent group G admits a faithful representation �W G ! Diff1.Œ0; 1�/ that is C 1 –
close to the identity.

Here, a group is residually torsion-free nilpotent if every nontrivial element g 2G sur-
vives in a torsion-free nilpotent quotient of G. A representation �2Hom.G;Diff1.M //

is said to be C 1 –close to the identity if for every � > 0, there is an element hD h� 2
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Diff1.M / such that h conjugates � into an �–neighborhood of the trivial representation
of G, in the C 1 –topology on Hom.G;Diff1.M //.

It is not difficult to check that if the group G is as in the statement of Theorem 1.1
then the only torsion-free nilpotent quotient admitted by G is ZD G=H. Thus, the
hyperbolicity of the map  � plays a crucial role in the dynamics of the group G.

1.2 Unipotent monodromy maps and virtually special groups

An essential feature of Theorem 1.1 is its “unstable” nature, in the sense that it does not
remain true after passing to finite-index subgroups of G. Indeed, we have the following
fact, which follows fairly easily from known results:

Proposition 1.4 Let N be a hyperbolic 3–manifold with finite volume. Then a finite-
index subgroup of the fundamental group �1.N / admits a faithful representation �
into Diff1.Œ0; 1�/ such that � is C 1 –close to the identity.

Proof The essential point is that, combining rather deep results of Agol and Wise
with some combinatorial group theory arguments of Duchamp and Krob, one sees that
the fundamental group �1.N / contains a finite-index subgroup which is residually
torsion-free nilpotent, and hence admits a faithful representation into Diff1.Œ0; 1�/ that
is C 1 –close to the identity.

In more detail, by the work of Agol [1] and Wise [47], there is a finite-index subgroup
G0 < �1.N / such that G0 is special. In particular, G0 embeds in a right-angled
Artin group; such a group is always residually torsion-free nilpotent by Duchamp and
Krob [18]. See also the discussion in Aschenbrenner, Friedl and Wilton [2, Chapter 5].
Thus, the proposition follows from Theorem 1.3.

Thus, if G is a group satisfying the hypotheses of Theorem 1.1, then, passing to
a finite-index subgroup G0 , one often obtains a group satisfying the hypotheses of
Theorem 1.3. In such a case, one can build a C 1 action of G on the disjoint union of
n copies of Œ0; 1�, where nD ŒG WG0�, by an analogue of the induced representation of
a finite-index subgroup. Such an action will permute the components of this manifold
transitively. This does not contradict Theorem 1.1, since any such action will be outside
of a fixed neighborhood of the trivial representation of G.

One can produce many fibered 3–manifold groups, even hyperbolic ones, which are
residually torsion-free nilpotent, without using the deep results of Agol and Wise.
Indeed, it suffices to use monodromy maps � such that �� is unipotent (ie has all
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eigenvalues equal to one). In this case, the resulting G will always be residually
torsion-free nilpotent; see Koberda [33]. In fact, a semidirect product of Z with a
finitely generated, residually torsion-free nilpotent group H will again be residually
torsion-free nilpotent if the induced Z action on H 1.H;R/ is unipotent.

It is not true that if a semidirect product H Ì Z is residually torsion-free nilpotent then
 � is unipotent. Indeed, considering a fibered hyperbolic 3–manifold group �1.T /

satisfying the hypotheses of Theorem 1.1 and passing to a finite-index subgroup which
is special (as in Proposition 1.4), we can obtain a new mapping torus structure on a
finite cover T0 of T with monodromy �0 , and with a fiber S0 which covers S. The
action of ��

0
on H 1.S0;R/ will not be unipotent, since H 1.S;R/ will naturally sit

inside H 1.S0;R/ via pullback and will be invariant under ��
0

.

The regularity assumption in Theorem 1.3 is subtle. Nonabelian nilpotent groups cannot
admit faithful C 2 actions on any compact 1–manifold; see Plante and Thurston [43].
Right-angled Artin groups and specialness do not provide any help in producing higher
regularity actions, since in dimension one they almost never admit faithful C 2 actions
on compact manifolds; see Baik, Kim and Koberda [4; 32]. The compactness of the
manifold acted upon here is also essential; see Baik, Kim and Koberda [3].

1.3 General group actions on compact manifolds

A robust trend in the theory of group actions on manifolds is that “large” groups should
not act on “small” manifolds. Among the striking results in this area are the facts
that irreducible lattices in higher-rank semisimple Lie groups do not admit infinite
image C 1 actions (and often even C 0 actions) on compact 1–manifolds; see Burger
and Monod [13], Ghys [25] and Witte [48]. For higher-dimensional manifolds, the
work of Brown, Fisher and Hurtado shows that for n� 3, groups commensurable with
SLn.Z/ do not admit faithful C 1 actions on m–dimensional compact manifolds for
m< n�2, and for m< n�1 if the actions preserve a volume form; see Brown, Fisher
and Hurtado [11; 12]. They obtain similar results for cocompact lattices in simple Lie
groups.

Lattices in rank one Lie groups often do admit faithful smooth actions on compact
1–manifolds. By Bergeron, Haglund and Wise [5], many arithmetic lattices in SO.n; 1/
are virtually special and hence virtually residually torsion-free nilpotent, which by
Theorem 1.3 furnishes many faithful C 1 actions of such lattices.

McCarthy’s result [37] furnishes a class of solvable groups which admit no faithful,
small C 1 actions on compact manifolds whatsoever. Topologically, her groups arise
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as fundamental groups of torus bundles over the circle, with no restrictions on the
dimension. Our main result identifies a larger class of such groups, including ones
within the much more dimensionally restricted and algebraically different class of
compact 3–manifolds groups. For fibered 3–manifolds groups acting without at least
some smallness assumptions, we can only make much weaker statements:

Proposition 1.5 If T is a closed, hyperbolic, fibered 3–manifold, then the universal
circle action of the fundamental group �1.T / on S1 is not topologically conjugate to
a C 3 action.

Proposition 1.5 follows immediately from the work of Miyoshi [38]. We will deduce
Proposition 1.5 from a stronger fact (Proposition 4.3) in Section 4 for the convenience
of the reader.

There is no hope of establishing a result as sweeping as the Brown–Fisher–Hurtado
resolution of many cases of the Zimmer conjecture for 3–manifold groups acting on
the circle, even with maximal regularity assumptions:

Proposition 1.6 (eg Calegari [14]) There exist finite-volume hyperbolic 3–manifold
subgroups of PSL2.R/.

Any such groups act by projective (and hence analytic) diffeomorphisms on S1 . We
remark that Proposition 1.6 seems well known to experts. We refer the reader to
Section 4.2 for a further discussion of analytic hyperbolic 3–manifold group actions
on the circle.

1.4 Uniqueness of the presentation of G

We remark briefly that if GD�1.T / satisfies the hypotheses of Corollary 1.2 then there
is an essentially unique homomorphism G!Z whose kernel is isomorphic to a finitely
generated group, and in particular the fibered 3–manifold structure on T is unique (see
Thurston [46] and Stallings [44]). Thus, the induced map  � is canonically defined,
and one may therefore speak of the monodromy action. For fibered 3–manifold groups
with first Betti number b1 > 1 this is no longer the case.

2 Preliminaries

In this section, we gather the tools we will need to establish the principal result of this
paper.
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2.1 The space of C 1 actions of G

Recall that in our notation, M denotes a fixed compact Riemannian manifold. We
denote by Diff1.M / the group of C 1 –diffeomorphisms of M. For f 2 Diff1.M /,
we will write

Dxf W TxM ! Tf .x/M

for the Jacobian of f .

It will be convenient for us to assume that M is C 1 embedded in a Euclidean space RN

for some N � 0. For our purposes, we only require an embedding, though in principle
one could require an isometric embedding by the Nash embedding theorem [39], for
example. We reiterate that an isometric embedding is not necessary for the sequel.

For brevity, we let kXk denote the `1 norm when X is a function, a vector, a matrix
or a tensor. We replace distances in M by distances in RN, and we equip the Jacobian
of a diffeomorphism f of M with the `1 norm arising from RN, which we denote
by kDxf k. Note that if V ŠRN is a vector space equipped with the `1 norm and
T 2 End.V /, then we have the estimate

kT vk �N kT kkvk

for all v 2V . This estimate is in fact more general. Indeed, sometimes, we will consider
linear maps which are defined on subspaces of RN and which have values in RN (for
example, the Jacobian of a diffeomorphism of M �RN as above). In this case, we are
still able to write down a matrix (which will no longer be square) that represents this
linear map. We will define the supremum norm of such a matrix by taking the maximum
of the absolute values of the entries, in which case the same norm estimate holds as
for an endomorphism of V . We will make essential use of this estimate in the sequel.

We define the C 1 –metric on Diff1.M / by

d.f;g/D kf �gkC sup
x2M

kDxf �Dxgk;

where all these distances and norms are now interpreted in the ambient Euclidean space.

If G is generated by a finite set S, we may define a metric dS on Hom.G;Diff1.M //

via
dS .�; �

0/Dmax
s2S

d.�.s/; �0.s//:

This metric dS determines the C 1 –topology of Hom.G;Diff1.M //, and this topology
is independent of the choice of the generating set S.
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For an arbitrary group G, we will write �0 2 Hom.G;Diff1.M // for the trivial rep-
resentation of G. We see that in order to prove Theorem 1.1, it suffices to find some
� > 0 such that every representation � 2Hom.G;Diff1.M // satisfying dS .�; �0/ < �

maps H to the identity 1.

2.2 Hyperbolic monodromies

Here, we recall some basic facts from linear algebra of hyperbolic automorphisms of a
real vector space. Let V be a d –dimensional vector space over R, and let k � kd be a
fixed norm on V . When A 2 GL.V /, we say that A is hyperbolic if every eigenvalue
of A has modulus different from one.

Lemma 2.1 Let A 2 GL.V / be a hyperbolic automorphism. Then there is an A–
invariant splitting V D E�˚EC and a positive integer p0 such that the following
conclusions hold for all p � p0 :

(1) If v 2E� then
kApvkd �

1
2
kvkd :

(2) If v 2EC then
kApvkd � 2kvkd :

We omit the proof of the lemma, which is well known; see [30, Chapter 1] for instance.
As is standard from dynamics, E� and EC are the stable and unstable subspaces of V

associated to A. In the sequel, we will use the notation �C and �� to denote projections
V !EC and V !E� with kernels E� and EC, respectively. Observe that invariance
of the splitting implies that A commutes with each projection �C and �� .

2.3 Approximate linearization

A fundamental tool for proving Theorem 1.1 is the following result of Bonatti [6; 7],
which arose as an interpretation of Thurston stability [45], and which we refer to as
approximate linearization.

Lemma 2.2 Let M be a compact manifold, let �> 0 and let k 2N. Then there exists
a neighborhood of the identity V � Diff1.M / such that for all points x 2M, for all
diffeomorphisms f1; : : : ; fk 2 V and for all �1; : : : ; �k 2 f�1; 1g, we have



f �k

k
ı � � � ıf

�1

1
.x/�x�

kX
iD1

�i.fi.x/�x/





� � max
iD1;:::;k

kfi.x/�xk:
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For the rest of this paper, we will often suppress the notation � 2 Hom.G;Diff1.M //

and just write gx D g.x/D �.g/.x/ for g 2G and x 2M. We define a displacement
vector for g at x as

��x.g/ WD �.g/.x/�x;

regarded as an N –dimensional row vector. Here, we remind the reader that M is
embedded as a submanifold of RN, so that the displacement vector becomes a vector
in RN. Admittedly, the displacement vector depends on the choice of embedding,
though this does not matter since we will ultimately be interested in whether or not it
vanishes.

More generally, if B D fb1; : : : ; bng � G is a finite subset then we define an n�N

matrix
��x.B/ WD .�

�
x.bi//1�i�n:

We often write �x for ��x when the meaning is clear. Then the above lemma asserts
that 



�x.g

�k

k
ı � � � ıg

�1

1
/�

kX
iD1

�i�x.gi/





� �k�x.fg1; : : : ;gkg/k

in the case when gi 2 G and �.gi/ 2 V. Here, we remind the reader that we always
use the supremum norm.

2.4 First homology and cohomology groups

We briefly recall for the reader unfamiliar with group homology that the first homology
group of a group H is given by the abelianization

H1.H;Z/DH=ŒH;H �:

When R 2 fZ;Rg, the first cohomology group H 1.H;R/ coincides with the abelian
group of homomorphisms from H to R. In particular, H 1.H;Z/ is a free abelian
group of the same rank as H1.H;Z/.

3 Proof of Theorem 1.1

We are now ready to give a proof of Theorem 1.1. For this, we will fix an automorphism
 2 Aut.H / such that G can be written as

G D hH; t j tht�1
D  .h/ for all h 2H i:
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3.1 Reducing to homologically independent generators

We first establish Lemma 3.1 below, which will say that we may more or less assume
that H is finitely generated and free abelian.

Let d � 1 be the rank of H 1.H;Z/. We can find a finite generating set

S D S0 tS1

of H such that all of the following hold:

� The image of S0 in H1.H;Z/DH=ŒH;H � is a basis for the free part.

� The image of each element in S1 is torsion or trivial in H1.H;Z/.

We pick K � 2 so that �K D 0 for all

� 2 kerfH1.H;Z/!H1.H;R/DH1.H;Z/˝Z Rg;

where the map between the homology groups is the tensoring map. We enumerate
S0 D fs1; s2; : : : ; sdg, and regard S0 as an ordered set. Let A WD .˛ij / be the matrix
of the hyperbolic linear automorphism

 �W H 1.H;Z/!H 1.H;Z/

with respect to the basis which is dual to S0 , viewed as real homology classes. The
action  � on H1.H;Z/ is then given by the transpose . j̨ i/. In this case, we can
write each  .sj / as

(3-1)  .sj /D tsj t�1
D

dY
iD1

s j̨ i

i �j

for some element �j 2H such that �K
j 2 ŒH;H �. It will be convenient for us to define

the subset
S 0 WD

˚
uK
W u 2 S1[f�1; : : : ; �dg

	
� ŒH;H �:

Observe that each element h 2 ŒH;H � can be expressed as a product of commutators
in S. It follows that h can be expressed as a balanced word in S, which is to say that
all generators in S occur with exponent sum zero. Since S 0 � ŒH;H �, we can find an
integer k0 �K such that every element in S 0 is a balanced word of length at most k0

in S. Recall our convention kAk WDmaxi;j j˛ij j. We set

(3-2) k WD k0C dkAk:
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Lemma 3.1 Let 0<�<1. Then there exists a neighborhood U�Hom.G;Diff1.M //

of the trivial representation �0 such that each of the following relations hold for all
representations � 2 U and points x 2M:

(1) k��x.S 0/k � �k�
�
x.S/k.

(2) k��x.S1[f�1; : : : ; �dg/k � �k�
�
x.S/k.

(3) k��x.S/k D k�
�
x.S0/k.

(4) k��x. .S0//�A�
�
x.S0/k � 2�k�

�
x.S0/k.

Proof Let k be defined as in (3-2). We have an identity neighborhood V �Diff1.M /

furnished by Lemma 2.2 for � and k . We define U by

U D
˚
� 2 Hom.G;Diff1.M // W �.S [f�1; : : : ; �dg/� V

	
:

We now fix � 2 U , and we suppress � from the notation by writing g.x/ WD �.g/.x/.
Similarly, we write �x.g/ WD�

�
x.g/. So, �x.g/ will be thought of as a function of

the group element g , and which depends on x as well.

(1) Let u 2 S 0, so that u can be expressed as a balanced word in S with length at
most k0 < k . We see from Lemma 2.2 that

k�x.u/k � �k�x.S/k:

This proves part (1).

(2) Let u 2 S1[f�1; : : : ; �dg. Since u 2 V by assumption, we again use Lemma 2.2
to see that

k�x.u
K /�K�x.u/k � �k�x.u/k:

Using the triangle inequality and part (1), we see that

Kk�x.u/k � k�x.u
K /kC �k�x.u/k � �k�x.S/kC �k�x.u/k:

Since K � 2, we obtain the desired conclusion as

k�x.u/k �
�

K��
k�x.S/k � �k�x.S/k:

Part (3) is obvious from the previous parts. For part (4), let us pick an arbitrary sj 2S0 .
From the expression (3-1) for  .sj /D tsj t�1 and from Lemma 2.2, we can deduce
that 



�x. .sj //�

dX
iD1

j̨i�x.si/��x.�j /





� �k�x.S [f�j g/k D �k�x.S0/k:
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The triangle inequality and the second and third parts of the lemma imply the conclusion
of part (4).

3.2 McCarthy’s lemma

Retaining previous notation, we have a group G presented as H Ì hti. Another
ingredient for the proof of the main theorem is the following lemma, which was proved
by McCarthy [37, Lemmas 4.1 and 4.2] in the case when H is abelian:

Lemma 3.2 (cf Lemmas 4.1 and 4.2 of [37]) For all � 2
�
0; 1

3

�
, there exists a neigh-

borhood U � Hom.G;Diff1.M // of the trivial representation �0 such that whenever
� 2 U and x 2M, we have

k�
�

�.t�1/.x/
.S0/�A��x.S0/k � �k�

�
x.S0/k:

Roughly speaking, under the above hypothesis, if we denote the displacement matrix
of S0 at x by v , then Av will be near to the displacement matrix of S0 at t�1x . Thus,
one can apply hyperbolic dynamics to estimate the change of displacement matrices as
points are moved under iterations of t�1 :

x 7! t�1x 7! t�2x 7! � � � 7! t�nx 7! � � � :

Since McCarthy’s arguments concerned the case where H is abelian and hence do not
apply in this situation, let us reproduce proofs here which work for general groups.

Proof of Lemma 3.2 Fix �0 2 .0; �/, which will be made explicit later. We pick a
sufficiently small neighborhood U � Hom.G;Diff1.M // of �0 , which is at least as
small as the neighborhood U in Lemma 3.1 for this choice of �0. We let � 2 U , and
again suppress the notation � in expressions. We also fix x 2M, and set y WD t�1x .

Suppose we have s 2 S0 . From the definition of the derivative, we have that

�x. .s//D�ty.tst�1/D ts.y/� t.y/DDy t.�y.s//C o
�
k�y.s/k

�
:

Replacing U by a smaller neighborhood if necessary, we may assume that (with a slight
abuse of notation)

o
�
k�y.s/k

�
< �0k�y.s/k

in norm, and that N kDy t � 1k � �0, where 1 denotes the identity map, and N is the
dimension of the Euclidean space where M is embedded. It then follows that

(3-3) k�x. .s//��y.s/k �N kDy t � 1k � k�y.s/kC o
�
k�y.s/k

�
� 2�0k�y.s/k:
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Here, we are using the `1 norm estimate

kT vk �N kT kkvk

for arbitrary vectors v and linear maps T W RN !RN.

Applying the triangle inequality, Lemma 3.1(4) and (3-3), we deduce that

(3-4) k�y.S0/�A�x.S0/k � 2�0k�y.S0/kCk�x. .S0//�A�x.S0/k

� 2�0
�
k�y.S0/kCk�x.S0/k

�
:

From the inequality (3-4), we note that

(3-5) .1�2�0/k�y.S0/k� kA�x.S0/kC2�0k�x.S0/k� .dkAkC2�0/k�x.S0/k:

We will now choose �0 2 .0; �/ sufficiently small that�
dkAkC 2�0

1� 2�0
C 1

�
� 2�0 �

�
dkAkC 2

3
1
3

C 1

�
� 2�0 � �:

Combining inequalities (3-4) and (3-5), we obtain the desired conclusion as

k�y.S0/�A�x.S0/k � 2�0
�

dkAkC 2�0

1� 2�0
C 1

�
k�x.S0/k � �k�x.S0/k:

3.3 Finishing the proof

We can now complete the proof of the main result.

Proof of Theorem 1.1 Let � be sufficiently near to �0 . By Lemma 3.1(3), it suffices
for us to prove that the d �N matrix �x.S0/ is equal to 0 for all points x 2M.

The hyperbolic automorphism  � on H 1.H;Z/ induces an invariant splitting

Rd
D

dM
iD1

Rsi DEC˚E�;

as in Lemma 2.1. We may assume p0 D 1 in that lemma after replacing  � by a
sufficiently large power; this is the same as passing to the kernel of the natural map
G! Z=pZ given by reducing G=H modulo p .

Let us pick a point x 2M such that the quantity

max
�
k�C�z.S0/k; k���z.S0/k

�
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is itself maximized at z D x . Here, �˙ is regarded as a map from
LN

iD1 Rd toLN
iD1 E˙ .

For a proof by contradiction, we will suppose that this maximum is nonzero. We may
further assume the maximum occurs for the unstable direction. Since the stable and
unstable subspaces of a hyperbolic matrix are symmetric under inversion, the case
where the maximum is in the stable direction is analogous.

Let us choose � 2
�
0; 1

3

�
and a neighborhood U � Hom.G;Diff1.M // so that the

conclusion of Lemma 3.2 holds for � 2 U . With this choice, using also the contraction
property of �C , we estimate

k�C�t�1x.S0/��CA�x.S0/k � k�t�1x.S0/�A�x.S0/k � �k�x.S0/k

� �
�
k�C�x.S0/kCk���x.S0/k

�
� 2�k�C�x.S0/k:

On the other hand, applying the triangle inequality and Lemma 2.1(2), we have

k�C�t�1x.S0/�A�C�x.S0/k � kA�C�x.S0/k�k�C�t�1x.S0/k

� 2k�C�x.S0/k�k�C�t�1x.S0/k:

Combining the above chains of inequalities, and using that A�C D �CA, we obtain

k�C�t�1x.S0/k � 2.1� �/k�C�x.S0/k> k�C�x.S0/k:

This contradicts the maximality of our choices.

4 General group actions and questions

As remarked in the introduction, there is no hope of ruling out highly regular faithful
actions of 3–manifold groups on low-dimensional manifolds. Thus, Theorem 1.1
can be viewed as a local rigidity phenomenon of Hom.G;Diff1.M // near the trivial
representation �0 rather than as a global statement about this space of actions. In this
section we discuss actions of 3–manifold groups on the circle which are not small, and
thus are much less constrained.

4.1 Universal circle actions

First, we show that for certain types of faithful actions of 3–manifold groups, some
regularity constraints persist. Let T be a fibered 3–manifold with closed, orientable
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fiber S and monodromy  2 Mod.S;p/. We assume that �.S/ < 0. Here, we
have equipped S with a basepoint p , and we assume that elements of Mod.S;p/
preserve p , as do isotopies between them.

We have that the fundamental group �1.S/ naturally sits in Mod.S;p/ as the kernel
of the homomorphism Mod.S;p/!Mod.S/ which forgets the basepoint p [21]. The
short exact sequence

1! �1.S/!Mod.S;p/!Mod.S/! 1

is known as the Birman exact sequence. The mapping class group Mod.S;p/ has
a natural faithful action on S1 by homeomorphisms, known as Nielsen’s action
(see [16]). This action of Mod.S;p/ is not conjugate to a C 1 action, and even
after passing to finite-index subgroups it is known not to be conjugate to a C 2 action
[20; 4; 32; 42; 35]. Moreover, this action is not absolutely continuous, as can be easily
seen from Proposition 4.1 below. However, one can topologically conjugate Nielsen’s
action to a bi-Lipschitz one; this is a general fact for countable groups acting on the
circle [17]. We remark that Nielsen’s action, as it is constructed by extensions of
quasi-isometries of H2 to S1 , enjoys a regularity property known as quasisymmetry.
See [16; 26; 22].

If  2Mod.S;p/ then the conjugation action of  on the group

�1.S/D kerfMod.S;p/!Mod.S/g

makes the group h ; �1.S/i isomorphic to �1.T /. We thus obtain an action, which
is called the universal circle action of �1.T / (see [15]). While it follows that �1.T /

admits a natural faithful action on S1 by absolutely continuous homeomorphisms, the
higher regularity properties of this action are somewhat mysterious.

We now give a proof of Proposition 1.5, which asserts that this action is not topologically
conjugate to a C 3 action. As stated in the introduction, this result is known from the
work of Miyoshi. The proof of Proposition 1.5 given in [38] follows similar lines to
the argument given here, and is easily implied by the following two results:

Proposition 4.1 Let S be a closed surface and �W �1.S/! PSL2.R/ be a faithful
discrete representation. Then the normalizer of �.�1.S// in Homeoac.S1/ is a discrete
subgroup of PSL2.R/ which contains �.�1.S// as a finite-index subgroup.

Proof Let g be an absolutely continuous homeomorphism of the circle which normal-
izes �.�1.S//. Then, by an argument originally due to Sullivan (see Proposition III.4.1
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of [23]), we see that g is actually contained in PSL2.R/. Ghys gives a relatively
simple argument under the assumption of C 1 conjugacy, which in turn suffices for
Proposition 1.5. In this case, all derivatives of hyperbolic elements at their fixed points
must be preserved by the conjugacy. In other words, the marked length spectrum
associated with the Fuchsian group �.�1.S// is invariant, and thus the isometry class
of the corresponding hyperbolic surface is preserved.

Now, it follows from standard facts about Zariski-dense subgroups of simple Lie groups
that the normalizer of a Fuchsian group in PSL2.R/ is necessarily Fuchsian, and
contains the original Fuchsian group with finite index. Indeed, suppose � < PSL2.R/

is discrete and let fgigi2N � PSL2.R/ normalize � . Suppose furthermore that gi! 1

as i !1. Then it is not difficult to show that gi must centralize � for i sufficiently
large. If � is Zariski dense then gi is the identity for i sufficiently large, so that the
normalizer of � is again discrete. If � is cocompact then its normalizer must contain �
with finite index. See [31, Theorem 2.3.8] for more details. The conclusion of the
proposition now follows.

Proposition 4.1 implies the following: Let  2Mod.S/ be pseudo-Anosov, and let z be
in the preimage of  under the canonical map Mod.S;p/!Mod.S/ given by deleting
the marked point. Then z fails to act by an absolutely continuous homeomorphism
on S1 under Nielsen’s action of Mod.S;p/ on S1 .

The following result is known as Ghys’ differentiable rigidity of Fuchsian actions [24]:

Theorem 4.2 Let S be a closed surface and let �W �1.S/! Diffr .S1/ for r � 3 be
a representation which is topologically conjugate to a Fuchsian subgroup of PSL2.R/.
Then � is conjugate to a Fuchsian subgroup of PSL2.R/ by a C r diffeomorphism.

Proposition 1.5 is an immediate consequence of the following, which in turn is an
obvious corollary of Proposition 4.1 and Theorem 4.2:

Proposition 4.3 Let T be a hyperbolic fibered 3–manifold with a closed fiber S. If
an action

�W �1.T /D �1.S/Ì hti ! HomeoC.S1/

has the property that �.�1.S// is topologically conjugate to a Fuchsian subgroup of
PSL2.R/, then either �.�1.S// 6� Diff3

C.S
1/ or �.t/ is not absolutely continuous.
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We remark that universal circle actions enjoy a strong C 0 rigidity property, namely that
actions in the same connected component of the representation variety of �1.T /!

HomeoC.S1/ are semiconjugate to the standard action [9].

4.2 Analytic actions

Finally, we discuss faithful analytic actions of fibered 3–manifold groups on S1 . By
Agol’s resolution of the virtual fibering conjecture [1], we have that every hyperbolic
3–manifold virtually fibers over the circle. Thus, if a subgroup � <PSL2.C/ is discrete
(ie a Kleinian group) with finite covolume, then � has a finite-index subgroup which is
�1.T / for some fibered 3–manifold T . Now, if the matrix entries of � are contained in
a number field K �Q such that K has a real place (ie a Galois embedding � W K!C

such that �.K/�R), then � can be identified with a subgroup of PSL2.R/.

Therefore, in order to establish Proposition 1.6, it suffices to produce such a Kleinian
group. If � has matrix entries in a field K of odd degree over Q, then K has at least one
real place, since the number of complex places is even. Many such arithmetic Kleinian
groups of finite covolume (and even cocompact ones such as the fundamental group
of the Weeks manifold) exist; see [34, Section 13.7], for example. Note that since any
discrete subgroup of PSL2.R/ is virtually free or a closed surface group, a finite-volume
hyperbolic 3–manifold group cannot occur as a discrete subgroup of PSL2.R/.

4.3 Questions

There are several natural questions which arise from the discussion in this paper.

Question 4.4 (J Souto) Let T be a fibered 3–manifold and let GD�1.T /. Is there a
finite-index subgroup G0 <G such that G0 <Diff2.I/? What about G0 <Diff1.I/?

In [36], Marquis and Souto constructed a faithful C1 action of closed orientable
surface groups, for genus g � 2, on the unit interval.

Question 4.5 Is the universal circle action of a fibered 3–manifold group topologically
conjugate to a C 1 action?

In other words, Question 4.5 asks if we can replace the C 3 conclusion in Proposition 1.5
with a C 1 conclusion. Observe that Ghys’ differentiable rigidity of Fuchsian actions
does not hold in lower regularity (at least less than C 2 ): for arbitrary ˛ < 1, there are
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C 1C˛ actions of �1.S/ that are C 0 conjugate to a Fuchsian action, but that are not
conjugate to a Fuchsian action by an absolutely continuous homeomorphism; see [27].
Other instances of this phenomenon arise from the theory of Hitchin representations [10].
A first attempt to answer Question 4.5 would be to investigate if the analogue of
Proposition 4.1 holds for these actions: do they admit a C 1 normalizer which is not a
finite extension of the image of �1.S/?
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